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ABSTRACT

Large-scale vision models like SAM possess extensive visual knowledge, but their
application to specialized tasks like medical image segmentation is often hindered
by their general nature and the computational challenges associated with train-
ing and finetuning. Locally hosted small models such as U-Net++, designed for
specific tasks, struggle with limited performance due to sparse labeled datasets.
This study introduces a strategic knowledge mining method as a novel interaction
mechanism between large and small models. Our method utilizes SAM’s broad vi-
sual understanding to enhance the specialized capabilities of locally hosted small
deep learning models. Specifically, we trained a U-Net++ model on a limited la-
beled dataset and extend its capabilities by converting outputs (masks) produced
in unlabeled images into prompts, to extract relevant knowledge from SAM. This
process not only harnesses SAM’s generalized visual knowledge but also itera-
tively improves SAM’s prediction to cater specialized medical segmentation tasks
via U-Net++. The mined knowledge, serving as ‘pseudo labels’, enriches the
training dataset, enabling the fine-tuning of the local network. Applied to the
Kvasir SEG and COVID-QU-Ex datasets which consist of gastrointestinal polyp
and lung X-ray images respectively, our proposed method consistently enhanced
the segmentation performance on Dice by 3% and 1% respectively over the base-
line U-Net++ model, when the same amount of labelled data were used during
training (75% and 50% of labelled data). Remarkably, our proposed method sur-
passed the baseline U-Net++ model even when the latter was trained exclusively
on labeled data (100% of labelled data). These results underscore the potential of
knowledge mining to overcome data limitations in specialized models by leverag-
ing the broad, albeit general, knowledge of large-scale models like SAM, all while
maintaining operational efficiency essential for clinical applications. The code of
our method is publicly available at this link.

1 INTRODUCTION

Segmentation is a crucial task in the medical domain with numerous downstream clinical applica-
tions, including disease diagnosis, treatment planning, and surgical outcome prediction (Guo et al.,
2022; De Fauw et al., 2018). The evolution of deep learning has significantly enhanced medical
segmentation capabilities, transitioning from lightweight models like U-Net to more complex and
specialized architectures (Ronneberger et al., 2015; Hatamizadeh et al., 2021; Dumitru et al., 2023).
Despite these advancements, the field still grapples with the challenge of limited access to large-
scale, high-quality annotated datasets. These datasets commonly require trained professionals for
manual labeling, which is labor-intensive, cost-inefficient, and are frequently unavailable due to
privacy concerns.

The success of adapting large foundational models trained on large-scale datasets for some specific
medical image analysis tasks not requiring pixel level annotations, such as disease classification, of-
fers a promising approach to mitigate the problem of scarce data. These foundation models leverage
broad and versatile training data on a variety of images, establishing robust feature representations
that can be instrumental in various downstream medical image tasks. Previous efforts have focused
on adapting models trained with techniques like DINO Oquab et al. (2024), MAE He et al. (2021),
or other self-supervised pre-trained methods, which are mainly suitable for classification tasks.
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The recent introduction of the Segment Anything Model (SAM) Kirillov et al. (2023) offers a
promising solution for the specific adaptation to medical image segmentation. SAM’s potential
stems from its training on a dataset comprising one billion natural image-mask pairs, which equips
it with a robust foundation for diverse segmentation tasks.

Given SAM’s strong performance and great generalizability on natural images, recent research has
evaluated SAM’s zero-shot performance on medical datasets, including tests on CT, MRI, patholog-
ical, and various other modalities (Ji et al., 2022; Zhang & Wang, 2023; Deng et al., 2023). Despite
its potential, a performance gap persists between SAM and state-of-the-art segmentation methods,
attributable to its training solely on natural image datasets. This suggests that SAM would benefit
from further adaptation or guidance.

Addressing the challenge of zero-shot performance of SAM in medical domains, researchers have
attempted to fine-tune SAM on medical datasets. For example, MedSAM fine-tunes SAM on com-
prehensive and diverse medical image datasets (Ma et al., 2024). Other approaches have adopted
parameter-efficient fine-tuning for improved training efficiency (Zhang & Liu, 2023; Wu et al.,
2023). However, these methods still require high-quality prompts during inference due to SAM’s
underlying structure. To avoid the need for prompting during inference, some methods have chosen
to guide SAM through automatic prompting using guiding points and bounding boxes by incor-
porating the YOLO structure or framing it as a localization task (Pandey et al., 2023; Lei et al.,
2023). However, these adaptation-based methods invariably lead to large models, hindering their
operational efficiency and practicality in clinical settings.

