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Abstract001

The behavior of Large Language Models002
(LLMs) when facing contextual information003
that conflicts with their internal parametric004
knowledge is inconsistent, with no generally005
accepted explanation for the expected outcome006
distribution. Recent work has identified in au-007
toregressive transformer models a class of neu-008
rons – called entropy neurons – that produce a009
significant effect on the model output entropy010
while having an overall moderate impact on011
the ranking of the predicted tokens. In this pa-012
per, we investigate the preliminary claim that013
these neurons are involved in inhibiting context014
copying behavior in transformers by looking at015
their role in resolving conflicts between contex-016
tual and parametric information. We show that017
entropy neurons are responsible for suppress-018
ing context copying across a range of LLMs,019
and that ablating them leads to a significant020
change in the generation process. These re-021
sults enhance our understanding of the internal022
dynamics of LLMs when handling conflicting023
information.1024

1 Introduction025

Large Language Models (LLMs) exhibit remark-026

able proficiency in representing, memorizing, and027

retrieving vast amounts of information. However,028

they often struggle when discrepancies arise be-029

tween their learned parametric knowledge (PK)030

and the contextual knowledge (CK) provided at031

inference (Xie et al., 2024; Jin et al., 2024; Xu032

et al., 2024). These conflicts can lead to unpre-033

dictable model behavior, which poses a significant034

challenge in real-world applications of LLMs (Ji035

et al., 2023). Although various strategies have been036

proposed to mitigate this unpredictable behavior037

(Shi et al., 2024), the mechanisms that govern how038

LLMs prioritize and integrate different sources of039

1We make our code and data publicly available at:
https://anonymous.4open.science/r/Context-Copying-
Modulation-DDD4

knowledge are poorly understood. We investigate 040

the preliminary claim that the recently discovered 041

entropy neurons (Katz and Belinkov, 2023; Gurnee 042

et al., 2024) are involved in inhibiting context copy- 043

ing behavior (Stolfo et al., 2024) by looking at 044

their role in resolving conflicts between CK and 045

PK. These neurons are known to regulate model 046

entropy while having an overall moderate impact 047

on the ranking of the predicted tokens. We make 048

the following key findings and contributions: 049

• Entropy neurons, although representing less 050

than 2‰ of the feed forward network neurons 051

in the last transformer layer, play a significant 052

role in determining the knowledge source to 053

use. More specifically, they inhibit the natural 054

LLM’s behavior of repeating the sequences 055

in the context, i.e. induction (Olsson et al., 056

2022). 057

• We identify the presence of entropy neurons in 058

a range of models, from 1 billion to 8 billion 059

parameters, including Pythia-1.4B, Phi-1.5, 060

Mistral-7B-v0.1, and Llama-3-8B2 and give 061

some insights on their characteristics. 062

2 Related Work 063

The understanding of the mechanisms and knowl- 064

edge localization within transformers has advanced 065

through various studies. One line of research has 066

focused on the PK-based outputs, particularly in 067

factual settings (Geva et al., 2021; Heinzerling 068

and Inui, 2021; AlKhamissi et al., 2022; Meng 069

et al., 2023; Geva et al., 2023). These studies hy- 070

pothesized that LLMs store parametric information 071

within the Feed Forward Network (FFN) layers, 072

which function as a key-value memory. This stored 073

information is subsequently accessed by the Multi- 074

Head Self-Attention (MHSA) layers. Another body 075

2In the main paper we show results for Phi-1.5, we provide
the results for other models in the Appendix.

1

https://anonymous.4open.science/r/Context-Copying-Modulation-DDD4
https://anonymous.4open.science/r/Context-Copying-Modulation-DDD4


Input Prompt Before (PK) After (CK)

Kentucky’s official language is Japanese. Kentucky’s official language is English Japanese

Antonio Moreno communicates in English. Antonio Moreno communicates in Spanish English

Mac OS X Panther is a product released by Google. Mac OS X Panther is a
product released by

Apple Google

Table 1: Examples where Phi-1.5 switched from using Parametric Knowledge (PK) to Contextual Knowledge
(CK) after ablating entropy neurons.

