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Abstract

The critical challenge of semi-supervised semantic segmentation lies how to fully
exploit a large volume of unlabeled data to improve the model’s generalization
performance for robust segmentation. Existing methods tend to employ certain
criteria (weighting function) to select pixel-level pseudo labels. However, the
trade-off exists between inaccurate yet utilized pseudo-labels, and correct yet
discarded pseudo-labels in these methods when handling pseudo-labels without
thoughtful consideration of the weighting function, hindering the generalization
ability of the model. In this paper, we systematically analyze the trade-off in previ-
ous methods when dealing with pseudo-labels. We formally define the trade-off
between inaccurate yet utilized pseudo-labels, and correct yet discarded pseudo-
labels by explicitly modeling the confidence distribution of correct and inaccu-
rate pseudo-labels, equipped with a unified weighting function. To this end, we
propose Distribution-Aware Weighting (DAW) to strive to minimize the negative
equivalence impact raised by the trade-off. We find an interesting fact that the
optimal solution for the weighting function is a hard step function, with the jump
point located at the intersection of the two confidence distributions. Besides, we
devise distribution alignment to mitigate the issue of the discrepancy between the
prediction distributions of labeled and unlabeled data. Extensive experimental
results on multiple benchmarks including mitochondria segmentation demonstrate
that DAW performs favorably against state-of-the-art methods. Code is available at
https://github.com/yuisuen/DAW.

1 Introduction

Semantic segmentation is a fundamental task that has achieved conspicuous achievements credited
to the recent advances in deep neural networks [1]. However, its data-driven nature makes it
heavily dependent on massive pixel-level annotations, which are laborious and time-consuming
to gather. To alleviate the data-hunger issue, considerable works [2–7] have turned their attention
to semi-supervised semantic segmentation, which has demonstrated great potential in practical
applications [8, 9]. Since only limited labeled data is accessible, how to fully exploit a large volume
of unlabeled data to improve the model’s generalization performance for robust segmentation is thus
extremely challenging.

In previous literature, pseudo-labeling [10–12] and consistency regularization [13–15] have emerged
as mainstream paradigms to leverage unlabeled data for semi-supervised segmentation. In specific,
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Figure 1: Illustration of our motivation. (a) shows the trade-off between inaccurate yet utilized pseudo-
labels, and correct yet discarded pseudo-labels by explicitly modeling the confidence distribution of
correct and inaccurate pseudo-labels. (b) illustrates the negative equivalence impact on generalization
performance raised by the trade-off. (c) (d) (e) summarize the models inevitably face a trade-off when
dealing with pseudo-labels. Our method can guarantee the theoretical optimal solution by minimizing
the negative impact.

the pseudo-labeling methods train the model on unlabeled samples with pseudo labels derived from
the up-to-date model’s own predictions. And the consistency regularization methods encourage
the model to produce consistent predictions for the same sample with different perturbation views,
following the smoothness assumption [16]. Recently, these two paradigms are often intertwined in
the form of a teacher-student scheme [17–20, 3]. The critical idea involves updating the weights of
the teacher model using the exponential moving average (EMA) of the student model, and the teacher
model generates corresponding pseudo labels of the perturbed samples to instruct the learning of the
student model.

Despite yielding promising results, these methods tend to employ certain criteria (referred to as
weighting function) to select pixel-level pseudo labels, considering that the quality of the chosen
pseudo-labels determines the upper bound of performance. On the one hand, naive pseudo-labeling
methods such as Pseudo-Label [10] recruit all pseudo labels into training, assuming that each pseudo
label is equally correct (i.e., weighting function can be regarded as a constant function). However, as
training progresses, maximizing the utilization of pseudo-labels tends to lead to confirmation bias [21],
which is a corollary raised by erroneous pseudo-labels (i.e., inaccurate yet utilized pseudo-labels).
On the other hand, a series of threshold-based pseudo-labeling methods [22] such as FixMatch [18]
attempt to set a high threshold (e.g., 0.95) to filter out pixel-level pseudo-labels with low confidence
(i.e., the weighting function can be considered as a step function that jumps at 0.95). Although
tangling the quality of pseudo-labels can alleviate noise, the strict criteria inevitably lead to the
contempt of numerous unconfident yet correct pseudo-labels (i.e., correct yet discarded pseudo-
labels), hindering the learning process. To make matters worse, the negative impact is inevitably
amplified by inbuilt low-data regimes of semi-supervised segmentation, leading to sub-optimal results.
As a compromise, AEL [19] ad hoc defines the weighting function as a power function, which
assigns weights conditioned on the confidence of pseudo-labels, that is, convincing pseudo-labels
will be allocated more weights. However, the lack of sophisticated consideration and the arbitrary
control of hyperparameters (i.e., tunable power) for the weighting function inevitably compromise
its capability. In a nutshell, the trade-off exists between inaccurate yet utilized pseudo-labels, and
correct yet discarded pseudo-labels in these methods when handling pseudo-labels without thoughtful
consideration of the weighting function, hindering the generalization ability of the model. Then, the
question naturally arises: How to explore the better weighting function to effectively alleviate the
negative impact raised by the trade-off?

