
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REINFORCEMENT LEARNING VIA LAZY-AGENT
FOR ENVIRONMENTS WITH RANDOM DELAYS

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world reinforcement learning applications are often hampered by delayed
feedback from environments, which violates the fundamental assumption of the
Markovian property and introduces significant challenges. While numerous meth-
ods have been proposed for handling environments with constant delays, those
with random delays remain largely unexplored owing to their inherent complexity
and variability. In this study, we explored environments with random delays and
proposed a novel strategy to transform them into their equivalent constant-delay
counterparts by introducing a simple agent called the lazy-agent. This approach
naturally overcomes the challenges posed by the variability of random delays, en-
abling the application of state-of-the-art methods, originally designed for handling
constant delays, to random-delay environments without any modification. Empir-
ical results demonstrate that the lazy-agent-based algorithm significantly outper-
formed other baselines in terms of asymptotic performance and sample efficiency
in random-delay environments.

1 INTRODUCTION

Reinforcement learning (RL) has made remarkable progress in various domains, from gaming (Mnih
et al., 2013; Silver et al., 2016) to robotic control systems (Haarnoja et al., 2018; Kalashnikov et al.,
2018). However, real-world applications of RL often face challenges due to delays, which can take
diverse forms such as latency in communication systems, delays in processing sensory data, or
response delays from actuators. These delays can significantly degrade the performance of RL agents
and may even cause instability in dynamic systems (Hwangbo et al., 2017; Mahmood et al., 2018).

While numerous methods have been proposed to address the challenges posed by delays within the
RL framework, these efforts primarily focus on the unrealistic assumption of constant delays (Chen
et al., 2021; Derman et al., 2021; Liotet et al., 2022; Kim et al., 2023; Wu et al., 2024), leaving
random delays relatively unexplored owing to their inherent complexity and variability. However, in
real-world, randomly varying delays present a more realistic challenge, exemplified by communi-
cation systems where diverse routing paths and the physical properties of the network can result in
asynchronous data arrivals (Ge et al., 2013).

In this study, we explore environments with random delays and establish a connection to envi-
ronments with constant delays by introducing a simple agent called the lazy-agent. Specifically,
we demonstrate that random-delay environments can be straightforwardly transformed into their
equivalent constant-delay counterparts using lazy-agents, enabling state-of-the-art constant-delay
approaches to be seamlessly applied to random-delay environments without any modification. We
train lazy-agents within the belief projection-based Q-learning (BPQL) framework (Kim et al.,
2023), termed lazy-BPQL, to leverage its advantages in training agents in delayed environments. The
efficacy of the proposed lazy-BPQL was evaluated on popular continuous control tasks in the Mu-
JoCo benchmark (Todorov et al., 2012). Empirical results demonstrate that lazy-BPQL outperformed
other baseline algorithms in terms of asymptotic performance and sample efficiency in random-delay
environments, achieving performance comparable to agents trained in constant-delay environments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUNDS

2.1 STANDARD REINFORCEMENT LEARNING

A (delay-free) Markov decision process (MDP) (Bellman, 1957) can be defined with a five-tuples
(S, A, P , R, γ), where S is the state space, and A is the action space, P : S × A × S → [0, 1] is
the transition kernel, R : S × A → R is the reward function, and γ ∈ (0, 1) is a discount factor.
Additionally, the policy π : S ×A → [0, 1] maps the state-to-action distribution.

Under this definition, at each discrete time t, an RL agent observes state st, makes a decision at
based on a policy π, receives a reward rt with respect to the action taken, and then observes the next
state st+1 from the environment. It repeats this process to find an optimal policy π∗ that maximizes
the expected discounted cumulative rewards, which is given as:

π∗ := argmax
π

E

[
H−1∑
k=0

γkrk+1|π, ρ0

]
= argmax

π
E [G0|π, ρ0] , (1)

where ρ0 denotes the initial state distribution and G0 is the discounted cumulative rewards starting
from the initial state over a finite or infinite-horizon H under the policy π. Additionally, the values
of states and actions at time t are defined as:

V π(s) = E

[
H−1∑
k=0

γkrt+k+1|St = s, π

]
, Qπ(s, a) = E

[
H−1∑
k=0

γkrt+k+1|St = s,At = a, π

]
, (2)

where V π(s) denotes the expected discounted cumulative rewards starting from state s under the
policy π, and Qπ(s, a) represents the expected discounted cumulative rewards starting from state s,
taking action a, and then following the policy π.

Note that the dynamics governing MDPs assume the Markovian property, which indicates that the
complete probability distribution in the dynamics can be fully determined by the present state and
action, independent of their histories. However, this fundamental assumption can be violated by
delayed feedback from the environment, leading to partially observable MDPs (Monahan, 1982),
where the agent’s current state and action cannot capture sufficient information needed for timely
decision-making. This can significantly degrade the performance of RL agents or even lead to com-
plete failure in learning (Singh et al., 1994).

2.2 DELAYED REINFORCEMENT LEARNING

In MDP with delays, referred to as delayed MDP, the state of the environment may not be observed
by the agent immediately (observation delay). The effect of the action applied to the environment
may also be delayed (action delay). Additionally, the reward generated by the action taken may not
reach the agent immediately (reward delay). These delays force the agent to make decisions based on
outdated information, prevent timely and appropriate actions, or cause the agent to receive rewards
that do not correspond to the actions taken, disrupting the learning process.

Delayed MDPs are typically categorized into constant-delay MDPs (CDMDPs), where feedback is
delayed by a fixed number of time-steps; and random-delay MDPs (RDMDPs), where the number
of delayed time-steps varies randomly. For example, in the case of random observation delay, the
state st may be delayed by four time-steps and observed by the agent at time t+4, whereas the next
state st+1 may be delayed by only one time-step and observed at time t+ 2. Note that the subscript
t explicitly indicates the times when states are generated by the actions applied to the environment.

In this study, we focus on randomly delayed observations under the assumption that the agent utilizes
them for decision-making in order. This implies that any observed state can be used by the agent
for decision-making only after all previously generated states have been both observed and utilized
to ensure no state is omitted from the decision-making process. In the presence of randomness in
observation delays, multiple states may become observable simultaneously, and their order may even
be scrambled. To reduce confusion about the timing of state observations, we distinguish between a
state being observed and used, under the aforementioned assumption of ordering, as follows:

Definition 2.1. A state is considered observed when the information about the state of the envi-
ronment reaches the agent. A state is considered used when the agent utilizes the observed state
information to make a decision by feeding it into the policy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) When states are observed simultaneously (b) When the order of state observation is scrambled

Figure 1: Visual examples illustrating cases where (a) states are observed simultaneously and (b) the
order of state observation is scrambled. In both scenarios, an observed state is not available for use
if a previously generated state has not yet been used in the decision-making process.

Suppose the state s1 has an observation delay of 2, and the subsequent state s2 has an observation
delay of 1. These delayed states are observed by the agent at time 3 simultaneously. However,
despite being observed, s2 is not immediately usable at this time because the preceding state has not
yet been used in the decision-making process. Thus, the agent uses the observed states in sequence to
determine its actions: s1 is used at time 3 and s2 is used at time 4 (Fig. 1(a)). Throughout this study,
the term ‘observe’ is utilized when a strict distinction between the two is unnecessary, specifically
in cases of constant delays.