of work has examined CK-based outputs. These076

studies concluded that the processing of CK, unlike077

PK, is not localized within the LLM’s parameters078

(Monea et al., 2024). Instead, it is facilitated by a079

learned mechanism known as induction, which un-080

derpins in-context learning and information copy-081

ing (Olsson et al., 2022). Despite these advance-082

ments, the mechanisms underlying how LLMs reg-083

ulate the CK usage in a situation of induction are084

not well understood.085

3 Background086

3.1 Feed Forward Network (FFN)087

The structure of the Transformer’s FFN is central088

to our study (Vaswani et al., 2017). Given a hidden089

state x ∈ Rdmodel from the residual stream after the090

MHSA module, the FFN is defined as:091

FFN(x) =
∑
i

w
(i)
outσ

(
w

(i)
in · x+ β

(i)
in

)
+ βout, (1)092

where WT
out,Win ∈ Rdffn×dmodel are learned093

weight matrices, βin and βout are learned biases.094

The function σ denotes an element-wise nonlinear095

activation function, e.g. ReLU (Agarap, 2019).096

A neuron from the first FFN layer is character-097

ized by 1) an activation value noted ni ∈ R (i.e.098

the output of the activation function σ) and 2) an099

output weight vector w(i)
out ∈ Rdmodel .100

3.2 Framework and Dataset101

We use the knowledge probing framework102

(Tighidet et al., 2024), which consists of a dataset103

of prompts that are built to contradict the internal104

knowledge (i.e. PK) of a given model. It follows a105

well-structured format based on repetition, which106

makes it convenient for PK/CK analysis. A similar107

framework is proposed by Yu et al. (2023) but it108

consists of prompts in form of questions rather than109

repetitive sequences which is less convenient to110

study induction. We provide characteristics about111

the dataset in Appendix E.112

Each prompt x from the knowledge probing 113

dataset E consists of a contextual statement about a 114

subject s (e.g., "Paris"), a relation r (e.g., "capital 115

of"), and an object ō that contradicts the model’s 116

internal PK (e.g., "Italy"). The contextual state- 117

ment is from the CK that is defined below. This 118

is followed by a repetitive query about s to trigger 119

the model’s induction mechanism. For example: 120

Paris is the capital of Italy. 121

Paris is the capital of

Context Statement

Query Object to predict

122

123

If the model responds according to the context state- 124

ment, it uses CK (e.g. "Italy"). If it responds 125

based on its learned knowledge, it uses PK (e.g. 126

"France"). If it outputs neither, the knowledge 127

source is not defined (ND, e.g. "Spain"). 128

Parametric Knowledge (PK). PK is the informa- 129

tion the model learned during training, represented 130

as triplets (s, r, o) where o is the generated object 131

given a query with a subject s and a relation r (e.g., 132

Query: "Paris is the capital of" → Model answer: 133

"France"). 134

Context Knowledge (CK). CK is the informa- 135

tion that is contradictory to PK. This involves re- 136

placing o with another object ō that shares the same 137

relation r (e.g., "Paris is the capital of Italy"). For 138

each (s, r) couple, three ō objects are selected, 139

namely those with the lowest probability. This 140

selection method ensures the model did not learn 141

the (s, r, ō) association from its training data. 142

Not Defined Knowledge (ND). ND includes all 143

objects not in PK or CK. 144

4 Entropy Neurons 145

4.1 Motivation 146

Gurnee et al. (2024) and Stolfo et al. (2024) identi- 147

fied entropy neurons in GPT-2 by considering the 6 148
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Figure 1: Selected entropy neurons for Phi-1.5 (red).

