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Abstract

The sustainable performance improvements of
integrated circuits (ICs) drive the continuous ad-
vancement of nearly all transformative technolo-
gies. Since its invention, IC performance en-
hancements have been dominated by scaling the
semiconductor technology. Yet, as Moore’s law
tapers off, a crucial question arises: How can
we sustain IC performance in the post-Moore
era? Creating new circuit topologies has emerged
as a promising pathway to address this funda-
mental need. This work proposes AnalogGenie-
Lite, a decoder-only transformer that discovers
novel analog IC topologies with significantly en-
hanced scalability and precision via lightweight
graph modeling. AnalogGenie-Lite makes several
unique contributions, including concise device-
pin representations (i.e., advancing the best prior
art from O

(
n2

)
to O (n)), frequent sub-graph

mining, and optimal sequence modeling. Com-
pared to state-of-the-art circuit topology discov-
ery methods, it achieves 5.15× to 71.11× gains
in scalability and 23.5% to 33.6% improvements
in validity. Case studies on other domains’ graphs
are also provided to show the broader applicability
of the proposed graph modeling approach. Source
code: https://github.com/xz-group/
AnalogGenie-Lite.

1. Introduction
Nearly every transformative technology over the past several
decades, ranging from medical devices and 5G communica-
tion to generative AI and quantum computing, has been pow-
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ered fundamentally by the semiconductor integrated circuits
(ICs) technology. The relentless performance improvements
of ICs have been the driving force behind the continuous
advancement of these innovations and will continue to play
a key role in enabling future technological breakthroughs.
Historically, remarkable progress in IC performance has
been primarily driven by semiconductor process scaling,
evolving from 10 µm in the early 1960s to the cutting-edge
2 nm nodes of today – a 5000× in dimension reduction
and nearly 100000× in performance improvement. This
progression laid the foundation for the well-known Moore’s
law, which predicts that computing power (i.e., CPU perfor-
mance) doubles approximately every 18 months – a princi-
ple that has shaped the trajectory of modern technology. Yet,
the end of Moore’s law is looming (Theis & Wong, 2017)
and the continuous performance enhancements of ICs can
no longer be expected from technology scaling, a crucial
question thus arises: How can we sustain and advance IC
performance in the post-Moore era?

Developing novel circuit topologies, especially for analog
ICs, has emerged as a promising pathway to meet this criti-
cal challenge (Schuman et al., 2022; Mohseni et al., 2022;
De Leon et al., 2021). Analog ICs essentially bridge the
physical world and cyberspace by dealing with continuous
signals and enabling seamless interaction with digital ICs in
the cyber domain that handle binary data. Their topologies
(i.e., interconnections between different devices) primarily
determine the performance, functionality, and efficiency
of a circuit once a semiconductor process is finalized to
implement the circuit, akin to a protein structure that dic-
tates the generation of amino acids. Yet, unlike their digital
counterparts that can be easily synthesized with high-level
hardware description languages (e.g., Verilog and VHDL)
or programming languages (e.g., C) or even multiple gener-
ative AI-based tools (Blocklove et al., 2023; Thakur et al.,
2024; Fu et al., 2023; Wu et al., 2024; Liu et al., 2023),
analog ICs have relied on a longstanding handcraft design
process. This is mainly due to their inherent complexity,
which makes them resistant to the universal and hierarchical
abstraction that digital ICs benefit from. Thus, the discov-
ery of novel analog circuit topologies has been significantly
limited since the invention of ICs and remains a critical
challenge to be addressed.
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Generative AI has recently emerged as a promising solution
for automating analog circuit topology discovery. To facili-
tate the discovery, pioneering methods have explored two
typical representations to model analog circuit topologies,
i.e., text (Lai et al., 2024; Chen et al., 2024) and graph (Dong
et al., 2023; Chang et al., 2024; Gao et al., 2025). Text repre-
sentation uses PySpice codes or natural language to describe
analog circuits, which can be converted to a SPICE (Simu-
lation Program with Integrated Circuit Emphasis) netlist –
a textual high-level description of device connections used
for circuit simulation. Graph representation formulates the
topology design as a graph/sequence generation task, as cir-
cuit topologies of analog ICs can be naturally represented as
graph structures. Yet, these representations face significant
limitations that must be addressed to enable precise and scal-
able discovery of topologies. Text-based representations are
prone to errors, as generating even a single device or con-
nection often involves predicting multiple text tokens. Even
advanced LLM models such as GPT-4 (Lai et al., 2024)
struggle to generate circuits with fewer than 10 devices
accurately. While graph-based representations can signifi-
cantly mitigate errors by predicting device-pin connections,
they still suffer from scalability and accuracy. Specifically,
these methods (Dong et al., 2023; Chang et al., 2024; Gao
et al., 2025) do not efficiently and precisely model circuit
graphs. When leveraging auto-regressive models such as
transformers that have a limited context window for circuit
graph generation, they are unable to generate circuits at scale
and are limited to accuracy due to the error propagation of
long-sequence predictions (Zhu et al., 2022).

