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Abstract

Brain network analysis plays a critical role in
brain disease prediction and diagnosis. Graph
mining tools have made remarkable progress.
Graph neural networks (GNNs) and Transform-
ers, which rely on the message-passing scheme,
recently dominated this field due to their powerful
expressive ability on graph data. Unfortunately,
by considering brain network construction using
pairwise Pearson’s coefficients between any pairs
of ROIs, model analysis and experimental verifi-
cation reveal that the message-passing under both
GNNs and Transformers can NOT be fully ex-
plored and exploited. Surprisingly, this paper ob-
serves the significant performance and efficiency
enhancements of the Hadamard product compared
to the matrix product, which is the matrix form
of message passing, in processing the brain net-
work. Inspired by this finding, a novel Brain
Quadratic Network (BQN) is proposed by incor-
porating quadratic networks, which possess better
universal approximation properties. Moreover,
theoretical analysis demonstrates that BQN im-
plicitly performs community detection along with
representation learning. Extensive evaluations
verify the superiority of the proposed BQN com-
pared to the message-passing-based brain network
modeling. Source code is available at https:
//github.com/LYWJUN/BQN-demo.
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1. Introductions
Brain network analysis provides a deep understanding of
human brain organizations and assists in neurological dis-
ease diagnosis (Fornito et al., 2016; Cui et al., 2022). As a
general-purpose language to model complex relationships,
the research on graphs has a long history, ranging from
graph theory (Bondy & Murty, 2008), to network science
(Barabási, 2013), to network embedding (Cui et al., 2019).
Along with the concept of the brain network, graph mining is
widely used in brain network analysis, including concepts,
characteristics, and models (Fornito et al., 2016; Chung,
2019). Network motif (Sporns & Kötter, 2004), small-world
property (Bassett & Bullmore, 2006), and modularity (Meu-
nier et al., 2009) are identified from the perspective of char-
acteristics, while the persistent homology (Bendich et al.,
2016), community detection (Garcia et al., 2018) and null
model (Váša & Mišić, 2022) are employed to analyze brain
network from the perspective of the model.

Graph Learning (Xia et al., 2021) plays an important role in
diverse machine learning fields. (1) For tasks on graph data,
Graph Neural Networks (GNNs), which combine graph
topology and node attribute for representation, recently
dominated this field (Wu et al., 2021b). They follow the
message-passing scheme (Gilmer et al., 2017) by propagat-
ing node representation as a message over the graph. (2) For
the domains without explicit graph structure, such as natu-
ral language processing (NLP) and computer vision (CV),
implicit graph learning also shows amazing performance.
The key component Multi-Heads Self-Attention (MHSA)
in Transformer (Vaswani et al., 2017) and its variant ViT
(Dosovitskiy et al., 2021) constructs a fully connected graph
between all token pairs and performs a holistic aggregation
(Section 3.3). In conclusion, the message-passing scheme
dominates many machine learning fields.

Interactions between brain regions are regarded as the key
factors for neural development and disorder analysis. Func-
tional MRI (fMRI) provides valuable information for explor-
ing connectivity by capturing correlations between signal
sequences of brain regions. Thus, it is direct to analyze
brain networks, which are often constructed using pairwise
Pearson correlation coefficients between any pairs of ROIs,
using powerful graph learning tools, such as GNNs (Li
et al., 2021; Cui et al., 2022; Bessadok et al., 2023) and
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Transformers (Kan et al., 2022b; Yu et al., 2024). Unfortu-
nately, following model analysis and experiments motivate
questioning this direct treatment in the brain network.

• GNN-based methods constructed node attributes from
the brain network topology, which goes against GNNs’
need for different types of information, and thus can’t
be fully exploited GNNs’ characteristics (Fig. 1).

• Transformers employ the constructed brain network
containing a holistic relationship between all ROIs, as
initial token embedding. Thus the necessity to explore
holistic relations with Transformers is weak (Fig. 1).

• Simple classifier with brain functional connectivity
matrix as feature outperforms basic GNNs and Trans-
formers (Fig. 2).

To enhance the performance of brain network analysis, the
fundamental brain network operator should be updated. The
recent breakthrough points out that the quadratic function
can implement XOR logic operation and possesses better
universal approximation properties compared to the linear
function (Fan et al., 2018; 2020). Inspired by this, the
quadratic network is employed in brain network analysis
to obtain the Brain Quadratic Network (BQN). BQN iter-
atively performs Hadamard product/element-wise product
between the representation in the previous layer and the
initial representation to get a new representation. Theoreti-
cal analysis reveals that BQN is equivalent to the updating
rule of a community detection objective function based on
nonnegative matrix factorization (NMF) of the adjacency
matrix. Since the NMF of the adjacency matrix is a widely-
used community detection paradigm, the proposed BQN
seeks representation, which can capture mesoscopic com-
munity structure to reflect brain functional modules. The
main contributions of this paper are summarized as follows.

• We investigate the rationality of the widely adopted
message-passing in the brain network analysis.

• We propose a simple and effective Brain Quadratic Net-
work (BQN) as the fundamental operator, with superior
computational efficiency.

• We provide rigorous theoretical analysis connecting
the proposed BQN with community detection.

• The proposed BQN achieves new SOTA on widely-
used brain datasets.

2. Related Work
Recent advancements in brain network analysis have led to
a surge in the application of graph-based learning methods,
especially Graph Neural Networks and Graph Transformers.

Graph Neural Networks. In recent studies, Graph Neural
Networks (GNNs) have been leveraged to learn represen-
tations of brain regions, as well as the intricate patterns

of functional connectivity within the brain. For example,
BrainGNN (Li et al., 2021) utilizes ROI-aware GNNs and
specialized pooling operators to identify critical nodes, im-
proving the model’s interpretability. BrainGB (Cui et al.,
2022) systematically assesses various GNN designs on brain
network data and introduces a practical pipeline that en-
hances GNN applications in brain research. FBNetGen
(Kan et al., 2022a) constructs a learned task-oriented brain
graph for downstream tasks. A-GCL (Zhang et al., 2023)
proposes an adversarial self-supervised brain graph neu-
ral network by integrating graph contrastive learning with
ROIs multiband information. However, these approaches
often concentrate on local neighborhood aggregation, po-
tentially neglecting the significance of interactions between
non-adjacent brain regions.