3 AUGMENTATION-BASED APPROACH

An augmentation-based approach is often preferred in delayed MDPs, as it retrieves the Markovian
property and offers advantages for agents learning policies through conventional RL algorithms
in such environments (Liotet et al., 2022; Kim et al., 2023; Wu et al., 2024). As demonstrated
by Altman & Nain (1992); Katsikopoulos & Engelbrecht (2003), delayed MDPs can be reduced to
equivalent MDPs without delays through this approach, known as regular MDPs, where the resulting
optimal policies are optimal in the original delayed MDPs (Bander & White III, 1999; Katsikopoulos
& Engelbrecht, 2003). The augmentation-based approach involves state augmentation, where the
state is concatenated with additional delay-related information, similar to methods employed in
conventional control theory (Kwon & Pearson, 1980; Park et al., 2008). In this section, we examine
two types of delayed MDPs: CDMDPs and RDMDPs.

3.1 CONSTANT-DELAY MDPS

CDMDPs can be defined as a six-tuple (S, A, P , R, γ, o), where o ∈ N is a constant variable
representing the observation delay. As demonstrated by Katsikopoulos & Engelbrecht (2003), it is
reducible to regular MDPs (Xo,A, P , R̄, γ), where Xo = S ×Ao is the augmented state space with
Ao being the Cartesian product of A with itself for o times, and R̄ : Xo × A → R is the reward
function with respect to the augmented state space, termed the augmented reward function. Finally,
the augmented state-based policy π̄ : Xo ×A → [0, 1] maps augmented state-to-action distribution.

To be specific, the augmented state at time t is defined as:

xt = (st−o, at−o, at−o+1, ..., at−1), ∀t > o, (3)

where st−o is the most recently observed state and (at−o, ..., at−1) is the history of actions taken
since st−o was generated. The agent implicitly estimates unobserved state st based on the augmented
state xt and selects action at accordingly. Note that since st is not explicitly known at time t, the aug-
mented reward corresponding to the action at becomes a random variable that has to be determined
based on the conditional expectation, which is given as R̄(xt, at) := EP(st|xt) [R(st, at)].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: A visual example of decision-making processes in environments with random delays. At
time 3, state s21 is observed, and the agent immediately uses this observed state to make a decision.
At time 4, state s13 is observed, whereas the preceding state s32 remains unobserved. Consequently, s13
cannot be used at this time because the previously generated state s32 has not yet been observed and
used. Therefore, the agent continues to use s21 until s32 is observed. Eventually, s32 is observed at time
5, and the observed states are then used in the correct order. Note that the states are reformulated as
augmented states before being fed into the policy, which subsequently determines the appropriate
actions.

3.2 RANDOM-DELAY MDPS

Using similar arguments as in Katsikopoulos & Engelbrecht (2003), RDMDPs can be defined as an
eight-tuple (S,A, P ,R, γ, O, qo, τ), where O ∈ {0}∪N is a random variable representing varying
observation delay, assumed to be sampled from an arbitrary discrete distribution qo with support on
{0, 1, ..., omax}, where omax denotes a maximum delay in time-steps, and τ : S → N is a time-related
function that maps states to times at which they are used to make decisions for the first time. Under
this definition, we can define the states with observation delays and their corresponding augmented
states as follows:

Definition 3.1. Let sonn be a state with an observation delay of on, where the subscript n > 0 denotes
the time at which the state was generated. Given that sonn is the most recent usable state at time t,
the augmented state at time t is defined as:

x̂t = (sonn , an, an+1, ..., at−1), for τ(sonn) ≤ t ≤ n+ omax, (4)

where the sequence (an, an+1, ..., at−1) represents the history of actions taken since sonn was gen-
erated, and τ(sonn) ∈ {n+ on, ..., t} denotes the time when sonn is used for decision-making for the
first time. Based on the augmented state x̂t, the agent implicitly estimates the unobserved state st
and selects action at accordingly. The notation ·̂ indicates the augmented state defined in RDMDPs.

Given that τ(sonn) = t and sn+1 ∼ P(·|sn, an), the usability of the next state s
on+1

n+1 at time t + 1
depends on its delay on+1. Consequently, the next augmented state x̂t+1 is defined as:

x̂t+1 =

{
(s

on+1

n+1 , an+1, an+2, ..., at) with prob. of m(on+1),

(sonn , an, an+1, ..., at−1, at) with prob. of 1−m(on+1),
(5)

where m(on+1) = Pr
(
on+1 ∈ {0, 1, ..., τ(sonn)− n}

)
.

Note that state sonn continues to be used if the next state s
on+1

n+1 is not available for use at this time.
It remains in use until son+1

n+1 becomes usable, at which point the agent switches to use s
on+1

n+1 to
construct the augmented state (Fig. 2).

It is important to note that the dimension of the augmented state x̂t+1 in equation 5 either remains
constant (|x̂t+1| = |x̂t|) or increases by 1 (|x̂t+1| = |x̂t| + 1). This implies that its dimension will
eventually reach infinity in infinite-horizon MDPs without assuming a bounded maximum delay.
Under the assumption of bounded maximum delays, Katsikopoulos & Engelbrecht (2003) proposed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a method called freeze. In this approach, the agent performs no actions (‘no-ops’) until the current
state s is observed whenever the dimension of the augmented state reaches its maximum tolerable
limit. Once the state s is observed, the augmented state is reset to x̂ = (s), and the decision-making
process resumes. However, this approach is known to be highly task-dependent, as the agent ignores
environmental changes during the inactive periods, potentially leading to suboptimal policies.

4 BELIEF PROJECTION-BASED Q-LEARNING

While the augmentation-based approach provides a foundation for training agents with conventional
RL algorithms in delayed MDPs, it has a known limitation: the state space grows exponentially as the
number of delayed time-steps increases, resulting in sample inefficiency and slow convergence. This
is called the state-space explosion issue, which makes the augmentation-based approach unfavorable
for environments with long delays (Derman et al., 2021; Kim et al., 2023).

To mitigate this issue, belief projection-based Q-learning (BPQL), a model-free actor-critic frame-
work designed to handle constant-delay environments, was proposed by Kim et al. (2023). It ex-
hibited remarkable performance with simple modifications to the conventional augmentation-based
approach, effectively alleviating the state-space explosion issue.

4.1 ALTERNATIVE REPRESENTATIONS FOR AUGMENTATION-BASED VALUES

First, a modified Bellman operator T̄ , termed delay Bellman operator, was introduced to evaluate
the values with respect to the augmented state space, which is given as:

T̄ π̄V̄ π̄(xt) 7→ Eat∼π̄(·|xt)

[
EP(st|xt) [R(st, at)] + γExt+1∼P̄(·|xt,at)

[
V̄ π̄(xt+1)

]]
, ∀t > o, (6)

where π̄ is the augmented state-based policy that receives augmented states as input, V̄ π̄ is the
augmented state-based value representing the values of augmented states under the policy π̄, o is a
constant observation delay, and P̄ : Xo×A×Xo → [0, 1] is the transition kernel defined with respect
to the augmented state space. By repeatedly applying the delay Bellman operator, V̄ π̄ converges,
and then π̄ is improved using conventional policy improvement methods. Similarly, the augmented
state-based Q-value, Q̄π̄ , representing the values of augmented states for the given actions under the
policy π̄, can also be employed.