This work proposes AnalogGenie-Lite, a generative engine
based on a decoder-only transformer for discovering novel
analog circuit topologies with enhanced scalability and pre-
cision through lightweight graph modeling. Compared to
its predecessor (Gao et al., 2025), AnalogGenie-Lite har-
nesses a lightweight circuit graph modeling to address the
limitations of existing methods. At the graph level, it simpli-
fies the cutting-edge device-pin graph representation (Gao
et al., 2025) by removing redundant nodes and edges, reduc-
ing graph complexity for multi-pin shared edge connection
from O

(
n2

)
to O (n). At the subgraph level, it employs

data mining on a database (Gao et al., 2025) of more than
3000 topologies across tens of circuit types to identify and
simplify frequently reused subcircuits, replacing them with
compact representations. Finally, it models a circuit graph
as a shortest closed path that visits every edge of an undi-
rected graph at least once by solving the Chinese Postman
Problem (Edmonds & Johnson, 1973) and significantly re-
duce sequence length compared to previous non-optimal
methods (Gao et al., 2025). These innovations remarkably
enhance the scalability and precision of topology discov-
ery. Moreover, this efficient graph modeling method from
AnalogGenie-Lite can also be broadly applied to other do-

mains such as protein generation (Jumper et al., 2021) and
community detection (Fortunato, 2010). Our key contribu-
tions are as follows:

• Precise and efficient graph modeling: AnalogGenie-
Lite significantly improves the efficiency of graph rep-
resentation at the device-pin level for analog circuit
topology modeling. It exploits opportunities to elimi-
nate redundant device self nodes and simplifies multi-
pin shared edge connections, reducing space complex-
ity from O

(
n2

)
to O (n).

• Compact subgraph modeling: AnalogGenie-Lite em-
ploys frequent subgraph mining to identify commonly
reused subgraphs in the database. It further simplifies
these subgraphs by pruning isolated nodes and restruc-
turing the remaining non-isolated nodes into a cycle.

• Optimal sequence modeling: AnalogGenie-Lite mod-
els the graph as a shortest closed path that visits every
edge of an undirected graph at least once by solving
the Chinese Postman Problem (Edmonds & Johnson,
1973). This significantly reduces sequence length com-
pared to previous non-optimal methods.

• Experimental results show that AnalogGenie-Lite
achieves remarkable generation performance, i.e.,
5.15× to 71.11× reduction in average sequence length
across the entire database and 23.5% to 33.6% im-
provement in validity, compared to the best prior art.
Case studies on other domains’ graph datasets (e.g.,
protein, ego, community, molecule, and 3D point cloud
graphs) further showcase the broad applicability and
superior scalability of our graph modeling approach.

2. Preliminaries and Related Work
2.1. Analog Circuit Design Flow

The analog circuit design process generally involves three
key stages. First, it starts with creating the circuit topology,
which entails selecting device types (e.g., transistors and
resistors), determining the number of devices, and defining
their interconnections. Next, designers carry out device
sizing, i.e., optimizing the physical dimensions of the de-
vices to achieve specific performance objectives. Finally,
the physical layout based on the topology and device di-
mension is created for fabrication, which represents ICs
as stacked physical layers used in manufacturing. While
significant advancements have been made in automating
the device sizing (Wang et al., 2020; Cao et al., 2022; Gao
et al., 2023; Cao et al., 2024) and layout design stages (Ku-
nal et al., 2019; Xu et al., 2019), the problem of topology
generation remains significantly underexplored due to its ab-
stract, complex nature, requiring creativity and human-level
intelligence. Our work addresses this challenging problem.
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Figure 1. AnalogGenie-Lite’s accurate and efficient graph model-
ing by pruning redundant nodes and edges from device pin graph.

2.2. Existing Analog Circuit Topology Generation

Generative AI has demonstrated significant potential in tack-
ling topology generation, with early approaches focusing on
text-based or graph-based methods. For example, Analog-
Coder (Lai et al., 2024) models circuits as Python-style
SPICE (PySpice) netlists, using domain-specific prompt
engineering with large language models (LLMs). While
this flexible representation allows diverse and scalable de-
signs, its reliance on high-level text introduces challenges
in generating valid circuits due to the need for multi-token
predictions for each device or connection. Artisan (Chen
et al., 2024) avoids this complexity by focusing on topology
selection rather than generation. Using natural language to
represent topology names, Artisan reuses existing topolo-
gies, avoiding the complexity of low-level design. How-
ever, this limits its ability to generate novel and custom
topologies. Graph-based methods, such as CktGNN (Dong
et al., 2023), use adjacency matrices and a graph variational
autoencoder (VAE) to generate topologies for specific ana-
log ICs like operational amplifiers (20 devices). Similarly,

LaMAGIC(Chang et al., 2024) fine-tunes a masked lan-
guage model (MLM) to generate fixed-node circuits, achiev-
ing high success for simpler designs like power converters
(fewer than four devices). AnalogGenie (Gao et al., 2025)
uses non-optimal Eulerian circuits to model the graph. This
efficient representation avoids encoding non-existent edges,
enabling scalability to larger circuits (e.g., 63 devices). In
this work, AnalogGenie-Lite further advances analog circuit
topology generation with lightweight graph modeling.

