Under review as a conference paper at ICLR 2025

REINFORCEMENT LEARNING VIA LAZY-AGENT
FOR ENVIRONMENTS WITH RANDOM DELAYS

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world reinforcement learning applications are often hampered by delayed
feedback from environments, which violates the fundamental assumption of the
Markovian property and introduces significant challenges. While numerous meth-
ods have been proposed for handling environments with constant delays, those
with random delays remain largely unexplored owing to their inherent complexity
and variability. In this study, we explored environments with random delays and
proposed a novel strategy to transform them into their equivalent constant-delay
counterparts by introducing a simple agent called the lazy-agent. This approach
naturally overcomes the challenges posed by the variability of random delays, en-
abling the application of state-of-the-art methods, originally designed for handling
constant delays, to random-delay environments without any modification. Empir-
ical results demonstrate that the lazy-agent-based algorithm significantly outper-
formed other baselines in terms of asymptotic performance and sample efficiency
in random-delay environments.

1 INTRODUCTION

Reinforcement learning (RL) has made remarkable progress in various domains, from gaming (Mnih
et al., 2013} [Silver et all 2016) to robotic control systems (Haarnoja et al., 2018} [Kalashnikov et al.,
2018)). However, real-world applications of RL often face challenges due to delays, which can take
diverse forms such as latency in communication systems, delays in processing sensory data, or
response delays from actuators. These delays can significantly degrade the performance of RL agents
and may even cause instability in dynamic systems (Hwangbo et al.} 2017; [Mahmood et al.| 2018).

While numerous methods have been proposed to address the challenges posed by delays within the
RL framework, these efforts primarily focus on the unrealistic assumption of constant delays
et all} 2021} [Derman et all, 2021} [Liotet et al., 2022} [Kim et al.| 2023, [Wu et al. [2024), leaving
random delays relatively unexplored owing to their inherent complexity and variability. However, in
real-world, randomly varying delays present a more realistic challenge, exemplified by communi-
cation systems where diverse routing paths and the physical properties of the network can result in

asynchronous data arrivals (Ge et al., 2013).

In this study, we explore environments with random delays and establish a connection to envi-
ronments with constant delays by introducing a simple agent called the lazy-agent. Specifically,
we demonstrate that random-delay environments can be straightforwardly transformed into their
equivalent constant-delay counterparts using lazy-agents, enabling state-of-the-art constant-delay
approaches to be seamlessly applied to random-delay environments without any modification. We
train lazy-agents within the belief projection-based Q-learning (BPQL) framework
[2023)), termed lazy-BPQL, to leverage its advantages in training agents in delayed environments. The
efficacy of the proposed lazy-BPQL was evaluated on popular continuous control tasks in the Mu-
JoCo benchmark (Todorov et al.,[2012). Empirical results demonstrate that lazy-BPQL outperformed
other baseline algorithms in terms of asymptotic performance and sample efficiency in random-delay
environments, achieving performance comparable to agents trained in constant-delay environments.

Under review as a conference paper at ICLR 2025

2 BACKGROUNDS

2.1 STANDARD REINFORCEMENT LEARNING

A (delay-free) Markov decision process (MDP) (Bellman, |1957) can be defined with a five-tuples
(S, A, P, R,), where S is the state space, and A is the action space, P : S x A x S — [0,1] is
the transition kernel, R : S x A — R is the reward function, and v € (0, 1) is a discount factor.
Additionally, the policy 7 : S x A — [0, 1] maps the state-to-action distribution.

Under this definition, at each discrete time ¢, an RL agent observes state s;, makes a decision a
based on a policy 7, receives a reward r; with respect to the action taken, and then observes the next
state s;4; from the environment. It repeats this process to find an optimal policy 7* that maximizes
the expected discounted cumulative rewards, which is given as:
H-1
7" ;= argmax E lz Yergg1|m, po| = argmax E[Gol|m, po] (1)
T k=0 s

where po denotes the initial state distribution and Gy is the discounted cumulative rewards starting
from the initial state over a finite or infinite-horizon H under the policy 7. Additionally, the values
of states and actions at time ¢ are defined as:

H-1 H-1
Vi(s)=E lz ’Ykrt+k+1|8t = 377] , Q7 (s,a) =E lz ’Ykrt+k+1|8t =s, A =a,7|, (2)
k=0 k=0

where V7 (s) denotes the expected discounted cumulative rewards starting from state s under the
policy 7, and Q™ (s, a) represents the expected discounted cumulative rewards starting from state s,
taking action a, and then following the policy 7.

Note that the dynamics governing MDPs assume the Markovian property, which indicates that the
complete probability distribution in the dynamics can be fully determined by the present state and
action, independent of their histories. However, this fundamental assumption can be violated by
delayed feedback from the environment, leading to partially observable MDPs (Monahan, |1982),
where the agent’s current state and action cannot capture sufficient information needed for timely
decision-making. This can significantly degrade the performance of RL agents or even lead to com-
plete failure in learning (Singh et al.,|1994).

2.2 DELAYED REINFORCEMENT LEARNING

In MDP with delays, referred to as delayed MDP, the state of the environment may not be observed
by the agent immediately (observation delay). The effect of the action applied to the environment
may also be delayed (action delay). Additionally, the reward generated by the action taken may not
reach the agent immediately (reward delay). These delays force the agent to make decisions based on
outdated information, prevent timely and appropriate actions, or cause the agent to receive rewards
that do not correspond to the actions taken, disrupting the learning process.

Delayed MDPs are typically categorized into constant-delay MDPs (CDMDPs), where feedback is
delayed by a fixed number of time-steps; and random-delay MDPs (RDMDPs), where the number
of delayed time-steps varies randomly. For example, in the case of random observation delay, the
state s; may be delayed by four time-steps and observed by the agent at time ¢ 4 4, whereas the next
state s;11 may be delayed by only one time-step and observed at time ¢ + 2. Note that the subscript
t explicitly indicates the times when states are generated by the actions applied to the environment.

In this study, we focus on randomly delayed observations under the assumption that the agent utilizes
them for decision-making in order. This implies that any observed state can be used by the agent
for decision-making only after all previously generated states have been both observed and utilized
to ensure no state is omitted from the decision-making process. In the presence of randomness in
observation delays, multiple states may become observable simultaneously, and their order may even
be scrambled. To reduce confusion about the timing of state observations, we distinguish between a
state being observed and used, under the aforementioned assumption of ordering, as follows:

Definition 2.1. A state is considered observed when the information about the state of the envi-
ronment reaches the agent. A state is considered used when the agent utilizes the observed state
information to make a decision by feeding it into the policy.

Under review as a conference paper at ICLR 2025

Times t=1 t=2 t=3 t=4 Times t=1 t=2 t=3 t=4
Generated states 512 S% Generated states Slz
Observed states s? j Observed states s9 s?
Usable states 512 S% Usable states Sf sg
| Policy | | Policy |
& i N
¥ \ \ .
| Environment | | Environment |
*S,’l’ : @ = generated time, b = delay *S",' : @ = generated time, b = delay
(a) When states are observed simultaneously (b) When the order of state observation is scrambled

Figure 1: Visual examples illustrating cases where (a) states are observed simultaneously and (b) the
order of state observation is scrambled. In both scenarios, an observed state is not available for use
if a previously generated state has not yet been used in the decision-making process.

Suppose the state s; has an observation delay of 2, and the subsequent state s, has an observation
delay of 1. These delayed states are observed by the agent at time 3 simultaneously. However,
despite being observed, ss is not immediately usable at this time because the preceding state has not
yet been used in the decision-making process. Thus, the agent uses the observed states in sequence to
determine its actions: s; is used at time 3 and s» is used at time 4 (Fig. a)). Throughout this study,
the term ‘observe’ is utilized when a strict distinction between the two is unnecessary, specifically
in cases of constant delays.

3 AUGMENTATION-BASED APPROACH

An augmentation-based approach is often preferred in delayed MDPs, as it retrieves the Markovian
property and offers advantages for agents learning policies through conventional RL algorithms
in such environments (Liotet et al.l 2022; |Kim et al.l 2023} |[Wu et al., [2024). As demonstrated
by |Altman & Nain| (1992); Katsikopoulos & Engelbrecht (2003)), delayed MDPs can be reduced to
equivalent MDPs without delays through this approach, known as regular MDPs, where the resulting
optimal policies are optimal in the original delayed MDPs (Bander & White I11}1999; |[Katsikopoulos
& Engelbrecht, 2003). The augmentation-based approach involves state augmentation, where the
state is concatenated with additional delay-related information, similar to methods employed in
conventional control theory (Kwon & Pearson, |1980; [Park et al., 2008)). In this section, we examine
two types of delayed MDPs: CDMDPs and RDMDPs.

