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Abstract

Many real-world datasets, such as healthcare, climate, and economic data, are
often collected as irregular time series, which pose significant challenges for mod-
eling. Previous research has approached this problem in two main directions: 1)
Transformer-based models and 2) dynamics-based models. Transformer-based
models efficiently handle irregular time series with simple architectures and time
encoding but struggle with long sequences and require many parameters due to
the lack of inductive biases. Continuous dynamics-based models offer accurate
Bayesian inference of dynamic states but suffer from the complexity of sequential
computation, leading to increased computational costs scaling with the length of
time intervals. To address these limitations, we propose Parallel Bayesian Diffusion
Filtering (PBDF), a variational inference algorithm based on parallelizable stochas-
tic differential equations and stochastic optimal control theory. PBDF combines
the parallel inference capabilities of Transformer-based models with the Bayesian
inference of continuous-discrete state space models. Through empirical evaluations
on the USHCN and Physionet datasets for both interpolation and extrapolation
tasks, we demonstrate PBDF’s superior performance and computational efficiency.

1 Efficient Modeling with Stochastic Optimal Control

In this section, we explain our proposed model for irregular time series data, called PBDF. We start by
introducing the Continuous-Discrete State Space Model (CD-SSM) [10] and formulate the variational
inference problem for the state variables in Sec 1.1. Next, we discuss amortized inference for the
auxiliary variables and detail the efficient learning and inference algorithm for PBDF in Sec 1.2.

1.1 Controlled Continuous-Discrete State Space Model.

Let us consider for a set of time steps (regular or irregular) {ti}Ki=0 over an interval T = [0, T ],
i.e., 0 ≤ t1 ≤ · · · ≤ tK ≤ T . The CD-SSM assumes a continuous-time Markov state trajectory
X0:T in a latent space X as a solution of the stochastic differential equation (SDE):

dXt = b(t,Xt)dt+ dWt, where X0 ∼ µ0 (1)

and {Wt}t∈[0,T ] is a X -valued Wiener process that is independent of the µ0. Since Xt is a Markov
process, we can describe the time-evolution of Xt by a transition kernel Pt, and for any measurable
event A ⊂ X and xti−1

, transition kernel Pti for the time ti can be computed as Pti(xti−1
, A) =∫

A
pti(xti−1 ,xti)dxti , where the transition density pt is obtained by a solution of the Fokker-Planck

equation associated with Xt. By utilizing transition kernel Ptis for all i ∈ [1 : K], we can define a
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product law of {Xti}i∈[0:K] as follows:

dP(x0:tk) = dµ0(x0)

K∏
i=1

Pti(xti−1
, dxti). (2)

In practice, we can only access the observations {yti}Ki=1 recorded for each discrete time steps
{ti}Ki=1. Each yti is assumed to be generated from a measurement model gti(yti |Xti). Our goal is
to infer the filtering distribution, the conditional distribution of X0:tk given a set of observations up
to time tk, Htk = {yti |i ≤ k} ,

dP⋆(x0:tk) =
1

Z(Htk)

K∏
i=0

gti(yti |xti)dP(x0:tk), (3)

where Z(Htk) = EP

[∏K
i=1 gti(yti |Xti)

]
is a marginal likelihood of Htk . Sampling trajectories

from P⋆ is generally infeasible except for highly restrictive cases, such as when the drift function b
in (1) is linear and the measurement model g in (3) is Gaussian.

SOC and VI. In this study, we propose a variational inference (VI) algorithm for filtering, based on
the theory of stochastic optimal control (SOC) [3]. To do so, we introduce a path measure Pα which
is induced by the solutions of the following affine-control SDE:

(Controlled State) dXt = [b(t,Xt) + α(t,Xt;Ht)] dt+ dW̃t, where X0 ∼ µ0. (4)

Here, α ∈ Rd denotes a control function, which is chosen by a user to achieve a specific objective.
In our case, we design α to approximate the posterior path measure P⋆. We propose an objective
function J (α) which is related the SOC problem with VI for the posterior path measure in (3).
Proposition 1.1 (Variational Bound). If we choose the prior path measure as P and variational path
measure as Pα, then the ELBO coincides with negative cost function J (α):

− log p(HT )︸ ︷︷ ︸
Log-likelihood

≤ J (α|HT ) := EPα

[∫ T

0

1

2
∥αs∥2 ds−

K∑
i=1

log gi(yti |Xα
ti)

]
. (5)

Proposition 1.1 states that the minimization problem involving J (α) in equation (5) can be interpreted
as VI for the path measure. In other words, it is possible to construct an approximate posterior, by
parameterizing the control function with a suitably expressive family of functions such as DNN
(i.e., α := α(·; θ)). This enables a close approximation of the true posterior for the VI [22].