In this work, we systematically analyze the trade-off in previous methods that hinder the model’s
learning when dealing with pseudo-labels in semi-supervised semantic segmentation. We formally
define the trade-off between inaccurate yet utilized pseudo-labels, and correct yet discarded pseudo-
labels by explicitly modeling the confidence distribution of correct and inaccurate pseudo-labels,
equipped with a unified weighting function. In specific, two Gaussian functions excelling at the
maximum entropy property are devised to fit the confidence distribution of correct (positive distri-
bution in Figure 1 (a)) and inaccurate (negative distribution in Figure 1 (a)) pseudo-labels using
maximum likelihood estimation, respectively. The parameters of the Gaussian functions are updated
via the exponential moving average (EMA) in pursuit of perceiving the learning status of the model.
Then the trade-off can be naturally derived by calculating the expectations of inaccurate yet utilized
pseudo-labels (depicted as E1 in Figure 1 (a)), and correct yet discarded pseudo-labels (displayed as
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Table 1: We analyze the learning process of the mainstream methods for semi-supervised semantic
segmentation systematically and uniformly abstract the criteria they adopt to select pseudo labels
as weighting function f(p) conditioned on the confidence p of pseudo-labels. There are inherent
distributions g(p) for positive and negative pseudo-labels(Gaussian distribution is employed as an
approximation).

Method Pseudo-Label Fixmatch AEL Ours

f(p)

f(p) · g(p)

E1 1 β[Φ( 1−µ−

σ− )− Φ( t−µ−

σ− )]
(µ−)2 + (σ−)2

+µ−(σ−)2g−( 1
C
)

−(1 + µ−)(σ−)2g−(1)
β[Φ( 1−µ−

σ− )− Φ( t
∗−µ−

σ− )]

E2 0 1− α[Φ( 1−µ+

σ+ )− Φ( t−µ+

σ+ )]
1− (µ+)2 − (σ+)2

−µ+(σ+)2g+( 1
C
)

+(1− µ+)(σ+)2g+(1)
1− α[Φ( 1−µ+

σ+ )− Φ( t
∗−µ+

σ+ )]

E1 + E2

1 + β[Φ( 1−µ−

σ− )− Φ( t
∗−µ−

σ− )]

−α[Φ( 1−µ+

σ+ )− Φ( t
∗−µ+

σ+ )]

+
∫ t∗

1
C
[g−(p)− g+(p)] dp

1 + β[Φ( 1−µ−

σ− )− Φ( t
∗−µ−

σ− )]

−α[Φ( 1−µ+

σ+ )− Φ( t
∗−µ+

σ+ )]

−
∫ t

t∗ [g
−(p)− g+(p)] dp

1 + β[Φ( 1−µ−

σ− ) − Φ( t∗−µ−

σ− )]

−α[Φ( 1−µ+

σ+ ) − Φ( t∗−µ+

σ+ )]

+
∫ t∗

1
C

x2[g−(p) − g+(p)] dp+∫ 1
t∗ (x

2 − 1)[g−(p) − g+(p)] dp

1 + β[Φ( 1−µ−

σ− )− Φ( t
∗−µ−

σ− )]

−α[Φ( 1−µ+

σ+ )− Φ( t
∗−µ+

σ+ )]

Note
∫ t∗

1
C
[g−(p)− g+(p)] dp

> 0

−
∫ t

t∗ [g
−(p)− g+(p)] dp

⩾ 0

∫ t∗
1
C

x2[g−(p) − g+(p)] dp+∫ 1
t∗ (x

2 − 1)[g−(p) − g+(p)] dp
> 0

Smaller than all of them!