To achieve the operational efficiency required while attaining good performance under sparsely la-
beled medical datasets, we propose a strategic knowledge mining method as a novel interaction
mechanism between large and small models. By training a lightweight U-Net++ Zhou et al. (2018)
model on a limited-labeled dataset, we then use it to guide the generalist SAM in generating pseudo
labels for unlabeled data, which can be further used to boost the lightweight model’s performance.
This novel interaction not only facilitates learning on scarcely labeled datasets, but also mines and in-
ject the domain-specific knowledge of SAM into the U-Net++ model. During inference, our method
also offers a balance between operational efficiency and accuracy. When operational efficiency is a
top priority, lightweight U-Net++ model can allow fast inference. On the other hand when higher
accuracy is needed, SAM can be involved to take in summarized prompt from U-Net++ prediction,
such that the result can be refined with improved accuracy. Additionally, since we do not prop-
agate gradients back to SAM, the training process is also memory-efficient compared to directly
fine-tuning SAM on medical datasets.

We validated our proposed technique using the the Kvasir-Seg Jha et al. (2020) dataset, demonstrat-
ing superior performance when our method was trained on partially labeled data, compared to train-
ing directly on the full dataset in a supervised setting. Furthermore, we showed that the proposed
method complements existing methods, and by incorporating self-supervised learning (SimCLR) or
MedSAM, the lightweight U-Net++ can further improve their performance.

To summarize, our contributions are as follows:

1. We propose a strategic knowledge mining method as a novel interaction mechanism be-
tween large and small models, which facilitates data-efficient segmentation.

2. We tested different types of visual prompts generated by the lightweight student model and
identified the most effective prompting techniques (point and bounding box).

3. We demonstrated that the proposed method could further benefit from domain-specific fine-
tuned SAM models and other self-supervised techniques.

RELATED WORKS

The scarcity of large-scale medical datasets has led to the development of various approaches to
address this issue. Our method is broadly related to the research direction of semi-supervised learn-
ing, knowledge mining through large-small model interaction, and adapting SAM for medical image
segmentation.
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Figure 1: Knowledge mining procedure for SAM. The U-Net++ is first trained in a supervised
setting and directly adopted for SAM knowledge mining. The red square implies unlabeled images.
The fire and snowflake icons indicate trainable and frozen modules, respectively. The respective
supervised loss and pseudo loss are illustrated in Section 2.5.

SEMI-SUPERVISED SEMANTIC SEGMENTATION

Semi-supervised learning is a popular approach for addressing the scarcity of labeled data. It lever-
ages both labeled and unlabeled data to augment the dataset, thereby improving model performance.
One of the most related approaches to our method is pseudo-labeling, which generates pseudo masks
for unlabeled data to increase the number of training samples. This approach focuses on generating
reliable pseudo labels.

Pseudo-labeling was initially proposed for classification tasks, where the argmax of the softmax
prediction is treated as a pseudo label (Lee, 2013). This methodology was later adapted for semantic
segmentation by applying a threshold to model’s predictions, converting them into binary threshold
predictions, used as pseudo labels (Feng et al., 2022). To enhance the quality of pseudo labels, Yao
et al. (2022) has incorporated confidence ratings, where a confidence score is assigned to each pixel
of the predicted mask by calculating the pixel-wise variance between predictions on the original
and transformed images. Li et al. (2021) uses an exponential moving average on pseudo labels,
continuously updating them by combining previous and current pseudo labels to reduce noise and
inconsistency. PseudoSeg performed both strong and weak augmentation on the same input images,
using the weakly augmented image as the pseudo label (Zou et al., 2021). Unlike these methods,
which rely on the current model predictions and use additional techniques to clean the predicted
masks, our method consults SAM as the generator of pseudo labels. This strategy avoids the issue
of unreliable learning from incorrect answers that can degrade training results.