Graph Transformers. Graph Transformers are utilized
in the analysis of brain networks, with the objective of
capturing the holistic interaction of brain regions. Brain-
NETTF (Kan et al., 2022b) employs classical Transformer
encoders to generate ROI embeddings based on Pearson
correlation matrices, along with an orthogonal clustered
readout. ALTER (Yu et al., 2024) has specifically designed
a brain graph Transformer to capture long-range dependen-
cies among brain regions. ContrastPool (Xu et al., 2024)
emphasizes attention on ROIs and subjects to learn a con-
trast graph, guiding the generation of brain representations
through graph pooling. BioBGT (Peng et al., 2025) cap-
tures the small-world architecture in brain graphs through
a network entanglement-based technique, emphasizing the
biological characteristics of brain structure.

However, many of these methods often conflate the concepts
of brain functional connectivity matrices and region of inter-
est (ROI) features. The correlation coefficient matrix serves
a dual purpose: it acts as both the adjacency matrix of the
brain graph and the feature matrix. This duality contradicts
established principles in graph research, where topology
and features are typically regarded as two distinct types of
information. This observation prompts us to design a simple
yet effective network architecture specifically tailored for
brain functional connectivity.

3. Preliminaries
This section provides notations, problem definition, and the
concepts of GNNs and Transformers.

3.1. Notations and Problem Definition

Brain network, which models the connectivity between
ROIs, can be represented as a graph G = (V, E ,X), where
V = {v1, v2, ..., vN} stands for the collection of N nodes,
i.e., ROIs, E denotes the collection of edges between nodes,
and X ∈ RN×D represents the feature matrix with the
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Figure 1. Brain network construction and the GNNs and Transformers on brain network analysis. In brain network construction, node
attributes are from constructed brain network topology. Thus, GNNs utilize this information twice. The brain network already contains
the correlation between all ROIs, while the attention mechanism also tends to learn this.

i-th row xi ∈ RD as the feature of node/ROI vi. The
graph topology is represented as the adjacency matrix
A = [aij ] ∈ RN×N , where ai,j is the weight between
nodes vi and vj . N (v) denotes the neighbourhoods of node
v. D ∈ RN×N stands for the degree matrix with diagonal
element dvv =

∑
u∈N (v) auv as the degree of node v.

For brain network analysis tasks, a set of L subjects’ brain
network G = {G1 . . . GL} and the corresponding labels
Y = {y1 . . . yL}, which indicates the presence of a disease,
biological sex or other properties of the subject, are provided.
Brain network modeling aims to learn from given data G
and Y by designing a function y = f(h(G)), which is
composed of a representation learning function hG = h(G)
and a prediction function y = f(hG) based on the learned
brain representation hG.

3.2. Graph Neural Networks

Graph Neural Networks (GNNs) often follow the message-
passing paradigm (Gilmer et al., 2017; Yang et al., 2022;
Zhuo et al., 2023), by iteratively aggregating node represen-
tations from neighborhoods and combining them with the
representation of itself. By denoting Hl as the collection
of representations in the l-th layer, its v-th row hl

v, i.e., the
representation of node v in the l-th layer, can be obtained as

ĥl
v :=Aggregationl({hl−1

u |u ∈ N (v)}), (1)

hl
v :=Combinationl(hl−1

v , ĥl
v), (2)

where Aggregation(·) and Combination(, ) denote the ag-
gregation and combination modules, respectively. Follow-
ing the above paradigm, classical GNNs, e.g., GCN (Kipf
& Welling, 2017)-one of representative GNNs employ the
weighted average function ÃHl−1 to implement the above
operations as

GCN : Hl = σ(ÃHl−1Wl), (3)

where σ denotes the non-linear activation function and
H0 = X denotes the initial node attributes. Ã = (D +

In)
− 1

2 (A+ In)(D+ In)
− 1

2 represents the normalized ad-
jacency matrix with self-loop.

3.3. Transformers

Unlike GNNs that aggregate information from local neigh-
borhoods, Transformers facilitate a holistic aggregation
across all token pairs through the self-attention mechanism.
The main component of Transformer (Vaswani et al., 2017)
is Multi-Heads Self-Attention (MHSA). Given N tokens
input Z = [zi]

N−1
i=0 ∈ RN×F , which is the concatenation

of the initial token embedding X and the position encoding
P as Z = [X||P], the self-attention first maps the input
features Z to query (Q), key (K), and value (V) vectors.
Then, attention scores from query-key pairs are employed to
aggregate the value vectors in a weighted manner, operating
as a global message-passing mechanism. Specifically, a
Self-Attention (SA) module can be formulated as

Q = ZWQ, K = ZWK , V = ZWV ,

Ẑ = Attention(Q,K,V) = softmax

(
QK⊤
√
F

)
V,

(4)

where WQ, WK , and WV ∈ RF×F denotes trainable
projection matrices and F stands for the feature dimen-
sions.Further details of GNNs and Transformers are pro-
vided in the appendix A.

Graph Transformer. To employ a Transformer to graph
structure data, it is critical to incorporate graph topology
appropriately (Zhuo et al., 2025). There are two kinds of
strategies (Ying et al., 2021; Rampásek et al., 2022). Some
methods directly employ adjacency matrix A to regularize
the Transformer, e.g., element-wise product A⊙ SimQK .
The other methods encode topology structure into position
encoding P, e.g., the eigenvector of its Laplacian matrix.
Thus, it is evident that the utilization of the Transformer
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for graph-data processing calls for a careful handling of
graph topology and node representation, a consideration
that stands out as especially striking in the context of brain
network analysis.

4. Issues with Message Passing
This section begins with the method of brain network con-
struction, followed by the analysis of the GNNs and Trans-
formers on the constructed brain network. Finally, experi-
ments are conducted to verify the above analysis.