To mitigate the state-space explosion issue, the alternative representations for V̄ and Q̄, referred
to as beta value and beta Q-value (Vβ and Qβ), are introduced. These values are evaluated with
respect to the original state space rather than the augmented one, thereby naturally alleviating the
state-space explosion issue. Beta-based values can be used as estimators for the augmentation-based
values, which are given as:

V̄ π̄(xt) = EP(st|xt)

[
V π̄
β (st)

]
+∆π̄

residual(xt) (7)

Q̄π̄(xt, at) = EP(st|xt)

[
Qπ̄

β(st, at)
]
+ δπ̄residual(xt, at), (8)

where ∆π̄
residual and δπ̄residual represent the projection residuals.

In large or continuous spaces, a practical sampling-based reinforcement learning algorithm can be
employed, where the beta Q-value and augmented state-based policy are parameterized by θ (beta
critic) and ϕ (actor), respectively. The beta critic and actor are then trained by iteratively minimizing
the following objective functions:

JQβ
(θ) = E(st,at,rt,st+1,xt+1)∼D

[
1

2

(
Qπ̄

θ,β(st, at)−R(st, at)

− γEat+1∼π̄ϕ(·|xt+1)

[
Qπ̄

θ̃,β
(st+1, at+1)− α log π̄ϕ(at+1|xt+1)

])2]
, (9)

Jπ̄(ϕ) = E(st,xt)∼D
[
Eat∼π̄ϕ(·|xt)

[
α log π̄ϕ(at|xt)−Qπ̄

θ,β(st, at)
]]
, (10)

where rt = R(st, at), D represents a replay buffer (Mnih et al., 2013), α is a temperature parameter
(Haarnoja et al., 2018), and θ̃ are the parameters of the target beta critic (Fujimoto et al., 2018).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Consequently, it demonstrated remarkable performance in constant-delay environments. However,
since it was specifically designed to handle constant delays, it is not applicable to random-delay en-
vironments, which are the focus of our study. As discussed earlier, we demonstrate that conventional
constant-delay approaches can be naturally applied to random-delay environments by establishing
a connection between RDMDPs and CDMDPs, thereby facilitating the application of the BPQL
framework in our study.

5 BRIDGING RDMDPS TO CDMDPS

In this section, we demonstrate that RDMDPs can be transformed into their equivalent CDMDPs by
introducing a simple agent called lazy-agent, allowing state-of-the-art constant-delay approaches to
be seamlessly extended to random-delay environments.

5.1 LAZY-AGENT

To address the challenges caused by variability in random delays, we let the agent assume that all
states are delayed by the maximum number of time-steps. The agent then uses the observed states in
decision-making processes at their maximum delayed times, that is, τ(sonn) = n+ omax,∀n > 0. In
this scheme, each state is consistently used in sequence exactly omax time-steps after being generated,
regardless of its actual delay.

Suppose the state so11 is observed at time 1+o1. Since the agent assumes that all states are delayed by
omax time-steps, it uses the observed state at time 1+omax irrespective of its actual delay o1. Similarly,
the subsequent state so22 is observed at time 2 + o2; however, the agent uses it at time 2 + omax.
In short, the agent uses observed states at their maximum delayed times, regardless of their actual
delays. This implies that the exact delays for each state may remain unknown to the agent, except for
the maximum delay. Consequently, this approach effectively circumvents the challenges associated
with variability in random delays. We refer to this agent as a lazy-agent. A visual representation is
provided in Appendix E.

Formally, the augmented state x̂t in equation 4 is redefined for the lazy-agent as:

x̂t = (sonn , an, an+1, ..., at−1), for t = n+ omax, ∀n > 0, (11)

where τ(sonn) = n + omax, resulting in the probability m(on+1) in equation 5 becoming 1. Conse-
quently, given sn+1 ∼ P(·|sn, an), the next augmented state x̂t+1 in equation 5 is redefined as:

x̂t+1 = (s
on+1

n+1 , an+1, an+2, ..., at), for t = n+ omax, ∀n > 0, (12)

irrespective of its delay on+1.

Note that equation 11 and equation 12 align with the formulations for the augmented states defined
in CDMDPs with a constant observation delay of omax. Furthermore, the dimension of the augmented
state remains constant at (omax+1) at all times, addressing the issue of an exploding augmented state
dimension in infinite-horizon MDPs.

Consequently, RDMDPs now become equivalent to CDMDPs with a constant delay of omax to the
lazy-agents. The resulting CDMDPs can then be further reduced to regular MDPs, allowing the lazy-
agents to be trained using conventional RL algorithms. To support our analysis, we present empirical
results in Appendix B.2, demonstrating that the performance of lazy-agents trained in random-delay
environments is comparable to that of agents trained in constant-delay environments. From these
empirical results, we propose the following proposition:

Proposition 5.1. Under the assumption of bounded observation delay and ordering, the RDMDPs
(S, A, P , R, γ, O, qo, τ) can be transformed into the equivalent CDMDPs (S, A, P , R, γ, omax)
through the lazy-agent, where omax denotes the maximum delay in RDMDPs.

Proof sketch. We begin by introducing the lazy-agent into RDMDPs, in which the agent assumes
that all states are delayed by the maximum number of time-steps (omax) and uses the observed states
for decision-making at their maximum delayed times, that is, τ(sonn) = n+ omax,∀n > 0.

In this setting, the augmented state x̂t in equation 4 is redefined as:

x̂t = (sonn , an, an+1, ..., at−1), for t = n+ omax, ∀n > 0, (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

indicating that sonn is used for decision-making only at time n+ omax, regardless of its actual delay.
Under this assumption, the probability m(on+1) in equation 5 becomes:

m(on+1) = Pr
(
on+1 ∈ {0, 1, ..., τ(sonn)− n}

)
= Pr

(
on+1 ∈ {0, 1, ..., omax}

)
= 1. (14)

Consequently, the next augmented state x̂t+1 in equation 5 is redefined as:

x̂t+1 = (s
on+1

n+1 , an+1, an+2, ..., at), for t = n+ omax, ∀n > 0, (15)

where sn+1 ∼ P(·|sn, an). Evidently, these formulations for the augmented states are equivalent to
those defined in CDMDPs with a constant delay of omax. To be more specific, by replacing n with
t− omax in equation 13, we obtain:

x̂t = (sont−omax
, at−omax , at−omax+1, ..., at−1), ∀t > omax, (16)

which is exactly equivalent to equation 3 with o = omax, demonstrating that RDMDPs can be trans-
formed into their equivalent CDMDPs through the lazy-agent. This completes the proof.