KNOWLEDGE MINING THROUGH MODEL INTERACTION

In the broader context of knowledge mining through model interaction, our research connects with
the field of LLM-aided visual reasoning. This field involves multi-modal models that interact with
specialized models, such as captioning or detection models, to refine their outputs. However, these
interactions are typically conducted in a zero-shot manner, lacking feedback loops where the model
is trained on the extracted knowledge and without producing a lightweight model for efficient infer-
ence (Yang et al., 2023b; Wang et al., 2023; Yang et al., 2023a). Specifically, our method focuses
on knowledge mining from SAM, in the medical domain. SAMAug-C is an example where SAM-
predicted masks are combined with original images for classification (Gu et al., 2024). The work
most relevant to ours is Li et al. (2024), which employs SAM as a pseudo-label generator for semi-
supervised learning guided by a pre-trained SS-Net model. Our method differs as we allow iterative
evolution of visual prompts generated from unlabeled data. Additionally, our approach not only re-
sults in a lightweight U-Net++ model but also allows SAM to be capable of producing fine-grained
predictions in medical images by leveraging information from a U-Net structure. Another similar
approach to ours is SAMAug (Zhang et al., 2023b). Both our method and SAMAug utilize an ex-
ternal model to prompt SAM. However, SAMAug utilizes a frozen Visual Saliency Transformer
to generate a saliency map from which point prompts are randomly sampled, whilst our method
employs a specifically trained U-Net++ model on the target dataset, selecting point prompts based
on the highest probability within the predicted mask. Thus, our method allows more efficient and
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dataset-specific inference. Furthermore, our work extends beyond previous efforts by prioritizing
two critical aspects: (1) achieving high performance even with limited labeled data, and (2) ensur-
ing operational efficiency.

ADAPTING SAM FOR MEDICAL IMAGE SEGMENTATION

As part of our main contributions, our method adapts SAM for medical image segmentation. After
training, our method allows the U-Net++ to act as an automatic prompter, enabling SAM to infer on
medical images, thus adapting SAM for medical segmentation. Given the challenges in SAM’s zero-
shot performance on medical image segmentation, some researchers have chosen to directly fine-
tune SAM on versatile medical datasets. MedSAM fine-tunes SAM on large scale medical image
datasets, using a variety of modalities (Ma et al., 2024). For more memory-efficient fine-tuning,
SAMed adopts parameter-efficient fine-tuning (PEFT) techniques like Low-Rank Adaptation, while
SAM-SA adapts SAM for 3D medical image segmentation using prompt-conditioned adaptation
(Wu et al., 2023; Zhang & Liu, 2023). Although effective in adapting SAM for medical datasets,
these methods still require high-quality prompts during inference, which is commonly impractical
due to reliance on involving trained medical professionals in the loop.

To eliminate the need of prompting during inference, a promising direction is to learn a prompt
embedding that can be directly utilized by the prompt encoder. All-in-SAM trains a custom prompt
embedding using SAM-derived image embeddings and high-frequency data (Cui et al., 2023). Au-
toSAM employs a harmonic Dense-net that takes the image as input and outputs a mask prompt for
the mask decoder (Shaharabany et al., 2023). DeSAM replaces the mask decoder with a Prompt
Relevant IOU Module (PRIM) and a Prompt Invariant Mask Module (PIMM). PIMM processes the
image and prompt embeddings from random points together with a mask embedding through cross-
attention, which is then concatenated with the image embedding and decoded by PIMM (Gao et al.,
2023). SAM-Path introduces a pathological encoder parallel to SAM’s image encoder and learns a
class embedding prompt for each pathological class (Zhang et al., 2023a). Although these methods
are effective in adapting SAM for medical image segmentation, they still face operational efficiency
challenges during inference, as SAM itself is large.

2 METHODOLOGY

Consider a partially labeled source dataset, S, with the labeled subset {XL,YL} and abundant unla-
beled data, {XU} from the same modality, we aim to design a strategy that mines medical domain
specific knowledge from SAM to generate pseudo label for medical image segmentation on the un-
labeled data to boost the dataset and improve the overall performance by enhancing the interaction
between large-small models.

2.1 REVISITING SEGMENT ANYTHING

The Segment Anything Model is a foundational model for natural image segmentation, consisting
of three components: an image encoder, a prompt encoder, and a lightweight mask decoder. The
image encoder employs a MAE pre-trained vision transformer, which encode any input image into
an image embedding. The prompt encoder accepts three types of input: guiding points, bounding
boxes, and mask. Guiding points and bounding boxes are encoded into a sparse embedding, which is
the summation of a trained embedding and the prompt location’s positional encoding. Mask prompt
are encoded into a dense embedding. To generate the segmentation mask, the mask decoder first
adds the dense and image embeddings point-wise, then enhances the features by interacting with the
sparse embedding through two cross-attention layers to decode the final segmentation masks.