4.1. Brain Network Construction

Refer to (Cui et al., 2022) for the detailed construction
process of the brain network from raw data. Here, the final
two steps, which are closely related to the brain network
G, are considered. Firstly, the Brain Region Parcellation
segments each subject into ROIs. Secondly, the weights of
edges between ROIs are calculated using pairwise Pearson
correlation coefficient as

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (5)

where {xi, ..., xn} and {yi, ..., yn} are two sequences of
response values of two ROIs with the same length n, and x̄
and ȳ are the means of sequences. To obtain a robust graph,
a threshold is often used to sparsify the edge weights as

axy =

{
rxy, if rxy > threshold,
0, otherwise. (6)

The constructed symmetric A = [axy] ∈ RN×N is seen as
the adjacency matrix of the brain network. Note that the
sequence {xi, ..., xn} is infrequently characterized as the
attribute of ROI, since its content is the response values at
some moments instead of the essential characteristics of the
ROI. Section 4.2 elaborates on how GNNs and Transformers
construct node attributes.

4.2. Model Analysis

This section analyzes how GNNs and Transformers process
brain networks constructed in Section 4.1.

GNNs for Brain Network. As shown in Section 3.2, GNNs
learn representation by combining graph topology and node
attributes, which are two different types of information.
Unfortunately, the constructed brain network often lacks
essential node attributes. To alleviate this issue, existing
GNN-based methods often constructed node attributes from
the brain network topology, such as (1) identity matrix, (2)
Eigenvectors of the adjacency matrix, (3) node degree, (4)
local statistic of degree, (5) adjacency matrix itself or from
another correlation measurement (Fig. 1). This strategy
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Figure 2. Performances of basic classifier, GNN and Transformer
on ABIDE (left) and ADNI (right) datasets according to AUC and
ACC. Note that the simple classifier consistently outperforms basic
GNN and Transformer with message-passing strategy.

goes against GNNs’ need for different types of informa-
tion. Therefore, GNNs’ characteristics, especially message
passing, can’t be fully exploited in brain network modeling.

Transformers for Brain Network. As shown in Section
3.3, Transformers learn holistic relations between all tokens
with the self-attention mechanism. To employ Transformers
in the brain network modeling, the initial token embedding
is often set as the adjacency matrix, i.e., X = A. Since A
is obtained by calculating Pearson correlation coefficients
between all ROI pairs, the holistic relationship between all
tokens is present in the initial token embedding X. Thus,
the necessity of employing Transformers, especially the
implicit message passing in the attention mechanism, to
explore holistic relations in brain networks is weak (Fig. 1).

In summary, the message-passing under both GNNs and
Transformers can’t be fully explored and exploited by con-
sidering the characteristics of the brain networks.

4.3. Experimental Investigation

To verify the above analysis of the ability of GNNs and
Transformers in brain networks, this section conducts basic
experiments. The performances are measured according
to AUC and ACC metrics on ABDIE and ADNI datasets,
results of more metrics are placed in Appendix B. Three
baselines are involved as follows:

• The simple classifier f(A) = AW, with A as the
feature matrix and W as learnable matrix;

• The GNN as in Section 3.2 with A as topology and
node attribute;

• The Transformer as in Section 3.3 with A as node
attribute.

The performances are shown in Fig. 2. It can be observed
that the basic and simple classifier consistently outperforms
the other two models, i.e., GNN and Transformer. This re-
sult meets our analysis in Section 4.2 that message passing
under both GNNs and Transformers can’t be fully explored
and exploited in brain network modeling. Note that some
GNN-based and Transformer-based models, such as Brain
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Figure 3. Performance comparison of QNN (Hadamard product) and GCN (matrix product) on ABIDE dataset according to AUC, ACC,
SEN, and SPE. Note that QNN consistently outperforms GCN, both the AUC and the ACC increase as the number of layers increases.

Network Transformer (Kan et al., 2022b), achieve much
better performance compared to the basic GNN and Trans-
former. However, their high performances mainly rely on
the modification to GNN and Transformer instead of the
message-passing mechanism behind them.

5. Methodology
Brain Quadratic Network (BQN), which breaks the message-
passing scheme, is proposed here.

5.1. Motivations

The model analysis and experimental investigation in Sec-
tions 4.2 and 4.3 demonstrate that message passing under
both GNNs and Transformers can’t be fully explored and
exploited in brain network modeling. Thus, to enhance the
performance of brain network analysis, the fundamental
brain network operator should be updated.

Here, the simple classifier f(A) = AW is employed as
the base of the investigation for its satisfactory performance.
For one-dimension output, f(·) acts as the linear function
as f(a) =

∑N
i=1 wiai = wa, where a = [a1, ..., aN ] and

w = [w1, ..., wN ] denote one-row of A and one-column
of W, respectively. It is well-known that linear functions
can’t implement XOR logic operation (Bishop & Nasrabadi,
2006). Recent attempts (Fan et al., 2018; 2020) demon-
strate the expressive ability of the Quadratic/Second-order
function of the following forms

h(a) =
( N∑
i=1

wriai + br
)( N∑

i=1

wgiai + bg
)
+

N∑
i=1

woia
2
i + c

= (wra+ br)(wga+ bg) +wo(a
2) + c, (7)

where wr = [wr1, ..., wrN ], wg = [wg1, ..., wgN ], wo =
[wo1, ..., woN ], br, bg , and c are learnable parameters. a2 =
a ⊙ a denotes the element-wise square operator, and ⊙
stands for Hadamard product product. It is proved that
quadratic function can implement XOR logic operation and
possesses some better universal approximation properties
compared to linear function (Fan et al., 2020; 2025). This
motivates us to employ the quadratic function to enhance
the performance of brain network analysis. Moreover, we

provide further elaboration of Quadratic function and its
representative applications in Appendix C.

To verify the effectiveness of the quadratic function with
the Hadamard product, the following two brain network
encoding methods are compared with H0 = AW0 as the
initial embedding (0−th layer).

• Graph Convolution Network: Hl = σ(AHl−1Wl),
• Quadratic Neural Network: Hl = Hl−1 ⊙ (AWl),

where ⊙ stands for Hadamard product/element-wise prod-
uct. The performances of the Graph Convolution Network
(GCN) and the Quadratic Neural Network (QNN) are shown
in Fig. 3. It can be observed that the QNN significantly and
consistently outperforms the GCN. Besides, both the AUC
and the ACC increase as the number of layers increases.