5.2 LAZY-BPQL

In the previous section, we demonstrated that RDMDPs can become equivalent to CDMDPs with
lazy-agents. However, since the delays in the resulting CDMDPs are determined by the maximum
delays in RDMDPs, the lazy-agents often encounter long-delay challenges, particularly the state-
space explosion issue. Specifically, the augmented state space in derived CDMDPs would be defined
as Xomax = S ×Aomax , necessitating numerous samples for the augmented-based values to converge.

To address this issue, we employ lazy-agents within the BPQL framework to leverage its advan-
tage in training agents in constant-delay environments while effectively alleviating the state-space
explosion problem. We refer to this approach as lazy-BPQL, which is summarized in Algorithm 1.

6 EXPERIMENTS

6.1 BENCHMARKS AND BASELINE ALGORITHMS

We evaluated our algorithm on popular continuous control tasks in the MuJoCo benchmark by grad-
ually increasing the maximum delay omax from 5 to 20, to assess its performance and robustness
with respect to the degree of randomness in delays. In our experiments, we assumed that random
delays are sampled from a discrete uniform distribution. Details of the benchmark environments and
experiments are provided in Appendix D.

The following algorithms are included in experiments: normal SAC (Haarnoja et al., 2018), delayed-
SAC (Derman et al., 2021; Kim et al., 2023), lazy-BPQL, and DC/AC (Bouteiller et al., 2020). The
normal SAC adopts a naive approach that selects actions for currently usable states on a memoryless
basis and performs ‘no-ops’ otherwise, without addressing the violation of the Markovian assump-
tion in delayed MDPs. Delayed-SAC is a variant of delayed-Q (Derman et al., 2021) adapted by
Kim et al. (2023) for application in continuous spaces. It employs an approximate forward model
to explicitly predict unobserved states, which can be learned from transition samples collected in
undelayed environments. With this model, the agent recursively predicts unobserved states through
one-step predictions repeated over delayed time-steps and selects actions based on predicted states.
Lastly, DC/AC is an improved version of SAC that implements an off-policy multi-step value estima-
tion combined with a partial trajectory resampling method, significantly enhancing sample efficiency
and demonstrating notable performance in environments with both constant and random delays.

6.2 RESULTS

6.2.1 PERFORMANCE COMPARISON

Table 1 and Fig. 3 show the performance of each algorithm on the MuJoCo tasks. The results indicate
that the proposed lazy-BPQL demonstrates remarkable performance across all tasks, from relatively
short delays (omax = 5) to long delays (omax = 20). In contrast, normal SAC performs poorly across
all tasks, as it trains the agent directly in delayed environments without recovering the Markovian
property, resulting in nearly random outcomes. Despite respectable performance in relatively simple

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

tasks with small spaces, delayed-SAC exhibits unsatisfactory task-dependent performance, possibly
due to the accumulation of nonnegligible prediction errors as the complexity of task or omax in-
creases, underscoring the need for a more carefully designed dynamics model. Lastly, while DC/AC
performs reasonably well in some tasks with short delays, its performance significantly deteriorates
as the degree of randomness in delays increases. To further highlight the performance achieved by
lazy-BPQL compared to other baseline algorithms, we report the delay-free normalized scores (Wu
et al., 2024) in Fig. 7 and Table 2 in Appendix B.1.

Table 1: Results of the MuJoCo tasks with random delays of omax ∈ {5, 10, 20}. Each algorithm was
evaluated for one million time-steps over five trials with different seeds. The standard deviations of
average returns are denoted by±, and the best performance is in bold. Results for constant delays are
in blue. Additionally, delay-free SAC serves as the baseline performance in delay-free environments.

Environment
Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3 Humanoid-v3 InvertedPendulum-v2

omax Algorithm

×
Random policy −58.7±4 −285.01±3 18.6±2 1.9±1 121.9±2 5.6±1

Delay-free SAC 3279.2±180 8608.4±57 2435.2±23 3305.5±234 3228.1±410 964.3±29

5

Normal SAC −76.6±4 −279.5±5 89.2±10 44.7±21 403.9±5 32.2±2

DC/AC 907.5±90 2561.8±92 1931.6±192 2079.3±122 2798.4±452 854.7±30

Delayed-SAC 986.4±128 4569.4±88 2200.4±190 1910.1±247 418.9±126 964.2±15

Lazy-BPQL (proposed) 3679.8±167 5583.9±169 2174.1±155 2843.2±272 3157.7±292 958.8±14

BPQL (constant-delay) 3761.9±112 5212.7±41 2136.3±158 2577.4±157 3194.9±374 955.9±28

10

Normal SAC −84.6±9 −278.6±6 28.1±6 40.9±4 354.5±12 31.3±1

DC/AC 342.9±34 1824.5±111 1262.4±261 1492.5±133 1023.8±359 4.9±0

Delayed-SAC 966.9±180 2563.8±215 1878.5±176 1264.6±233 289.6±108 947.6±36

Lazy-BPQL (proposed) 2744.5±112 4810.1±233 2300.9±164 2122.3±292 2820.5±348 936.9±38

BPQL (constant-delay) 2831.9±103 4282.2±203 2129.2±184 2331.6±252 2891.5±357 934.7±20

20

Normal SAC −83.1±9 −264.9±5 27.5±5 64.6±1 364.3±7 24.3±0

DC/AC 258.3±42 860.9±288 12.8±6 −2.9±5 237.3±73 4.1±0

Delayed-SAC 955.7±110 1377.8±140 1164.1±278 811.5±163 370.3±17 933.5±33

Lazy-BPQL (proposed) 1976.5±248 3727.2±279 1346.7±245 1025.7±302 1143.8±371 566.9±88

BPQL (constant-delay) 2078.9±157 3062.7±252 1526.7±227 846.7±443 1197.7±457 608.7±210

6.2.2 PERFORMANCE IN ENVIRONMENTS WITH CONSTANT DELAYS AND RANDOM DELAYS

To verify whether the proposed lazy-agents perform in random-delay environments as if they were in
constant-delay environments, we evaluated the performance of lazy-lazy agents trained in environ-
ments with random delays of omax ∈ {5, 10, 20} (lazy-BPQL), and compared it with normal agents
trained in environments with constant delays of o = omax (BPQL). The objective was to determine
whether these two types of agents demonstrate similar performance. Table 1 presents the results for
the MuJoCo tasks. The empirical findings confirm that both types of agents exhibited almost identi-
cal performance across all evaluated tasks, which strongly supports our argument that random-delay
environments can be transformed into their equivalent constant-delay counterparts with the use of
lazy-agents. Additional results are provided in Appendix B.2.

6.2.3 STATE-SPACE EXPLOSION ISSUE

To highlight the importance of mitigating the state-space explosion issue, we trained lazy-agents
solely based on the augmentation-based approach without employing BPQL techniques, which we
refer to as lazy-augmented-SAC. As presented in Table 5 in Appendix C.1, lazy-BPQL outperforms
lazy-augmented-SAC for all evaluated tasks. Note that lazy-augmented-SAC completely failed to
learn any useful policy even for tasks with omax = 5. These results clearly underscores the impor-
tance of alleviating the state-space explosion issue.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Performance curves of each algorithm on continuous control tasks in the MuJoCo bench-
mark with random delays of omax ∈ {5, 10, 20}. All tasks were conducted with five different seeds
for one million time-steps. The shaded regions represent the standard deviation of average returns
across the trials. Across all tasks, the proposed lazy-BPQL exhibits remarkable performance, con-
sistently outperforming other algorithms. Additional results are provided in Appendix B.1.