2.2 SEMI-SUPERVISED KNOWLEDGE MINING

In medical imaging, where specific modalities commonly involve largely sparse labels, SAM’s ro-
bust generalization capability is invaluable for mining domain-specific knowledge. Given a limited
labeled dataset, knowledge mining is best performed in a semi-supervised manner. To extract the
desired domain-specific knowledge from a large segmentation model like SAM, we first train a
lightweight U-Net++ model on a sparsely labeled dataset, which acts as a domain-specific “student”
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model. We leverage the “student” model to generate predicted masks on unlabeled data. These
masks are then transformed into guiding points and bounding box information, which are subse-
quently used to prompt the generalist SAM model which acts as the “teacher” model. The generalist
“teacher” model leverage its extensive natural image knowledge, producing more accurate results
over-time (during training), which then serve as pseudo labels for subsequent training. The U-Net++
model is subsequently trained on these pseudo labels, data it has not encountered before, leading to
improved performance. Although the lightweight U-Net++ model does not perform perfectly on
most cases due to sparse labeling during training, it can still effectively guide SAM. This is thanks
to SAM’s rich natural image knowledge, which allows for effective domain-specific knowledge
mining with minimal domain-specific prompting. Additionally, the SAM model remains frozen
throughout the entire process, ensuring that we are only mining knowledge from it. This prevents
any inaccuracies in prompts that could potentially poison SAM’s knowledge base.

2.3 GENERATION OF PSEUDO LABELS

To generate reliable pseudo labels, we first train a lightweight U-Net++ model on the labeled subset
{XL,YL} until convergence. Optionally, the lightweight U-Net++ model can be pre-trained with
self-supervised learning methods on both the labeled and unlabeled subsets {XL,XU} to boost the
performance. Once the lightweight U-Net++ model has been sufficiently trained, we can proceed
to create pseudo labels. Using the trained lightweight model, we make initial predictions on the
unlabeled subset {XU}. These initial predictions may be inaccurate and not yet suitable to be used
as pseudo labels for future training. Therefore, we consult SAM using the information from the
lightweight model’s predictions to further improve segmentation. SAM can accept three types of
prompts: guiding points, bounding boxes, and mask, enabling us to incorporate medical domain-
specific information extracted from the lightweight model’s predictions into SAM through these
prompts. Specifically, the prompts are been extracted as follows:

Guiding Points Prompt To derive guiding points prompt, we need to sample x points from the
image that best describes the location of desired object. We use the predictions from the lightweight
model to identify these x points. Each pixel’s value in the model’s predictions indicates the estimated
probability of that pixel belonging to the target object. Therefore, we propose sampling x points
from the pixels with the highest probabilities. This approach allows us to efficiently represent the
information in the predicted mask using a limited number of points. In cases where more than x
points share the maximum probability, we randomly select ’x’ points from this set to generate the
point prompt.

Bounding Box Prompt Given that the point prompts are selected based on the highest probabil-
ities and that a model is generally more confident near the center of an object, the point prompt
typically describes the center of the predicted mask. However, point prompts alone fail to convey
the desired extent of the segmentation, leaving SAM unaware of the boundaries beyond the center
point. This poses a challenge due to SAM’s inherent design, which generates three distinct masks
representing the whole, part, and subpart of an object. Hence, it is crucial to provide information on
the size of the desired object for SAM to produce high-quality masks. Following experimentation,
we choose to use the outer box of the predicted mask, threshoulded at 0.5, as the bounding box
prompt, as it effectively captures the prediction mask entirely.

Mask Prompt We chose to neglect the mask prompt when prompting SAM, as it imposes overly
strict constraints, specifically in terms of the point-wise addition of embeddings. Any inaccuracies
in the lightweight model’s mask predictions could be amplified if passed directly to SAM. While
incorporating mask prompts may improve the separation of small masks, this approach introduces
a trade-off, as the stricter constraints could negatively affect overall performance. We observed this
trade-off during preliminary experiments and have included an ablation study to explore its impact
further.

In summary, our method uses points and bounding box prompts as input to SAM. By utilizing these
prompting strategies, we can effectively inject domain- specific information from the lightweight
model into SAM, thereby producing reliable pseudo labels that ultimately enhanced the dataset.
This step was critical to improve the overall method performance.
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2.4 PSEUDO LABEL GENERATION SCHEDULING STRATEGIES

For the SAM knowledge mining process, we introduce two pseudo label generation scheduling
strategies: one-time generation and continuous generation.

One-Time Pseudo Label Generation For one-time pseudo label generation, pseudo labels are
generated only once after the supervised training. When the supervised training of the lightweight
model is completed, we perform inference on the unlabeled data {XU} and convert the inferred
predictions to SAM prompts. Base on these prompts, SAM produces batches of predictions, that are
treated as pseudo labels {Ypsedo

U }. The lightweight model is subsequently trained with the completed
dataset, {XL ∪ XU ,YL ∪ Ypsedo

U }. This approach allows fast training, as SAM is consulted only
once for the entire set of unlabeled data during training.