neurons with the lowest impact on logits variance149

using the LogitVar measure, defined in Eq. 2 and150

questioned their high weight norm. Stolfo et al.151

(2024) characterize entropy neurons as those that152

write into the effective null space of the unembed-153

ding matrix WU ∈ RV×dmodel , as measured by ρ154

(Eq. 3).155

LogitVar. This measure quantifies a neuron’s di-156

rect effect on output logits variance. For a neuron157

i, it is defined as:158

LogitVar(w
(i)
out) = Var

{
w

(t)
U · w(i)

out

||w(t)
U || × ||w(i)

out||
; t ∈ V

}
(2)159

where V is the set of tokens in the vocabulary and160

w
(t)
U the tth row of WU.161

Effective Null Space Projection (ρ). This mea-162

sure quantifies how much of a neuron’s output163

aligns with directions that minimally impact the164

model’s final output, forming the effective null165

space of the unembedding matrix WU, denoted166

as V0. Details on identifying V0 are in Appendix167

F. For a neuron i, it is defined as:168

ρi =
||VT

0 w
(i)
out||

||w(i)
out||

. (3)169

4.2 Entropy Neurons Selection170

We focus on the last Transformer layer because its171

entropy neurons have the most direct impact on172

the term logit distribution (through the projection173

with the unembedding matrix WU). We use both174

LogitVar and ρ (motivated by previous work on175

effective null space projections (Stolfo et al., 2024))176

to select these neurons. Figure 1 illustrates all the177

neurons with their corresponding LogitVar and ρ178

for Phi-1.5, with similar figures for other models in179

Figure 6 in the Appendix. We select neurons with180

minimal logit variance impact (LogitVar) and high181

projection with WU’s effective null space (ρ). For 182

Phi-1.5, we select 12 entropy neurons, representing 183

1.5‰ of the last layer’s neurons, using a minimalist 184

approach to pick the fewest neurons with strong 185

characteristics. Table 4 in the Appendix details 186

hidden dimensions and selected entropy neuron 187

proportions for all models.

(a) GPT-2 (b) Llama-3-8B

Figure 2: Weight norm distribution for entropy neurons
vs. other neurons for GPT-2 and Llama-3-8B.

188
Although Gurnee et al. (2024) and Stolfo et al. 189

(2024) observed high weight norm ||w(i)
out|| for en- 190

tropy neurons (e.g., GPT-2, Figure 2a) and used 191

it to select entropy neurons, we do not use high 192

weight norm as a selection criterion. We ob- 193

serve that for some models, neurons with low 194

LogitVar(w(i)
out) and high ρi can have relatively low 195

||w(i)
out|| compared to other neurons, as illustrated in 196

Figure 2b for Llama-3-8B. Therefore, we consider 197

LogitVar and ρ as the crucial selection criteria. 198

5 Mechanistic Study 199

We present the metrics in 5.1, and describe our 200

results in 5.2. 201

5.1 Metrics 202

We measure the impact of a set of neurons N on 203

the context copying behavior by turning off these 204

neurons, through causal interventions, and observ- 205

ing how the knowledge source (CK, PK or ND) 206

changes (see Section 3.2). In practice, we turn 207

off these neurons by replacing their activation val- 208

ues ni by an average value µni computed over the 209

knowledge probing dataset E3. More formally, for 210

each example x ∈ E (see Section 3.2), KM(x) 211

is the knowledge source used by the model M, 212

and KM\N (x) is the knowledge source used by 213

the ablated model M\N given the input x. Let 214

EK = {x ∈ E|KM(x) = K} and EK̄ = E \EK . 215

We define the following metrics: 216

3We also tested other ablation values and show their Global
Transition Score in Table 6 in the Appendix.
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(b) Conversion Ratio (%)

To CK To ND To PK

From CK 99.5
(99.8 ± 0.1)

0.2
(0.1 ± 0.0)

0.3
(0.1 ± 0.1)

From ND 2.5
(0.3 ± 0.1)

96.4
(99.5 ± 0.1)

1.1
(0.2 ± 0.1)

From PK 0.4
(0.2 ± 0.1)

0.1
(0.1 ± 0.1)

99.5
(99.7 ± 0.1)

(c) Transition Scores (%)

Figure 3: Phi-1.5 ablation scores. As a control, we provide the average Transition Score of 100 random ablations
with its corresponding error bars (±3×standard deviation). We also provide the error bars for the entropy neurons
in Figure 3b illustrated on top of the CK, PK, and ND bars.