3.1 CONSTANT-DELAY MDPs

CDMDPs can be defined as a six-tuple (S, A, P, R, 7, 0), where o € N is a constant variable
representing the observation delay. As demonstrated by Katsikopoulos & Engelbrecht| (2003), it is
reducible to regular MDPs (X,,, A, P, R,~), where X, = S x A° is the augmented state space with
A° being the Cartesian product of A with itself for o times, and R : X, x A — R is the reward
function with respect to the augmented state space, termed the augmented reward function. Finally,
the augmented state-based policy 7 : X, x A — [0, 1] maps augmented state-to-action distribution.

To be specific, the augmented state at time ¢ is defined as:
Ty = (stfo; At—0y At—o0+15 -+ atfl)v vt > o, (3)

where s;_, is the most recently observed state and (a;—,, ..., a;—1) is the history of actions taken
since s;_, was generated. The agent implicitly estimates unobserved state s; based on the augmented
state x; and selects action a; accordingly. Note that since s; is not explicitly known at time ¢, the aug-
mented reward corresponding to the action a; becomes a random variable that has to be determined
based on the conditional expectation, which is given as R(x¢, a;) := Ep(s, |2,) [R(5t, at)].

Under review as a conference paper at ICLR 2025

*Augmented states
Times t=1 t=2 t=3 t=4 t=5 t=6
””””””” - most recent usable state
Generated states s? ‘ s3 ‘ s} ‘ kR
£ = (c2
.............. - %3 =(s1,a4,a3)
2 1 3 ~ T—— history of actions
Observed states ST 53 S2 o 2
T I T %4 =(57,aq,ay,03)
---------------------- k3 E 2 !.
Usable states s? s? 3 4 o
’ B }__’{ : 2 53 “Rs =(s3,a2,a3,a4)
______________________ T T
v ' t i
Augmented states ‘no-ops’ 23 S x5 %6 - %6 = (53,03, Ay, a5)
..... f.._/ \ B | S
Actions a; a; as a, as ag
| Environment *S,I; : @ = generated time, b = delay

Figure 2: A visual example of decision-making processes in environments with random delays. At
time 3, state s? is observed, and the agent immediately uses this observed state to make a decision.
At time 4, state s} is observed, whereas the preceding state s3 remains unobserved. Consequently, s}
cannot be used at this time because the previously generated state s5 has not yet been observed and
used. Therefore, the agent continues to use s? until s3 is observed. Eventually, s3 is observed at time
5, and the observed states are then used in the correct order. Note that the states are reformulated as
augmented states before being fed into the policy, which subsequently determines the appropriate
actions.

3.2 RANDOM-DELAY MDPs

Using similar arguments as in |Katsikopoulos & Engelbrecht (2003), RDMDPs can be defined as an
eight-tuple (S, A, P, R, 7, O, g, T), where O € {0} UN is a random variable representing varying
observation delay, assumed to be sampled from an arbitrary discrete distribution g, with support on
{0,1, ..., Omax }» where o, denotes a maximum delay in time-steps, and 7 : S — N is a time-related
function that maps states to times at which they are used to make decisions for the first time. Under
this definition, we can define the states with observation delays and their corresponding augmented
states as follows:

Definition 3.1. Let s be a state with an observation delay of o,,, where the subscript n > 0 denotes
the time at which the state was generated. Given that s;" is the most recent usable state at time ¢,
the augmented state at time ¢ is defined as:

C%t = (Szn7a'n7an+17 "'7at71)7 for 7(8;)7,") S t S n + Omax » (4)

where the sequence (@, Gn+1, ..., at—1) represents the history of actions taken since s was gen-
erated, and 7(s2") € {n + oy, ..., t} denotes the time when s2~ is used for decision-making for the
first time. Based on the augmented state 2, the agent implicitly estimates the unobserved state s;
and selects action a; accordingly. The notation - indicates the augmented state defined in RDMDPs.

Given that 7(s9") = t and s,41 ~ P(:|sn, ay), the usability of the next state ;""" at time ¢ + 1
depends on its delay o,11. Consequently, the next augmented state ;. is defined as:

On .
b (591 s Gng1, Gpyo, .. ay) with prob. of m(op41),)
LT U(ser s a ey Gt—1,0a¢) with prob. of 1 — m(0,41)
n »Wn, Un41, ...y Ut—1, Ut P n+1)s

where m(0y41) = Pr(on+1 € {0,1,...,7(s0") — n}).

Note that state s continues to be used if the next state s,"\;" is not available for use at this time.
It remains in use until s,""}' becomes usable, at which point the agent switches to use s,";' to

construct the augmented state (Fig. [2).

It is important to note that the dimension of the augmented state 21 in equation [5 either remains
constant (|Z¢41| = |Z¢|) or increases by 1 (|Z¢41]| = |Z¢| + 1). This implies that its dimension will
eventually reach infinity in infinite-horizon MDPs without assuming a bounded maximum delay.
Under the assumption of bounded maximum delays, |[Katsikopoulos & Engelbrecht| (2003) proposed

Under review as a conference paper at ICLR 2025

a method called freeze. In this approach, the agent performs no actions (‘no-ops’) until the current
state s is observed whenever the dimension of the augmented state reaches its maximum tolerable
limit. Once the state s is observed, the augmented state is reset to & = (s), and the decision-making
process resumes. However, this approach is known to be highly task-dependent, as the agent ignores
environmental changes during the inactive periods, potentially leading to suboptimal policies.

4 BELIEF PROJECTION-BASED Q-LEARNING

While the augmentation-based approach provides a foundation for training agents with conventional
RL algorithms in delayed MDPs, it has a known limitation: the state space grows exponentially as the
number of delayed time-steps increases, resulting in sample inefficiency and slow convergence. This
is called the state-space explosion issue, which makes the augmentation-based approach unfavorable
for environments with long delays (Derman et al.,|2021}; |Kim et al., 2023).

To mitigate this issue, belief projection-based Q-learning (BPQL), a model-free actor-critic frame-
work designed to handle constant-delay environments, was proposed by |Kim et al.| (2023)). It ex-
hibited remarkable performance with simple modifications to the conventional augmentation-based
approach, effectively alleviating the state-space explosion issue.

4.1 ALTERNATIVE REPRESENTATIONS FOR AUGMENTATION-BASED VALUES

First, a modified Bellman operator T, termed delay Bellman operator, was introduced to evaluate
the values with respect to the augmented state space, which is given as:

Tﬁvﬁ(xt) —]Eathr(-\wt) [EP(St‘ﬂt) [R(Sf,, at)} + 7E1t+1~75('|mt»at) [Vﬁ(xt+1)]:| ’ vt > o (6)

where 7 is the augmented state-based policy that receives augmented states as input, V7 is the
augmented state-based value representing the values of augmented states under the policy 7, o is a
constant observation delay, and P : X, x Ax X, — [0, 1] is the transition kernel defined with respect
to the augmented state space. By repeatedly applying the delay Bellman operator, V™ converges,
and then 7 is improved using conventional policy improvement methods. Similarly, the augmented
state-based Q-value, Q™, representing the values of augmented states for the given actions under the
policy 7, can also be employed.

To mitigate the state-space explosion issue, the alternative representations for V' and @, referred
to as beta value and beta Q)-value (V3 and (Q), are introduced. These values are evaluated with
respect to the original state space rather than the augmented one, thereby naturally alleviating the
state-space explosion issue. Beta-based values can be used as estimators for the augmentation-based
values, which are given as:

Vﬁ ('rt) = EP(St|JEt) [Vﬂﬁ(st)] + Ajl;sidual(:("t) (7)
Qﬁ- (Itv at) = E]P’(St|:tt) [Qg (5t7 at)} + 51?_(‘;sidual (It, a’t)v (8)
where AT ., - and 07, . represent the projection residuals.

In large or continuous spaces, a practical sampling-based reinforcement learning algorithm can be
employed, where the beta (Q-value and augmented state-based policy are parameterized by 6 (beta
critic) and ¢ (actor), respectively. The beta critic and actor are then trained by iteratively minimizing
the following objective functions:

1 T
JQﬁ (9) = E(St,at77’t751,+17f1/'t,+1)’\/’D |:2 (Qe,ﬁ(sta at) - R(St, at)

2
— VEayy1 s (Jes) {Q375(5t+1a at+1) — alog 7Tr¢(at+1|xt+l)})],)

Jﬁ'(¢) = E(s,,,mt)ND [Eat~ﬁ¢(~|mt) [0[IOg 7_T-¢(at|xt) - Qg,ﬁ(stvat)“ ; (10)

where r; = R(sq, a;), D represents a replay buffer (Mnih et al., 2013)), « is a temperature parameter
(Haarnoja et al.,[2018), and 6 are the parameters of the target beta critic (Fujimoto et al.,[2018).