1.2 Efficient Modeling of the Latent System

Utilizing gradient-descent based optimization [12, 23] for (5) requires computing gradients through
the simulated diffusion process over an interval [0, T ], which can be slow, unstable, and memory-
intensive as time sequence length T increases. It contrasts with the core philosophy of many recent
generative models, which focus on splitting the generative problem and solving them jointly.

Locally Linear Dynamics. Motivated by the simulation-free property of linear dynamical mod-
els [9], we explore linear drift functions that allow for the parallel computation of the approximate
posterior distribution. This approach enables us to estimate a closed-form expression for the state at
any time [t, T ] given the information Ht up to time t ≥ 0. To enable the simulation-free state estima-
tion for Xt, we study a linear drift b(t,Xt) = AXt and non-markov control α(t,Xt,Ht) ≈ α(Ht).
This linear formulation enable us to estimate the conditional distribution for any t ∈ [0, T ] for a given
initial Gaussian distribution.

Recognizing the limitations of linear dynamics in real-world scenarios, we propose using locally
linear dynamics as a more flexible approximation of the nonlinear drift function. This method
leverages neural networks to fully utilize available information while maintaining a linear structure.
To achieve this, we introduce a parameterization strategy inspired by [1, 11], where the transition
matrix is defined as Ai =

∑L
l=1 w

(l)A(l). Here, the weights w = {w(l)}Ll=1 = fθ(Hti) are obtained
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Algorithm 1 Training of PBDF
Input: {oti}Ki=1, pθ, qϕ, α, time-stamps T
for n = 1, · · · , N do

Estimate qϕ(yt∈T |ot∈T )
HT ∼ qϕ(yt∈T |ot∈T )
Compute bt = (A(Ht), α(Ht)) ,∀t ∈ T
{µα

t }t∈T = Scan(m0,Σ0, {bt}t∈T )
Xα

0:T ∼
∏

t∈T µα
t

Estimate J (α|HT ) in equation (5)
Estimate pθ(ot∈T |yt∈T )
Optimize ELBO(θ, ϕ, α) in equation (9)

end for

Algorithm 2 Inference of PBDF
Input: {oti}Ki=1, observed time-stamps T , target
time-stamps T ′

HT ∼ qϕ(yt∈T |ot∈T )
Compute bt = (A(Ht), α(Ht)) ,∀t ∈ T ′

{µα
t }t∈T ′ = Scan(m0,Σ0, {bt}t∈T ′)

Xα
t∈T ′ ∼

∏
t∈T ′ µα

t

ŷt∈T ′ ∼ g(yt∈T ′ |Xα
t∈T ′)

ôt∈T ′ ∼ pθ(ot∈T ′ |ŷt∈T ′)
Output: ôt∈T ′

from a neural network fθ with a softmax output and {A(l)}Ll=1 represents a set of L parameterized
diagonal matrices. Additionally, the control is parameterized by αi = gθ(Hti). Since Ht changes
discretely at each observation time {ti}Ki=1, the drift function remains piecewise constant within each
interval. This structure enables us to derive a closed-form solution for the intermediate latent states.
Theorem 1.2 (Simulation-free estimation). Let us consider the confrol-affine SDEs:

dXt = [AiXt + αi] dt+ σdWt, t ∈ [ti−1, ti). (6)

Then, for an interval [ti−1, ti) for all i ∈ [K], the solution to (6) condition to initial distribution
µα
0 = N (m0,Σ0) is a Gaussian process N (mt,Σt) with the first two moments is given by

mt = e(t−t0)Aim0 +

i−1∑
j=1

(
e(t−tk)AjA−1

j (e(tj−tk−1)Aj − I)αj

)
+A−1

i (e(t−ti−1)Ai − I)αi, (7)

Σt = e2(t−t0)AiΣ0 +

i−1∑
j=1

(
e2(t−tj)AjA−1

j

(e2(tj−tj−1)Aj − I)