3. Approach
AnalogGenie-Lite is a domain-specific generative model
tailored to discover novel analog circuit topologies of ver-
satile types with exceptional scalability and precision. To
achieve this, AnalogGenie-Lite leverages three key innova-
tions in its lightweight graph modeling. First, it significantly
improves the efficiency of the device-pin graph, which ac-
curately represents circuit topologies. By eliminating re-
dundant nodes and edges, it simplifies the graph structure,
enabling more efficient and precise topology discovery. Sec-
ond, AnalogGenie-Lite employs frequent subgraph mining
to identify commonly used subcircuits and introduces a cus-
tomized tokenizer that incorporates both fundamental device
and subcircuit pins. This approach allows for the versatile
generation of custom circuits while enabling efficient reuse
of existing subcircuits. Third, it models circuit graphs as
the shortest closed path visiting all edges at least once by
solving the Chinese Postman Problem (Edmonds & Johnson,
1973). This technique significantly reduces sequence length
compared to non-optimal methods (Gao et al., 2025).

3.1. Precise and Efficient Graph Modeling

Abstracting the efficient and precise representation of an
analog circuit topology is a long-standing challenge. Graph
representations have recently emerged as a promising model-
ing methodology. Early works (Dong et al., 2023; Lu et al.,
2023; Lohn & Colombano, 1999; Mattiussi & Floreano,
2007) rely on high-level graphs to generate circuit topolo-
gies, where each node represents a device. Although this
approach offers efficient representations, it omits essential
low-level device details, resulting in ambiguous generation.
Consider an NMOS transistor (NM) with four pins, i.e.,
drain (D), gate (G), source (S), and body (B) in Figure 1a
for illustration. Abstracting the entire device as a single
node makes it unclear which pin an edge connects to. On
the other hand, AnalogGenie (Gao et al., 2025) represents
circuits at the pin level, ensuring a unique mapping between
the graph and circuit topology, where every connection is
explicitly represented (Figure 1c). Specifically, it represents
the topology of an analog circuit as a finite connected undi-
rected graph G = (V,E), where V = {1, 2, . . . , n} is the
node set representing each device pin with |V | = n and
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E ∈ V × V is the edge set. Yet, this approach inevitably
increases graph complexity by introducing more nodes and
edges and does not scale well as the number of devices in a
circuit grows. AnalogGenie-Lite significantly improves the
efficiency and accuracy of this graph modeling by pruning
redundant nodes and edges.

Pruning redundant nodes: In the device pin-level graph
structure (Gao et al., 2025), each device is represented by its
pins (e.g., NM1D, NM1G, NM1S, NM1B) and the device
node itself (e.g., NM1 for an NMOS). The device node pri-
marily models situations where device pins are connected
to themselves or remain unconnected. However, here redun-
dancy exists, as representing the connection between device
pins that belong to the same device is not required. As an ex-
ample, the edge NM1D↔ NM1G is redundant with NM1D
↔ NM2G in device pin graph (Figure 1c). Consequently,
AnalogGenie-Lite removes all device itself nodes from the
graph and connects device pins nodes as a cycle (Figure 1d).

Pruning redundant edges: When n device pins share the
same connection (Figure 1a), the device-pin graph (Gao
et al., 2025) represents this case using n(n−1)

2 edges, con-
necting every pair of pins explicitly. For example, if three
pins (NM1D, NM1G, and NM2G) share a connection (Fig-
ure 1c), existing work uses three edges: NM1D↔ NM1G,
NM1D ↔ NM2G, and NM1G ↔ NM2G. AnalogGenie-
Lite simplifies this representation by selecting a single node
that does not cause edges overlapping with the device pins
cycle and connecting all other nodes to it. Thus, only n− 1
edges are required. In the example, AnalogGenie-Lite se-
lects NM2G as the node since selecting NM1G or NM1D
will result in NM1G ↔ NM1D edge that overlaps with
NM1 device pins cycle. As a result, it uses only two edges:
NM1D ↔ NM2G and NM1G ↔ NM2G to describe the
shared connection. This technique remarkably enhances the
scalability, as n − 1 edges scale linearly compared to the
quadratic growth of n(n−1)

2 edges. More examples of this
edge pruning method can be found in Appendix A.1.