Under review as a conference paper at ICLR 2025

Consequently, it demonstrated remarkable performance in constant-delay environments. However,
since it was specifically designed to handle constant delays, it is not applicable to random-delay en-
vironments, which are the focus of our study. As discussed earlier, we demonstrate that conventional
constant-delay approaches can be naturally applied to random-delay environments by establishing
a connection between RDMDPs and CDMDPs, thereby facilitating the application of the BPQL
framework in our study.

5 BRIDGING RDMDPs To CDMDPs

In this section, we demonstrate that RDMDPs can be transformed into their equivalent CDMDPs by
introducing a simple agent called lazy-agent, allowing state-of-the-art constant-delay approaches to
be seamlessly extended to random-delay environments.

5.1 LAZY-AGENT

To address the challenges caused by variability in random delays, we let the agent assume that all
states are delayed by the maximum number of time-steps. The agent then uses the observed states in
decision-making processes at their maximum delayed times, that is, 7(s%") = n + 0max, Vn > 0. In
this scheme, each state is consistently used in sequence exactly on,,x time-steps after being generated,
regardless of its actual delay.

Suppose the state s]* is observed at time 1+o0;. Since the agent assumes that all states are delayed by
Omax time-steps, it uses the observed state at time 14 oy« irrespective of its actual delay o;. Similarly,
the subsequent state s5> is observed at time 2 + o0y; however, the agent uses it at time 2 + Opax.
In short, the agent uses observed states at their maximum delayed times, regardless of their actual
delays. This implies that the exact delays for each state may remain unknown to the agent, except for
the maximum delay. Consequently, this approach effectively circumvents the challenges associated
with variability in random delays. We refer to this agent as a lazy-agent. A visual representation is
provided in Appendix [E]

Formally, the augmented state Z; in equation[d]is redefined for the lazy-agent as:
i‘t = (S?Lnaanaan-‘rla"'aat—l)? fOft:n+0maX, Vn > Oa (11)

where 7(s2") = 1 + Omax, resulting in the probability m(o,1) in equation [5|becoming 1. Conse-
quently, given s,,+1 ~ P(:|sn, a,), the next augmented state ;1 in equation [5|is redefined as:

A On
Tt4+1 = (Sn_!:llaan-‘rla An42, -1y Clt), fort =n+ Omax vn > 07 (12)
irrespective of its delay oy, 1.

Note that equation [TT]and equation [I2]align with the formulations for the augmented states defined
in CDMDPs with a constant observation delay of op,,,. Furthermore, the dimension of the augmented
state remains constant at (o« + 1) at all times, addressing the issue of an exploding augmented state
dimension in infinite-horizon MDPs.

Consequently, RDMDPs now become equivalent to CDMDPs with a constant delay of op,x to the
lazy-agents. The resulting CDMDPs can then be further reduced to regular MDPs, allowing the lazy-
agents to be trained using conventional RL algorithms. To support our analysis, we present empirical
results in Appendix[B.2} demonstrating that the performance of lazy-agents trained in random-delay
environments is comparable to that of agents trained in constant-delay environments. From these
empirical results, we propose the following proposition:

Proposition 5.1. Under the assumption of bounded observation delay and ordering, the RDMDPs
(S, A P, R, v, O, q,, T) can be transformed into the equivalent CDMDPs (S, A, P, R, 7, Omax)
through the lazy-agent, where 0y, denotes the maximum delay in RDMDPs.

Proof sketch. We begin by introducing the lazy-agent into RDMDPs, in which the agent assumes
that all states are delayed by the maximum number of time-steps (omax) and uses the observed states

for decision-making at their maximum delayed times, that is, 7(s%") = 1 + Omax, Vo > 0.

In this setting, the augmented state &, in equation []is redefined as:

Ty = (80", Any Qg 1y ooy G—1), fOrt =n+ omu, V0 >0, (13)

Under review as a conference paper at ICLR 2025

indicating that s is used for decision-making only at time 7 + omay, regardless of its actual delay.
Under this assumption, the probability m(o,,+1) in equationbecomes:

m(op41) = Pr(onH € {0,1,...,7(so") — n}) = Pr(onH € {0,1, ...,omax}) =1. (14)
Consequently, the next augmented state ;1 in equation [5]is redefined as:
Tpr1 = (stTf S Ont1y Apa2y ey Q) fOTE =1+ Oax, Y12 > 0, (15)

where $,,+1 ~ P(:|$n, an). Evidently, these formulations for the augmented states are equivalent to
those defined in CDMDPs with a constant delay of op,x. To be more specific, by replacing n with
t — Omax in equation[I3] we obtain:

o o
Ty = (Stiomax’ At —0max y At —Omax+15 +++» a’t—l)a Vt > Omax, (16)

which is exactly equivalent to equation [3] with 0 = Opax, demonstrating that RDMDPs can be trans-
formed into their equivalent CDMDPs through the lazy-agent. This completes the proof. [

5.2 LAzYy-BPQL

In the previous section, we demonstrated that RDMDPs can become equivalent to CDMDPs with
lazy-agents. However, since the delays in the resulting CDMDPs are determined by the maximum
delays in RDMDPs, the lazy-agents often encounter long-delay challenges, particularly the state-
space explosion issue. Specifically, the augmented state space in derived CDMDPs would be defined
as X, = S x A°= necessitating numerous samples for the augmented-based values to converge.

Omax

To address this issue, we employ lazy-agents within the BPQL framework to leverage its advan-
tage in training agents in constant-delay environments while effectively alleviating the state-space
explosion problem. We refer to this approach as lazy-BPQL, which is summarized in Algorithm|[I]

6 EXPERIMENTS

6.1 BENCHMARKS AND BASELINE ALGORITHMS

We evaluated our algorithm on popular continuous control tasks in the MuJoCo benchmark by grad-
vally increasing the maximum delay op,, from 5 to 20, to assess its performance and robustness
with respect to the degree of randomness in delays. In our experiments, we assumed that random
delays are sampled from a discrete uniform distribution. Details of the benchmark environments and
experiments are provided in Appendix D}

The following algorithms are included in experiments: normal SAC (Haarnoja et al.,|2018)), delayed-
SAC (Derman et al., 2021} Kim et al.} 2023), lazy-BPQL, and DC/AC (Bouteiller et al.,[2020). The
normal SAC adopts a naive approach that selects actions for currently usable states on a memoryless
basis and performs ‘no-ops’ otherwise, without addressing the violation of the Markovian assump-
tion in delayed MDPs. Delayed-SAC is a variant of delayed-@) (Derman et al.l |2021) adapted by
Kim et al.| (2023) for application in continuous spaces. It employs an approximate forward model
to explicitly predict unobserved states, which can be learned from transition samples collected in
undelayed environments. With this model, the agent recursively predicts unobserved states through
one-step predictions repeated over delayed time-steps and selects actions based on predicted states.
Lastly, DC/AC is an improved version of SAC that implements an off-policy multi-step value estima-
tion combined with a partial trajectory resampling method, significantly enhancing sample efficiency
and demonstrating notable performance in environments with both constant and random delays.

6.2 RESULTS

6.2.1 PERFORMANCE COMPARISON

Table[T|and Fig. [3]show the performance of each algorithm on the MuJoCo tasks. The results indicate
that the proposed lazy-BPQL demonstrates remarkable performance across all tasks, from relatively
short delays (omax = 5) to long delays (0max = 20). In contrast, normal SAC performs poorly across
all tasks, as it trains the agent directly in delayed environments without recovering the Markovian
property, resulting in nearly random outcomes. Despite respectable performance in relatively simple

Under review as a conference paper at ICLR 2025

tasks with small spaces, delayed-SAC exhibits unsatisfactory task-dependent performance, possibly
due to the accumulation of nonnegligible prediction errors as the complexity of task or omax in-
creases, underscoring the need for a more carefully designed dynamics model. Lastly, while DC/AC
performs reasonably well in some tasks with short delays, its performance significantly deteriorates
as the degree of randomness in delays increases. To further highlight the performance achieved by
lazy-BPQL compared to other baseline algorithms, we report the delay-free normalized scores

2024) in Fig.[7]and Table[]in Appendix [B-1]

Table 1: Results of the MuJoCo tasks with random delays of oyax € {5, 10, 20}. Each algorithm was
evaluated for one million time-steps over five trials with different seeds. The standard deviations of
average returns are denoted by =+, and the best performance is in bold. Results for constant delays are
in blue. Additionally, delay-free SAC serves as the baseline performance in delay-free environments.