E2 in Figure 1 (a)) respectively, on top of the weighting function and the corresponding confidence
distribution. Now, we are prepared to propose the Distribution-Aware Weighting (DAW) function
striving to minimize the negative equivalence impact on generalization performance raised by the
trade-off, i.e., minimizing E1+E2. By leveraging functional analysis, we find an interesting fact that
the optimal solution for the weighting function is a hard step function, with the jump point located
at the intersection of the two confidence distributions. Note that the dedicated weighting function
is theoretically guaranteed by reconciling the intrinsic tension between E1 and E2 (see Figure 1
(b)), and is free of setting thresholds manually compared to previous methods. Besides, considering
the imbalance issue caused by the discrepancy between the prediction distributions of labeled and
unlabeled data, we propose distribution alignment to further unlock the potential of the weighting
function and enjoy the synergy. In practice, the weighting function generated by DAW determines
the criteria for selecting pseudo-labels to minimize the negative equivalence impact of the trade-off,
minimizing E1 +E2 (see Figure 1 (e)), which is conducive to model training. In this way, the model
improves, benefiting from the effective probe of reliable pseudo-labels. And in turn, the positive
distribution will be maximally separated from the negative one, leading to a simultaneous decrease
in both E1 and E2 (see Figure 1 (c) and Figure 1 (d)), which is conducive to the generation of the
weighting function.

Extensive experiments on mainstream benchmarks demonstrate that our method performs favorably
against state-of-the-art semi-supervised semantic segmentation methods, proving that it can better
exploit unlabeled data. Besides, we further validate the robustness of DAW on the electron microscopy
mitochondria segmentation task, which involves images with dense foreground objects and cluttered
backgrounds, making it more challenging to discriminate the reliability of the pseudo-labels.

2 Distribution-Aware Weighting

In this section, we first formulate the semi-supervised semantic segmentation problem as preliminaries
(Section 2.1), and then formally define the trade-off between inaccurate yet utilized pseudo-labels
(E1), and correct yet discarded pseudo-labels (E2) by explicitly modeling the confidence distribution
of correct and inaccurate pseudo-labels, equipped with a unified weighting function (Section 2.2).
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Based on the analysis, we propose the distribution-aware weighting function (DAWF) to avoid
performance degradation raised by the trade-off (Section 2.3). Finally, distribution alignment (DA) is
devised to alleviate the discrepancies between the confidence distributions of labeled and unlabeled
data. (Section 2.4).

2.1 Preliminaries

In semi-supervised semantic segmentation, given a set of labeled training images Dl =
{
xl
i,y

l
i

}Nl

i=1

and a large amount of unlabeled images Du = {xu
i }

Nu

i=1, where Nl and Nu denote the number of
labeled and unlabeled images, respectively, and Nu ≫ Nl. Let q(x∗

ij) ∈ RC denotes the prediction
of the j-th pixel in the i-th labeled (or unlabeled) image, and ∗ ∈ {l, u}, C is the number of categories.
Then the supervised loss Ls can be formulated as,

Ls =
1

Nl

Nl∑
i=1

1

WH

WH∑
j=1

ℓce
(
yl
ij ,q(x

l
ij)
)
, (1)

where W and H represent the width and height of the input image, ℓce denotes the standard pixel-wise
cross-entropy loss, and yl

ij denotes the ground-truth label from Dl. Considering most methods [22,
18, 19, 10, 3, 23] tend to employ certain criteria (weighting function) to attempt to select reliable
pseudo labels, we formulate the unsupervised loss Lu as weighted cross-entropy for the convenience
of introducing the weighting function f(pij),

Lu =
1

Nu

Nu∑
i=1

1

WH

WH∑
j=1

f(pij) · ℓce
(
ŷu
ij ,q(As(Aw(xu

ij)))
)
, (2)

where Aw/As denotes weak/strong perturbation to encourage the model to produce consistent
predictions, yu

ij denotes q(Aw(xu
ij)), i.e., prediction under the weak perturbation view. And ŷu

ij =
argmax(yu

ij) is the one-hot pseudo-label , f(pij) is a weighting function conditioned on pij , and
pij =max(yu

ij), denotes the maximum confidence of the prediction. Then we define the overall loss
function as L = Ls + Lu.