Global Transition Score (GTS): proportion of217

examples for which the knowledge source changes218

as we remove the group of neurons N219

GTS =
1

|E|
∑
x∈E

I[KM(x) ̸= KM\N (x)], (4)220

where I is the indicator function, equal to 1 if the221

condition is true and 0 otherwise, and |E| is the car-222

dinality of E. A high GTS indicates that ablating N223

significantly alters the model’s knowledge source224

selection, underscoring the role of N in knowledge225

source decision-making.226

Conversion Ratio (CR): proportion of examples227

where the model switched to a given knowledge228

source K ∈ (PK, CK, ND) when we remove N229

CR(K) =
1

|EK̄ |
∑

x∈EK̄

I[KM\N (x) = K] (5)230

a high CR(K) suggests that ablating N alters a231

large proportion of examples towards K, indicating232

that N is an inhibitor of the knowledge source K233

in the original model M.234
Transition Score (TS): proportion of examples235

that transition from knowledge source K to knowl-236

edge source K ′ as we remove N237

TS(K,K′) =
1

|EK |
∑

x∈EK

I[KM\N (x) = K′], (6)238

a high TS(K,K ′) indicates that ablating N moves239

a large portion of examples with knowledge source240

K to knowledge source K ′, suggesting that the241

entropy neurons N tend to promote K over K ′.242

5.2 Results243

Control Distribution: to assess the significance244

of the results on entropy neurons E , we build a245

control distribution by drawing 100 independent246

sets of neurons from the set of non-entropy neurons247

with the same cardinality as E .248

Entropy neurons significantly influence the 249

knowledge source of predictions. We investi- 250

gated the impact of removing entropy neurons on 251

knowledge source transitions (CK, PK, ND) across 252

various models. Figure 3a illustrates that ablating 253

entropy neurons E results in a Global Transition 254

Score (GTS) at the top 1% of the control distribu- 255

tion for Phi-1.5. This suggests that entropy neu- 256

rons play a significant role in the decision-making 257

process regarding knowledge sources. This obser- 258

vation holds true for other models (see Figure 9). 259

Entropy neurons inhibit the induction mech- 260

anism. After demonstrating that removing en- 261

tropy neurons triggers transitions between knowl- 262

edge sources, we further analyzed the destination 263

of these transitions using the Conversion Ratio 264

(CR(K)). Figure 3b for Phi-1.5, show a high CR 265

for CK compared to the control distribution, indi- 266

cating a significant shift from PK and ND to CK 267

(highlighted in green) after ablating E . This finding 268

is corroborated by the Transition Scores presented 269

in Table 3c for Phi-1.5 (2.5%) and in Table 5 (Ap- 270

pendix) for Llama-3-8B (6.2%), GPT-2 (3.3%), and 271

Pythia-1.4B (2%). We show in Table 1 examples 272

where Phi-1.5 switched from using PK to CK. 273

6 Conclusion 274

In this paper, we demonstrated that entropy neurons 275

play a significant role in modulating the balance 276

between PK and CK. Ablation studies revealed that 277

perturbing these neurons leads to significant shifts 278

in the knowledge source used by the model. Specif- 279

ically, the GTS for entropy neurons is at the top 1% 280

of the control distribution, this finding is consis- 281

tent for different models up to 8B parameters. Our 282

study elucidates mechanisms regulating induction, 283

providing insights for future research in this area. 284
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7 Limitations285

