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Abstract

This paper proposes an end-to-end trainable network,

SegFlow, for simultaneously predicting pixel-wise object

segmentation and optical flow in videos. The proposed

SegFlow has two branches where useful information of

object segmentation and optical flow is propagated bi-

directionally in a unified framework. The segmentation

branch is based on a fully convolutional network, which has

been proved effective in image segmentation task, and the

optical flow branch takes advantage of the FlowNet model.

The unified framework is trained iteratively offline to learn

a generic notion, and fine-tuned online for specific objects.

Extensive experiments on both the video object segmenta-

tion and optical flow datasets demonstrate that introducing

optical flow improves the performance of segmentation and

vice versa, against the state-of-the-art algorithms.

1. Introduction

Video analysis has attracted much attention in recent

years due to the numerous vision applications, such as au-

tonomous driving [15, 9, 33], video surveillance [40, 10, 20]

and virtual reality [1]. To understand the video contents for

vision tasks, it is essential to know the object status (e.g., lo-

cation and segmentation) and motion information (e.g., op-

tical flow). In this paper, we address these problems simul-

taneously, i.e., video object segmentation and optical flow

estimation, in that these two tasks have been known to be

closely related to each other [41, 35]. Figure 1 illustrates

the main idea of this paper.

For video object segmentation [25], it assumes that the

object mask is known in the first frame, and the goal is

to assign pixel-wise foreground/background labels through

the entire video. To maintain temporally connected object

segmentation, optical flow is typically used to improve the

smoothness across the time [28]. However, flow estima-

tion itself is a challenging problem and is often inaccurate,
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Figure 1. An illustration of the main idea in the proposed SegFlow

model. Our model produces better segmentation results than the

one without using the optical flow (Ours-flo), where the flow

within the object is smooth and complete, providing a guidance

to improve segmentation outputs.

and thus the provided information does not always help seg-

mentation. For instance, when an object moves fast, the op-

tical flow methods [2, 5, 37] are not effective in capturing

the movement and hence generate incomplete flow within

the object (see Figure 4 for an example). To overcome this

problem, bringing the objectness information (i.e., segmen-

tation) can guide the algorithm to determine where the flow

should be smooth (within the object). A few algorithms

have been developed to leverage both information from the

objectness and motion discussed above. In [41], a method

is proposed to simultaneously perform object segmentation

and flow estimation, and then updates both results itera-

tively. However, the entire process is optimized online and

is time-consuming, which limits the applicability to other

tasks.

Based on the above observations, we propose a learning-

based approach to jointly predict object segmentation and

optical flow in videos, which allows efficient inference dur-

ing testing. We design a unified, end-to-end trainable con-

volutional neural network (CNN), which we refer to as the

SegFlow, that contains one branch for object segmentation

and another one for optical flow. For each branch, we learn

the feature representations for each task, where the seg-

mentation branch focuses on the objectness and the opti-

cal flow one exploits the motion information. To bridge
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two branches to help each other, we propagate the learned

feature representations bi-directionally. As such, these

features from one branch can facilitate the other branch

while obtaining useful gradient information during back-

propagation.

One contribution of the proposed network is the bi-

directional architecture that enables the communication be-

tween two branches, whenever the two objectives of the

branches are closely related and can be jointly optimized.

To train this joint network, a large dataset with both ground

truths of two tasks (i.e., foreground segmentation and opti-

cal flow in this paper) is required. However, such dataset

may not exist or is difficult to construct. To relax such con-

strains, we develop an iterative training strategy that only

requires one of the ground truths at a time, so that the target

function can still be optimized and converge to a solution

where both tasks achieve reasonable results.