2.2 E1-E2 Trade-off from Unified Weighting Function

We formally define the trade-off between inaccurate yet utilized pseudo-labels, and correct yet
discarded pseudo-labels by explicitly modeling the confidence distribution of correct and inaccurate
pseudo-labels, equipped with a unified weighting function. We instantiate the different biases inherent
in the trade-off of previous methods and reveal their tight connection with the capability of the model.
We start by defining the pseudo-label confidence distribution.

Orthogonal to other previous models, we assume that the confidence distribution of correct (g+(p),
positive distribution) and inaccurate (g−(p), negative distribution) pseudo-labels follows a truncated
Gaussian distribution with mean µ+/µ− and standard deviation σ+/σ−, formulated as,

g+(p) =

 α√
2πσ+

exp

[
− (p−µ+)

2

2(σ+)2

]
, 1

C ⩽ p ⩽ 1

0, otherwise
, (3)

where 1/α = Φ
(

1−µ+

σ+

)
− Φ

(
1/C−µ+

σ+

)
denotes the normalization factor, Φ is the cumulative

distribution function of the standard normal distribution. Note that p =max(q(xl
ij)), denotes the

maximum confidence of the prediction from labeled data, so it must meet the condition of p ⩾ 1
C .

Similarly,

g−(p) =

 β√
2πσ− exp

[
− (p−µ−)

2

2(σ−)2

]
, 1

C ⩽ p ⩽ 1

0, otherwise
, (4)

where 1/β = Φ
(

1−µ−

σ−

)
− Φ

(
1/C−µ−

σ−

)
. The reason we choose Gaussian is its valuable maximum

entropy property, please refer to the supplementary material for more details. Then we estimate
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the mean and standard deviation of the positive g+(p) and negative distribution g−(p), respectively,
resorting to maximum likelihood estimation,

µ̂+ =
1

Nl

Nl∑
i=1

1

N+
i

N+
i∑

j=1

p+ij , (σ̂+)2 =
1

Nl

Nl∑
i=1

1

N+
i

N+
i∑

j=1

(p+ij − µ̂+)2, (5)

where p+ij denotes the prediction confidence, where argmax(q(xl
ij)) on the labeled data equals the

ground truth yl
ij , and N+

i is the number of p+ij in the i-th image. For the negative distribution g−(p),
the parameters are evaluated in the same way, except that the predictions involved in the calculation
are not equal to the ground truth. Note that we only consider predictions from labeled data to evaluate
the Gaussian distribution equipped with ground truth, rather than estimating biases raised from
unlabeled data with noisy pseudo-labels. Then the parameters of the Gaussian functions are updated
via the exponential moving average (EMA) in pursuit of perceiving the learning status of the model
in a dynamic manner,

µ̂+
t = mµ̂+

t−1 + (1−m)µ̂+, (σ̂+
t )

2 = m(σ̂+
t−1)

2 + (1−m)

∑
i Ni∑

i Ni − 1
(σ̂+)2, (6)

where unbiased variance is adopted for EMA, µ̂+
0 and (σ̂+

0 )
2 are initialized as 1/C and 1.0 respectively.

A similar way also works for the negative distribution g−(p).

Then the trade-off can be naturally derived by calculating the expectations of inaccurate yet utilized
pseudo-labels (E1), and correct yet discarded pseudo-labels (E2) respectively, on top of the weighting
function f(p) and the corresponding confidence distribution g−(p)/g+(p).

Definition 3.1 Inaccurate yet utilized pseudo-labels, E1.

E1 = Eg− [f(p)] =

∫ 1

1
C

f(p) · g−(p)dp. (7)

Definition 3.2 Correct yet discarded pseudo-labels, E2.

E2 = 1− Eg+ [f(p)] = 1−
∫ 1

1
C

f(p) · g+(p)dp. (8)

After formally defining the trade-off between E1 and E2, it is natural to measure the impact of
negative equivalence effects (i.e., E1+E2), considering the trade-off between E1 and E2, where an
increase in one necessitates a decrease in the other.

Definition 3.3 Negative equivalence effect of the trade-off, E1+E2.