3.2. Compact Subgraph Modeling

Analog circuit topologies naturally exhibit a hierarchical
structure, combining low-level unique devices essential for
novel configurations with high-level subcircuits that are ver-
satile and reusable across various circuits. Yet, existing
approaches either focus solely on generating analog circuit
topologies at the most fundamental device level from scratch
(i.e., device pin), resulting in heavyweight sequential struc-
tures (Gao et al., 2025), or operate exclusively at the high
level (i.e., subcircuit), limiting their versatility to represent
diverse topology structures and restricting them to specific
circuit types (Dong et al., 2023). AnalogGenie-Lite bridges
this gap by enabling the simultaneous exploration of both
custom and hierarchical structures. First, AnalogGenie-Lite
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Figure 2. A simplified diagram illustrates how AnalogGenie-Lite
identifies and simplifies frequent subgraphs.

employs a domain-specific tokenizer to encode and decode
sequences. Each token in AnalogGenie-Lite’s tokenizer
corresponds to either a device pin (e.g., NM1G, NM1D,
NM1S, NM1B) or a circuit-level pin for the overall analog
topology (e.g., VIN1, VOUT1, VDD, VSS). This approach
allows AnalogGenie-Lite to generate topologies at the most
fundamental level by predicting the next device pin token.
Additionally, AnalogGenie-Lite incorporates special tokens
to represent the pins of subgraphs or SG (e.g., SG1 VDD,
SG1 VOUT, SG1 termA, SG1 termB, SG1 termC). These
tokens enable the generation of only the outer pins of a
subcircuit, omitting inner low-level design details. This sig-
nificantly simplifies the graph structure while maintaining
the ability to represent hierarchical topologies. Detailed
tokenizer table is shown in Table 2 in Appendix A.2.

Additionally, existing approaches either construct an ex-
tensive design library (i.e., tokenizer table) to significantly
simplify the graph structure, which includes numerous in-
frequent subcircuits and inefficiently utilizes the design li-
brary’s space (Gielen & Rutenbar, 2000; Zhao & Zhang,
2022; 2020), or rely solely on heuristic design knowledge
to identify frequent subcircuits, which may lead to inac-
curacies (Dong et al., 2023). AnalogGenie-Lite, on the
other hand, employs rigorous data mining on a large ana-
log circuit topology database (Gao et al., 2025) comprising
over 3000 unique topologies and 11 types of analog cir-
cuits to accurately identify the frequent subcircuits that
are actively reused within the database (Figure 2). Specifi-
cally, AnalogGenie-Lite utilizes the gSpan algorithm (Yan
& Han, 2002) to mine frequent subgraphs. gSpan discovers
frequently connected subgraphs in a graph dataset with-
out explicitly generating candidate subgraphs, overcoming
the limitations of earlier Apriori-based approaches and sig-
nificantly reducing runtime. Once frequent subgraphs are
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Figure 3. Two frequent subgraph examples (over 25% appearing frequency in the dataset and over 50% of nodes within subgraphs are
isolated) that AnalogGenie-Lite selects to identify and simplify (red: isolated nodes; blue: non-isolated nodes).

identified, AnalogGenie-Lite classifies the nodes within sub-
graphs as isolated nodes (nodes connected only to other
nodes within the subgraph) or non-isolated nodes (nodes
also connected to the rest of the graph) based on their de-
gree. To simplify the frequent subgraphs, AnalogGenie-Lite
prunes the isolated nodes and their edges (Figure 2). Next,
it connects the remaining non-isolated nodes in a cycle and
replaces the original subgraph within the graph to simplify
its structure. The non-isolated nodes are renamed as sub-
graph pin names (e.g., SG1 VDD, SG1 VOUT, SG1 termA,
etc) and added to the tokenizer table. AnalogGenie-Lite
simplifies subgraphs only if the number of isolated nodes
exceeds a certain threshold, balancing lightweight graph
structures with the overhead in the tokenizer table. Figure 3
presents examples of AnalogGenie-Lite mined subgraphs
with a large number of isolated nodes. Excitingly, these
structures differ significantly from those used in previous
work (Zhao & Zhang, 2022; 2020) based on human heuris-
tics, underscoring the necessity of rigorous data mining.

3.3. Optimal Sequence Modeling

Harnessing an efficient data structure to model the circuit
graph is the last key innovation of AnalogGenie-Lite’s mod-
eling method. Previous work (Dong et al., 2023; Lu et al.,
2023) uses adjacency matrices to represent circuit graphs.
However, an adjacency matrix requires O

(
n2

)
space to

store n nodes, regardless of the number of edges, which is
inefficient for sparse graphs. Analog circuit topologies are
typically sparse, as most devices connect only to their ad-
jacent neighbors. In contrast, AnalogGenie-Lite optimally
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Figure 4. Comparison between early work (Gao et al., 2025) and
AnalogGenie-Lite Eulerizing method (red: odd degree nodes in
the original undirected graph; blue: non-duplicated edges).

represents the circuit graph as the shortest closed path that
visits every edge of a finite connected undirected graph at
least once by solving the Chinese Postman Problem.

Definition 3.1 (Chinese postman problem, (Edmonds &
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Johnson, 1973)). Chinese postman problem is a combina-
torial optimization problem that tries to find the shortest
circuit that visits every edge of a finite connected undirected
graph at least once.

When a graph contains an Eulerian circuit, that circuit rep-
resents the optimal solution.

Definition 3.2 (Eulerian circuit, (Biggs et al., 1986)). Eu-
lerian circuit is a graph trail that visits every edge exactly
once and starts and ends at the same node.

However, not all finite connected undirected graphs contain
Eulerian circuit unless all of their nodes have even degree.