6.2.4 ENVIRONMENTS WITH HIGHER RANDOMNESS

We evaluated the performance of lazy-BPQL in random-delay environments with increased random-
ness (omax ∈ {25, 30}) to empirically assess its robustness to greater randomness compared to other
baseline algorithms. In the experiment, we included the second-best performing baseline, delayed-
SAC, along with lazy-augmented-SAC to evaluate how effectively BPQL can mitigate the state-
space explosion problem in such environments. The experiments were conducted on HalfCheetah-
v3 and Ant-v3 tasks, and the result are listed in Table 6 in Appendix C.2. The results confirmed that
lazy-BPQL exhibited performance degradation, but still maintained the best performance despite the
increased randomness in delays, whereas other baselines were unable to learn any useful policies.

6.2.5 IMPACTS OF PROCESSING STATES IN ORDER

We investigated the impact of the assumption that states are used in order by comparing the perfor-
mance of agents trained with and without this assumption. The results in Appendix C.3 reveal that
the order in which observed states are used for decision-making can significantly affect the perfor-
mance and learning stability of RL agents, with a notable drop in performance in the unordered case.
Furthermore, the performance degradation becomes more pronounced as the randomness of delays
increases. These findings seem to originate from the fact that both augmentation-based and model-
based approaches heavily rely on preserving and understanding cause-and-effect relationships to
restore the violated Markovian property caused by delays.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 CONCLUSION

We investigated environments with random observation delays and proposed a novel approach to
establish a connection to environments with constant delays by introducing a simple agent called
the lazy-agent. With the proposed lazy-agents, random-delay environments can be transformed into
their equivalent constant-delay counterparts, facilitating the application of state-of-the-art constant-
delay approaches to random-delay environments without any modifications. We employed lazy-
agents within the belief projection-based Q-learning (BPQL) framework, referred to as lazy-BPQL,
to train our agents in equivalent constant-delay environments while effectively mitigating the state-
space explosion issue of the augmentation-based approach. The empirical results demonstrated that
the proposed lazy-BPQL significantly outperformed other baseline algorithms in terms of asymp-
totic performance and sample efficiency in random-delay environments, which strongly supports the
efficacy of our approach.

It would be meaningful to employ our lazy-agents in real-world dynamic systems that suffer from
random delays, where conventional constant-delay approaches are inadequate. In the future, we will
extend the proposed algorithm to real-world applications, such as robotic locomotion and manipula-
tion, by accounting for randomly varying sensor and actuator delays. We believe that the lazy-agents
will play a pivotal role in extending conventional RL methods to real-world dynamic systems.

8 LIMITATIONS

Despite its notable advantages in constructing equivalent constant-delay environments from the orig-
inal random-delay environments, employing the lazy-agent may encounter difficulties associated
with long delays. This is because the constant delays in the equivalent environments are aligned with
the maximum delay in the original random-delay environments. Consequently, the model-based ap-
proach may require more carefully designed dynamics models, as accumulated errors in recursive
one-step predictions could result in significant performance degradation. On the other hand, the
augmentation-based approach may confront the inherent state-space explosion issue. To circumvent
this issue, we adopted a strategy of training lazy-agents within the BPQL framework, which can
effectively mitigate the state-space explosion issue. Alternatively, the use of recurrent models, such
as GRU (Cho, 2014), can also be considered, as explored in Firoiu et al. (2018). However, the ne-
cessity of knowing the maximum delay raises another concern, which may be unrealistic in some
environments. This remains a challenge to be addressed in future work.

REFERENCES

Eitan Altman and Philippe Nain. Closed-loop control with delayed information. ACM Sigmetrics
Performance Evaluation Review, 20(1):193–204, 1992.

James L Bander and Chelsea C White III. Markov decision processes with noise-corrupted and
delayed state observations. Journal of the Operational Research Society, 50(6):660–668, 1999.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, pp.
679–684, 1957.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International Conference on Learning Representa-
tions, 2020.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control. Neurocomputing, 450:119–128, 2021.

Kyunghyun Cho. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014.

Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-stationary
Markov policies. arXiv preprint arXiv:2101.11992, 2021.

Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: deep reinforcement learning with
action delay. arXiv preprint arXiv:1810.07286, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Yuan Ge, Qigong Chen, Ming Jiang, and Yiqing Huang. Modeling of random delays in networked
control systems. Journal of Control Science and Engineering, 2013(1):383415, 2013.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a quadrotor with rein-
forcement learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, 2017.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–
673. PMLR, 2018.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with de-
lays and asynchronous cost collection. IEEE Transactions on Automatic Control, 48(4):568–574,
2003.

Jangwon Kim, Hangyeol Kim, Jiwook Kang, Jongchan Baek, and Soohee Han. Belief projection-
based reinforcement learning for environments with delayed feedback. Advances in Neural Infor-
mation Processing Systems, 36:678–696, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Woosuk Kwon and A Pearson. Feedback stabilization of linear systems with delayed control. IEEE
Transactions on Automatic control, 25(2):266–269, 1980.

Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement learning
by imitation. In International Conference on Machine Learning, pp. 13528–13556. PMLR, 2022.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a rein-
forcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4635–4640. IEEE, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

George E Monahan. State of the art—a survey of partially observable Markov decision processes:
theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

Jung Hun Park, Han Woong Yoo, Soohee Han, and Wook Hyun Kwon. Receding horizon controls
for input-delayed systems. IEEE Transactions on Automatic Control, 53(7):1746–1752, 2008.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without state-estimation in
partially observable Markovian decision processes. In Machine Learning Proceedings 1994, pp.
284–292. Elsevier, 1994.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in environ-
ments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18:83–105, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qingyuan Wu, Simon Sinong Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu,
Jürgen Schmidhuber, and Chao Huang. Boosting reinforcement learning with strongly delayed
feedback through auxiliary short delays. In Forty-First International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=0IDaPnY5d5.

12

https://openreview.net/forum?id=0IDaPnY5d5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A RELATED WORK

Delays are prevalent in real-world reinforcement learning (RL) applications, arising from various
factors such as computational time. Previous research on handling such delays within the RL frame-
work can be categorized into two main approaches: augmentation-based and model-based.