E1 + E2 = 1 +

∫ 1

1
C

f(p) ·
[
g−(p)− g+(p)

]
dp, (9)

Then, we systematically analyze the trade-off in previous methods as tabulated in Table 1. For more
detailed derivations, please refer to the supplementary material. (1) For example, naive pseudo-
labeling methods such as Pseudo-Label [10] enroll all pseudo labels (E2 = 0) into training. However,
as training progresses, maximizing the utilization of pseudo-labels tends to a confirmation bias raised
by erroneous pseudo-labels (E1 = 1). (2) And for threshold-based pseudo-labeling methods such as
FixMatch [18], which attempts to set a high threshold (0.95) to filter out pixel-level pseudo-labels
with low confidence (small value of E1 caused by the proximity of t = 0.95 to 1). However, the
strict criteria inevitably lead to the contempt of numerous unconfident yet correct pseudo-labels
(large value of E2 caused by the proximity of t = 0.95 to 1). (3) As a compromise, AEL [19] ad hoc
defines the weighting function as a power function, which assigns weights conditioned on confidence.
That is, convincing pseudo-labels will be allocated more weight. However, the lack of sophisticated
consideration and the arbitrary control of hyperparameters (tunable power) for the weighting function
inevitably compromise its capability (not guaranteeing the lowest negative equivalence effect).

2.3 Distribution-Aware Weighting Function

Then we seek to explore a better weighting function equipped with the formal trade-off definition,
aiming at minimizing the negative equivalence impact raised by the trade-off, that is, minimizing
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E1 + E2,
minf(p) E1 + E2 = 1 +

∫ 1
1
C
f(p) · [g−(p)− g+(p)] dp,

s.t. 0 ≤ f(p) ≤ 1,
(10)

By leveraging functional analysis, we find an interesting fact that the optimal solution for the
weighting function is a hard step function, with the jump point located at the intersection of the two
confidence distributions, formulated as,

f∗(p) =

{
1, t∗ ⩽ p ⩽ 1
0, otherwise , t∗ =

((
β2
2 − 4β1β3

) 1
2 − β2

)
/ (2β1) , (11)

where β1 = (σ+)
2 − (σ−)

2
, β2 = 2[µ+(σ−)2 − µ−(σ+)2], β3 = (σ+µ−)

2 − (σ−µ+)
2
+

2 (σ+σ−)
2
ln[(ασ−)/(βσ+)] and p =max(yu

ij) denotes the confidence of the prediction from unla-
beled data. Please refer to the supplementary material for more detailed derivations. Note that the
dedicated weighting function f∗(p) is theoretically guaranteed by reconciling the intrinsic tension
between E1 and E2 (see Table 1) and is free of setting thresholds manually compared to previous
methods.

2.4 Distribution Alignment

Furthermore, considering the imbalance issue caused by the discrepancy between the prediction
distributions of labeled and unlabeled data, we propose distribution alignment (DA) to further unlock
the potential of the distribution-aware weighting function. In specific, we define the confidence
distributions from labeled data and unlabeled data as expectations EDl

[
q(xl

ij)
]

and EDu

[
q(xu

ij)
]
,

respectively. Both of these are estimated in the form of EMA in each batch as the training progresses,
denoted as ÊDl

[
q(xl

ij)
]

and ÊDu

[
q(xu

ij)
]
. Then we use the ratio between the expectations of

labeled and unlabeled to normalize the each prediction yu
ij = q(xu

ij) on unlabeled data, formulated
as,

DA(yu
ij) = Norm

(
yu
ij ·

ÊDl

[
q(xl

ij)
]

ÊDu

[
q(xu

ij)
]) , (12)

where Norm(·) denotes the normalization operation used to constrain the probabilities to sum up to
1. Then we bring the normalized probability back to Equation 2 to calculate the loss weight of each
pseudo-label after alignment,

Lu =
1

Nu

Nu∑
i=1

1

WH

WH∑
j=1

f∗(max(DA(yu
ij))) · ℓce

(
ŷu
ij ,q(As(Aw(xu

ij)))
)
, (13)

where ŷu
ij = argmax(DA(yu

ij)). In this way, the distribution-aware weighting function is rewarded
with better generalization, benefiting from more equal learning of labeled and unlabeled data,
mitigating the issue of distribution imbalance, and enjoying the synergy. The algorithm flow is
shown in the supplementary material.