Definition 3.3 (Eulerian graph, (Biggs et al., 1986)). If
all the nodes in a finite connected undirected graph have
even degree, the graph is Eulerian and contains at least one
Eulerian circuit.

Thus, the optimization problem for non-Eulerian graph is
to find the smallest number of graph edges to duplicate
so that the resulting multigraph does have an Eulerian cir-
cuit (Roberts & Tesman, 2024). As shown in Figure 4,
existing non-optimal method (Gao et al., 2025) duplicates
all the existing edges in a finite connected undirected graph
to ensure the graph to be Eulerian by replacing each undi-
rected edge {u, v} ∈ E with two directed arcs (u, v) and
(v, u) (i.e., traverse all the undirected edge exactly twice).
This causes a large overhead in its sequence representation
since not all the edges need to be duplicated to make the
graph Eulerian. On the other hand, AnalogGenie-Lite finds
the optimal sequence by employing Algorithm 1 (Mei-Ko,
1962; Edmonds & Johnson, 1973) to Eulerize the undirected
graph. Since the topology graph G = (V,E) consists of
unweighted edges and Algorithm1 requires a weighted undi-
rected graph, we assign a weight of 1 to all edges in G. The
algorithm begins by identifying vertices with odd degrees.
It then pairs the odd-degree vertices in a way that minimizes
the total cost of connecting them, leveraging a shortest-path
strategy. Finally, it duplicates the edges along these short-
est paths to ensure all vertices have even degrees, thereby
Eulerizing the graph. Through this process, AnalogGenie-
Lite minimizes the duplication of existing edges, efficiently
transforming the graph into an Eulerian circuit.

4. Results
4.1. Experiment Setup

Datasets: The AnalogGenie-Lite uses a dataset (Gao et al.,
2025) that comprises 3350 unique and real-world topologies
across 11 types: Op-Amps, LDOs, Bandgap references,
Comparators, PLLs, LNAs, PAs, Mixers, VCOs, Power
converters, and SC Samplers from public resources (Razavi,
2000; Razavi & Behzad, 2012; Johns & Martin, 2008; Gray
et al., 2009; Allen & Holberg, 2011; Camenzind, 2005).

Algorithm 1 Chinese Postman Algorithm
Require: A weighted, undirected graph G = (V,E)

1: Step 1: Identify odd-degree vertices
2: odd vertices← {v ∈ V | degree(v) mod 2 ̸= 0}
3: Step 2: Pair up odd-degree vertices to minimize cost
4: CompleteGraph← Construct a complete graph where

vertices are the odd-degree vertices, and edge weights
are the shortest path distances between each pair of
odd-degree vertices in the original graph.

5: pairs← Solve the minimum weight perfect matching
problem on CompleteGraph using the Blossom algo-
rithm (Edmonds, 1965).

6: Step 3: Duplicate edges to make degrees even
7: for each pair (u, v) ∈ pairs do
8: path ← ShortestPath(u, v, G) using Dijkstra algo-

rithm (Dijkstra, 2022)
9: for each edge (x, y) ∈ path do

10: Add duplicate edge (x, y) to G
11: end for
12: end for

Training setup: During pretraining, AnalogGenie-Lite split
the data into train and validation sets with a 9 to 1 ratio.
It augments the dataset by generating multiple unique Eu-
lerian circuits per topology. It uses a decoder-only trans-
former with 6 layers, 6 attention heads, and 11.825 million
parameters, with a vocabulary size of 1029 and a maxi-
mum sequence length of 1024. For performance evaluation,
AnalogGenie-Lite leverages reinforcement learning with hu-
man feedback (Ouyang et al., 2022) to target specific types
of analog circuits optimized for given performance metrics.

Baseline: We select AnalogCoder (Lai et al., 2024) and
Artisan (Chen et al., 2024) as the representative of text gen-
eration work. Then, we select CktGNN (Dong et al., 2023),
LaMAGIC (Chang et al., 2024), and AnalogGenie (Gao
et al., 2025) as the representative of graph generation work.
The differences between these methods and AnalogGenie-
Lite are discussed in Section 2. We follow original work to
produce their results.

Evaluation tasks and metrics: We evaluate the generative
quality of each method using the following metrics:
(1) Validity: An unsized circuit is considered valid if it
can be simulated in SPICE without errors (e.g., floating or
shorted nodes). Each method generates 1,000 topologies,
and we report the percentage of valid designs.
(2) Scalability: The largest valid circuit generated by each
model, based on the number of devices.
(3) Versatility: The versatility of a model is determined by
the number of distinct analog circuit types it generates.
(4) Novelty: To evaluate novelty, each method generates
1,000 topologies, and we measure the percentage of these
that differ from those in the dataset. Topology differences

6



AnalogGenie-Lite: Enhancing Scalability and Precision in Circuit Topology Discovery through Lightweight Graph Modeling

Figure 5. Comparison between adjacency matrix (Dong et al., 2023; Lu et al., 2023), AnanlogGenie (Gao et al., 2025) sequence, and
AnanlogGenie-Lite sequence for representing each topology or graph within the dataset in terms of sequence length (left) and mean
compression ratio (right). We flatten adjacency matrices to sequences for comparison.

are quantified by converting the circuits into graphs and
computing the maximum mean discrepancy (MMD) (Guo
& Zhao, 2022) between these generated graphs and real-
world graphs derived from the dataset.
(5) Performance: Each generated topology is sized using a
genetic algorithm, and the resulting figure-of-merit (FoM)
– considering all major metrics (e.g., gain, bandwidth, and
power for operational amplifiers) – is used as a compre-
hensive performance indicator. We compare the best FoM
achieved by circuits generated from each model.