2

)
+A−1

i

(e2(t−ti−1)Ai − I)

2
. (8)

Moreover, we use parallel scans to efficiently compute the the marginal distributions µα
ti =

N (mti ,Σti) at each time stamp {ti}Ki=1. Given an associative operator ⊗ and a sequence of
elements [st1 , · · · stK ], the parallel scan algorithm (Scan) computes the all-prefix-sum which returns
the sequence [st1 , (st1 ⊗ st2), · · · , (st1 ⊗ st2 ⊗ · · · ⊗ stK )] in O(logK) time. Since the Gaussian
distribution can be chareacterized by the first two moments, applying the Scan to the m and Σ yields
the desired computation. See Appendix B for more details.

Amortization. To enhance flexibility and efficiency, we treat {yti}Ki=1 as an auxiliary vari-
able in the latent space which is produced by a encoder qϕ(y0:T |o0:T ) =

∏k
i=1 qϕ(yti |oti) =∏k

i=1 N (yti |fϕ(oti), σlI) with neural network fϕ applied to the time series {oti}Ki=1. This approach
allows us to decouple the representation learning of yt from the dynamics of Xt, resulting in a more
efficient parameterization. Additionally, it enables the modeling of nonlinear conditional distributions
through a neural network decoder pθ(ot | yt).

Training and Inference. We jointly train the encoder-decoder {θ, ϕ} and the control {α} by
maximizing the evidence lower bound (ELBO) of the observation log-likelihood for time series o0:T :

log pθ(o0:T ) ≥ EHT∼qϕ(y0:T |o0:T )

[
log

∏K
i=0 pθ(oti |yti)pθ(HT )∏K

i=0 qϕ(yti |oti)

]
(9)

⪆ EHT∼qϕ(y0:T |o0:T )

K∑
i=1

[log pθ(oti |yti)− J (α(θ)|HT )] = ELBO(θ, ϕ, α) (10)

The variational parameters {θ, ϕ} can be optimized separately for each sequence, and the prior
over the auxiliary variable pθ(HT ) can be computed using the ELBO proposed in (5) as part of our
variational inference procedure for the latent posterior P⋆ in proposed Sec 1.1. The overall training
and inference processes are summarized in the Algorithm 1 and the Algorithm 2, respectively.

3



Table 1: Test MSE (×10−2) for inter/extra-polation on USHCN and Physionet. The best results are
highlighted in bold, while the second-best results are shown in blue. † indicates result from [17].

Model Interpolation Extrapolation Runtime (sec./epoch)

USHCN Physionet USHCN Physionet USHCN Physionet

mTAND† 1.766 ± 0.009 0.208 ± 0.025 2.360 ± 0.038 0.340 ± 0.020 7 10
RKN-∆†

t 0.009 ± 0.002 0.186 ± 0.030 1.491 ± 0.272 0.703 ± 0.050 94 39
GRU-∆†

t 0.090 ± 0.059 0.271 ± 0.057 2.081 ± 0.054 0.870 ± 0.077 3 5
GRU-D† 0.944 ± 0.011 0.338 ± 0.027 1.718 ± 0.015 0.873 ± 0.071 292 5736
Latent ODE† 1.798 ± 0.009 0.212 ± 0.027 2.034 ± 0.005 0.725 ± 0.072 110 791
ODE-RNN† 0.831 ± 0.008 0.236 ± 0.009 1.955 ± 0.466 0.467 ± 0.006 81 299
GRU-ODE-B† 0.841 ± 0.142 0.521 ± 0.038 5.437 ± 1.020 0.798 ± 0.071 389 90
CRU† 0.016 ± 0.006 0.182 ± 0.091 1.273 ± 0.066 0.629 ± 0.093 122 (57.8)∗ 114 (63.5)∗

PBDF (Ours) 0.006 ± 0.001 0.116 ± 0.011 0.941± 0.014 0.627 ± 0.019 2.3 3.8

2 Experiment

In this section, we present empirical results that validate the effectiveness of PBDF on irregular
time-series modeling. Here, we conduct experiments on two tasks: interpolation and extrapolation,
using two different real-world datasets, USHCN [13] and Physionet [20]. We compare our approach
against various baselines including RNN architecture (RKN-∆t [1], GRU-∆t [6], GRU-D [4]) as
well as dynamics-based models (Latent ODE [5, 15], ODE-RNN [15], GRU-ODE-B [7], CRU [17])
and attention-based models (mTAND [19]), which have been developed for modeling irregular time
series data. In addition to reporting the test MSE loss for each task and dataset, we also provide the
actual training time per epoch for each model to validate PBDF’s computational efficiency. For all
experiments, we followed the same experimental setup as in [18]. Additional experimental details
can be found in Appendix E.