3 Experiments

3.1 Experimental Setup

Datasets: (1) PASCAL VOC 2012 [29] is an object-centric semantic segmentation dataset, containing
21 classes with 1,464 and 1,449 finely annotated images for training and validation, respectively.
Some researches [30, 19] augment the original training set (e.g., classic) by incorporating the coarsely
annotated images in SBD [31], obtaining a training set (e.g., blender) with 10,582 labeled samples.
(2) Cityscapes [32]is an urban scene understanding dataset with 2,975 images for training and 500
images for validation.

Implementation Details: For a fair comparison, we follow the common practice and use ResNet [33]
as our backbone and DeepLabv3+[34] as the decoder. We set the crop size as 513× 513 for PASCAL
and 801×801 for Cityscapes, respectively. For both datasets, we adopt SGD as the optimizer with the
same batch size of 16 and different initial learing rate, which is set as 0.001 and 0.005 for PASCAL
and Cityscapes. We use the polynomial policy to dynamically decay the learning rate along the whole
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Table 2: Quantitative results of different SSL methods on Pascal classic and blender set. We report
mIoU (%) under various partition protocols and show the improvements over Sup.-only baseline. The
best is highlighted in bold.

Method Classic Blender
1/16(92) 1/8(183) 1/4(366) 1/2(732) Full(1464) 1/16(662) 1/8(1323) 1/4(2646)

R
es

N
et

-5
0

Sup.-only 44.0 52.3 61.7 66.7 72.9 62.4 68.2 72.3

Pseudo-Label[ICML’13] [10] 55.7 60.2 65.6 69.7 74.8 66.3 70.8 74.5
FixMatch[NeurIPS’20] [18] 60.1 67.3 71.4 73.7 76.9 70.6 73.9 75.1

iMAS[CVPR’23] [24] − − − − − 74.8 76.5 77.0
AugSeg[CVPR’23] [25] 64.2 72.2 76.2 77.4 78.8 74.7 76.0 77.2

DAW (Ours) 68.5 73.1 76.3 78.6 79.7 76.2 77.6 77.4
∆ ↑ +24.5 +20.8 +14.6 +11.9 +6.8 +13.8 +9.4 +5.1

R
es

N
et

-1
01

Sup.-only 45.1 55.3 64.8 69.7 73.5 67.5 71.1 74.2

Pseudo-Label[ICML’13] [10] 57.3 64.1 69.4 73.3 77.2 69.1 73.8 76.7
FixMatch[NeurIPS’20] [18] 63.9 73.0 75.5 77.8 79.2 74.3 76.3 76.9

CPS[CVPR’21] [26] 64.1 67.4 71.7 75.9 − 74.5 76.4 77.7
AEL[NeurIPS’21] [27] − − − − − 77.2 77.6 78.1
iMAS[CVPR’23] [24] 68.8 74.4 78.5 79.5 81.2 76.5 77.9 78.1

AugSeg[CVPR’23] [25] 71.1 75.5 78.8 80.3 81.4 77.0 77.3 78.8
CCVC[CVPR’23] [28] 70.2 74.4 77.4 79.1 80.5 77.2 78.4 79.0

DAW (Ours) 74.8 77.4 79.5 80.6 81.5 78.5 78.9 79.6
∆ ↑ +29.7 +22.1 +14.7 +10.9 +8.0 +11.0 +7.8 +5.4

Table 3: Quantitative results of different SSL methods on Cityscapes. We report mIoU (%) under var-
ious partition protocols and show the improvements over Sup.-only baseline. The best is highlighted
in bold.

Method ResNet-50 ResNet-101
1/16(186) 1/8(372) 1/4(744) 1/2(1488) 1/16(186) 1/8(372) 1/4(744) 1/2(1488)

Sup.-only 63.3 70.2 73.1 76.6 66.3 72.8 75.0 78.0

Pseudo-Label[ICML’13] [10] 67.2 72.4 74.9 77.4 68.9 74.3 76.8 78.6
FixMatch[NeurIPS’20] [18] 72.6 75.7 76.8 78.2 74.2 76.2 77.2 78.4

AEL[NeurIPS’21] [27] 74.0 75.8 76.2 − 75.8 77.9 79.0 80.3
PCR[NeurIPS’22] [2] − − − − 73.4 76.3 78.4 79.1

GTA-Seg[NeurIPS’22] [3] 63.0 69.4 72.0 76.1 69.4 72.0 76.1 −
iMAS[CVPR’23] [24] 74.3 77.4 78.1 79.3 − − − −

AugSeg[CVPR’23] [25] 73.7 76.5 78.8 79.3 75.2 77.8 79.6 80.4

DAW (Ours) 75.2 77.5 79.1 79.5 76.6 78.4 79.8 80.6
∆ ↑ +11.9 +7.3 +6.0 +2.9 +10.3 +5.6 +4.8 +2.6

training and assemble the channel dropout perturbation [22] to improve the generalization ability of
the model. We train the model for 80 epochs on PASCAL and 240 epochs on Cityscapes, using 8×
NVIDIA GeForce RTX 3090 GPUs.