Continuous Pseudo Label Generation In continuous pseudo label generation, a pseudo label is
generated each time an unlabeled data point is revisited. When the lightweight model is trained and
ready to be applied to the unlabeled data, we generate a pseudo label on-the-fly. For each unlabeled
data point, we first infer using the lightweight model, then predict with SAM using the extracted
prompts. The resulting pseudo label is directly compared with the lightweight model’s prediction
for loss evaluation. Although SAM inference necessitates additional training time, it enables the
pseudo labels to evolve in tandem with the lightweight model, enhancing their quality.

2.5 LOSS FUNCTION

For both supervised learning and SAM knowledge mining phases, we employed a widely adopted
loss function, consisting of a weighted combination of binary cross entropy loss and dice loss (Ma
et al., 2024; Ahmed et al., 2020). BCE loss helps with curve smoothing, while Dice loss addresses
class imbalance, leveraging the strengths of both. Let B and B′ be the number of labeled and
unlabeled data in a batch, respectively. The parameter k is a hyper parameter that controls the
weighting between the BCE and Dice losses. Based on empirical results from our experiments, we
set k = 0.2 for optimal performance. Therefore, we have the supervised loss defined as:

L =
1

B

∑
B

(LDice + kLBCE)

During SAM knowledge mining phase, we down-weighted the pseudo label’s loss by a scalar factor
λ, acknowledging the inherent uncertainty compared to ground truth segmentation masks. In our
experiments, we set λ to be 0.25. The total loss then becomes:

L =
1

B

∑
B

(LDice + kLBCE) + λ
1

B′

∑
B′

(Lpseodo
Dice + kLpseodo

BCE ),

where Lpseodo
Dice and Lpseodo

BCE represent the Dice and BCE losses, respectively, calculated with pseudo
labels replacing the ground truth.

2.6 DATASET

We have used Kvasir-SEG Jha et al. (2020) and COVID-QU-Ex Tahir et al. (2021); Chowdhury et al.
(2020) datasets for training and evaluation.

Kvasir-SEG Dataset The Kvasir-SEG Dataset is a large-scale dataset of gastrointestinal polyp
images and its corresponding segmentation masks. Kvasir-SEG contains 1,000 segmented polyp
images with varied resolutions ranging from 332 × 487 to 1920 × 1072. We randomly split the
dataset into 80%, 10%, and 10% subsets for training, validation, and testing. Although there are
similar large-scale datasets of gastrointestinal images without labeled segmentation masks, such as
Kvasir Pogorelov et al. (2017) and HyperKvasir Borgli et al. (2020), the unlabeled data in these
datasets either have different target tasks then polyp segmentation or already existed in the Kvasir-
SEG, preventing their use to augment our unlabeled dataset.
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Table 1: Performance on the Kvasir-SEG dataset. Under different percentage of training data, we
compared supervised training on labeled data, our semi-supervised training on all data, and the
integration of SimCLR and MedSAM. We also included Unet++ trained on 100% labeled data as
a baseline. The gold- and blue-highlighted item indicates the overall best performance within the
relevant split (75% and 50%, respectively).

METHODS IOU (AVG±STD) DICE (AVG±STD)
Labeled/Unlabeled Split (100% Labeled)

Supervised Training on Labeled Data 0.649 ± 0.015 0.753 ± 0.015
Labeled/Unlabeled Split (75% Labeled)

Supervised Training on Labeled Data 0.617 ± 0.012 0.722 ± 0.010
Continuous Pseudo Label Generation 0.658 ± 0.005 0.756 ± 0.003
One-Time Pseudo Label Generation 0.642 ± 0.016 0.743 ± 0.016
SimCLR + Supervised Training on Labeled Data 0.637 ± 0.002 0.739 ± 0.003
SimCLR + Continuous Pseudo Label Generation 0.647 ± 0.016 0.747 ± 0.014
SimCLR + One-Time Pseudo Label Generation 0.652 ± 0.015 0.754 ± 0.013
MedSAM + Continuous Pseudo Label Generation 0.655 ± 0.013 0.756 ± 0.016
MedSAM + One-Time Pseudo Label Generation 0.649 ± 0.039 0.749 ± 0.035