Environment Ant-v3 HalfCheetah-v3 Hopper-v3 ~ Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
Omax Algorithm
§ Random policy —58.744 —285.0143 18.642 1.941 121949 5.641
Delay-free SAC 3279.24150 8608.4+57 2435.2493 3305.54934 3228.14410 964.3+29
Normal SAC —76.6+4 —279.545 89.2410 44.7 401 403.945 32249
DC/AC 907.5490 2561.8492 1931.64192 2079.34122 2798.44 452 854.7+30
5 Delayed-SAC 986.4+128 4569.4 188 220041190 1910.11947 418.94 196 964.2 15
Lazy-BPQL (proposed) | 3679.8.1 167 5583.91 169 217414155 284321972 3157.7 1292 958.8414
BPQL (constant-delay) | 3761.91112 5212.7441 2136.34158 2577.44157 3194.94 374 955.9108
Normal SAC —84.649 —278.6.4¢ 28.14¢ 40.944 354.5412 31.341
DC/AC 342.9434 1824.54111 126244961 1492.54133 1023.8+359 4.940
10 Delayed-SAC 966.9+150 2563.81015 1878.54176 1264.6+233 289.64+108 947.6.136
Lazy-BPQL (proposed) | 2744.5 112 4810.1, 533 2300.91 164 21223199 2820.5 345 936.943s
BPQL (constant-delay) | 2831.94103 4282.24 903 2129.24184 2331.61952 2891.54357 934.7 490
Normal SAC —83.149 —264.945 27.545 64.6.41 364.347 24.34¢
DC/AC 258.3 142 860.91 288 12.846 —2.945 237.3473 4.149
20 Delayed-SAC 955.7+110 13778140 1164.14978 811.51163 370.3417 933.5.133
Lazy-BPQL (proposed) | 1976.51 245 372721979 1346.7 045 1025.7 1302 1143.8. 371 566.9+88
BPQL (constant-delay) | 2078.94157 3062.7+950 1526.71997 846.7 £ 443 1197.7 1457 608.7+210

6.2.2 PERFORMANCE IN ENVIRONMENTS WITH CONSTANT DELAYS AND RANDOM DELAYS

To verify whether the proposed lazy-agents perform in random-delay environments as if they were in
constant-delay environments, we evaluated the performance of lazy-lazy agents trained in environ-
ments with random delays of opmax € {5, 10,20} (lazy-BPQL), and compared it with normal agents
trained in environments with constant delays of 0 = omax (BPQL). The objective was to determine
whether these two types of agents demonstrate similar performance. Table|[T] presents the results for
the MuJoCo tasks. The empirical findings confirm that both types of agents exhibited almost identi-
cal performance across all evaluated tasks, which strongly supports our argument that random-delay
environments can be transformed into their equivalent constant-delay counterparts with the use of
lazy-agents. Additional results are provided in Appendix [B-2}

6.2.3 STATE-SPACE EXPLOSION ISSUE

To highlight the importance of mitigating the state-space explosion issue, we trained lazy-agents
solely based on the augmentation-based approach without employing BPQL techniques, which we
refer to as lazy-augmented-SAC. As presented in Table [5]in Appendix [C-I} lazy-BPQL outperforms
lazy-augmented-SAC for all evaluated tasks. Note that lazy-augmented-SAC completely failed to
learn any useful policy even for tasks with op,x = 5. These results clearly underscores the impor-
tance of alleviating the state-space explosion issue.

Under review as a conference paper at ICLR 2025

HalfCheetah-v3 (omax = 5) HalfCheetah-v3 (omax = 10) HalfCheetah-v3 (omax = 20)

—— Normal SAC

— DC/AC

—— Delayed-SAC

— Lazy-BPQL (proposed)

8000 8000 4 8000

£ 6000 < 6000 £ 6000
£ £ £
2 2 2
& & &
% 2000 & 4000 4 & 4000
e c e
H g g
e I s
2000 2000 2000
0 0+ 0 g
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Steps 1e6 Steps 1e6 Steps 1e6
Ant-v3 (omax = 5) Ant-v3 (omax = 10) Ant-v3 (omax = 20)
6000 6000 6000
—— Normal SAC
— DC/AC
5000 5000 5000

—— Delayed-sac
—— Lazy-BPQL (proposed)

I
&
8
8

Average Return
o N w
8 8 5]
o 8 8 8
Average Return
N
1
3
o 3
Average Return
o

4000 - 4000

3000

3000

2000

1000 4 1000

0.0 02 0.4 0.6 0.8 1.0 00 02 04 06 08 10 0.0 02 0.4 0.6 08 1.0
Steps 1e6 Steps 1e6 Steps 1e6
Humanoid-v3 (omax = 5) Humanoid-v3 (omax = 10) Humanoid-v3 (omax = 20)
6000 6000 6000
—— Normal SAC
5000 DCIAC A TN 5000 5000
—— Delayed-SAC
—— Lazy-BPQL (proposed)
£ 4000 £ 4000 + £ 4000
£ £ £
2 2 2
[) Q Q
& 3000 < 3000 3000
1)))
o = o
g 2000 & 2000 g 2000
H z s
< I ke
1000 1000 + 1000
= =
0 04 0
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 10 0.0 02 0.4 0.6 0.8 1.0
Steps 1le6 Steps le6 Steps 1e6

Figure 3: Performance curves of each algorithm on continuous control tasks in the MuJoCo bench-
mark with random delays of omax € {5, 10,20}. All tasks were conducted with five different seeds
for one million time-steps. The shaded regions represent the standard deviation of average returns
across the trials. Across all tasks, the proposed lazy-BPQL exhibits remarkable performance, con-
sistently outperforming other algorithms. Additional results are provided in Appendix[B.1]

6.2.4 ENVIRONMENTS WITH HIGHER RANDOMNESS

We evaluated the performance of lazy-BPQL in random-delay environments with increased random-
ness (0max € {25, 30}) to empirically assess its robustness to greater randomness compared to other
baseline algorithms. In the experiment, we included the second-best performing baseline, delayed-
SAC, along with lazy-augmented-SAC to evaluate how effectively BPQL can mitigate the state-
space explosion problem in such environments. The experiments were conducted on HalfCheetah-
v3 and Ant-v3 tasks, and the result are listed in Table[@]in Appendix [C.2} The results confirmed that
lazy-BPQL exhibited performance degradation, but still maintained the best performance despite the
increased randomness in delays, whereas other baselines were unable to learn any useful policies.

6.2.5 IMPACTS OF PROCESSING STATES IN ORDER

We investigated the impact of the assumption that states are used in order by comparing the perfor-
mance of agents trained with and without this assumption. The results in Appendix [C.3]reveal that
the order in which observed states are used for decision-making can significantly affect the perfor-
mance and learning stability of RL agents, with a notable drop in performance in the unordered case.
Furthermore, the performance degradation becomes more pronounced as the randomness of delays
increases. These findings seem to originate from the fact that both augmentation-based and model-
based approaches heavily rely on preserving and understanding cause-and-effect relationships to
restore the violated Markovian property caused by delays.

Under review as a conference paper at ICLR 2025

7 CONCLUSION

We investigated environments with random observation delays and proposed a novel approach to
establish a connection to environments with constant delays by introducing a simple agent called
the lazy-agent. With the proposed lazy-agents, random-delay environments can be transformed into
their equivalent constant-delay counterparts, facilitating the application of state-of-the-art constant-
delay approaches to random-delay environments without any modifications. We employed lazy-
agents within the belief projection-based)-learning (BPQL) framework, referred to as lazy-BPQL,
to train our agents in equivalent constant-delay environments while effectively mitigating the state-
space explosion issue of the augmentation-based approach. The empirical results demonstrated that
the proposed lazy-BPQL significantly outperformed other baseline algorithms in terms of asymp-
totic performance and sample efficiency in random-delay environments, which strongly supports the
efficacy of our approach.

It would be meaningful to employ our lazy-agents in real-world dynamic systems that suffer from
random delays, where conventional constant-delay approaches are inadequate. In the future, we will
extend the proposed algorithm to real-world applications, such as robotic locomotion and manipula-
tion, by accounting for randomly varying sensor and actuator delays. We believe that the lazy-agents
will play a pivotal role in extending conventional RL methods to real-world dynamic systems.