Augmentation-based approach The augmentation-based approach is often preferred in delayed
environments since it allows us to retrieve the violated Markovian property (Altman & Nain, 1992;
Katsikopoulos & Engelbrecht, 2003) and offers advantages for training agents through conventional
RL algorithms in such environments. Despite its notable advantages, the method of augmenting the
state itself remains a challenge associated with sample complexity, commonly referred to as the
state-space explosion issue or the curse of dimensionality, which results in learning inefficiency.
To mitigate this issue, DC/AC (Bouteiller et al., 2020) introduces an off-policy multi-step value
estimation combined with a partial trajectory resampling method, which greatly enhances sample
efficiency and accelerates the learning process. BPQL (Kim et al., 2023) proposes another novel
approach to overcome such difficulty by introducing alternative representations for augmentation-
based values. These alternative values are evaluated with respect to the original state space rather
than the augmented one, thereby inherently mitigating the state-space explosion issue and demon-
strating remarkable performance. More recently, AD-RL (Wu et al., 2024) alleviates the performance
degradation stemming from this issue by leveraging auxiliary tasks with shorter delays to learn tasks
with relatively long delays, reducing sample complexity and achieving notable performance.

Model-based approach The model-based approach, also known as the state estimation method,
aims to restore the Markovian property using learned dynamics models from underlying delay-free
environments (Walsh et al., 2009; Firoiu et al., 2018; Chen et al., 2021; Derman et al., 2021). For
example, delayed-Q (Derman et al., 2021) employs an approximate feed-forward model to explic-
itly predict unobserved states, which can be learned from transition samples collected in delay-free
environments. Using this model, the agent recursively predicts unobserved states through one-step
predictions repeated over delayed time-steps and selects actions based on the predicted states. Sim-
ilarly, Firoiu et al. (2018) proposes an approach that utilizes recurrent neural networks (Cho, 2014)
to model the dynamics. These approaches facilitate sample-efficient learning without being affected
by the issues associated with the sample complexity posed by the augmented state. However, ap-
proximation errors in building dynamics models may induce accumulated prediction errors, leading
to suboptimal performance. Furthermore, the presence of noise in observations can exacerbate inac-
curacies in learning dynamics models.

While numerous methods have shown promise, most works focus on the unrealistic assumption of
constant delays, exhibiting nonnegligible performance degradation when applied to environments
with random delays. Building upon previously proposed state-of-the-art methods, this study makes
its primary contribution by proposing a novel approach that enables the handling of constant de-
lays and random delays in exactly the same manner. Specifically, we propose a method to construct
equivalent constant-delay environments from the original random-delay environments by introduc-
ing a simple agent termed the lazy-agent. This approach offers valuable insight that there is no need
to devise new methods for handling random delays, as the lazy-agent naturally facilitates the appli-
cation of conventionally proposed state-of-the-art methods, originally designed for constant delays,
to random-delay environments without any modifications.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL RESULTS

B.1 PERFORMANCE COMPARISON

Performance curves We present the performance curves of each algorithm on the MuJoCo tasks
with random delays of omax ∈ {5, 10, 20}. All tasks were conducted with five different seeds for one
million time-steps. The shaded regions represent the standard deviation of average returns. Empirical
results demonstrate that lazy-BPQL exhibits remarkable performance across all evaluated tasks.

Figure 4: Performance curves of each algorithm on the MuJoCo tasks with omax = 5.

Figure 5: Performance curves of each algorithm on the MuJoCo tasks with omax = 10.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: Performance curves of each algorithm on the MuJoCo tasks with omax = 20.

Delay-free normalized scores To clarify the performance achieved by lazy-BPQL compared to
other baseline algorithms, we report the delay-free normalized scores for each algorithm on the Mu-
JoCo tasks in Fig. 7 and Table 2, following Wu et al. (2024). The delay-free normalized score is
defined as Rnormalized = (Ralgorithm −Rrandom)/(Rdelay-free −Rrandom), where Ralgorithm, Rdelay-free, and
Rrandom represent the average returns of the baselines, delay-free SAC, and random policy, respec-
tively. Here, delay-free SAC serves as the baseline performance in delay-free environments.

From the results, we confirmed that for tasks with omax = {5, 10}, lazy-BPQL exhibits the best
performance comparable to the delay-free performance, achieving average scores of 0.91 and 0.81,
respectively. It outperforms the second-best performing baselines by wide average margins of 0.28
and 0.34 points, each. Even for tasks with the longest maximum delay of omax = 20, lazy-BPQL
maintains the highest average score. These scores further highlight the effectiveness of lazy-BPQL,
demonstrating its superiority over other baseline algorithms across all evaluated tasks in MuJoCo.

Figure 7: Delay-free normalized scores for each baseline algorithm, averaged across all the evaluated
MuJoCo tasks. The dashed gray line represents the baseline score of delay-free SAC.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 2: Delay-free normalized scores of each algorithm with random delays of omax ∈ {5, 10, 20}.
The best score is highlighted in bold.

Environment
Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3 Humanoid-v3 InvertedPendulum-v2 Avg.

omax Algorithm

5

DC/AC 0.28 0.32 0.79 0.62 0.86 0.88 0.63

Delayed-SAC 0.31 0.54 0.90 0.57 0.09 1.01 0.57

Lazy-BPQL (proposed) 1.12 0.68 0.89 0.85 0.97 0.99 0.91

10

DC/AC 0.11 0.23 0.51 0.45 0.29 −0.01 0.26

Delayed-SAC 0.30 0.32 0.77 0.38 0.05 0.99 0.47

Lazy-BPQL (proposed) 0.84 0.57 0.94 0.64 0.87 0.98 0.81

20

DC/AC 0.09 0.12 −0.01 0.00 0.04 −0.01 0.03

Delayed-SAC 0.30 0.18 0.48 0.24 0.08 0.97 0.37

Lazy-BPQL (proposed) 0.61 0.45 0.55 0.30 0.32 0.58 0.48

B.2 EMPIRICAL RESULTS FOR PROPOSITION 5.1

To verify whether lazy-agents can perform in random-delay environments as if they were in constant-
delay environments, we compared the performance of lazy-agents trained in random-delay envi-
ronments (lazy-BPQL) with normal agents trained in constant-delay environments (BPQL) with
constant delays set to o = omax. Each algorithm was evaluated for one million time-steps over five
trials with different seeds on MuJoCo tasks, and the corresponding results are presented in Fig. 8,
Table 3 and Table 4.

The results confirmed that both agents exhibited almost identical performance across all evalu-
ated MuJoCo tasks with average margins of 0.1 in delay-free normalized scores (Wu et al., 2024).
These empirical results strongly support our arguments that random-delay environments can be
transformed into their equivalent constant-delay counterparts through the use of lazy-agents.

Figure 8: Performance curves of the proposed lazy-BPQL agents trained in random-delay environ-
ments with omax ∈ {5, 10, 20} and the BPQL agent trained in constant-delay environments with
o = omax on continuous control tasks in the MuJoCo benchmark. All tasks were conducted with five
different seeds for one million time-steps, and the shaded regions represent the standard deviation
of average returns across the trials.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Results of lazy-BPQL with random delays of omax ∈ {5, 10, 20}, and BPQL with constant
delays of o = omax.