4.2. Evaluating the Compression Rate

We begin by evaluating AnalogGenie-Lite’s lightweight
graph modeling in terms of mean compression ratio for rep-
resenting circuit topology. Figure 5 compares the sequence
length required to encode each topology using AnalogGenie-
Lite, the adjacency matrix baseline (Dong et al., 2023; Lu
et al., 2023), and the state-of-the-art sequence representation,
AnalogGenie (Gao et al., 2025). The adjacency matrix ap-
proach, based on the device-pin graph (Gao et al., 2025), re-
sults in sequences of approximately 104 to 105 tokens due to
its O(n2) space complexity, making it impractical for train-
ing with typical LLMs (Radford et al., 2019; Brown et al.,
2020; Achiam et al., 2023). AnalogGenie mitigates this
issue by encoding graphs as non-optimal Eulerian circuits,
reducing sequence length by 13.81× to around 103 tokens.
However, it still struggles with large circuits exceeding 100
devices, where sequences reach 104 tokens. To enhance
scalability, AnalogGenie-Lite employs a more efficient
graph modeling strategy. The AnalogGenie-Lite (Graph)
method prunes redundant nodes and edges while main-
taining the non-optimal Eulerian representation, improv-
ing compression by 40.28× over adjacency matrices and

2.91× over AnalogGenie. The AnalogGenie-Lite sequence
(Graph+Subgraph) further prunes isolated nodes and edges
within subgraphs, improving compression to 49.91× and
3.61× over the respective baselines. However, the compres-
sion benefit varies across circuits as shown in Figure 5, par-
ticularly for those with unique structures (e.g., PA circuits),
emphasizing the need for a flexible generation approach ca-
pable of predicting both device pins and subcircuits. Finally,
AnalogGenie-Lite (Graph+Subgraph+Sequence) integrates
all optimizations, solving the Chinese Postman Problem
for an optimal Eulerian circuit representation. This method
achieves a 71.11× compression over adjacency matrices
and 5.15× over AnalogGenie. These results demonstrate
that AnalogGenie-Lite offers a scalable and precise repre-
sentation, crucial for robust circuit topology discovery.

4.3. Evaluating the Generation Quality

Then, we evaluate AanalogGenie-Lite’s generation quality
by comparing to prior methods, as shown in Table 1:

Validity: AnalogGenie-Lite achieves 97% validity, signif-
icantly surpassing prior methods. AnalogCoder generates
only 63.4% valid circuits due to errors in code genera-
tion, while CktGNN, LaMAGIC, and AnalogGenie achieve
66.3%, 72%, and 73.5% validity, respectively, using graph-
based techniques. Artisan, focused on topology selection,
reaches 82% validity but cannot generate novel circuits. In
contrast, AnalogGenie-Lite’s lightweight graph modeling
mitigates error propagation, achieving a 23.5% to 33.6%
improvement over previous methods while generating over
99% novel circuits.

Scalability: AnalogGenie-Lite achieves unmatched scala-
bility. CktGNN and LaMAGIC, limited by quadratic costs
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Table 1. Performance comparison between AnalogGenie-Lite and existing analog circuit topology generation work.

Evaluation metric Validity (%) ↑ Scalability ↑ Versatility ↑ Novelty FoM

Diff circuit (%) ↑ MMD ↓ Op-Amp ↑ Power converter ↑
AnalogCoder (Lai et al., 2024) 63.4 10 7 0 0 233.4 N/A
AnalogGenie (Gao et al., 2025) 73.5 63 11 98.8 0.0532 13744.8 3.3
Artisan (Chen et al., 2024) 82 18 1 0 0 12769.5 N/A
CktGNN (Dong et al., 2023) 66.3 22 1 93 0.313 943.2 N/A
LaMAGIC(Chang et al., 2024) 72 4 1 3 0.001 N/A 2.7

AnalogGenie-Lite (Graph) 80.1 183 11 99.7 0.0498 14727.3 3.71
AnalogGenie-Lite (Graph+Subgraph) 87.3 227 11 99.8 0.0467 14767.5 3.76
AnalogGenie-Lite (Graph+Subgraph+Sequence) 97 324 11 99.8 0.0408 15017.7 4.02

of adjacency matrix representations, handle circuits with
up to 4 and 22 devices, respectively. AnalogCoder and Ar-
tisan, constrained by prompt templates, generate circuits
with a maximum of 10 and 18 devices. AnalogGenie im-
proves scalability to 63 devices with an efficient sequence
representation. AnalogGenie-Lite, leveraging a lightweight
representation, extends this further to 324 devices, achieving
a 5.15× to 71.11× improvement over prior methods.