8 LIMITATIONS

Despite its notable advantages in constructing equivalent constant-delay environments from the orig-
inal random-delay environments, employing the lazy-agent may encounter difficulties associated
with long delays. This is because the constant delays in the equivalent environments are aligned with
the maximum delay in the original random-delay environments. Consequently, the model-based ap-
proach may require more carefully designed dynamics models, as accumulated errors in recursive
one-step predictions could result in significant performance degradation. On the other hand, the
augmentation-based approach may confront the inherent state-space explosion issue. To circumvent
this issue, we adopted a strategy of training lazy-agents within the BPQL framework, which can
effectively mitigate the state-space explosion issue. Alternatively, the use of recurrent models, such
as GRU [2014), can also be considered, as explored in [Firoiu et al| (2018). However, the ne-
cessity of knowing the maximum delay raises another concern, which may be unrealistic in some
environments. This remains a challenge to be addressed in future work.

REFERENCES

Eitan Altman and Philippe Nain. Closed-loop control with delayed information. ACM Sigmetrics
Performance Evaluation Review, 20(1):193-204, 1992.

James L Bander and Chelsea C White III. Markov decision processes with noise-corrupted and
delayed state observations. Journal of the Operational Research Society, 50(6):660-668, 1999.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, pp.
679-684, 1957.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International Conference on Learning Representa-
tions, 2020.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control. Neurocomputing, 450:119-128, 2021.

Kyunghyun Cho. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014.

Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-stationary
Markov policies. arXiv preprint arXiv:2101.11992, 2021.

Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: deep reinforcement learning with
action delay. arXiv preprint arXiv:1810.07286, 2018.

10

Under review as a conference paper at ICLR 2025

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587-1596. PMLR, 2018.

Yuan Ge, Qigong Chen, Ming Jiang, and Yiqing Huang. Modeling of random delays in networked
control systems. Journal of Control Science and Engineering, 2013(1):383415, 2013.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a quadrotor with rein-
forcement learning. IEEE Robotics and Automation Letters, 2(4):2096-2103, 2017.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651—
673. PMLR, 2018.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with de-
lays and asynchronous cost collection. /IEEE Transactions on Automatic Control, 48(4):568-574,
2003.

Jangwon Kim, Hangyeol Kim, Jiwook Kang, Jongchan Baek, and Soohee Han. Belief projection-
based reinforcement learning for environments with delayed feedback. Advances in Neural Infor-
mation Processing Systems, 36:678-696, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Woosuk Kwon and A Pearson. Feedback stabilization of linear systems with delayed control. /IEEE
Transactions on Automatic control, 25(2):266-269, 1980.

Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement learning
by imitation. In International Conference on Machine Learning, pp. 13528—-13556. PMLR, 2022.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a rein-
forcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4635—4640. IEEE, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

George E Monahan. State of the art—a survey of partially observable Markov decision processes:
theory, models, and algorithms. Management Science, 28(1):1-16, 1982.

Jung Hun Park, Han Woong Yoo, Soohee Han, and Wook Hyun Kwon. Receding horizon controls
for input-delayed systems. IEEE Transactions on Automatic Control, 53(7):1746-1752, 2008.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without state-estimation in
partially observable Markovian decision processes. In Machine Learning Proceedings 1994, pp.
284-292. Elsevier, 1994.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in environ-
ments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18:83—-105, 2009.

11

Under review as a conference paper at ICLR 2025

Qingyuan Wu, Simon Sinong Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu,
Jiirgen Schmidhuber, and Chao Huang. Boosting reinforcement learning with strongly delayed
feedback through auxiliary short delays. In Forty-First International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=0IDaPnY5d5.

12

https://openreview.net/forum?id=0IDaPnY5d5

Under review as a conference paper at ICLR 2025

A RELATED WORK

Delays are prevalent in real-world reinforcement learning (RL) applications, arising from various
factors such as computational time. Previous research on handling such delays within the RL frame-
work can be categorized into two main approaches: augmentation-based and model-based.

Augmentation-based approach The augmentation-based approach is often preferred in delayed
environments since it allows us to retrieve the violated Markovian property (Altman & Nain| [T992}
[Katsikopoulos & Engelbrecht, [2003)) and offers advantages for training agents through conventional
RL algorithms in such environments. Despite its notable advantages, the method of augmenting the
state itself remains a challenge associated with sample complexity, commonly referred to as the
state-space explosion issue or the curse of dimensionality, which results in learning inefficiency.
To mitigate this issue, DC/AC (Bouteiller et al [2020) introduces an off-policy multi-step value
estimation combined with a partial trajectory resampling method, which greatly enhances sample
efficiency and accelerates the learning process. BPQL [2023) proposes another novel
approach to overcome such difficulty by introducing alternative representations for augmentation-
based values. These alternative values are evaluated with respect to the original state space rather
than the augmented one, thereby inherently mitigating the state-space explosion issue and demon-
strating remarkable performance. More recently, AD-RL alleviates the performance
degradation stemming from this issue by leveraging auxiliary tasks with shorter delays to learn tasks
with relatively long delays, reducing sample complexity and achieving notable performance.

Model-based approach The model-based approach, also known as the state estimation method,
aims to restore the Markovian property using learned dynamics models from underlying delay-free
environments (Walsh et all 2009} [Firoiu et al [2018}; [Chen et al, 2021} [Derman et al.| [2021). For
example, delayed-(Q (Derman et al|[2021)) employs an approximate feed-forward model to explic-
itly predict unobserved states, which can be learned from transition samples collected in delay-free
environments. Using this model, the agent recursively predicts unobserved states through one-step
predictions repeated over delayed time-steps and selects actions based on the predicted states. Sim-
ilarly, [Firoiu et al.| (2018) proposes an approach that utilizes recurrent neural networks [2014)
to model the dynamics. These approaches facilitate sample-efficient learning without being affected
by the issues associated with the sample complexity posed by the augmented state. However, ap-
proximation errors in building dynamics models may induce accumulated prediction errors, leading
to suboptimal performance. Furthermore, the presence of noise in observations can exacerbate inac-
curacies in learning dynamics models.

While numerous methods have shown promise, most works focus on the unrealistic assumption of
constant delays, exhibiting nonnegligible performance degradation when applied to environments
with random delays. Building upon previously proposed state-of-the-art methods, this study makes
its primary contribution by proposing a novel approach that enables the handling of constant de-
lays and random delays in exactly the same manner. Specifically, we propose a method to construct
equivalent constant-delay environments from the original random-delay environments by introduc-
ing a simple agent termed the lazy-agent. This approach offers valuable insight that there is no need
to devise new methods for handling random delays, as the lazy-agent naturally facilitates the appli-
cation of conventionally proposed state-of-the-art methods, originally designed for constant delays,
to random-delay environments without any modifications.

13

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL RESULTS

B.1 PERFORMANCE COMPARISON

Performance curves We present the performance curves of each algorithm on the MuJoCo tasks
with random delays of omax € {5, 10, 20}. All tasks were conducted with five different seeds for one
million time-steps. The shaded regions represent the standard deviation of average returns. Empirical
results demonstrate that lazy-BPQL exhibits remarkable performance across all evaluated tasks.