While our experiments demonstrate that entropy286

neurons significantly inhibit context copying be-287

havior in large language models, our study is lim-288

ited by an incomplete understanding of the broader289

copying regulation mechanism. Specifically, we290

focused solely on entropy neurons in the FFN of291

the final transformer layer, which may neglect the292

contributions of other neuron types and architec-293

tural components in regulating the balance between294

contextual and parametric knowledge.295

Additionally, the ablation techniques used – re-296

placing neuron activations with values such as the297

mean – may not fully capture the nuanced inter-298

actions within the network, and our findings are299

based on a limited set of models and dataset.300

Although we observed relatively high Global301

Transition Scores in most of the models we stud-302

ied, their Q-values varies. For instance, in Phi-1.5,303

Llama-3-8B, and GPT-2 the Q-value is around 99304

which is less for Mistral-7B-v0.1 and Pythia-1.4B305

with 91 and 92.5 respectively. Model architecture306

and training could explain this variation.307

Lastly, our study focuses on how entropy neu-308

rons contribute to modulating the balance between309

parametric and contextual knowledge in a situation310

of induction and does not explore why this specific311

set of neurons act this way.312

Future research should therefore expand the in-313

vestigation to include a wider array of neural com-314

ponents and alternative perturbation methods to315

more comprehensively elucidate the underlying316

processes governing copying regulation. Addition-317

ally, it should explore the reasons why entropy318

neurons specifically contribute to modulating the319

balance between parametric and contextual knowl-320

edge in situations of induction.321

8 Ethical Considerations322

Our study probes the internal mechanisms of large323

language models (LLMs) by manipulating a small324

subset of neurons—entropy neurons—that modu-325

late the balance between parametric and contextual326

knowledge. All experimental data and prompts are327

derived from publicly available sources minimizing328

any direct privacy or security concerns.329

However, we acknowledge that our findings have330

some implications. The probing and ablation tech-331

niques we describe could be repurposed to inten-332

tionally bias or subvert LLM behavior. Specif-333

ically, the structured prompts we employ to in-334

duce context copying may serve as templates for 335

adversarial attacks, allowing malicious actors to 336

manipulate model outputs in subtle but impactful 337

ways. Similarly, our demonstration that targeted 338

neuron ablation alters a model’s decision-making 339

process raises the risk that LLMs could be engi- 340

neered—intentionally or inadvertently—to priori- 341

tize deceptive or harmful outputs. 342

Given these risks, we stress the importance of 343

applying this work within responsible and well- 344

governed research contexts. We urge future re- 345

searchers to incorporate safeguards against misuse, 346

including robust evaluation pipelines and trans- 347

parency in experimental intent. To foster repro- 348

ducibility and critical engagement, we have re- 349

leased our codebase under an open license while 350

documenting the limitations of our approach. 351
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Our codebase was built using PyTorch (Paszke 474

et al., 2019), the HuggingFace Transformers library 475

(Wolf et al., 2020) the TransformerLens library 476

(Nanda and Bloom, 2022), and the knowledge prob- 477

ing framework (Tighidet et al., 2024). 478

B License 479

Llama3-8B weights are released under the license 480

available at https://llama.meta.com/llama3/ 481

license/. Mistral-7B and Pythia-1.4B weights are 482

released under an Apache 2.0 license. Phi-1.5 and 483

GPT-2 weights are released under a MIT license. 484

C Weight Pre-processing 485

To eliminate irrelevant components and other pa- 486

rameterization degrees of freedom, we utilize a set 487

of standard weights pre-processing techniques fol- 488

lowing Nanda and Bloom (2022) and Stolfo et al. 489

(2024). 490

Incorporating Layer Norm. Most layer norm 491

implementations include trainable parameters γ ∈ 492
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Rn and β ∈ Rn. To account for these, we "fold"493

the layer norm parameters into Win by treating494

the layer norm parameters as equivalent to a linear495

layer and then combining the adjacent linear layers.496

We create effective weights as follows:497

Weff = Win · diag(γ), βeff = βin +Win · β
(7)

498

Finally, we center the reading weights because499

the preceding layer norm projects out the all-ones500

vector. Thus, we center the weights Weff as fol-501

lows:502

W
′
eff(i, :) = Weff(i, :)− W̄eff(i, :). (8)503

Centering Writing Weights. Every time the504

model interacts with the residual stream, it applies505

a LayerNorm first. Therefore, the components of506

Wout and βout that lie along the all-ones direction507

of the residual stream have no effect on the model’s508

calculations. Consequently, we mean-center Wout509

and βout by subtracting the means of the columns510

of Wout:511

W
′
out = Wout(:, i)− W̄out(:, i). (9)512

Centering Unembedding. Since softmax is513

translation invariant, we also center WU:514

W
′
U(:, i) = WU(:, i)− W̄U(:, i) (10)515

D Activations516

Model Activation Function Domain
Llama-3-8B SwiGLU: Swish × GLU R
Mistral-7B-V0.1 SwiGLU: Swish × GLU R
Phi-1.5 GELU R
Pythia-1.4B GELU R
GPT-2-Small GELU R

Table 2: FFN hidden layer activation functions for all
the studied models

E Data Characteristics517

We provide in Figure 4 the count of used knowledge518

sources by model before ablating entropy neurons.519

We also provide in Table 3 a sample of examples520

from the knowledge probing dataset.521
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Figure 4: Count of used knowledge sources by each
model before ablation.