To evaluate our proposed network, we carry out exten-

sive experiments on both the video object segmentation and

optical flow datasets. We compare results on the DAVIS

segmentation benchmark [29] with or without providing

motion information, and evaluate the optical flow perfor-

mance on the Sintel [6], Flying Chairs [12] and Scene

Flow [27] datasets. In addition, analysis on the network

convergence is presented to demonstrate our training strat-

egy. We show that the bi-directional network through fea-

ture propagation performs favorably against state-of-the-art

algorithms on both video object segmentation and optical

flow tasks in terms of visual quality and accuracy.

The contributions of this work are summarized below:

• We propose an end-to-end trainable framework for si-

multaneously predicting pixel-wise foreground object

segmentation and optical flow in videos.

• We demonstrate that optical flow and video object seg-

mentation tasks are complementary, and can help each

other through feature propagation in a bi-directional

framework.

• We develop a method to train the proposed joint model

without the need of a dataset that contains both seg-

mentation and optical flow ground truths.

2. Related Work

Unsupervised Video Object Segmentation. Unsupervised

methods aim to segment foreground objects without any

knowledge of the object (e.g., an initial object mask). Sev-

eral methods have been proposed to generate object seg-

mentation via saliency [31, 11, 42], optical flow [4, 28] or

superpixel [17, 46, 13]. To incorporate higher level infor-

mation such as objectness, object proposals are used to track

object segments and generate consistent regions through

the video [22, 23]. However, these methods usually re-

quire heavy computational loads to generate region propos-

als and associate thousands of segments, making such meth-

ods only applicable to offline applications.

Semi-supervised Video Object Segmentation. Semi-

supervised methods [14, 47, 26] assume an object mask in

the first frame is known, and track this object mask through

the video. To achieve this, existing approaches focus on

propagating superpixels [19], constructing graphical mod-

els [25, 41] or utilizing object proposals [30]. Recently,

CNN based methods [21, 7] are developed by combining

offline and online training processes on static images. Al-

though outstanding performance has been achieved, the seg-

mentation results are not guaranteed to be smooth in the

temporal domain. In this paper, we use CNNs to jointly

estimate optical flow and provide the learned motion repre-

sentations to generate consistent segmentations across time.

Optical Flow. It is common to apply optical flow to video

object segmentation to maintain motion consistency. One

category of the approaches is to solve a variational energy

minimization problem [2, 5, 37] in a coarse-to-fine scheme.

To better determine the correspondences between images,

matching based optimization algorithms [43, 32] are devel-

oped, in which these methods usually require longer pro-

cessing time. On the other hand, learning based methods

are more efficient, which can be achieved via Gaussian mix-

ture models [34], principle components [44] or convolu-

tional networks [12, 27]. Considering the efficiency and

accuracy, we apply the FlowNet [12] as our baseline in this

work, while we propose to improve optical flow results by

feeding the information from the segmentation network as

guidance, which is not studied by the above approaches.

Fusion Methods. The joint problem of video segmenta-

tion and flow estimation has been studied by layered mod-

els [8, 38]. Nevertheless, such methods rely on complicated

optimization during inference, thereby limiting their appli-

cations. Recently, significant efforts have been made along

the direction of video object segmentation while consider-

ing optical flow. In [21], a network that uses pre-computed

optical flow as an additional input to improve segmentation

results is developed. Different from this work, our model

only requires images as the input, and we aim to jointly

learn useful motion representations to help segmentation.

Closest in scope to our work is the ObjectFlow algorithm

(OFL) [41] that formulates an objective function to itera-

tively optimize segmentation and optical flow energy func-

tions. However, this method is optimized online and is thus

computationally expensive. In addition, it requires the seg-

mentation results before updating the estimation for optical

flow. In contrast, we propose an end-to-end trainable frame-

work for simultaneously predicting pixel-wise foreground

object segmentation and optical flow.
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Figure 2. The proposed SegFlow architecture. Our model consists of two branches, the segmentation network based on a fully-

convolutional ResNet-101 and the flow branch using the FlowNetS [12] structure. In order to construct communications between two

branches, we design an architecture that bridges two networks during the up-sampling stage. Specifically, feature maps are propagated

bi-directionally through concatenations at different scales with proper operations (i.e., up-sampling or down-sampling) to match the size

of different features. Then an iterative training scheme is adopted to jointly optimize the loss functions for both segmentation and optical

flow tasks.