Labeled/Unlabeled Split (50% Labeled)
Supervised Training on Labeled Data 0.575 ± 0.021 0.680 ± 0.023
Continuous Pseudo Label Generation 0.607 ± 0.032 0.708 ± 0.030
One-Time Pseudo Label Generation 0.607 ± 0.020 0.706 ± 0.017
SimCLR + Supervised Training on Labeled Data 0.561 ± 0.053 0.670 ± 0.044
SimCLR + Continuous Pseudo Label Generation 0.595 ± 0.054 0.696 ± 0.050
SimCLR + One-Time Pseudo Label Generation 0.572 ± 0.066 0.678 ± 0.059
MedSAM + Continuous Pseudo Label Generation 0.604 ± 0.020 0.706 ± 0.015
MedSAM + One-Time Pseudo Label Generation 0.605 ± 0.029 0.704 ± 0.028

COVID-QU-Ex Dataset The COVID-QU-Ex dataset is a dataset designed for lung segmentation
from X-ray images of COVID-19 infected, non-COVID infected, and normal lungs. Specifically,
we used the “COVID-19 Infection Segmentation Data” from the COVID-QU-Ex dataset, which
includes 3,962 image-mask pairs for lung segmentation. The dataset is pre-split into 1864/1166/932
pairs for training, validation, and testing, respectively.

2.7 EVALUATION METRICS

To measure the performance of the predicted masks, we followed the suggested metrics stated in
the Kvasir SEG and used Intersection Over Union (IOU) and Dice similarity coefficient (DICE) to
quantitatively evaluate the segmentation results. Both metrics are region-based, designed to measure
the overlap between ground truth masks and predicted segmentation results, and are defined as:

Dice(y, ŷ) =
2|y ∩ ŷ|
|y|+ |ŷ|

, IoU(y, ŷ) =
|y ∩ ŷ|
|y ∪ ŷ|

where y represents the ground truth mask, ŷ represents the predicted segmentation mask. These
metrics provide a comprehensive evaluation of the segmentation performance by considering both
the degree of overlap and boundary alignment between the predicted and ground truth masks.

2.8 TRAINING PROTOCOL AND EXPERIMENTAL SETTING

To test the effectiveness of our method on different numbers of unlabeled and labeled data, we
divided the training subset of each dataset into a labeled set and an unlabeled set, where the labels in

7
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Table 2: Performance results on the COVID-QU-Ex dataset. Results are presented for each La-
beled/Unlabeled split, comparing the supervised baseline and our semi-supervised method under
both continuous and one-time pseudo label scheduling. The baseline trained on 100% labeled data
is also included. The gold- and blue-highlighted item indicates the overall best performance within
the relevant split (75% and 50%, respectively).

METHODS IOU (AVG±STD) DICE (AVG±STD)
Labeled/Unlabeled Split (100% Labeled)

Supervised Training on Labeled Data 0.897 ± 0.010 0.944 ± 0.006
Labeled/Unlabeled Split (75% Labeled)

Supervised Training on Labeled Data 0.883 ± 0.002 0.936 ± 0.002
Continuous Pseudo Label Generation 0.900 ± 0.003 0.945 ± 0.002
One-Time Pseudo Label Generation 0.895 ± 0.003 0.943 ± 0.002

Labeled/Unlabeled Split (50% Labeled)
Supervised Training on Labeled Data 0.880 ± 0.007 0.933 ± 0.004
Continuous Pseudo Label Generation 0.898 ± 0.007 0.944 ± 0.004
One-Time Pseudo Label Generation 0.896 ± 0.004 0.943 ± 0.003

the unlabeled set were dropped to mimic unlabeled data. The ratios of labeled to unlabeled sets were
designed to be 100%/0%, 75%/25%, 50%/50%, respectively. The 100%/0% distribution represents
supervised learning on the original dataset, establishing the upper bound of the selected lightweight
model. The remaining splitting ratios are designed to test our method’s performance at scenarios
with different levels of labeled and unlabeled data.

Moreover, since our approach aims to extract SAM’s knowledge into a lightweight model for op-
erational efficiency, we aim to compare our method with other pre-training methods, using the
same lightweight model. Comparison with other large state-of-the-art models is precluded because
lightweight models such as U-Net++ have inherent limitations and/ or performance upper bounds,
making it unfair to compare them against complex and large models. For a comprehensive evalua-
tion, we incorporated SimCLR in our method, which is a popular self-supervised learning method
(Chen et al., 2020). We also incorporated MedSAM to determine if a domain-specific adapted SAM
would further improve the lightweight model’s performance in our combined method (Ma et al.,
2024).