In summary, both the expressive ability and universal ap-
proximation from theory and experimental results suggest
the Quadratic Neural Network (QNN) as an alternative for
brain network modeling.

5.2. Brain Quadratic Network

According to Eq. (7), the Quadratic Network for Brain is
formulated by using the Hadamard product as follows.

Hl =
(
Hl−1Wl

A

)
⊙

(
Hl−1Wl

B

)
+
(
Hl−1 ⊙Hl−1

)
Wl

C ,
(8)

where Wl
A and Wl

B are the learnable parameters for the
l-th layer. To stabilize the learning process, the first term
of Eq. (8) is replaced with Hl−1 ⊙

(
AWl

A

)
, which meets

the QNN formula in Section 5.1, and the Brain Quadratic
Network(BQN) is as follows:

Hl = Hl−1 ⊙
(
AWl

A

)
+
(
Hl−1 ⊙Hl−1

)
Wl

H , (9)

where learnable mappings Wl
A and Wl

H are for original
brain network A and the embedding H. As shown in the
experiments in Section 5.1, the first term in Eq. (9) plays a
key role in performance enhancement, while the second one
mainly tends to reduce the variance.
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5.3. Theoretical Analysis

This section provides deep insight into the Brain Quadratic
Network, especially the first term in Eq. (9), i.e.,

Hl = Hl−1 ⊙
(
AWl

A

)
. (10)

The following theorem provides an intuitive understanding
from the concept of community detection.

Theorem 5.1. The iterative formula Eq. (10) of the pro-
posed BQN is equivalent to the updating rule of the follow-
ing community detection objective function, which is based
on nonnegative matrix factorization (NMF) of the adjacency
matrix.

min
H≥0,WA≥0

L(H) = ∥HW⊤
A −A∥2F , (11)

where H ≥ 0 denotes all elements in H are non-negative.

Proof. The constrained optimization in Eq. (11) can be
converted to an unconstrained one by employing a Lagrange
multiplier (Bertsekas, 2014). To this end, a Lagrange multi-
plier matrix Θ is introduced corresponding to the nonneg-
ative constraints H ≥ 0. Thus, the equivalent objective
function is

min
H
L(H) =

∥∥HW⊤
A −A

∥∥2
F
+ tr(ΘH⊤).

Set derivative of L(H) with respect to H to 0, it obtains

Θ = 2AWA − 2HW⊤
AWA. (12)

Following the KKT condition for the non-negativity of H,
Eq. (12) can be further reformulated as element-wise form(

2AWA − 2HW⊤
AWA

)
ij
Hij = ΘijHij = 0, (13)

which is the fixed point equation that the solution must
satisfy at convergence. Given an initial value of H, the
updating rule of H can be formulated as

Hij ← Hij
(AWA)ij

(HW⊤
AWA)ij

, (14)

where the denominator is to normalize the iterations, and←
denotes the assignment operation. Therefore, the iteration
can be written as in matrix form

H = H⊙ (AWA), (15)

which is the same as the iterative formula of BQN.

The term ∥HW⊤
A − A∥2F in Eq. (11) is the nonnegative

matrix factorization of the adjacency matrix A. Nonnega-
tive matrix factorization of the adjacency matrix is a widely-
used community detection method (Yang & Leskovec, 2013;

Wang et al., 2016; Luo et al., 2022), since its superior per-
formance and outstanding interpretability. Therefore, the
formula Eq. (10) leads the proposed BQN to seek represen-
tation, which can capture mesoscopic community structure
to reflect brain functional modules. This provides an inter-
pretation of the success of the proposed BQN. In addition to
the theoretical analysis, experiments reflecting the cluster-
ing characteristics of brain region representations obtained
through stacking multiple layers of Eq. (9) are presented in
Appendix D.

6. Evaluations
6.1. Experiments Setup

Datasets. In the experiments, two real-world fMRI datasets
are employed: as follows.

• Autism Brain Imaging Data Exchange (ABIDE): This
dataset is primarily utilized to investigate brain func-
tional connectivity variation and structural differences
associated with Autism Spectrum Disorder. The pre-
processed data version can be accessed from the official
website1. It collects resting-state functional magnetic
resonance imaging data from 17 international sites, as
well as anatomical and phenotypic data. The dataset we
used contains 516 Autism Spectrum Disorder patients
(ASD) and 493 normal controls (NC).

• Alzheimer’s Disease Neuroimaging Initiative (ADNI):
ADNI is a widely utilized multimodal neuroimaging
repository focused on Alzheimer’s disease. The raw
images can be obtained from ADNI official website 2.
Access is limited and requires adherence to a request
procedure to acquire the data. The dataset for this
paper contains 53 Alzheimer’s disease (AD) samples
and 71 normal controls.

The construction of brain functional connectivity matrix
for ABIDE is based on Craddock 200 atlas. The Pearson
correlation coefficient between the region-averaged BOLD
signals from pairs of ROIs (Regions of Interest) is adopted
as the measure of functional connectivity strength between
ROIs, namely as brain graph adjacency matrix (Cui et al.,
2022; Bessadok et al., 2023; Xu et al., 2024). For ADNI, the
fMRI data are first preprocessed using the Data Processing
Assistant for Resting-State fMRI (DPARSF) toolkit. Next
brain ROIs are defined based on AAL 90 atlas and the
average time-series feature is calculated for each individual
brain ROI. Pearson correlation coefficient between ROIs is
then calculated, which serves as the functional connectivity
matrix. Specifically, thresholds are set to keep edges with
positive weights and drop those with negative weights.

1http://preprocessed-connectomes-project.
org/abide/

2https://adni.loni.usc.edu/
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Table 1. Performance comparison with two categories of baselines. The best model is bolded and the runner-up is underlined, respectively.