3.2 Comparison with State-of-the-art Methods

We conduct experiments on two popular benchmarks including PASCAL VOC 2012 and Cityscapes
and make a fair comparison with SOTA semi-supervised semantic segmentation methods. We
consistently observe that our DAW outperforms all other methods under all partition protocols on all
datasets with different backbones, which strongly proves the effectiveness of our method.

Results on PASCAL VOC 2012 Dataset. Table 2 shows the comparison of our method with
the SOTA methods on PASCAL classic and blender set. Specifically, on the PASCAL classic set,
our method outperforms the supervised-only (Sup.-only) model by 29.7%, 22.1%, 14.7%, 10.9%
under the partition protocols of 1/16, 1/8, 1/4 and 1/2, respectively with ResNet-101. Our method
also significantly outperforms the existing semi-supervised SOTA methods under all data partition
protocols. Taking the recently proposed method AugSeg [25] as an example, the performance gain of
our approach reaches to +4.3% under 1/16 partition protocol with ResNet-50. The same superiority
of our method can also be observed on the PASCAL blender set.

Results on Cityscapes Dataset. Table 3 compares DAW with SOTA methods on the Cityscapes
dataset. DAW achieves consistent performance gains over the Sup.-only baseline, obtaining improve-
ments of 11.9%, 7.3%, 6.0% and 2.9% under 1/16, 1/8, 1/4 and 1/2 partition protocols with ResNet-50,
respectively. We can also see that over all protocols, DAW outperforms the SOTA methods, e.g.,
DAW excels to iMAS [24] by 1.1% under the 1/16 partition with ResNet-101.
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Table 4: Ablation studies of different
components. Note that “Fixed” de-
notes the result of UniMatch.

None Fixed DAWF DA mIoU

✓ 62.7

✓ 66.9

✓ 68.0

✓ ✓ 68.5

Table 5: Ablation studies
of different momentum
on PASCAL classic 92.

m mIoU

0.99 68.5

0.999 68.1

0.9999 67.9

Figure 2: The curve of
Pos.&Neg. distribution and
t∗ during training.

Pseudo-LabelImage Ground Truth FixMatch AEL Ours

Figure 3: Qualitative comparison with different methods. Note that significant improvements are
marked with yellow boxes.

Qualitative Results. We compare qualitative results of our DAW with different SOTA methods. As
shown in Figure 3 , DAW also shows more powerful segmentation performance in fine-grained details
(see the first and second row in Figure 3). With the help of the optimal weighting function, DAW
demonstrates superior abilities in most scenarios.

3.3 Ablation Study and Analysis

To look deeper into our method, we perform a series of ablation studies on PASCAL classic set
under 92 partition protocol with ResNet-50 to analyze each component of our DAW, including the
Distribution-Aware Weighting Function (DAWF) and the Distribution Alignment (DA). The baseline
method is UniMatch [22].

Effectiveness of Components. In Table 4, “None” denotes there is no threshold for pseudo-label
during the training (i.e., Pseudo-Label [10]) while “Fixed" indicates that a fixed threshold is set (i.e.,
UiMatch [22]). A certain performance lift compared with the baseline can be observed owing to

FixmatchPseudo-Label AEL Ours

E
p

o
ch

 1
E

p
o

ch
 7

9

Figure 4: Comparison between distributions of different methods at different
training epochs (e.g., epoch 1 vs. epoch 79).

w DA

w/o DA

Figure 5: Viz. of
Dist. w&w/o DA.
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EM Image Ground Truth

Figure 6: Visualization of Lucchi
dataset.

Table 6: Quantitative results of different SSL methods on Lucchi
dataset. We report mIoU (%) under various partition protocols. The
best is highlighted in bold.