3. SegFlow

Our goal is to segment objects in videos, as well as es-

timate the optical flow between frames. Towards this end,

we construct a unified model with two branches, a segmen-

tation branch based on fully-convolutional network, and an

optical flow branch based on the FlowNetS [12].

Due to the lack of datasets with both segmentation and

optical flow annotations, we initialize the weights of two

branches from legacy models trained on different datasets,

and optimize the SegFlow on segmentation and optical flow

datasets via iterative offline training and online finetuning.

In the following, we first introduce the baseline model of

the segmentation and optical flow branch, and then explain

how we construct the joint model using the proposed bi-

directional architecture. The overall architecture of our pro-

posed joint model is illustrated in Figure 2.

3.1. Segmentation Branch

Inspired by the effectiveness of fully-convolutional net-

works in image segmentation [24] and the deep structure in

image classification [18, 36], we construct our segmenta-

tion branch based on the ResNet-101 architecture [18], but

modified for binary (foreground and background) segmen-

tation predictions as follows: 1) the fully-connected layer

for classification is removed, and 2) features of convolution

modules in different levels are fused together for obtaining

more details during up-sampling.

The ResNet-101 has five convolution modules, and each

consists of several convolutional layers, Relu, skip links and

pooling operations after the module. Specifically, we draw

feature maps from the 3-th to 5-th convolution modules af-

ter pooling operations, where score maps are with sizes of

1/8, 1/16, 1/32 of the input image size, respectively. Then

these score maps are up-sampled and summed together for

predicting the final output (upper branch in Figure 2).

A pixel-wise cross-entropy loss with the softmax func-

tion E is used during optimization. To overcome imbal-

anced pixel numbers between foreground and background

regions, we use the weighted version as adopted in [45],

and the loss function is defined as:

Ls(Xt) = −(1− w)
∑

i,j∈fg

logE(yij = 1; θ)

−w
∑

i,j∈bg

logE(yij = 0; θ), (1)

where i, j denotes the pixel location of foreground fg and

background bg, yij denotes the binary prediction of each

pixel of the input image X at frame t, and w is computed as

the foreground-background pixel-number ratio.

3.2. Optical Flow Branch

Considering the efficiency and accuracy, we choose the

FlowNetS [12] as our baseline for flow estimation. The op-

tical flow branch uses an encoder-decoder architecture with

additional skip links for feature fusions (feature concate-

nations between the encoder and decoder). In addition, a

down-scaling operation is used at each step of the encoder,

where each step of the decoder up-samples back the output

(see the lower branch in Figure 2). Based on such structure,

we find that it shares similar properties with the segmenta-

tion branch and their feature representations are in similar

scales, which enables plausible connections to the segmen-

tation model, and vice versa, where we will introduce in the

next section.
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To optimize the network, the optical flow branch uses

an endpoint error (EPE) loss as adopted in [12], which is

defined as the following:

Lf (Xt, Xt+1) =
∑

i,j

((uij − δuij
)2 + (vij − δvij

)2), (2)

where uij , vij denotes the motion at pixel (i, j) of input im-

ages from Xt to Xt+1, and δuij
and δvij are network pre-

dictions. We use the images at frame t and t + 1 as the

computed optical flow should align with the segmentation

output (e.g., object boundaries) at frame t, so that their in-

formation can be combined later naturally.

3.3. Bi­directional Model

In order to make communications between two branches

as mentioned above, we propose a unified structure,

SegFlow, to jointly predict segmentation and optical flow

outputs. Therefore, the new optimization goal becomes to

solve the following loss function that combines (1) and (2):

L(X) = Ls(X) + λLf (X). As shown in Figure 2, our

architecture propagates feature maps between two branches

bi-directionally at different scales for the final prediction.