For ablation studies, we tested the setting of training only with point prompts or bounding box
prompts on the “75% Labeled” split to examine the significance of both prompts. We alsopresent
the result of our method when incorporating the mask prompt, demonstrating the trade off stated in
Mask Prompt paragraph of Section 2.3.

3 QUANTITATIVE RESULTS

3.1 RESULTS ON KVASIR-SEG DATASET

Table 1 presents the performance results of the trained U-Net++ under different data splits and
pseudo label scheduling strategies for Kvasir-SEG dataset. The “Supervised Training on Labeled
Data” row with a Labeled/Unlabeled Split of “100% train” reflects the U-Net++’s performance
through supervised training on the original dataset, serving as an upper bound performance of U-
Net++.

When examining the result of our methods across different different Labeled/Unlabeled split, we can
notice that both IOU and DICE scores consistently show that methods utilizing pseudo labels (with
either pseudo label generation strategies) outperform the “Supervised Training on Labeled Data”
approach within each split. This suggests that leveraging SAM for pseudo label generation enhances
the model’s segmentation accuracy beyond what is achievable with solely supervised training on
labeled data. Additionally, we have observed that the continuous updates works better the majority
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Table 3: Ablation study on different prompting approaches. The gold-highlighted item indicates the
overall best performance

METHODS IOU (AVG±STD) DICE (AVG±STD)
Labeled/Unlabeled Split (75% Labeled)

Supervised Training on Labeled Data 0.617 ± 0.012 0.722 ± 0.010
Continuous Pseudo Label Generation 0.658 ± 0.005 0.756 ± 0.003
One Time Pseudo Label 0.642 ± 0.016 0.743 ± 0.016
Continuous Pseudo Label Generation (Box) 0.632 ± 0.019 0.732 ± 0.017
One-Time Pseudo Label Generation (Box) 0.638 ± 0.014 0.739 ± 0.014
Continuous Pseudo Label Generation (Points) 0.587 ± 0.032 0.695 ± 0.029
One-Time Pseudo Label Generation (Points) 0.612 ± 0.035 0.713 ± 0.033
Continuous Pseudo Label Generation (Points, Box, Mask) 0.637 ± 0.013 0.738 ± 0.015
One-Time Pseudo Label Generation (Points, Box, Mask) 0.625 ± 0.029 0.729 ± 0.029

of the time. This aligns with our initial design rationale, where the ability of continuous pseudo
label generation dynamically updates and improves labels as the U-Net++ model evolves, leading to
superior performance compared to one-time pseudo label generation.

Furthermore, a substantial improvement is observed in the 75% Labeled split, where both continuous
pseudo label and one-time pseudo label generation scheduling surpass the “Supervised Training on
Labeled Data” approach by 3%. Continuous pseudo label generation, in particular, even surpasses
the baseline of purely supervised training on the original dataset. This improvement can be attributed
to the continuous refinement of pseudo labels, which effectively augments the training data and
enhances the model learning process.

When combined with other methods, our approach maintains strong performance. Across all splits,
SimCLR combined with our method consistently achieves higher scores than training solely on
labeled data or pre-training with SimCLR and finetuning with labeled data. Training our methods
with MedSAM still shows noticeable improvement over purely supervised training. Compared to
training with SAM, MedSAM performs better with One-Time Pseudo Label (e.g., see the “75%
split). The improved performance is likely due to MedSAM’s prior fine-tuning on medical data,
resulting in more accurate initial pseudo labels compared to SAM.

3.2 RESULTS ON COVID-QU-EX DATASET

Table 2 presents the results on the COVID-QU-Ex dataset. The performance trend mirrors earlier re-
sults: improved performance compared to supervised training on each split, with continuous pseudo
labeling outperforming the one-time approach. Notably, the performance of our method on the 50%
split trained with continuous SAM pseudo label clearly outperforms the fully supervised learning
baseline method.

These results underscore the effectiveness of our approach and its capability to integrate complemen-
tary methods, enhancing the segmentation accuracy of lightweight models like U-Net++ on sparsely
labeled datasets.