Ant-v3 HalfCheetah-v3 Hopper-v3
6000 8000 4000
—— Normal SAC
—— DC/AC 7000 3500

Delayed-SAC 3000 4
2500 4

2000 1

1500

1000

500 4

5000

—— Lazy-BPQL <propcsed) 60007

4000
3000 4000
2000
e
1000 1000 4

Average Return

Average Return
Now o
g 8 8
g8sg g
Average Return

0 04
0. 0.6 l.‘O 0‘0 O.‘Z O.‘4 0.‘6 O‘B 1.‘0 O.‘O 0.‘2 O:4 O.‘é 0.‘8 l.IO
Steps le6 Steps 1e6 Steps 1e6
Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
6000 6000 1200
5000 5000 4 1000 -
£ 4000 £ 4000 4 e 800
Fi 3 3
- 600 1
< 3000 & 3000 4 a«
)))
© e g 400
g 2000 g 20001 g
Ed < < 5904
1000 1000 4
o4
o 04
- - - : - - - - - - - - —200 1~ - : - - .
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6 Steps 1le6 Steps 1e6
Figure 4: Performance curves of each algorithm on the MuJoCo tasks with oy0x = 5.
Ant-v3 HalfCheetah-v3 Hopper-v3
6000 8000 4000
—— Normal SAC
— 7000 3500 A
2000 i.m d-SAC
ayed-]]
- —— Lazy-BPQL (proposed) - 6000 - 3000
£ 4000 c 1 £ 5500 |
g % 5000 é ,\J
< 3000 <4000 & 2000
)))
© © 3000 4 — | 8 1500+
g 2000 g g
< < 2000 1 < 1000 4
1000 500 4
1000 4
\
o 01— 1
00 02 04 056 038 10 0.0 02 0.4 05 08 10 00 02 0.4 06 08 10
Steps 1e6 Steps 1le6 Steps 1e6
Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
6000 6000 1200
5000 5000 - 1000 4
£ 4000 £ 4000 4 € 800+
E S S
2 5 @ 600
< 3000 < 3000 <
)))
g g g 4009
g 2000 g 20001 g
k4 < < L5504
1000 1000 4
= — e el W 0+
0 0
- - - : - - - - - - - - —200 1~ - : - - .
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 10 0.0 0.2 0.4 0.6 0.8 10
Steps 1e6 Steps 1e6 Steps 1e6

Figure 5: Performance curves of each algorithm on the MuJoCo tasks with oy,,x = 10.

Under review as a conference paper at ICLR 2025

Ant-v3 HalfCheetah-v3 Hopper-v3
6000 8000 4000
—— Normal SAC
— 7000 3500
000 33“ d-5AC
—— Delayed-
1 3000
—— Lazy-BPQL (proposed) 6000
£ 4000 € 5000 E 2500
K K K
< 3000 = 4000 < 2000
)))
o © 3000 © 1500
g 2000 g g
< < 2000 1 & 1000 4

1000 1000 4 500 4
0 0+ 1

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

Steps 1e6 Steps 1e6 Steps 1e6
Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
6000 6000 1200
5000 5000 4 1000 4
800
£ 4000 £ 4000 €
E 5 5
2 £ T 600
= 3000 < 3000 e«
3 3 3
Jd o g 400
g 2000 g 2000 g
L 4 T L5004
1000 1000
0
=
0 0
T T T T T T T T T T T T -200 T T T T T T
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Steps 1e6 Steps 1e6 Steps le6

Figure 6: Performance curves of each algorithm on the MuJoCo tasks with oy,,x = 20.

Delay-free normalized scores To clarify the performance achieved by lazy-BPQL compared to
other baseline algorithms, we report the delay-free normalized scores for each algorithm on the Mu-
JoCo tasks in Fig. [7] and Table [2] following (2024). The delay-free normalized score is
defined as Rnormalized - (Ralgorithm - Rrandom)/ (Rdelay—free - Rrandom)v where Ralgorithmv Rdelay—freea and
Ry andom represent the average returns of the baselines, delay-free SAC, and random policy, respec-
tively. Here, delay-free SAC serves as the baseline performance in delay-free environments.

From the results, we confirmed that for tasks with om, = {5, 10}, lazy-BPQL exhibits the best
performance comparable to the delay-free performance, achieving average scores of 0.91 and 0.81,
respectively. It outperforms the second-best performing baselines by wide average margins of 0.28
and 0.34 points, each. Even for tasks with the longest maximum delay of on.,x = 20, lazy-BPQL
maintains the highest average score. These scores further highlight the effectiveness of lazy-BPQL,
demonstrating its superiority over other baseline algorithms across all evaluated tasks in MuJoCo.

Delay-free normalized scores

10 fF-——————m———m—m——— B DC/AC
[Delayed-SAC
0.g1 B Lazy-BPQL (proposed)

Omax =5 omax = 10 omax = 20

Figure 7: Delay-free normalized scores for each baseline algorithm, averaged across all the evaluated
MulJoCo tasks. The dashed gray line represents the baseline score of delay-free SAC.

15

Under review as a conference paper at ICLR 2025

Table 2: Delay-free normalized scores of each algorithm with random delays of oy € {5, 10,20}.
The best score is highlighted in bold.

Environment Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3 Humanoid-v3 InvertedPendulum-v2 Avg.

Omax Algorithm
DC/AC 0.28 0.32 0.79 0.62 0.86 0.88 0.63
5 Delayed-SAC 0.31 0.54 0.90 0.57 0.09 1.01 0.57
Lazy-BPQL (proposed) | 1.12 0.68 0.89 0.85 0.97 0.99 0.91
DC/AC 0.11 0.23 0.51 0.45 0.29 —0.01 0.26
10 Delayed-SAC 0.30 0.32 0.77 0.38 0.05 0.99 0.47
Lazy-BPQL (proposed) 0.84 0.57 0.94 0.64 0.87 0.98 0.81
DC/AC 0.09 0.12 —0.01 0.00 0.04 —0.01 0.03
20 Delayed-SAC 0.30 0.18 0.48 0.24 0.08 0.97 0.37
Lazy-BPQL (proposed) | 0.61 0.45 0.55 0.30 0.32 0.58 0.48

B.2 EMPIRICAL RESULTS FOR PROPOSITION 5.1

To verify whether lazy-agents can perform in random-delay environments as if they were in constant-
delay environments, we compared the performance of lazy-agents trained in random-delay envi-
ronments (lazy-BPQL) with normal agents trained in constant-delay environments (BPQL) with
constant delays set to 0 = op.x. Each algorithm was evaluated for one million time-steps over five
trials with different seeds on MuJoCo tasks, and the corresponding results are presented in Fig. [§]
Table @land Table [

The results confirmed that both agents exhibited almost identical performance across all evalu-
ated MuJoCo tasks with average margins of 0.1 in delay-free normalized scores [2024).
These empirical results strongly support our arguments that random-delay environments can be
transformed into their equivalent constant-delay counterparts through the use of lazy-agents.

Ant-v3 (omax = 5) Ant-v3 (omax = 10) Ant-v3 (omax = 20)
6000 6000 6000
—— Lazy-BPQL (random)
5000 4 —— BPQL (constant) 5000 4 5000
£ 4000 £ 4000 4 € 4000
S 5 S
@ ° °
< 3000 < 3000 < 3000
[u [
g g g
§ 2000 § 2000 § 2000
Ed < <
1000 1000 1000
o 0 0
0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 10
Steps le6 Steps le6 Steps 1e6
Walker2d-v3 (omax = 5) Walker2d-v3 (omax = 10) Walker2d-v3 (omax = 20)
6000 6000 6000
—— Lazy-BPQL (random)
5000 — BPQL (constant) 5000 4 5000
£ 4000 £ 4000 £ 40004
S S S
@ © ©
< 3000 < 3000 < 3000
[(7] [
g g g
§ 2000 § 2000 § 2000
E < <
1000 1000 1000
o 04 [
0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 10
Steps le6 Steps 1e6 Steps 1e6

Figure 8: Performance curves of the proposed lazy-BPQL agents trained in random-delay environ-
ments with omax € {5,10,20} and the BPQL agent trained in constant-delay environments with
0 = Omax ON continuous control tasks in the MuJoCo benchmark. All tasks were conducted with five
different seeds for one million time-steps, and the shaded regions represent the standard deviation
of average returns across the trials.

Under review as a conference paper at ICLR 2025

Table 3: Results of lazy-BPQL with random delays of o € {5, 10,20}, and BPQL with constant
delays of 0 = Opax.

Environment
Ant-v3 HalfCheetah-v3 Hopper-v3 ~ Walker2d-v3 Humanoid-v3 InvertedPendulum-v2
Omax Algorithm
B Lazy-BPQL (random-delay) | 3679.81167 5583.94 169 217414155 2843.21979 315774992 958.8414
BPQL (constant-delay) 3761.94112 5212.7141 2136.31158 2577.44157 3194.94 374 955.94 98
0 Lazy-BPQL (random-delay) | 2744.54112 4810.14233 2300.94164 2122.31292 2820.51348 936.9435
BPQL (constant-delay) 2831.94103 4282.24003 2129.24184 2331.61050 28915357 934.7 490
20 Lazy-BPQL (random-delay) | 1976.51048 372724079 1346.74+245 1025.74302 1143.84371 566.9185
BPQL (constant-delay) 2078.9+157 3062.7 1252 1526.74027 846.71443 1197.7 4457 608.7 1210

Table 4: Delay-free normalized scores of lazy-BPQL with random delays of o.x € {5, 10,20}, and
BPQL with constant delays of 0 = 0pax-

Environment
Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3 Humanoid-v3 InvertedPendulum-v2 Avg. Residue.
Omax Algorithm

Lazy-BPQL (random-delay) 1.12 0.68 0.89 0.85 0.97 0.99 0.91

5 0.01
BPQL (constant-delay) 1.14 0.62 0.88 0.74 0.99 1.00 0.90
Lazy-BPQL (random-delay) | 0.84 0.57 0.94 0.64 0.87 0.98 0.81

10 0.01
BPQL (constant-delay) 0.86 0.51 0.88 0.70 0.89 0.97 0.80
Lazy-BPQL (random-delay) 0.61 0.45 0.55 0.30 0.32 0.58 0.48

20 0.01
BPQL (constant-delay) 0.64 0.35 0.63 0.25 0.34 0.58 0.47

C ABLATION STUDY

C.1 STATE-SPACE EXPLOSION ISSUE

In this section, we present the performance of lazy-augmented-SAC and lazy-BPQL on the MuJoCo
tasks with random delays of om.x € {5,10,20}. As listed in Table. |5| lazy-BPQL outperformed
lazy-augmented-SAC across all evaluated tasks. Note that lazy-augmented-SAC completely failed to
learn any useful policy even for tasks with o, = 5. These results clearly highlights the importance
of mitigating the state-space explosion issue when employing augmentation-based approaches.