Type Model ABIDE ADNI

AUC↑ ACC↑ SEN↑ SPE↑ AUC↑ ACC↑ SEN↑ SPE↑

Graph
Neural
Networks

GCN 59.59±3.44 59.30±3.38 56.67±4.37 61.55±5.29 62.45±3.63 59.12±4.53 54.55±9.96 62.00±8.55

GAT 60.43±3.88 60.10±4.13 59.26±5.51 62.89±8.03 62.00±2.88 58.75±2.86 53.20±7.50 64.79±7.65

BrainGNN 64.42±3.57 63.09±1.35 65.65±2.88 60.67±3.68 61.81±1.58 58.72±3.14 52.88±9.70 62.70±4.26

BrainGB 70.32±3.66 65.12±3.90 67.01±10.00 60.07±8.53 66.44±3.33 63.70±4.65 60.73±8.25 64.67±9.07

FBNETGEN 74.55±3.77 67.09±3.37 64.71±9.85 69.61±9.30 67.05±2.16 63.26±1.38 66.79±6.93 61.31±9.65

A-GCL 73.86±2.91 71.04±2.40 71.42±3.03 70.95±3.19 68.15±3.33 67.08±4.57 65.45±8.39 68.33±4.36

Graph
Transformer
Models

SAN 71.35±2.18 65.34±2.91 55.41±9.29 68.39±7.50 66.11±3.41 61.78±4.22 53.94±7.56 63.63±8.51

Graphormer 63.91±4.05 61.88±6.85 66.30±9.98 55.74±11.00 60.69±5.26 55.75±3.18 60.18±11.36 47.75±13.53

GraphTrans 60.13±6.73 57.83±4.71 65.70±10.30 49.77±11.52 61.41±3.65 58.60±5.41 65.57±6.05 54.37±3.42

BrainNETTF 77.93±1.41 69.26±2.26 65.92±8.60 73.20±6.06 69.73±2.61 67.85±2.92 63.64±6.27 70.67±8.33

ContrastPool 57.36±0.87 57.44±0.69 57.66±6.85 57.08±7.79 68.17±3.28 66.21±3.90 61.51±7.44 72.43±6.53

ALTER 77.99±2.21 70.10±2.26 72.84±7.40 67.68±5.81 71.86±3.13 66.92±3.93 71.55±8.91 64.00±6.80

BioBGT 69.96±1.18 69.70±2.90 67.04±3.41 72.02±4.67 63.16±3.74 62.27±3.23 63.97±7.88 60.55±6.71

BQN (Ours) 79.85±1.27 72.53±1.41 73.26±5.99 72.03±6.24 74.18±3.34 68.62±3.22 70.91±8.60 68.00±7.81

Baselines. Thirteen Baselines are compared in the experi-
ments, which can be divided into two categories.

• Graph Neural Network (GNN)-based models, includ-
ing two typical GNNs: GCN (Kipf & Welling, 2017)
and GAT (Veličković et al., 2018)), and four brain-
specific GNNs: BrainGNN (Li et al., 2021), BrainGB
(Cui et al., 2022), FBNETGEN (Kan et al., 2022a) and
A-GCL (Zhang et al., 2023).

• Graph Transformer (GT)-based models, including
three typical GTs: SAN (Kreuzer et al., 2021),
Graphormer (Ying et al., 2021) and GraphTrans (Wu
et al., 2021a)), and four brain-specific GTs: Brain-
NETTF (Kan et al., 2022b), ContrastPool (Xu et al.,
2024), ALTER (Yu et al., 2024) and BioBGT (Peng
et al., 2025).

Additional comparative experiments of BQN are conducted
on supplemental datasets, please refer to Appendix E.

Metrics. To conduct comprehensive evaluations of per-
formance, a combination of machine learning and med-
ical diagnostic-specific metrics are employed, including
Area Under the Receiver Operating Characteristic Curve
(AUC), Accuracy (ACC), Sensitivity (SEN), and Specificity
(SPE). AUC provides a threshold-independent measure of
the model’s ability to distinguish between classes. ACC is a
straightforward metric to assess the model’s classification
performance. SEN, also known as the true positive rate, is
a critical metric for medical diagnostics. In contrast, SPE
represents the true negative rate.

Implementation Details. The experiments are performed
on a GeForce RTX3090 GPU. For all datasets, we employ
random splits with the ratio 7:1:2 to get the training set, val-
idation set and test set. Furthermore, the number of training

epochs is set to 200 with batch size 16. An adam optimizer
is adopted with initial learning rate of 10−4 and weight de-
cay as 10−4 while training, target learning rate is from 10−5

to 10−4. The activation function we selected is LeakyReLU.
The number of layers, i.e., k is selected from 1, 2, 3, 4, 5 and
the dropout rate is chosen from 0., 0.1, 0.2, 0.3. The results
were averaged over 5 random runs. Notably, existing studies
of GNNs and Transformers for brain networks show marked
differences in data processing and model selection, which
poses challenges in fairly evaluating their performance. To
address this, this paper unifies these settings and compares
methods in a fair manner. The details of corresponding
unified settings are elaborated in the Appendix F.

6.2. Result Analysis

Brain Disorder Disease Classification. The performance
comparison between BQN and the baseline models on the
ABIDE and ADNI datasets are presented in Tab. 1. Upon
observation, it is evident that compared to GNN-based and
GT-based baselines, BQN exhibits superior performance
in terms of AUC and ACC metrics. In particular, on the
ABIDE dataset, BQN achieves an accuracy that is 2.43%
higher than that of the runner-up baseline ALTER. This
advantage can be attributed to the fact that BQN directly
leverages the essential information from brain functional
connectivity matrices. Therefore, it reduces model complex-
ity and inference uncertainty that may arise from extraneous
factors. Moreover, during training, BQN implicitly learns
characteristic representations of brain functional modules,
as evidenced in Sec. 5.3. These learned representations of
functional regions enhance the accuracy of brain disorder
classification. By directly modeling the intrinsic proper-
ties of brain functional connectivity, BQN is particularly
well-suited for brain disorder classification tasks, especially
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Table 2. Comparison of running time(s) on ABIDE and ADNI.