Versatility: AnalogGenie-Lite surpasses Artisan, CktGNN,
and LaMAGIC, which are restricted to designing only a sin-
gle circuit type. AnalogCoder, while supporting seven types,
is limited by a synthesis library containing 20 topologies.

Novelty: AnalogGenie-Lite outperforms other methods in
discovering novel circuits. AnalogCoder and Artisan primar-
ily reuse existing topologies or subblocks, while LaMAGIC
is restricted to a small design space, significantly limiting
its ability to explore new topologies. Although both Ckt-
GNN and AnalogGenie-Lite support the generation of larger
circuits, CktGNN is trained on synthetic datasets that lack
critical real-world features. AnalogGenie-Lite, trained on
real-world circuit, improves the MMD metric by over 7.67×
and generates approximately 99% novel circuits. Compared
to AnalogGenie, AnalogGenie-Lite produces more realistic
circuits with lower MMD values due to its lightweight graph
modeling, which eliminates redundant edges and nodes and
lets the model focus on generating essential components.

Performance: In op-amp design, AnalogCoder achieves a
low FoM of 233.4 due to limited design options, while Ckt-
GNN performs better at 943.2 by selecting optimized subcir-
cuits. Artisan achieves an even higher FoM of 12769.5
by selecting state-of-the-art designs. AnalogGenie and
AnalogGenie-Lite by pretraining on diverse circuit topolo-
gies, discover unseen topologies with superior FoM values
of 13744.8 and 15017.7, respectively, outperforming ded-
icated synthesizers. AnalogGenie-Lite’s advantage comes
from its lightweight graph representation, eliminating re-
dundant circuit details while focusing on learning essential
components. A similar trend is seen in power converter
design, where AnalogGenie-Lite achieves an FoM of 4.02,
surpassing AnalogGenie (3.3) and LaMAGIC (2.7).

Figure 6. Runtime of Algorithm1 on processing circuit (Gao et al.,
2025), protein (Dobson & Doig, 2003), ego (Sen et al., 2008),
community (ERD & Renyi, 1959), molecule (Ramakrishnan et al.,
2014), and 3D point cloud (Neumann et al., 2013) graph datasets.

4.4. Evaluating the Computation Cost

We begin by conducting a detailed theoretical analysis of
Algorithm 1’s time complexity for solving the Chinese post-
man problem (CPP). As noted in (Grötschel & Yuan, 2012),
our approach reduces CPP to a matching problem, which
can be solved in polynomial time. In particular, Theorem
12.10 in Section 12.2 (page 307) of (Korte et al., 2011)
shows that the minimum weight perfect matching problem
can be solved in O

(
n3

)
, where n is the number of nodes.

Next, we empirically evaluate the computational cost of
Algorithm 1. Our experiments were conducted on a PC
equipped with a 16-core i9-12900KF 3.20 GHz CPU and 32
GB of RAM. Figure 6 shows the mean runtime results for a
total of 5 runs on diverse graph datasets. Our Python pro-
gram for Algorithm 1 requires at most 29 minutes and 4.36
seconds on average to preprocess the entire dataset. Impor-
tantly, this preprocessing step is performed only once during
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Figure 7. Comparison between adjacency matrix, adjacency vector (You et al., 2018b), recursive binary tree (Dai et al., 2020), graph
token sequence (Chen et al., 2025) and our Chinese postman sequence for protein (Dobson & Doig, 2003), ego (Sen et al., 2008),
community (ERD & Renyi, 1959), molecule (Ramakrishnan et al., 2014), and 3D point cloud (Neumann et al., 2013) graphs.

training. This one-time cost is justified by the substantial
benefits in compression and scalability that our approach
offers.

4.5. Cross-Domain Case Study

Finally, beyond circuits, we believe that AnalogGenie’s
lightweight graph modeling can also be applied to other
domains, such as protein generation (Jumper et al., 2021),
personalized recommendation (Epasto et al., 2015), com-
munity detection (Fortunato, 2010), drug discovery (You
et al., 2018a), and 3D object recognition (Shi & Rajkumar,
2020) that can also be represented as graphs. To demon-
strate its general applicability, we conduct a case study on
protein (Dobson & Doig, 2003), ego (Sen et al., 2008), com-
munity (ERD & Renyi, 1959), molecule (Ramakrishnan
et al., 2014), and 3D point cloud (Neumann et al., 2013)
graphs. Besides the basic adjacency matrix, we evaluate
AnalogGenie-Lite’s Chinese postman sequence by compar-
ing it with the following graph data structures that have been
developed in recent years.

Adjacency vector (You et al., 2018b): For a given node
ordering π, each node π (vi) (except the first) is encoded
via an adjacency vector Sπ

i that captures its connections to
all previously added nodes. Without ordering constraints,
the length of these vectors grows linearly (e.g. the first node
has no vector, the second one entry, the third two entries,
etc.), resulting in an overall space complexity of O

(
n2

)
.