Table 5: Results of lazy-augmented-SAC and lazy-BPQL with random delays of op.x € {5, 10,20}.
Each algorithm was evaluated for one million time-steps over five trials with different seeds.

Omax

5 10 20
Environment Algorithm

Lazy-BPQL (proposed) | 3679.8+167 2744.51112 1976.51048
Lazy-augmented-SAC 898.5+93 913.24 99 721.4486

Ant-v3

Lazy-BPQL (proposed) | 558391169 4810.11233 3727.241979
Lazy-augmented-SAC 213724361 1068.3+122 500.94137

HalfCheetah-v3

17

Under review as a conference paper at ICLR 2025

C.2 ENVIRONMENTS WITH HIGHER RANDOMNESS

In this section, we provide the performance of lazy-BPQL in random-delay environments with in-
creased randomness (0m.x € {25,30}) to empirically assess its robustness to greater randomness
compared to other baseline algorithms. In experiment, we included the second-best performing base-
line, delayed-SAC, along with lazy-augmented-SAC to verify how effectively BPQL can address the
state-space explosion issue. The experiments were conducted in HalfCheetah-v3 and Ant-v3 tasks.
Each algorithm was evaluated for one million time-steps over five trials with different seeds, and the

results are listed in Table[@and Table[Z}

The results confirm that lazy-BPQL exhibited performance degradation, but still maintained the best
performance despite the increased randomness in delays up to o, = 30, whereas other baselines

were unable to learn any useful policies.

Table 6: Results of each baseline with random delays of omax € {20, 25, 30}.

Omax

20

Environment Algorithm

25

30

Lazy-BPQL (proposed) | 1976.51245

1944.31176 1600.21 161

Ant-v3 Lazy-augmented-SAC 721.4456

466.3+114

—34.3+81

Delayed-SAC 955.7+110

949.94141

961.2:|:154

Lazy-BPQL (proposed) | 3727.24279

2492-1:‘:379 1971-1:t265

HalfCheetah-v3 | Lazy-augmented-SAC | 500.94137

—5.8+131

—199.1425

Delayed-SAC 1377.8+140

1076.5:‘:123 1194.8:|:73

Table 7: Delay-free normalized scores of each baseline with random delays of oy, € {20, 25, 30}.

Omr 20 25 30
Environment Algorithm

Lazy-BPQL (proposed) | 0.61 0.60 0.49
Ant-v3 Lazy-augmented-SAC | 0.23 0.15 0.07
Delayed-SAC 0.30 029 0.31
Lazy-BPQL (proposed) | 045 0.31 0.25
HalfCheetah-v3 | Lazy-augmented-SAC | 0.08 0.03 0.01
Delayed-SAC 0.19 0.15 0.16

18

Under review as a conference paper at ICLR 2025

C.3 IMPACT OF PROCESSING STATES IN ORDER

Ordered states Unordered states
Delay-related historical actions Delay-related historical actions
(a) (b)

Figure 9: The visual examples illustrating cases where (a) the observed states are processed in order
and (b) the observed states are processed out of order. & denotes the concatenation operation.

Omax = 10 Omax = 20
1200 1200

1000 1000 4

Average Return
Average Return

200 200 /"_,M
—— Ordered agent 1

—— Unordered agent

0.0 02 04 0.6 0.8 L0 0.0 02 0.4 0.6 08 10
Steps 1e6 Steps le6

Figure 10: Results of ordered and unordered agent in InvertedPendulum-v2 MuJoCo task with ran-
dom delays of o, € {10,20}.

In the presence of randomness in observation delays, states may be observed simultaneously, and
their order can even become scrambled. When utilizing these scrambled states for decision-making
in random-delay environments, they can be used either in the observed order (unordered state pro-
cessing) or in their original generated order (ordered state processing).

We investigated the impact of the assumption that states are used in order by comparing the perfor-
mance of agents trained with and without this assumption (see Fig.[9). In the experiment, we utilized
delayed-SAC for learning InvertedPendulum-v2 task in MuJoCo, as it demonstrated respectable and
stable performance in relatively simple tasks. We aimed to verify how this assumption impacts such
performance, even in such simple task. We refer to the delayed-SAC agent trained in an ordered
manner as the ordered agent, and the agent trained in a disordered manner as the unordered agent.
Each agent was evaluated for one million time-steps over five trials with random seeds, and the
corresponding results are presented in Fig.[T0]and Table[g]

Table 8: Results of ordered and unordered agent in InvertedPendulum-v2 MuJoCo task with random
delays of omax € {10, 20}. The standard deviations of average returns are denoted by =+.

Environment InvertedPendulum-v2
Omax Algorithm
10 Unordered agent 739.5+36
Ordered agent 947.6+ 36
20 Unordered agent 181.6140
Ordered agent 933.5433

The results reveal that the order in which observed states are used can significantly affect the perfor-
mance and learning stability of RL agents, with a notable drop in performance in the unordered case.
Furthermore, the performance degradation becomes more pronounced as the randomness of delays
increases. These findings seem to originate from the fact that both augmentation-based and model-
based approaches heavily rely on preserving and understanding cause-and-effect relationships to
restore the violated Markovian property caused by delays.

19

Under review as a conference paper at ICLR 2025

D EXPERIMENTAL DETAILS

D.1 ENVIRONMENTAL DETAILS

Table 9: Environmental details of the MuJoCo benchmark.

Task State dimension Action dimension Time-step (s)
Ant-v3 27 8 0.05
HalfCheetah-v3 17 6 0.05
Walker2d-v3 17 6 0.008
Hopper-v3 11 3 0.008
Humanoid-v3 376 17 0.015
InvertedPendulum-v2 4 1 0.04

(a)

()

Figure 11: Experimental environments in the MuJoCo benchmark: (a) Ant-v3 (b) HalfCheetah-v3,
(c) Walker2d-v3, (d) Hopper-v3, (¢) Humanoid-v3, and (f) InvertedPendulum-v2

D.2 IMPLEMENTATION DETAILS

The implementation details of the proposed lazy-BPQL align with those presented in [Kim et al/|
(2023), with the specific hyperparameters listed in Table [I0} Since the baseline algorithms included
in our experiments employ the SAC algorithm as their foundational learning algorithm, the hyper-

parameters are consistent across all approaches, except for the DC/AC algorithm.

Table 10: Hyperparameters for lazy-BPQL and the baselines.

Hyperparameters Values
Actor network 256, 256
Critic network 256, 256

Learning rate (actor) 3e-4
Learning rate (critic) 3e-4
Temperature () 0.2
Discount factor () 0.99
Replay buffer size le6
Mini-Batch size 256
Target entropy -dim|.A|
Target smoothing coefficient (§) 0.995
Optimizer Adam 1, i
Total time-steps le6

20

Under review as a conference paper at ICLR 2025

D.3 PSEUDO CODE OF LAZY-BPQL

The proposed lazy-agent can be seamlessly integrated into the BPQL framework with minimal mod-
ifications by using the initial state for decision-making at its maximum delayed times. Subsequently,
all states become naturally available for use at their respective maximum delayed times.