Method ABIDE ADNI

GCN 14.26 4.12
FBNETGEN 19.73 5.71
A-GCL 41.57 6.42

SAN 712.01 152.23
Graphormer 973.52 179.11
BrainNETTF 17.32 4.77
ContrastPool 283.02 76.05
ALTER 37.21 7.12
BioBGT 31.24 6.78

BQN(Ours) 11.31 3.33

when dealing with the complex and limited-scale nature
of neuroimaging datasets. These experimental results and
analyses indicate superior performance and highlight the
promising potential of BQN.

Efficiency Test. This experiment aims to thoroughly ex-
amine the efficiency of the proposed BQN. It achieves this
by comparing the running time of BQN with those of nine
representative baselines. The times reported in Tab. 2 are
the total times of training 100 epochs in full batch mode. It
can be observed that compared to all baselines, the proposed
BQN achieves the shortest runtime on ABIDE and ADNI
datasets. This is mainly attributed to the simplicity of the
proposed BQN, which guarantees its efficiency. To be spe-
cific, the core computation of BQN involves element-wise
multiplication of matrices via Hadamard product, which
poses a quadratic complexity of O(n2), where n denotes
ROIs number. In contrast, both GNN-based and GT-based
models require the computation of matrix multiplication
between two square matrices (the propagation matrix and
the feature matrix, e.g., Pearson matrices), which typically
involves a cubic complexity of O(n3).

Additional Experiments w/o Hadamard residual. To val-
idate the rationality and effectiveness of residuals, i.e., the
second term proposed by Eq. (9). An ablation study is
conducted with an architectural theme defined as H(l) =
H(l−1)⊙AWl

A with or without (Hl−1⊙Hl−1)Wl
H mod-

uel, where H0 = AW, W represents a linear layer. The
comparison results are shown in Fig. 4. It can be seen
that for the AUC, ACC, and SEN metrics, the addition
of the Hadamard residual provides consistent performance
improvements on both ABIDE and ADNI datasets. This il-
lustrates the validity of the Hadamard residual. Besides, for
AUC and ACC metrics, the standard deviations of the model
results are smaller, indicating that the Hadamard residual
also contributes to the stability of the model.

Hyperparameter Sensitivity Analysis. This experiment
is designed to offer an intuitive understanding of how to
select the optimal number of layers k. The effect of this
hyperparameter on the model performance is reported in
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Figure 4. Performance comparison of BQN with and without
Hadamard residual term on two datasets.
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Figure 5. Performance variations for varying k on two datasets.

Fig. 5. From this figure, it is evident that the proposed BQN
achieves stable performance on these two datasets when the
parameter k is within the range {1, 2, 3}. This demonstrates
the stability of BQN. Moreover, the experimental results
indicate that the model performance exhibits a gradual de-
cline as the number of layers increases. Considering that
brain datasets are generally of limited size (on the order of
hundreds of samples), the observed performance degrada-
tion can be attributed to overfitting, which is likely induced
by the excessive number of parameters and the heightened
model complexity associated with deeper architectures.

Case Study. To interpret the rationality of BQN on the
ABIDE dataset, we construct two contrast brain graphs that
reflect brain network differences among distinct groups. The
first contrast brain graph is derived from the initial brain
connectivity matrices, while another contrast brain graph
is from the brain network generated by BQN. Specifically,
the brain connectivity matrix template of ASD is obtained
by averaging functional connectivity matrices within ASD
groups, AASD

Template = 1
n

∑n
i=1 A

ASD
i . Brain template of NC

is obtained similarly, ANC
Template =

1
m

∑m
i=1 A

NC
i , where m

denotes the number of normal subjects, and n represents the
number of ASD patients in the ABIDE dataset. The contrast
brain graph is then calculated as: Acontrast = ANC

template ⊖
AASD

Template, where ⊖ performs element-wise subtraction on
the two input matrices. The learned contrast brain graph
is then obtained by performing the same process as the
equations above. The only difference is that the output of
the last layer of a well-trained BQN is as brain graphs to
construct the learnable contrast graph. Notably, the input of
the well-trained BQN is a test set, and the phenotype of the
subject is based on the result of the classification head of
the model.
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(a) Contrast brain graph constructed from initial data

(b) Contrast brain graph constructed from the output of BQN

Figure 6. Brain network comparison. Red edges denote significant
differences in corresponding brain connectivity between the nor-
mal population and individuals with Autism Spectrum Disorder.

The visualization of the two contrast graphs, the top-20
edges with the largest weights are selected, is shown in Fig.
6. Firstly, it can be observed that compared to the initial
contrast brain graph (subfigure a), the contrast graph learned
by BQN is sparser and retains the core focus of abnormal
connectivity, such as connectivity between paracentral lob-
ule region and cingulum region. This finding indicates that
the BQN learn a more holistic brain functional connectivity
and gain ability of learning characteristic representations
of brain functional modules, consistent with the theoretical
analysis.

Moreover, our model focuses on the abnormal connections
of the prefrontal cortex, cingulate, corpus callosum, and
parietal as is shown in Fig. 6. Disruption of functional
connectivity in these brain regions has been shown to be
strongly associated with ASD patients (Assaf et al., 2010;
Weng et al., 2010). This indicates that our model possesses a
high degree of biological interpretability, rather than merely
an improvement in performance.

7. Conclusions
This paper observed that the message-passing mechanism,
commonly used in brain network analysis, is redundant from
both model analysis and experimental investigation. Based
on this finding, BQN is introduced by employing Quadratic
Network. BQN is a simple but novel model that adaptively
learns brain functional networks while implicitly clustering
connectivity between brain regions. Comprehensive experi-
ments on the ABIDE and ADNI datasets demonstrate that

BQN consistently outperforms models based on GNNs and
Transformers. We hope this study could offer valuable in-
sights into simpler models that can also achieve remarkable
performance in brain disorder disease classification.
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In the appendix, the presented contents are as follows:

• A: Further elaboration on GNNs and Transformers.

• B: More metrics’ analysis.

• C: Theoretical and application progress of quadratic networks.

• D: Experiments on the clustering characteristics of node representations.

• E: Further comparative experiments of BQN.

• F: Uniform configurations.