Recursive binary tree (Dai et al., 2020): This method
uses a binary tree-structured conditioning on the matrix’s
rows and columns to reduce the complexity from O

(
n2

)
to

O((n+m) log n), where n is the number of nodes and m

the number of edges.

Graph token sequence (Chen et al., 2025): In this approach,
the sequence consists of two parts. The first part is a tuple
to represent all the nodes’ definitions in the graph (e.g., its
type and unique index), followed by a special token marking
the transition to the edge definition. In the second part, each
edge is then encoded as a triple containing the source node
index, the destination node index, and the type. The space
complexity of it is O (n+m).

As illustrated in Figure 7, AnalogGenie-Lite’s Chinese
Postman sequence achieves compression ratios of 9.33×
to 572.56× over adjacency matrices and 2.61× to 3.61×
over the strongest prior-art approach (graph token se-
quences). By definition, the Chinese Postman sequence
is the shortest closed path that traverses every edge of an
undirected graph at least once, resulting in a linear space
complexity of O (m). These results confirm that sparse
graphs—3D point clouds, ego networks, and protein interac-
tion graphs—satisfy m << n2 and compress exceptionally
well, while denser graphs (community and molecular) with
m closer to n2 remain more challenging.

5. Conclusion and Future Work
This work presents AnalogGenie-Lite, a decoder-only trans-
former model for discovering novel analog IC topologies
with enhanced scalability and precision through lightweight
graph modeling. While it sets a new standard in circuit
topology discovery, several challenges remain. Key issues
include efficiently mining representative subgraphs from di-
verse datasets and further improving the compression while
preserving essential features for effective model learning.
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A. Appendix
A.1. More Details about Redundant Edges Pruning

As shown in Figure 8a, a total of seven pins—PM1S, PM1B,
PM2S, PM2B, PM3S, PM3B, and Vdd—share the same
net within the topology. The device-pin graph (Gao et al.,
2025) connects each pair of these pins directly, forming a
fully connected subgraph that requires 7×(7−1)

2 = 21 edges
to represent the shared net. In contrast, AnalogGenie-Lite
selects Vdd and connects the remaining pins directly to
it. This avoids overlapping device-pin cycles, effectively
pruning redundant edges and reducing the edge count to just
7− 1 = 6, achieving a 3.5× reduction in edges compared
to the device-pin graph.
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Figure 8. An example of circuit topology, device-pin graph (Gao
et al., 2025), and AnalogGenie-Lite graph.
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A.2. Tokenizer Lookup Table

Table 2 presents the tokenizer table used by AnalogGenie-
Lite for its versatile generation scheme, which predicts the
next device, subcircuit, or circuit pin. The token indices
are structured as follows: indices 0 to 549 represent basic
device pins, covering NMOS, PMOS, NPN, PNP, resistors,
capacitors, inductors, and diodes. Indices 550 to 890 corre-
spond to subcircuit pins, including mined subgraphs, XOR
gates, inverters, transmission gates, etc. Lastly, indices 891
to 1027 define circuit pins such as VIN, IIN, VTRACK,
VDD, VSS, etc. The TRUNCATE token (index 1028) is
used to pad sequences to a uniform length for training.

Table 2. Tokenizer look-up table with basic devices, subcircuits,
and circuit pins.

Device Index Device Index Device Index

NM1D 0 NM1G 1 NM1S 2
NM1B 3 NM2D 4 ... ...
NM25B 99 PM1D 100 PM1G 101
PM1S 102 PM1B 103 PM2D 104
... ... PM25B 199 NPN1C 200
NPN1B 201 NPN1E 202 NPN2C 203
... ... NPN25E 274 PNP1C 275
PNP1B 276 PNP1E 277 PNP2C 278
... ... PNP25E 349 R1P 350
R1N 351 R2P 352 ... ...
R25N 399 C1P 400 C1N 401
C2P 402 ... ... C25N 449
L1P 450 L1N 451 L2P 452
... ... L25N 499 DIO1P 500
DIO1N 501 DIO2P 502 ... ...
DIO25N 549 SG1VDD 550 SG1VOUT 551
SG1TA 552 SG1TB 553 SG1TC 554
SG1TD 555 SG1TE 556 SG2VDD 557
... ... XOR1A 726 XOR1B 727
XOR1VDD 728 XOR1VSS 729 XOR1Y 730
... ... XOR5Y 750 INV1A 751
INV1Q 752 INV1VDD 753 INV1VSS 754
INV2A 755 ... ... INV10VSS 790
TG1A 791 TG1B 792 TG1C 793
TG1VDD 794 TG1VSS 795 TG2A 796
... ... TG20VSS 890 VIN1 891
VIN2 892 VIN3 893 VIN4 894
VIN5 895 IIN1 896 IIN2 897
... ... VTRACK1 1024 VTRACK2 1025
VDD 1026 VSS 1027 TRUNCATE 1028
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