Environment
Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3 Humanoid-v3 InvertedPendulum-v2

omax Algorithm

5
Lazy-BPQL (random-delay) 3679.8±167 5583.9±169 2174.1±155 2843.2±272 3157.7±292 958.8±14

BPQL (constant-delay) 3761.9±112 5212.7±41 2136.3±158 2577.4±157 3194.9±374 955.9±28

10
Lazy-BPQL (random-delay) 2744.5±112 4810.1±233 2300.9±164 2122.3±292 2820.5±348 936.9±38

BPQL (constant-delay) 2831.9±103 4282.2±203 2129.2±184 2331.6±252 2891.5±357 934.7±20

20
Lazy-BPQL (random-delay) 1976.5±248 3727.2±279 1346.7±245 1025.7±302 1143.8±371 566.9±88

BPQL (constant-delay) 2078.9±157 3062.7±252 1526.7±227 846.7±443 1197.7±457 608.7±210

Table 4: Delay-free normalized scores of lazy-BPQL with random delays of omax ∈ {5, 10, 20}, and
BPQL with constant delays of o = omax.

Environment
Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3 Humanoid-v3 InvertedPendulum-v2 Avg. Residue.

omax Algorithm

5
Lazy-BPQL (random-delay) 1.12 0.68 0.89 0.85 0.97 0.99 0.91

0.01

BPQL (constant-delay) 1.14 0.62 0.88 0.74 0.99 1.00 0.90

10
Lazy-BPQL (random-delay) 0.84 0.57 0.94 0.64 0.87 0.98 0.81

0.01

BPQL (constant-delay) 0.86 0.51 0.88 0.70 0.89 0.97 0.80

20
Lazy-BPQL (random-delay) 0.61 0.45 0.55 0.30 0.32 0.58 0.48

0.01

BPQL (constant-delay) 0.64 0.35 0.63 0.25 0.34 0.58 0.47

C ABLATION STUDY

C.1 STATE-SPACE EXPLOSION ISSUE

In this section, we present the performance of lazy-augmented-SAC and lazy-BPQL on the MuJoCo
tasks with random delays of omax ∈ {5, 10, 20}. As listed in Table. 5, lazy-BPQL outperformed
lazy-augmented-SAC across all evaluated tasks. Note that lazy-augmented-SAC completely failed to
learn any useful policy even for tasks with omax = 5. These results clearly highlights the importance
of mitigating the state-space explosion issue when employing augmentation-based approaches.

Table 5: Results of lazy-augmented-SAC and lazy-BPQL with random delays of omax ∈ {5, 10, 20}.
Each algorithm was evaluated for one million time-steps over five trials with different seeds.

omax
5 10 20

Environment Algorithm

Ant-v3
Lazy-BPQL (proposed) 3679.8±167 2744.5±112 1976.5±248

Lazy-augmented-SAC 898.5±93 913.2±29 721.4±86

HalfCheetah-v3
Lazy-BPQL (proposed) 5583.9±169 4810.1±233 3727.2±279

Lazy-augmented-SAC 2137.2±361 1068.3±122 500.9±137

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 ENVIRONMENTS WITH HIGHER RANDOMNESS

In this section, we provide the performance of lazy-BPQL in random-delay environments with in-
creased randomness (omax ∈ {25, 30}) to empirically assess its robustness to greater randomness
compared to other baseline algorithms. In experiment, we included the second-best performing base-
line, delayed-SAC, along with lazy-augmented-SAC to verify how effectively BPQL can address the
state-space explosion issue. The experiments were conducted in HalfCheetah-v3 and Ant-v3 tasks.
Each algorithm was evaluated for one million time-steps over five trials with different seeds, and the
results are listed in Table 6 and Table 7.

The results confirm that lazy-BPQL exhibited performance degradation, but still maintained the best
performance despite the increased randomness in delays up to omax = 30, whereas other baselines
were unable to learn any useful policies.

Table 6: Results of each baseline with random delays of omax ∈ {20, 25, 30}.
omax

20 25 30
Environment Algorithm

Ant-v3

Lazy-BPQL (proposed) 1976.5±248 1944.3±176 1600.2±161

Lazy-augmented-SAC 721.4±86 466.3±114 −34.3±81

Delayed-SAC 955.7±110 949.9±141 961.2±154

HalfCheetah-v3

Lazy-BPQL (proposed) 3727.2±279 2492.1±379 1971.1±265

Lazy-augmented-SAC 500.9±137 −5.8±131 −199.1±25

Delayed-SAC 1377.8±140 1076.5±123 1194.8±73

Table 7: Delay-free normalized scores of each baseline with random delays of omax ∈ {20, 25, 30}.
omax

20 25 30
Environment Algorithm

Ant-v3

Lazy-BPQL (proposed) 0.61 0.60 0.49

Lazy-augmented-SAC 0.23 0.15 0.07

Delayed-SAC 0.30 0.29 0.31

HalfCheetah-v3

Lazy-BPQL (proposed) 0.45 0.31 0.25

Lazy-augmented-SAC 0.08 0.03 0.01

Delayed-SAC 0.19 0.15 0.16

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.3 IMPACT OF PROCESSING STATES IN ORDER

(a) (b)

Figure 9: The visual examples illustrating cases where (a) the observed states are processed in order
and (b) the observed states are processed out of order. ⊕ denotes the concatenation operation.

Figure 10: Results of ordered and unordered agent in InvertedPendulum-v2 MuJoCo task with ran-
dom delays of omax ∈ {10, 20}.

In the presence of randomness in observation delays, states may be observed simultaneously, and
their order can even become scrambled. When utilizing these scrambled states for decision-making
in random-delay environments, they can be used either in the observed order (unordered state pro-
cessing) or in their original generated order (ordered state processing).

We investigated the impact of the assumption that states are used in order by comparing the perfor-
mance of agents trained with and without this assumption (see Fig. 9). In the experiment, we utilized
delayed-SAC for learning InvertedPendulum-v2 task in MuJoCo, as it demonstrated respectable and
stable performance in relatively simple tasks. We aimed to verify how this assumption impacts such
performance, even in such simple task. We refer to the delayed-SAC agent trained in an ordered
manner as the ordered agent, and the agent trained in a disordered manner as the unordered agent.
Each agent was evaluated for one million time-steps over five trials with random seeds, and the
corresponding results are presented in Fig. 10 and Table 8.

Table 8: Results of ordered and unordered agent in InvertedPendulum-v2 MuJoCo task with random
delays of omax ∈ {10, 20}. The standard deviations of average returns are denoted by ±.

Environment
InvertedPendulum-v2

omax Algorithm

10
Unordered agent 739.5±36

Ordered agent 947.6±36

20
Unordered agent 181.6±40

Ordered agent 933.5±33

The results reveal that the order in which observed states are used can significantly affect the perfor-
mance and learning stability of RL agents, with a notable drop in performance in the unordered case.
Furthermore, the performance degradation becomes more pronounced as the randomness of delays
increases. These findings seem to originate from the fact that both augmentation-based and model-
based approaches heavily rely on preserving and understanding cause-and-effect relationships to
restore the violated Markovian property caused by delays.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D EXPERIMENTAL DETAILS

D.1 ENVIRONMENTAL DETAILS

Table 9: Environmental details of the MuJoCo benchmark.
Task State dimension Action dimension Time-step (s)

Ant-v3 27 8 0.05
HalfCheetah-v3 17 6 0.05

Walker2d-v3 17 6 0.008
Hopper-v3 11 3 0.008

Humanoid-v3 376 17 0.015
InvertedPendulum-v2 4 1 0.04

(a) (b) (c) (d) (e) (f)

Figure 11: Experimental environments in the MuJoCo benchmark: (a) Ant-v3 (b) HalfCheetah-v3,
(c) Walker2d-v3, (d) Hopper-v3, (e) Humanoid-v3, and (f) InvertedPendulum-v2

D.2 IMPLEMENTATION DETAILS

The implementation details of the proposed lazy-BPQL align with those presented in Kim et al.
(2023), with the specific hyperparameters listed in Table 10. Since the baseline algorithms included
in our experiments employ the SAC algorithm as their foundational learning algorithm, the hyper-
parameters are consistent across all approaches, except for the DC/AC algorithm.