F WU’s Effective Null Space 522

To identify the effective null space V0 of WU, we 523

start by applying a singular value decomposition 524

(SVD) on WU: 525

SVD(WU) = UΣVT, (11) 526

we then consider the right singular vectors with the 527

lowest singular values, noted V0, starting from a 528

sharp drop as shown in Figure 5. We also detail 529

the effective null space dimension size for all the 530

studied models in Table 4. 531
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Figure 5: Unembedding matrix WU singular values,
illustrating the effective null space of WU in red.
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Input Prompt Knowledge Source PK Attribute Language Model

Harney County has its capital city in Taiwan. Harney County has its capital city in Burns. ND Oregon Llama3-8B

Lisa Appignanesi has citizenship of Finland. Lisa Appignanesi has citizenship of France. ND the UK Llama3-8B

Craiova is located in the continent of India. Craiova is located in the continent of Romania. ND Europe Pythia-1.4B

The Kingdom of Hungary had its capital as Connecticut. The Kingdom of Hungary had its
capital as Connecticut.

CK Budapest Mistral-7B

The Wii U system software is a product that was manufactured by Square. The Wii U system
software is a product that was manufactured by Square.

CK Nintendo Llama3-8B

The Centers for Disease Control and Prevention is headquartered in Lyon. The Centers for
Disease Control and Prevention is headquartered in Lyon.

CK Atlanta Llama3-8B

Harare is the capital city of Florida. Harare is the capital city of Zimbabwe. PK Zimbabwe Pythia-1.4B

Goodreads is owned by Microsoft. Goodreads is owned by Amazon. PK Amazon Phi-1.5

OneDrive is owned by Toyota. OneDrive is owned by Microsoft. PK Microsoft Mistral-7B

Table 3: Examples of final probing prompts, including their knowledge source, the LLM, and the corresponding
parametric knowledge (PK) object. Bold text indicates the generated attribute, while underlined text represents the
counter-knowledge attribute.

Model dmodel dffn deffective null space Card(V ) deffective null space
dmodel

(%) Entropy Neurons
(‰)

GPT-2 768 3072 40 50257 5.20 2
Llama-3-8B 4096 14336 96 128256 2.34 0.7
Mistral-7B-v0.1 4096 14336 96 32000 2.34 1
Pythia-1.4B 2048 8192 48 50304 2.34 1.1
Phi-1.5 2048 8192 48 51200 2.34 1.5

Table 4: Models hidden dimensions compared to the proportion of selected entropy neurons.

Model Name From CK From ND From PK
To CK To ND To PK To CK To ND To PK To CK To ND To PK

GPT-2 100.0
(100.0 ± 0.0)

0.0
(0.0 ± 0.0)

0.0
(0.0 ± 0.0)

3.3
(0.4 ± 0.1)

96.4
(99.6 ± 0.1)

0.3
(0.0 ± 0.0)

0.0
(1.2 ± 0.6)

6.2
(2.6 ± 0.8)

93.8
(96.3 ± 1.0)

Mistral-7B 99.8
(99.9 ± 0.0)

0.0
(0.0 ± 0.0)

0.2
(0.1 ± 0.0)

0.0
(0.3 ± 0.3)

98.6
(99.3 ± 0.5)

1.4
(0.4 ± 0.3)

2.2
(0.6 ± 0.2)

0.2
(0.0 ± 0.0)

97.6
(99.4 ± 0.2)

Llama3-8B 99.6
(100.0 ± 0.0)

0.1
(0.0 ± 0.0)

0.4
(0.0 ± 0.0)

6.2
(0.2 ± 0.3)