For instance, features from each convolution module in the

segmentation branch are first up-scaled (to match the size of

optical flow features), and then concatenated to the optical

flow branch. Similar operations are adopted when propagat-

ing features from segmentation to flow. Note that, a convo-

lutional layer is also utilized (with the channel number equal

to the output channel number) after fused features for net-

work predictions, further regularizing the information from

both the segmentation and optical flow branches.

Different from directly using final outputs to help both

tasks [41], we here utilize information in the feature space.

One reason is that our network is able to learn useful fea-

ture representations (e.g., objectness and motion) at differ-

ent scales. In addition, with the increased model capacity

but without adding too much burden for training the net-

work, the joint model learns better representations than the

single branch. For instance, the single flow network does

not have the ability to learn representations similar to the

segmentation branch, while our model provides the chance

for two tasks sharing their representations. Note that, our

bi-directional model is not limited to the current architec-

ture or tasks, while it should be a generalized framework

that can be applied to co-related tasks.

4. Network Implementation and Training

In this section, we present more details regarding how

we train the proposed network. To successfully train the

joint model, a large-scale dataset with both the segmenta-

tion and optical flow ground truths is required. However, it

is not feasible to construct such a dataset. Instead, we de-

velop a training procedure that only needs one of the ground

Figure 3. During offline training, (a) shows the training accu-

racy for object segmentation, while (b) presents the loss for op-

tical flow, with respect to the number of training iterations (both

results are obtained on a training subset). After three rounds, con-

vergences can be observed for both segmentation and optical flow.

truths at a time by iteratively updating both branches and

gradually optimizing the target function. In addition, a data

augmentation strategy is described for both tasks to enhance

the diversity of data distribution and match the need of the

proposed model.

4.1. Network Optimization

First, we learn a generic model by iteratively updating

both branches, where the goal of the segmentation network

at this stage is to segment moving objects. To focus on a

certain object (using the mask in the first frame), we then

finetune the model for the segmentation branch on each se-

quence of the DAVIS dataset for online processing.

Iterative Offline Training. To start training the joint

model, we initialize two branches using the weights from

ResNet-101 [18] and FlowNetS [12], respectively. When

optimizing the segmentation branch, we freeze the weights

of the optical flow branch, and train the network on the

DAVIS training set. We use SGD optimizer with batch size

1 for training, starting from learning rate 1e-8 and decreas-

ing it by half for every 10000 iterations.

For training the optical flow branch, similarly we fix the

segmentation branch and only update the weights in the

flow network using the target optical flow dataset (described

in Section 5.1). To balance the weights between two differ-

ent losses, we use a smaller learning rate 1e-9 for the EPE

loss in (2), addressing the λ in the combined loss in Section

3.3. Note that, to decide when to switch the training pro-

cess to another branch, we randomly split a validation set

and stop training the current branch when the error on the

validation set reaches a convergence. In addition, this vali-

dation set is also used to select the best model with respect

to the iteration number [12].

For this iterative learning process, each time the network

focuses on one task in a branch, while obtaining useful rep-

resentations from another branch through feature propaga-

tion. Then after switching to train another branch, better
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Figure 4. Iteratively improving optical flow results on DAVIS.

Given an input image, we show the flow estimation from the ini-

tial model, FlowNetS [12], and our results during optimizing the

SegFlow in the first and the second round. The results are gradu-

ally improved during optimization.

features learned from the previous stage are used in the

branch currently optimized. We show one example of how

the network gradually move toward a convergence by itera-

tively training both branches in Figure 3 (with three rounds).

In addition, Figure 4 shows visual improvements during it-

eratively updating the flow estimation.

Online Training for Segmentation. The model trained of-

fline is able to separate moving object from the video. To

adapt the model on a specific object for online processing,

we finetune the segmentation network using the object mask

in the first frame on each individual sequence. Here, we

call the process online in the semi-supervised setting, as the

model is needed to update with the guidance of mask in the

first frame before testing on the sequence.