Method 1/32(5) 1/16(10) 1/8(20)

Sup.-only 45.7 57.4 61.8

MT [35] 71.8 72.4 75.4
CCT [36] 84.7 85.4 85.8
CPS [30] 84.5 84.6 85.8

DAW (Ours) 85.9 86.6 87.6

the introduction of Distribution-Aware Weighting Function and Distribution Alignment. (1) The
utilization of DAWF brings a 1.1% improvement of mIoU, demonstrating that the negative impact
raised by the E1 + E2 trade-off is effectively alleviated. (2) DA brings further accuracy gains,
indicating that the existence of the discrepancy between the distributions of labeled and unlabeled
data may cause a bottleneck in learning. For better visualization, we employ the unused annotations
of “unlabeled data” to calculate the ground-truth distribution on the unlabeled data. And as shown in
Figure 5, there is a relatively large gap between the distributions, and DA can effectively relieve it,
further unlocking the potential of the weighting function and enjoy the synergy.

Hyperparameter Evaluations. As shown in Table 5, it can be observed that the performance is
optimal with m = 0.99.

Scalability for Other Scenarios. We further conduct extra experiments on Lucchi [37–42] to
evaluate the scalability of our method. Figure 6 shows the image and ground-truth of Lucchi dataset,
presenting a common problem in electron microscope images that the instances are very small and
scattered. This calls for more reliable supervision in training under a semi-supervised setting. As
shown in Table 6, DAW outperforms other competitive methods in the electron microscopy domain,
indicating that our method can provide more reliable supervision.

Comparison of Distribution. As shown in Figure 4, the distributions of different methods are almost
the same. As the learning goes on, the discrepancy between the positive and negative distributions
of ours becomes larger (simultaneously shown in Figure 2) while the others almost no change. A
large discrepancy between the positive and negative distributions means that we can filter out as many
negative samples while recruiting as many positive samples as possible, which is conducive to model
training. This is the fundamental reason behind why our method outperforms other methods.

4 Related Work

Semi-Supervised Learning. Semantic segmentation is a fundamental task that has achieved con-
spicuous achievements credited to the recent advances in deep neural networks [43–48]. However,
its data-driven nature makes it heavily dependent on massive pixel-level annotations, which are
laborious and time-consuming to gather. To alleviate the data-hunger issue, considerable works have
turned their attention to semi-supervised learning. Designing appropriate and effective supervision
signals for unlabelled data is the core problem of semi-supervised learning. Previous research can be
summarized into two learning schemes: self-training and consistency regularization. Self-training
based methods [49, 12, 10, 50] aim to train the model based on the pseudo-labels generated by the
up-to-date optimized model for the unlabelled data. Consistency regularization-based methods aim
to obtain prediction invariance under various perturbations, including input perturbation [51, 52],
feature perturbation [53] and network perturbation [54–57]. The recently semi-supervised methods,
MixMathch [58] and FixMatch [18] combine these two techniques together and achieve state-of-the-
art performance. Based on the paradigm of existing semi-supervised learning methods, our method
explores a better weighting function for the pseudo-label scheme during training.

Semi-Supervised Semantic Segmentation. Semi-supervised semantic segmentation aims at pixel-
level classification with limited labeled data. Recently, following the paradigm of semi-supervised
learning, many semi-supervised semantic segmentation methods also focus on the design of self-
training [26, 27, 5] and consistency regularization [59, 60, 53, 61] strategies. U2PL [5] proposes to
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make sufficient use of unreliable pseudo-labeled data. CCT [53] adopts a feature-level perturbation
and enforces consistency among the predictions from different decoders. More recently, SOTA
semi-supervised segmentation methods also integrate both technologies for better performance.
PseudoSeg [7], AEL [27] and UCC [62] propose to use the pseudo-labels generated from weak
augmented images to constrain the predictions of strong augmented images. In this paper, we shed
light on semi-supervised semantic segmentation based on pseudo-labeling and strive to explore better
strategies for using pseudo-labels.

5 Conclusion

In this paper, we propose DAW to systematically analyze the trade-off in previous methods that hinder
the model’s learning. We formally define the trade-off between inaccurate yet utilized pseudo-labels,
and correct yet discarded pseudo-labels by explicitly modeling the confidence distribution of correct
and inaccurate pseudo-labels, equipped with a unified weighting function. Experiments show the
effectiveness.
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