90.6
(99.7 ± 0.4)

3.1
(0.1 ± 0.2)

0.5
(0.9 ± 0.3)

0.5
(0.0 ± 0.0)

99.1
(99.1 ± 0.3)

Pythia-1.4B 99.9
(100.0 ± 0.0)

0.0
(0.0 ± 0.0)

0.1
(0.0 ± 0.0)

2.0
(0.7 ± 0.2)

98.0
(99.3 ± 0.3)

0.0
(0.0 ± 0.1)

0.0
(0.3 ± 0.1)

0.0
(0.0 ± 0.0)

100.0
(99.7 ± 0.1)

Table 5: Transition Scores (%) From source To target knowledge source after mean ablating entropy neurons across
models. As a control, we provide the average Transition Score of 100 random ablations with its corresponding error
bars (±3σ).
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(a) GPT2 (b) Pythia-1.4B

(c) Llama-3-8B (d) Mistral-7B

Figure 6: Selected entropy neurons (red). We select entropy neurons following the LogitVar and ρ criteria. In
each Figure, k is the number of selected entropy neurons, p is the proportions of entropy neurons, and N is the total
number of neurons.
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Ablation Value Model EN Transition Score (%) Q-val

µni

GPT-2 0.3 98.0
Pythia-1.4B 0.1 92.5
Mistral-7B-v0.1 0.5 91.0
Phi-1.5 1.0 99.0
Llama3-8B 0.5 99.0

max(µni − 3σni , minni)

GPT-2 0.5 100.0
Pythia-1.4B 0.1 96.5
Mistral-7B-v0.1 11.1 99.0
Phi-1.5 1.2 99.0
Llama3-8B 0.9 87.0

min(µni + 3σni , maxni)

GPT-2 7.8 99.0
Pythia-1.4B 1.5 100.0
Mistral-7B-v0.1 2.3 84.0
Phi-1.5 1.0 95.0
Llama3-8B 99.5 99.0

Medianni

GPT-2 0.2 99.0
Pythia-1.4B 0.1 74.5
Mistral-7B-v0.1 0.5 92.0
Phi-1.5 1.1 99.0
Llama3-8B 0.1 84.0

Modeni

GPT-2 93.8 100.0
Pythia-1.4B 0.1 68.5
Mistral-7B-v0.1 0.5 87.0
Phi-1.5 1.3 98.0
Llama3-8B 0.1 60.5

Table 6: Ablation value-wise Global Transition Scores (%) for entropy neurons ablation. The ablation values are
computed over the knowledge probing dataset for each neuron activation distribution ni as illustrated in Figure
8. Specifically they consist of: the mean µni

, the mode Modeni
, the median Medianni

, and two extreme values
min(µni

+ 3σni
, maxni

), max(µni
− 3σni

, minni
) where σni

is the standard deviation. For the extreme values,
we make sure to take the minni

/maxni
when µni

± 3σni
is out of distribution.
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Figure 7: Conversion Ratio (%)

0.4 0.3 0.2 0.1 0.0 0.1 0.2
Activation Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

2670th Neuron
ni

Modeni

Medianni

ni 3 ni

ni + 3 * ni

(a) GPT2 (GELU)

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Activation Value

0

2

4

6

8

10

De
ns

ity

5725th Neuron
ni

Modeni

Medianni

ni 3 ni

ni + 3 * ni

(b) Phi-1.5 (GLU)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Activation Value

0

5

10

15

20

De
ns

ity

1378th Neuron
ni

Modeni

Medianni

ni 3 ni

ni + 3 * ni

(c) Llama-3-8B (SwiGLU)

Figure 8: Example of neurons distribution for each model as well as the ablation values. The Neuron where
randomly selected for each model and the distribution was estimated based on the knowledge probing dataset
(Tighidet et al., 2024).
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(a) GPT2 (b) Pythia-1.4B

(c) Llama-3-8B (d) Mistral-7B-v0.1

Figure 9: Global Transition Scores, ablating entropy neurons exhibit a higher transition in the used knowledge
sources compared to 100 sets of random neurons which indicates the unique property of entropy neurons to affect
the knowledge source to select.
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