In the implementation, a temporary buffer /3 has been employed, as utilized by (2023)), to
store observed states, corresponding rewards, and action histories, which enables the agent to access
timely and relevant information for constructing augmented states. Additionally, we have assumed
that all feedback, including reward, is maximally delayed in equivalent constant-delay environments,
similar to (Kim et al}[2023). Thus, the reward corresponding to the action a; is assumed to be 74, -

Algorithm 1 Lazy Belief Projection-based)-Learning (Lazy-BPQL)

1: Input: actor 74(alZ), beta critic Qp,5(s, a), target beta critic Q5 45(s, a), replay buffer D, tem-
porary buffer B, maximum delay onmax, beta critic learning rate A, actor learning rate Az, soft
update rate &, episodic length H, and total number of episodes F.

2: for episode e = 1 to E do

3 for time-stept = 1 to H do

4 if t < opax then

5: select random or ‘no-ops’ action a,

6

7

8

execute a; on environment
put a;, observed states, rewards to 5

else if £ = 0, then > wait for op,x time-steps
9: select random or ‘no-ops’ action a,
10: execute a; on environment
11: put a;, observed states, rewards to 3
12: else
13: et St_ o s Qe oy s -5 At—1 from B
14: > get most recent usable state and action histories
15: Tt 4 (St—opys Ut —opays -vs Tt—1) > construct augmented state
16: Ay < ﬁ'qg(i‘t)
17: execute a; on environment
18: put a;, observed states, rewards to B
19: if t > 20, then
20: € St 205 St—20mu+11 St—0max s Tt—Omax s Ut —20may s +++3 Ut — 0 {TOM B
21: Tt o ¢ (St—20m0s Ut—20m -3 Bt —0py)
22: Tt opy+1 € (8t—20p0+15 At =204+ 15 -3 At — 0y 1)
23: SLOTE (L4005 St—0man s Ut — Oy s Tt~ O s L~ Oms +15 St— 0y +1) I D
24: POP St—201,, s Wt—20,,, frOM B
25: end if
26: end if
27: end for
28: for each gradient step do
29: 00— AoVJIq,(0) > update beta critic
30: @ d—A:VTI=(0) > update actor
31 00+ (1—-¢)0 > update target beta critic
32: end for
33: end for

34: Output: actor 7y

As discussed in Section[3.1] the augmented reward for the action with respect to the augmented state
is a random variable that has to be determined based on the conditional expectation as in equation[6}
Fortunately, this expected value can be empirically obtained through the use of replay buffer D:

Tt —oms = E(s,0)~D [Tt~ 0mar) (17

where 7, and ri_o,, represent R(;—o,,;at—o,,) and R(s = Si_o,,,a = ai_o,,), each.
Consequently, training the beta-critic and actor requires only the following set of experience tuples:

(Bt — Oy » 51— Omax s Ut — O s Tt Omax > Lt — O+ 15 St— Oy +1) - (18)

21

Under review as a conference paper at ICLR 2025

E VISUAL REPRESENTATION OF LAZY-AGENT

In this section, we provide a visual representation of the proposed lazy-agent employed in RDMDPs,
where the maximum delay is set to omax = 3.

*sb . a = generated time, b = delay

Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

Generated states

Observed states

Usable states

Augmented states

Actions

*sb . a = generated time, b = delay

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

Times

Generated states

Observed states

Usable states

Augmented states | ‘no-ops’

_____________ ki
[
Actions a;
(b) Timet =1
*sL . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
2 1
Generated states S1 S2
Observed states
Usable states
Augmented states ‘no-ops’
_____________ % . [S S S S N
i i
Actions a; a,

(¢) Timet =2

Figure 12: At times 1 and 2, the states s? and s} are generated but remain unobserved by the lazy-
agent due to delays. In this scenario, the lazy-agent does nothing (‘no-ops’) until the initial state s?
becomes usable.

22

Under review as a conference paper at ICLR 2025

*sL . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=7 t=8 t=9 t=10
Generated states s7 ‘ 3 ‘ s3 ‘
Observed states s?
Usable states
Augmented states 110-0ps
_____________ A :
i \
Actions a, a, as
(a) Timet = 3
*sL . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=7 t=8 t=9 t=10
Generated states st ‘ 3 ‘ s3 ‘ s3 ‘
Observed states s?
Usable states
Augmented states 10-0ps 24
________ A :
i \
Actions a, a, as a,
(b) Timet =4
*sb . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=7 t=8 t=9 t=10
Generated states s? ‘ ‘ st ‘ 52 ‘ 55 ‘ st ‘
Observed states 512 532
Usable states s?
Augmented states no-ops 24 %5
________ A
i \
Actions a, a, asz ay as
(¢) Timet =5

Figure 13: At time 3, states s2 and s3 are observed simultaneously. As the lazy-agent uses these
observed states at their maximum delayed times, s7 is used at time 4 and s3 is used at time 5. These
states are reformulated as augmented states before being fed into the policy, thereafter determining
the appropriate actions. States s3, s3, and si are generated at corresponding times, with s3 being
observed at time 5.

23

Under review as a conference paper at ICLR 2025

*sb . a = generated time, b = delay

Times t=1 t=2 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Generated states ‘ st ‘ ‘ 3 ‘ s3 ‘ s3 ‘ ‘ 5§ ‘
Observed states
Usbtoses | s? | ----------
Augmented states ‘no):ps’ R4 585 . X6
_____________ / R o R S
Actions a, a, as a, as ag
(a) Timet =6
*sL : a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Generated states ‘ 512 ‘ ‘ 5% ‘ 55 ‘ 543, ‘ Sé ‘ ‘ 52 ‘ S? ‘
Observed states
- vabesaes | s? | -----
Augmented states ‘no):ps’ 24 J?5 ” %6 27
_____________ / T R E T R
Actions a, a, as ay as ag a;
(b) Timet =7
*s,‘l’ : a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=28 t=9 t=10
Generated states ‘ 512 ‘ ‘ 5% ‘ 53? ‘ 543, ‘ Sé ‘ ‘ Sg ‘ S73 ‘
Observed states E
Usabtesiates | s12 | | 521 | s3z | s,,§| | sé | -----
Augmented states ‘no)(\Jps’ 77777 24 J?5 M %6 2 g
_____________ / Ly - R
Actions a, a, as ay as ag a; ag
(c) Timet =8

Figure 14: States s and s3 are generated at respective times. At time 6, states st and sJ are observed
simultaneously but are not immediately usable because the previously generated states, s3 and s,
have not yet been used in decision-making processes. Instead, s3 is used at this time. At time 7,
state 32 is observed and is available for use immediately. At time 8, state s}, becomes usable, as all
previously generated states have now been both observed and used.

24

Under review as a conference paper at ICLR 2025

*sb . a = generated time, b = delay

Times t=1 t=2 t=3 t=4 | t=5 t=6 t=7 t=28 t=9 t=10
2 2 3 :
Generated states ‘ S1 ‘ 53 ‘ S3 Sa ‘ :
Observed states
Usable states s7 | : | st | sd ‘
Augmented states no)(\Jps 24 25 %6 2 g ES
_____________ / Y - R
Actions a; a, as ay as ag a; ag ag
(a) Timet =9
*sb . a = generated time, b = delay
Times t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
2 2 3
Generated states S1 ‘ ‘ 3 ‘ S3 ‘ Sa ‘
Observed states S?
Usable states | s? | | st | | sQ ‘ | s3 |
Augmented states no):ps X4 s R b g Xy 10
............. / e B T
Actions a; a, asz a, as ag a; ag ag ag

(b) Time t = 10

Figure 15: At times 9 and 10, states sY and s3 are used in sequence. Despite the state observations
occurring simultaneously or being out of order, all the delayed states are consistently used in se-

quence at their maximum delayed times, i.e., 7(s2»

n):n+0maxa

25

Vn > 0.

	Introduction
	Backgrounds
	Standard Reinforcement Learning
	Delayed Reinforcement Learning

	Augmentation-based Approach
	Constant-Delay MDPs
	Random-Delay MDPs

	Belief Projection-Based Q-learning
	Alternative representations for augmentation-based values

	Bridging RDMDPs to CDMDPs
	Lazy-Agent
	Lazy-BPQL

	Experiments
	Benchmarks and Baseline algorithms
	Results
	Performance comparison
	Performance in environments with Constant delays and Random delays
	State-space explosion issue
	Environments with higher randomness
	Impacts of processing states in order

	Conclusion
	Limitations
	Related Work
	Experimental Results
	Performance comparison
	Empirical results for Proposition 5.1

	Ablation study
	State-space explosion issue
	Environments with Higher Randomness
	Impact of processing states in order

	Experimental details
	Environmental details
	Implementation details
	Pseudo code of Lazy-BPQL

	Visual Representation of Lazy-agent