Each mask is then augmented to multiple training sam-

ples for both branches to increase the data diversity (de-

scribed in Section 4.2). After data augmentation, we use

the same training strategy introduced in the offline stage

with a fixed learning rate of 1e-10. At this stage, we note

that the flow branch still provides motion representations to

segmentation, but does not update the parameters.

4.2. Data Augmentation

Segmentation We use the pre-defined training set of the

DAVIS benchmark [29] to train the segmentation branch.

Since this training set is relatively small, we adopt affine

transformations (i.e., shifting, rotation, flip) to generate one

thousands samples for each frame. Since the flow branch re-

quires two adjacent frames as the input, each affine transfor-

mation is carried out through the entire sequence to main-

tain the inter-frame (temporal) consistency during training

(see Figure 5 for an example).

Optical Flow. The flow data during offline training step

is generated as the approach described for segmentation.

However, when training the online model using the first

Figure 5. Examples for data augmentation. The first row shows

the data augmentation for segmentation with the same transform

through the video for maintaining the temporal consistency. The

second row presents one example of the augmented flow, where

the transform is applied on the object mask to simulate the slight

movement in the “next frame” (highlighted within the red rectan-

gle), where the optical flow shows the corresponding transform.

frame of a test set video, we have no access to its next frame.

To solve this problem, we present an optical flow data aug-

mentation strategy. First, we augment the first frame with

the transformed method used in segmentation. Then, based

on each image and its object mask, we simulate an object

movement by slightly deforming the foreground object re-

gion to generate a synthesized ”next frame”. Since we only

focus on the specific object at this online stage, the miss-

ing area caused by the object movement can be treated as

occlusions and is left as empty (black) area. We find this

synthesized strategy is effective for training without harm-

ing the network property (see Figure 5 for an example).

5. Experimental Results

We present the main experimental results with com-

parisons to the state-of-the-art video object segmenta-

tion and optical flow methods. More results and videos

can be found in the supplementary material. The code

and model are available at https://github.com/

JingchunCheng/SegFlow.

5.1. Dataset and Evaluation Metrics

The DAVIS benchmark [29] is a recently-released high-

quality video object segmentation dataset that consists of 50

sequences and 3455 annotated frames of real-world mov-

ing objects. The videos in DAVIS are also categorized ac-

cording to various attributes, such as background clutter

(BC), deformation (DEF), motion blur (MB), fast motion

(FM), low resolution (LR), occlusion (OCC), out-of-view

(OV), scale-variation (SV), appearance change (AC), edge

ambiguity (EA), camera shake (CS), heterogeneous objects

(HO), interesting objects (IO), dynamic background (DB),

shape complexity (SC), as shown in Figure 6. We use the

pre-defined training set to optimize our framework and its

validation set to evaluate the segmentation quality.
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For optical flow, we first use the MPI Sintel dataset [6]

that contains 1041 pairs of images in synthesized scenes,

with a Clean version containing images without motion

blur and atmospheric effects, and a Final version of im-

ages with complicated environment variables. Second, we

use the KITTI dataset [16], which has 389 pairs of flow

images for real-world driving scenes. Finally, we use the

Scene Flow dataset [27], which is a large-scale synthesized

dataset recently established for flow estimation. Consider-

ing the realism, we use two subsets, Monkaa and Driving,

where Monkaa has a collection of 24 video sequences with

more than 34000 annotations for optical flow, and Driving

has 8 videos with around 17000 annotations. Similar to Sin-

tel, Driving and Monkaa both provide two versions: Clean

with clear images and Final with more realistic ones.