3.3 ABLATION STUDY

Table 3 presents the results of the ablation study conducted on the Kvasir-SEG dataset, focusing
on the usage of different prompt types in the SAM framework. The study was conducted using
the “75% Labeled” split. Training with only points prompt resulted in a significant drop in the
segmentation performance compared to training with bounding box prompt. Specifically, when
the bounding box prompt was omitted with continuous pseudo label generation, the segmentation
accuracy degraded to a level worse than that achieved by supervised training alone. This suggests
that without the bounding box prompt, SAM struggles to determine whether the user wants the
whole, part, or subpart of an object, leading to degraded pseudo label quality that further impacts
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Figure 2: Sample results on the Kvasir-SEG testing set for qualitative analysis.

model performance. Similarly, when operating with only the bounding box prompt, the performance
was inferior to using both prompts. Hence, ablation results confirm the necessity of both point and
bounding box prompts for optimal pseudo label generation using SAM, as removing either adversely
affects performance.

To assess the necessity of the mask prompt, we have presented the results of our method using all
three types: point, bounding box, and mask prompts, as shown in the last two rows of Table 3.
Our findings indicate that although the model performance remains strong and optimal (versus the
“Supervised Training on Labeled Data” results), including the mask prompt resulted in a decline in
performance compared to using both point and bounding box prompts. This decline was consistent
in both the continuous and one-time pseudo label scenarios, suggesting that the inclusion of the
mask prompt may introduce challenges in some instances that outweigh its potential benefits. The
inclusion of masks may add constraints in the robustness and generalizability of the SAM model,
particularly in instances where the masks are less accurate or reflect particularities in the image
semantics and brightness.

3.4 QUALITATIVE ANALYSIS

In Figure 2, we present samples of predicted results on the Kvasir-SEG test set using the lightweight
model trained on “100% Labeled” and “75% Labele” splits with different pseudo label generation
schedules. Upon observing the results of fully supervised learning on the entire training set, we note
that the predicted masks often appear blurred and extend beyond the actual polyp regions, incorpo-
rating extra parts. In contrast, both continuous and one-time pseudo labeled methods produce more
compact masks without additional sections. This improvement can be attributed to SAM’s general
knowledge that optimally guides pseudo label generation. However, in the “75% Labeled” split
scenario (second row), we observe instances where the fully supervised lightweight model struggles
to accurately delineate multiple separate polyp masks. This challenge affects the performance of
our method. While a unified mask is still favored, SAM enables both scheduling modes to attempt
segmentation of distinct small polyp masks, visible as small black areas in between structures. This
suggests potential for further advancements beyond the current state.

4 CONCLUSION

This study demonstrates the successful adaptation of SAM’s generalized visual knowledge for spe-
cialized medical image segmentation. By utilizing mined knowledge as ’pseudo labels,’ we fine-
tuned a local network, achieving a > 3% performance improvement on Kvasir-SEG compared to
both baseline and fully supervised U-Net++. Our proposed method also outperformed other pre-
trained models (SimCLR, MedSAM) when these were combined with our U-Net++. Consistent
results were observed in the COVID-QU-Ex dataset, with continuous pseudo-labeling outperform-
ing the one-time approach. An ablation study confirmed the necessity of both point and bounding
box prompts. These findings highlight the potential of knowledge extraction to overcome data lim-
itations in specialized models by leveraging the vast knowledge of large-scale models like SAM,
while maintaining operational efficiency essential for clinical applications.
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A APPENDIX

A.1 TRAINING PROTOCOL

Data Augmentation For data augmentation, we employed vertical and horizontal flips, rotation,
and transpose with a probability of 0.5. To accommodate varying image sizes, we first re-scaled the
images such that the shortest side was 224 pixels and used center cropping to ensure all images were
sized at 3× 224× 224.
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Training Details For the lightweight model, we used U-Net++ model with a resnet34 as encoder
(Zhou et al., 2018). During the supervised learning phase, the U-Net++ model was optimized using
the Adam optimizer (β1 = 0.9, β2 = 0.999) with an initial learning rate of 5 × 10−5 (Loshchilov
& Hutter, 2019). The model was evaluated on the validation set at each epoch, and the learning rate
was reduced by a factor of 0.5 if the validation loss did not decrease for 3 epochs. The minimum
learning rate was set to 1× 10−7. Training was early stopped if the validation loss did not decrease
for 10 consecutive epochs. We used a batch size of 8 for training on a T4 GPU. A detailed overview
of the hyperparameters is provided in Table 4.

Table 4: Training Setting

CONFIG VALUE

optimizer Adam
base learning rate 5e-5
weight decay 0
optimizer momentum β1, β2 = 0.9, 0.999
batch size 8
learning rate schedule ReduceLROnPlateau
learning rate schedule mode min
learning rate schedule patience 3
learning rate schedule factor 0.5
learning rate schedule min learning rate 1e-7
early stop epochs 10
training epochs 100
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