A. Further Elaboration on GNNs and Transformers
To better illustrate the message passing mechanism of GNNs, we adopt GCN, SGC (Wu et al., 2019), and APPNP (Klicpera
et al., 2019) as examples. These models employ the weighted average function to implement Eq. (1) and Eq. (2) as:

GCN : Hl = σ(ÃHl−1Wl),

SGC : Hl = ÃHl−1 = ÃlX,

APPNP : Hl = (1− α)ÃHl−1 + αX,

(16)

where σ denotes the non-linear activation function (e.g., ReLU(·)), α is the balancing hyper-parameter and H0 = X

denotes the initial node attributes. Ã = (D + In)
− 1

2 (A + In)(D + In)
− 1

2 represents the normalized adjacency matrix
with self-loop. Above three models achieve enhanced neighborhood aggregation and residual combination by employing a
meticulously designed message passing function, which significantly improves the model’s performance and accuracy in
capturing complex patterns and relationships within the data. Recently, GNNs struggle to capture long-range dependencies
since stacking multiple layers tends to cause over-smoothing and over-squashing issue (Li et al., 2018; Topping et al., 2022)
and leads to the loss of discriminative information.

For the representation learning function Eq. (4) in Transformer Section 3.3, it can be reformulated in token-wise form as

ẑv =
∑
u∈V

SQK
v,u · vu =

∑
u∈V

exp(sim(qv,ku))∑
u∈V exp(sim(qv,ku))

· vu, (17)

where sim(, ) terms the similarity function, which mainly adopts scaled dot-product attention, i.e., sim(Q,K) =
QK⊤/

√
F . Thus, the attention score matrix SQK ∈ RN×N acts as the propagation weights, and the Transformer

follows the holistic message-passing scheme.

B. More Metrics’ Analysis
Owing to the restricted number of datasets employed and the absence of consistent trends across multiple metrics, we
conducted additional experiments to support the conclusions as presented in Fig. 2, 3 and 5.

To evaluate the performance of the basic classifier, GNN and Transformer (Fig. 2), we further conducted experiments on
the ABIDE and ADNI datasets, incorporating Precision and Recall as metrics. The results are presented in Fig. 7. These
additional experiments reveal consistent trends across the datasets, supporting the hypothesis that the simple classifier
outperforms the basic GNN and Transformer with message-passing strategy.

For Fig. 3 (performance comparison of QNN and GCN) and Fig. 5 (performance variations for varying layers), we adopted
the micro-F1 score to provide a more comprehensive evaluation of model performance in the above two experiments. The
experimental results are presented in Fig. 8. Subfigure (a) shows that the QNN significantly and consistently outperforms
the GCN as the number of layers increases. In subfigure (b), BQN achieves stable performance when the number of layers
increases, with the best performance occurring at layer 3 on the ABIDE dataset. In contrast, the results indicate a gradual
performance decline as the number of layers increases on the ADNI dataset. These experimental trends align with the
findings from the main-body experiments in Fig. 3 and 5.
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Figure 7. Performances of basic classifier, GNN and Transformer
on ABIDE (left) and ADNI (right) datasets according to Precision
and Recall. Note that the simple classifier consistently outperforms
basic GNN and Transformer with message-passing strategy.
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Figure 8. Performance comparison of QNN (Hadamard product)
and GCN (matrix product) on ABIDE dataset according to micro-
F1 (left), and performance variations for varying k on ABIDE and
ADNI datasets according to micro-F1 (right).

C. Theoretical and Application Progress of Quadratic Networks
The Quadratic Neural Network (QNN) was proposed by authors in (Fan et al., 2018). Subsequent researches have further
explored the expressive capabilities of quadratic networks. For instance, (Fan et al., 2020) presented four theorems
highlighting the advantages of QNNs over conventional networks in expressive efficiency, unique representation, compact
architecture and computational capacity. More recently, (Fan et al., 2025) demonstrated that QNN can implement XOR
logic operations and exhibit superior universal approximation properties compared to linear functions.

The findings mentioned above have inspired numerous application-oriented studies. AFT (Zhai et al., 2021) introduces an
efficient alternative quadratic function to traditional Transformers that eliminates the need for dot product self-attention,
demonstrating competitive performance on all the benchmarks, while providing excellent efficiency at the same time. QCNN
(Liao et al., 2023) proposes a novel quadratic convolutional neural network for bearing fault diagnosis, incorporating a
derived attention mechanism termed qttention that enhances interpretability and effectiveness. QNN-Bi-LSTM (Keshun
et al., 2024) utilize a hybrid model combining a quadratic neural network (QNN) with a bidirectional long short-term memory
network (Bi-LSTM) for efficient and interpretable rolling bearing fault diagnosis. Graph Reciprocal Network (GRN) (Yang
et al., 2023) treats node attributes and topology of graph as reciprocal elements by regarding nodes as another kind of
attribute and employing a novel representation scheme based on Quadratic Networks to achieve fine-grained element-wise
product representations.

Previous researches have shown the broad applicability of Quadratic Networks across various domains. However, no studies
have yet applied Quadratic Networks-based methods to brain network analysis. Our work fills this gap by showing that
Eq. (9) of the quadratic function reveals a clustering effect in brain functional regions. The competitive performance of the
Brain Quadratic Network (BQN) presented in Section 6 underscores the potential of Quadratic Networks for brain network
analysis and validates its reasonable application in this context.

Table 3. Clustering performance with increasing number of layers

Metric init layer 1 layer 2 layer 3

SC↑ 0.004 0.179 0.250 0.327
CH↑ 5.746 12.357 18.877 22.528
DB↓ 4.974 3.434 2.674 1.795

D. Experiments on the Clustering Characteristics of Node Representations
The node representation obtained through iterative learning of the multi-layers of Eq. (9), its clustering characteristic has
been proved in Section 5.2 theoretically. In this section, we further experimentally validate its clustering property. Following
the segmentation criteria outlined in (Dosenbach et al., 2007) and (Dosenbach et al., 2010), the brain is segmented into
corresponding functional regions. To assess the clustering characteristics of BQN, we employ three standard cluster metrics:
the Silhouette Coefficient (SC), Calinski-Harabasz Index (CH) and Davies-Binould Index (DB). Results are obtained from
both the original data and the outputs of three well trained BQN models, using 1 layer, 2 layers and 3 layers respectively,
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which are presented in Tab. 3. It can be observed from the table that the proposed BQN effectively captures the clustering
properties of functional brain regions. Notably, the results reveal that clustering performance increases as the number of
layers increase when the number of BQN layers is within {1, 2, 3}, which is consistent with Section 5.3.