Since the exact training and test sets are not speci-

fied in the Scene Flow dataset, we split our own sets

for comparisons (training and validation sets do not inter-

sect). For Monkaa, we use three videos (eating × 2,

flower storm × 2, lonetree × 2) as the validation set,

and use the rest of 21 sequences for training. For Driving, 7

videos are selected for training, and use the one with the at-

tribute of 15mm focallength, scene forwards and fast

for testing. Note that, every video in both Monkaa and Driv-

ing has two views of left and right, which results in 63400

training and 5720 validation pairs on Monkaa, and 32744

training and 2392 validation pairs on Driving.

To evaluate the segmentation quality, we use three mea-

sures (evaluation code from DAVIS website [29]): region

similarity J , contour accuracy F and temporal stability T .

For optical flow, we compute the average endpoint error

from every pixel for evaluation.

5.2. Ablation Study on Segmentation

To analyze the necessity and importance of each step in

the proposed framework, we carry out extensive ablation

studies on DAVIS, and summarize the results in Table 1. We

validate our method by comparing the proposed SegFlow to

the ones without online training (-ol), iterative training (-it),

offline training (-of) and flow branch (-flo). The detailed

settings are as follows:

-ol: only uses the offline training without the supervised

information in the first frame, which is categorized as unsu-

pervised video object segmentation.

-it: only trains the model once for each of the segmentation

and optical flow branches.

-of: trains the model directly on the testing video with the

object mask in the first frame and its augmentations.

-flo: only uses the segmentation branch without the feature

propagation from the flow network.

Table 1 shows that the offline training plays an impor-

tant role in generating better results, improving the Jmean

by 21%. It demonstrates that the network needs a generic

Table 1. Ablation study on the DAVIS validation set. We show

comparisons of the proposed SegFlow model with different com-

ponents removed, i.e., online-training (ol), offline-training (of),

iterative learning (it), flow data augmentation (fda), optical flow

branch (flo) and segmentation data augmentation (sda).

Method Ours -ol -of -ol -fda -flo -flo -flo

-it -ol -ol

-sda

J Mean ↑ 0.748 0.674 0.538 0.669 0.739 0.724 0.654 0.606

J Recall ↑ 0.900 0.814 0.575 0.803 0.891 0.882 0.787 0.677

J Decay ↓ 0.137 0.062 0.227 0.005 0.124 0.119 0.021 0.006

F Mean ↑ 0.745 0.667 0.515 0.658 0.741 0.735 0.640 0.604

F Recall ↑ 0.853 0.771 0.540 0.765 0.839 0.841 0.750 0.717

F Decay ↓ 0.136 0.051 0.251 0.043 0.122 0.132 0.017 0.001

T Mean ↓ 0.194 0.276 0.302 0.279 0.225 0.250 0.354 0.335

model to discover moving objects before online finetuning.

The combined online and iterative strategy also improve the

overall Jmean by 7.9%. Compared to the model without

using the flow branch, our joint model not only improves the

Jmean but also produces smooth results temporally, result-

ing in a significant improvement in Tmean by 5.6%.

We evaluate the effectiveness of our data augmentation

steps in Table 1. Without the data augmentation for seg-

mentation (-sda) and augmented flow data (-fda), the per-

formance both degrades in terms of Jmean. In addition,

the Tmean is worse without augmenting flow data (-fda),

which shows the importance of the synthesized data de-

scribed in Section 4.2.

5.3. Segmentation Results

Table 2 shows segmentation results on the DAVIS val-

idation set. We improve the performance by considering

the prediction of the image and its flipping one, and averag-

ing both outputs to obtain the final result, where we refer to

as Ours2. Without adding much computational cost, we fur-

ther boost the Jmean with 1.3%. We compare the proposed

SegFlow model with state-of-the-art approaches, including

unsupervised algorithms (FST [28], CVOS [39], KEY [22],

NLC [11]), and semi-supervised methods (OVOS [7], MSK

[21], OFL [41], BVS [25]).