Table 10: Hyperparameters for lazy-BPQL and the baselines.
Hyperparameters Values

Actor network 256, 256
Critic network 256, 256

Learning rate (actor) 3e-4
Learning rate (critic) 3e-4

Temperature (α) 0.2
Discount factor (γ) 0.99
Replay buffer size 1e6
Mini-Batch size 256
Target entropy -dim|A|

Target smoothing coefficient (ξ) 0.995
Optimizer Adam (Kingma, 2014)

Total time-steps 1e6

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.3 PSEUDO CODE OF LAZY-BPQL

The proposed lazy-agent can be seamlessly integrated into the BPQL framework with minimal mod-
ifications by using the initial state for decision-making at its maximum delayed times. Subsequently,
all states become naturally available for use at their respective maximum delayed times.

In the implementation, a temporary buffer B has been employed, as utilized by Kim et al. (2023), to
store observed states, corresponding rewards, and action histories, which enables the agent to access
timely and relevant information for constructing augmented states. Additionally, we have assumed
that all feedback, including reward, is maximally delayed in equivalent constant-delay environments,
similar to (Kim et al., 2023). Thus, the reward corresponding to the action at is assumed to be rt−omax .

Algorithm 1 Lazy Belief Projection-based Q-Learning (Lazy-BPQL)
1: Input: actor π̄ϕ(a|x̂), beta critic Qθ,β(s, a), target beta critic Qθ̃,β(s, a), replay buffer D, tem-

porary buffer B, maximum delay omax, beta critic learning rate λQ, actor learning rate λπ̄ , soft
update rate ξ, episodic length H , and total number of episodes E.

2: for episode e = 1 to E do
3: for time-step t = 1 to H do
4: if t < omax then
5: select random or ‘no-ops’ action at
6: execute at on environment
7: put at, observed states, rewards to B
8: else if t = omax then ▷ wait for omax time-steps
9: select random or ‘no-ops’ action at

10: execute at on environment
11: put at, observed states, rewards to B
12: else
13: get st−omax , at−omax , ..., at−1 from B
14: ▷ get most recent usable state and action histories
15: x̂t ← (st−omax , at−omax , ..., at−1) ▷ construct augmented state
16: at ← π̄ϕ(x̂t)
17: execute at on environment
18: put at, observed states, rewards to B
19: if t > 2omax then
20: get st−2omax , st−2omax+1, st−omax , rt−omax , at−2omax , ..., at−omax from B
21: x̂t−omax ← (st−2omax , at−2omax , ..., at−omax)
22: x̂t−omax+1 ← (st−2omax+1, at−2omax+1, ..., at−omax+1)
23: store (x̂t−omax , st−omax , at−omax , rt−omax , x̂t−omax+1, st−omax+1) in D
24: pop st−2omax , at−2omax from B
25: end if
26: end if
27: end for
28: for each gradient step do
29: θ ← θ − λQ∇JQβ

(θ) ▷ update beta critic
30: ϕ← ϕ− λπ̄∇Jπ̄(ϕ) ▷ update actor
31: θ̃ ← ξθ + (1− ξ)θ̃ ▷ update target beta critic
32: end for
33: end for
34: Output: actor π̄ϕ

As discussed in Section 3.1, the augmented reward for the action with respect to the augmented state
is a random variable that has to be determined based on the conditional expectation as in equation 6.
Fortunately, this expected value can be empirically obtained through the use of replay buffer D:

r̄t−omax = E(s,a)∼D[rt−omax] (17)

where r̄t−omax and rt−omax represent R̄(x̂t−omax , at−omax) and R(s = st−omax , a = at−omax), each.
Consequently, training the beta-critic and actor requires only the following set of experience tuples:

(x̂t−omax , st−omax , at−omax , rt−omax , x̂t−omax+1, st−omax+1). (18)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E VISUAL REPRESENTATION OF LAZY-AGENT

In this section, we provide a visual representation of the proposed lazy-agent employed in RDMDPs,
where the maximum delay is set to omax = 3.

(a) Time t = 0

(b) Time t = 1

(c) Time t = 2

Figure 12: At times 1 and 2, the states s21 and s12 are generated but remain unobserved by the lazy-
agent due to delays. In this scenario, the lazy-agent does nothing (‘no-ops’) until the initial state s21
becomes usable.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Time t = 3

(b) Time t = 4

(c) Time t = 5

Figure 13: At time 3, states s21 and s12 are observed simultaneously. As the lazy-agent uses these
observed states at their maximum delayed times, s21 is used at time 4 and s12 is used at time 5. These
states are reformulated as augmented states before being fed into the policy, thereafter determining
the appropriate actions. States s23, s34, and s15 are generated at corresponding times, with s23 being
observed at time 5.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Time t = 6

(b) Time t = 7

(c) Time t = 8

Figure 14: States s06 and s37 are generated at respective times. At time 6, states s15 and s06 are observed
simultaneously but are not immediately usable because the previously generated states, s23 and s34,
have not yet been used in decision-making processes. Instead, s23 is used at this time. At time 7,
state s34 is observed and is available for use immediately. At time 8, state s15 becomes usable, as all
previously generated states have now been both observed and used.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Time t = 9

(b) Time t = 10

Figure 15: At times 9 and 10, states s06 and s37 are used in sequence. Despite the state observations
occurring simultaneously or being out of order, all the delayed states are consistently used in se-
quence at their maximum delayed times, i.e., τ(sonn) = n+ omax,∀n > 0.

25

	Introduction
	Backgrounds
	Standard Reinforcement Learning
	Delayed Reinforcement Learning

	Augmentation-based Approach
	Constant-Delay MDPs
	Random-Delay MDPs

	Belief Projection-Based Q-learning
	Alternative representations for augmentation-based values

	Bridging RDMDPs to CDMDPs
	Lazy-Agent
	Lazy-BPQL

	Experiments
	Benchmarks and Baseline algorithms
	Results
	Performance comparison
	Performance in environments with Constant delays and Random delays
	State-space explosion issue
	Environments with higher randomness
	Impacts of processing states in order

	Conclusion
	Limitations
	Related Work
	Experimental Results
	Performance comparison
	Empirical results for Proposition 5.1

	Ablation study
	State-space explosion issue
	Environments with Higher Randomness
	Impact of processing states in order

	Experimental details
	Environmental details
	Implementation details
	Pseudo code of Lazy-BPQL

	Visual Representation of Lazy-agent