E. Further Comparative Experiments of BQN
Considering the limited number of datasets and related studies used in main body, further comparative experiments are
employed on ADHD-200 and PPMI datasets. The details of the two datasets and studies we selected are as follows:

Datasets. (1) Attention Deficit Hyperactivity Disorder (ADHD-200) dataset is a collaboration of 8 international imaging
sites that has aggregated and openly sharing neuroimaging data from children and adolescents diagnosed with ADHD
and typically developing controls. The dataset used in this paper includes 459 subjects, comprising 230 typically normal
individuals and 229 ADHD patients. (2) Parkinson’s Progression Markers Initiative (PPMI) dataset aims to identify
biological markers of Parkinson’s risk, onset and progression. Similar to ABIDE, ADNI and ADHD-200, PPMI is also
a multi-site dataset. For this paper, the dataset includes 15 normal controls (NC), 67 prodromal individuals, and 113
Parkinson’s disease (PD) patients.

The ROI definition in ADHD-200 dataset is based on Craddock 200 atlas, brain graphs are constructed by computing the
Pearson correlation coefficients. Specifically, pearson matrices serve as node attributes and brain functional connectivity
matrices. For PPMI dataset, ROI definition is based on AAL 116 atlas and node features, edge weights were preprocessed
by authors in (Xu et al., 2023).

Baseline Methods. Three supplemental baselines are appended to comparison experiments, including A-GCL (Zhang et al.,
2023), AGT (Cho et al., 2024) and BrainMGT (Shehzad et al., 2025). Furthermore, the ALTER employed in the primary
text was utilized as a baseline for this comparison experiment, thereby providing stronger contrast. The first two studies are
GNNs specially designed for Brain Network Analysis, while BrainMGT and ALTER is based on Transformer.

Metrics. AUC, ACC, SEN and SPE are used to evaluate models performance on ADHD-200 dataset, consistent with
the ABIDE and ADNI datasets. For PPMI dataset, we utilize Accuracy, Precision, Recall and Specificity to assess the
classification performance of all baselines. Besides, model efficiency comparisons, e.g., training time-Time(s), are included
on both two datasets.

Implementation Details. For the above two datasets, random partitions were used with a ratio of 7 : 1 : 2. The training
process was configured for 200 epochs, with the batch size within the range of {4, 8, 16}. Notably, to ensure a fair
assessment of the baselines in conjunction with BQN, the epoch exhibiting the lowest loss on the validation set is selected
for performance evaluation on the test set across all models. The Adam optimizer, number of layers, and dropout rate were
consistent with the configuration selection used for the ABIDE and ADNI datasets in Section 6.1. Moreover, training times
reported in Tab. 4 are the total times of training 100 epochs in full batch mode on each dataset.

Experimental Results. The performance comparison between BQN and the baseline models on the ADHD-200 and PPMI
datasets are presented in Tab. 4. Note that AGT is specifically developed for multi-class classification tasks, whereas
ADHD-200 is a binary classification task. Thus, performance comparison with AGT is limited on PPMI dataset, which
has three classes. The results reported in the table indicate that BQN achieved optimal performance in three of the four
classification metrics on the ADHD-200 dataset, demonstrating its superiority. On the PPMI dataset, BQN is not superior to
AGT but still shows competitive performance. Furthermore, in terms of model efficiency, our approach exhibits the shortest
training time across both datasets. Above experimental results highlight the promising potential of our model.

Table 4. Performance comparison on ADHD-200 and PPMI. The best and the runner-up models is in bold and underlined, respectively.

Model ADHD-200 PPMI

AUC↑ ACC↑ SEN↑ SPE↑ Time(s)↓ Accuracy↑ Precision↑ Recall↑ Specificity↑ Time(s)↓
AGT - - - - - 77.69±2.81 56.42±2.46 73.69±3.50 79.37±2.27 11.08
A-GCL 74.78±4.39 73.11±4.30 72.04±4.68 73.08±4.10 19.71 73.65±3.19 48.99±3.71 70.73±3.01 75.67±2.19 14.12
ALTER 83.16±1.61 73.48±1.34 74.88±6.85 72.20±5.82 17.38 73.91±3.13 50.29±3.01 71.81±5.64 77.36±4.22 11.55
BrainMGT 78.33±1.10 71.27±2.26 71.09±5.63 73.26±3.49 26.35 70.61±2.37 47.10±2.26 68.45±4.81 74.29±6.40 17.55

BQN (Ours) 83.34±1.13 75.68±1.95 79.73±2.27 71.63±4.87 6.56 74.26±3.95 52.30±3.75 73.93±4.27 76.25±3.56 4.79
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F. Uniform Configurations
Existing GNNs and Transformers for brain networks are very different in data processing and model selection, which makes
it difficult to fairly assess their performance. To alleviate this difficulty, we unify these settings and compare methods in a
fair manner. Unifying settings of our work can be concluded as two aspects:

• Model Selection. We unify early stopping criteria as the lowest loss on the validation set, which is consistent with
BrainGNN and many traditional GNNs and Graph transformers.

• Data Processing. We employed a uniform preprocessing approach and brain network construction method for all
models on each dataset. Specifically, for the ABIDE dataset, our preprocessing and brain network construction were
aligned with those used by BrainNETTF, ALTER and BioBGT. While for the ADNI dataset, we maintained consistency
with ALTER’s preprocessing and brain network construction methods. For the ADHD-200 dataset, our preprocessing
and brain network construction were consistent with BioBGT’s methods. Finally for the PPMI dataset, the node
attributes and edge weights were preprocessed by authors in (Xu et al., 2023).
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