Among unsupervised algorithms, our SegFlow model

with or without the flow branch both performs favor-

ably against other methods with a significant improvement

(more than 10% in Jmean). For semi-supervised meth-

ods, our model performs competitively against OSVOS [7]

and MSK [21], where their methods require additional in-

puts (i.e., superpixels in OSVOS and optical flow in MSK1

1With image only as the input, the Jmean of MSK [21] on the DAVIS

validation set is 69.8, which is much lower than ours as 74.8.
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Table 2. Overall results on the DAVIS validation set with the comparisons to unsupervised and semi-supervised methods.

Semi-Supervised Unsupervised

Measure Ours2 Ours Ours-flo OSVOS MSK OFL BVS Ours-ol Ours-flo-ol OSVOS FST CVOS KEY NLC

J Mean ↑ 0.761 0.748 0.724 0.798 0.797 0.680 0.600 0.674 0.654 0.525 0.558 0.482 0.498 0.551

Recall ↑ 0.906 0.900 0.882 0.936 0.931 0.756 0.669 0.814 0.787 0.577 0.649 0.540 0.591 0.558

Decay ↓ 0.121 0.137 0.119 0.149 0.089 0.264 0.289 0.062 0.021 -0.019 0.000 0.105 0.141 0.126

F Mean ↑ 0.760 0.745 0.735 0.806 0.754 0.634 0.588 0.667 0.640 0.477 0.511 0.447 0.427 0.523

Recall ↑ 0.855 0.853 0.842 0.926 0.871 0.704 0.679 0.771 0.750 0.479 0.516 0.526 0.375 0.519

Decay ↓ 0.104 0.136 0.132 0.150 0.090 0.272 0.213 0.051 0.017 0.006 0.029 0.117 0.106 0.114

T Mean ↓ 0.182 0.194 0.250 0.376 0.211 0.217 0.345 0.276 0.354 0.538 0.343 0.244 0.252 0.414

Figure 6. Attribute based evaluation on the DAVIS validation set

using Jmean compared with unsupervised methods.

with CRF refinement) to achieve higher performance, while

our method only needs images as inputs. Furthermore,

we show consistent improvements over the model with-

out the flow branch, especially in the temporal accuracy

(Tmean), which demonstrates that feature representations

learned from the flow network help the segmentation.

Figure 6 shows the attributes-based performance

(Jmean) for different methods. Our unsupervised method

(offline training) performs well on all the attributes except

for Dynamic Background (DB). One possible reason is that

motion representations generated from the flow branch may

not be accurate due to the complexity in the background.

Figure 7 presents some example results for segmentation.

With the flow branch jointly trained with segmentation, the

model is able to recover the missing area of the object that

is clearly a complete region from the flow estimation. A full

comparison per sequence and more results are provided in

the supplementary material.

5.4. Optical Flow Results

Table 3 and Table 4 show the average endpoint error

of the proposed SegFlow model and the comparisons to

other state-of-the-art methods, including our baseline model

(FlowNetS) used in the flow branch. To validate the effec-

tiveness of our joint training scheme, we use the pre-trained

FlowNetS on the Flying Chair dataset [12] as the baseline,

and finetune on the target dataset using the FlowNetS and

our SegFlow model for comparisons.

We note that the data layer used in [12] is specifically

designed for FlowNetS, and thus we cannot directly apply

it to our model. Hence we report performance using var-

Table 3. Average endpoint errors for optical flow. FlowNetS+ft

denotes the results presented in [12]. FlowNetS+ft∗ denotes

FlowNetS trained with the same data as SegFlow+ft.

Method Sintel Clean Sintel Final Chairs KITTI

train test train test test train test

EpicFlow [32] 2.40 4.12 3.70 6.29 2.94 3.47 3.8

DeepFlow [43] 3.31 5.38 4.56 7.21 3.53 4.58 5.8

EPPM [3] - 6.49 - 8.38 - - 9.2

LDOF [5] 4.29 7.56 6.42 9.12 3.47 13.73 12.4

FlowNetS [12] 4.50 7.42 5.45 8.43 2.71 8.26 -

FlowNetS+ft 2.97 6.16 4.07 7.22 3.03 6.07 7.6

FlowNetS+ft∗ 3.31 7.89 4.26 8.50 - 7.37 8.7

SegFlow+ft 2.50 7.45 2.61 7.87 2.83 4.40 7.1

ious training data, where FlowNetS+ft denotes the results

reported in [12] and FlowNetS+ft∗ denotes the model fine-

tuned with the same training data as used in SegFlow. As

a result, we show that our SegFlow model consistently im-

proves endpoint errors against the results of FlowNetS+ft∗,

which validates the benefit of incorporating the information

from the segmentation branch. On KITTI, SegFlow with-

out any data augmentation even outperforms FlowNetS+ft

that uses extensive data augmentation. However, we ob-

serve that our model slightly overfits to the data on Sintel,

due to the need of data augmentation on a much smaller

dataset than the others.

In Table 4, we also compare the results with Scene-

FlowNet [27] on the training and validation sets of Monkaa

and Driving, and show that our method performs favorably

against it. Figure 8 shows some visual comparisons of op-

tical flow. Intuitively, the segmentation provides the infor-

mation to guide the flow network to estimate the output that

aligns with the segmentation output (e.g., the flow within

the segmentation is smooth and complete). More results

and analysis are provided in the supplementary material.

5.5. Runtime Analysis

For the model trained offline, the proposed SegFlow pre-

dicts two outputs (segmentation and optical flow) simulta-
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Figure 7. Qualitative results on the DAVIS validation set with comparisons to unsupervised and semi-supervised algorithms.

Figure 8. For each input image, we show the optical flow results of the baseline FlowNetS [12], fine-tuned FlowNetS and our SegFlow

model on the Scene Flow dataset. Our method produces outputs with lower endpoint error, especially with the visual improvement within

the object, in which the flow is smoother than the other methods due to the guidance from the segmentation network.

Table 4. Average endpoint errors on the Scene Flow dataset. The evaluations for train and val on the Monkaa and Driving datasets use both

forward and backward samples, while evaluations on train+val use forward ones with the comparison as reported in [27].

Method Monkaa Clean Monkaa Final Driving Clean Driving Final

train val train+val train val train val train+val train val

SceneFlowNet [27] - - 6.54 - - - - 23.53 - -

FlowNetS [12] 5.60 10.51 6.15 5.48 10.47 13.29 66.93 23.90 13.14 67.15

FlowNetS+ft 4.93 8.40 5.01 4.37 8.44 10.31 52.67 18.22 10.38 52.20

SegFlow+ft 4.06 7.94 4.49 3.78 7.90 9.17 37.91 14.35 9.41 37.93

neously in 0.3 seconds per frame on a Titan X GPU with

12 GB memory. When taking the online training step into

account, our system runs at 7.9 seconds per frame averaged

over the DAVIS validation set. Compared to other methods

such as OFL (30 seconds per frame for optical flow genera-

tion and 90 seconds per frame for optimization), MSK (12

seconds per frame) and OSVOS (more than 10 seconds per

frame at its best performance), our method is faster and can

output an additional result of optical flow.

6. Concluding Remarks

This paper proposes an end-to-end trainable network

SegFlow for joint optimization of video object segmenta-

tion and optical flow estimation. We demonstrate that with

this joint structure, both segmentation and optical flow can

be improved via bi-directional feature propagations. To

train the joint model, we relax the constraint of a large

dataset that requires both foreground segmentation and op-

tical flow ground truths by developing an iterative training

strategy. We validate the effectiveness of our joint training

scheme through extensive ablation studies and show that

our method performs favorably on both the video object

segmentation and optical flow tasks. The proposed model

can be easily adapted to other architectures and can be used

for joint training other co-related tasks.
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