Interpolation We begin by evaluating the effectiveness of PBDF on the interpolation task. Follow-
ing the approach of [17] and [15], each model is required to infer all time points t ∈ T based on the
complete set of observations xT . The interpolation results presented in Table 1 clearly indicate that
PBDF outperforms other baselines in terms of test MSE loss for the Physionet dataset and comparable
performance for the USHCN dataset.

Extrapolation We evaluated PBDF’s performance on the extrapolation task following the experi-
mental setup of [17]. Each model infer values for all time stamps t ∈ T ′, where T ′ denotes the union
of observed time stamps T = {ti}ki=1 and unseen time stamps Tu = {ti}Ni=k+1, i.e., T ′ = T ∪ Tu.
For the Physionet dataset, input time stamps T covered the first 24 hours, while target time stamps
T ′ spanned the first 48 hours. In the USHCN dataset, the timeline was split evenly, with tk = N

2 . We
report the mean squared error (MSE) for unseen time stamps Tu = T ′ − T . As shown in Table 1,
PBDF consistently outperformed all baselines in terms of MSE on both datasets. Particularly for
USHCN, PBDF achieved a substantial performance margin over the second-best model.

Computational Efficiency To assess the training costs relative to dynamics-based models that rely
on numerical simulation, we re-ran CRU on the same hardware used for training our model (highlited
by ∗ in Table 1. Specifically, we utilized a single NVIDIA RTX A6000 GPU. As shown in Table 1,
PBDF substantially reduces training costs when compared to dynamics-based models. Notably,
PBDF exhibited a faster runtime than CRU while achieving superior performance. These findings
demonstrate PBDF’s capability to accurately approximate the posterior distribution for unseen time
points, all while maintaining computational efficiency.

3 Conclusion

In this work, we introduce a novel variational inference method for approximating the filtering
distribution of CD-SSM by leveraging SOC. Linear approximation of controlled drift function
enable us parallel computation of the latent dynamics, thereby improving the efficiency of inference
algorithm of filtering distribution. Furthermore, our approach incorporates amortization, which
successfully models complex real-world time-series data such as USHCN and Physionet.
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A Proof of Theorem 1.2

Proof. For any t ∈ [ti, ti+1), the solution to (6) at time t is given as

Xt = e∆i(t)Ai

(
Xti +

∫ t

ti

e−∆i(s)Aiαids+

∫ t

ti

e−∆i(s)AidWs

)
,∆i(t) =

{
t− ti, for t > ti
0, for t ≤ ti.

(11)
Given that we have defined X0 ∼ N (m0,Σ0), Xti is a Gaussian process for any i ∈ [1 : K]. The
first two moments of Gaussian process can be computed from (11). First, given Ai is diagonal, the in-
tegral can be computed as

∫ t

ti
e−∆i(s)Aids = A−1

i (I−e−∆i(t)Ai) and Mi(t) :=
∫ t

ti
e−∆i(s)AidWs

is a martingale process with respect to Pα i.e.,EPα [Mi(t)] = 0. Hence, since αi is time-invariant
vector, the mean EP[Xt] = mt can be computed as

mt = e∆i(t)Aimti +Ai
−1(e∆i(t)Ai − I)αi. (12)

Secondly, for a covariance EP[(Xt −mt)(Xt −mt)
T ] = Σt, we can compute

Σt = EPα

[
e2∆i(t)Ai (Xti −mti +Mi(t)) (Xti −mti +Mi(t))

T
]

(13)

(i)
= e2∆i(t)AiEPα

[
(Xti −mti)(Xti −mti)

T + ∥Mi(t)∥22
]

(14)

(ii)
= e2∆i(t)AiΣti +

1

2
A−1

i (e2∆i(t)Ai − I), (15)

where (i) follows from the fact that Mi(t) is a martingale and we use Itô isometry in (ii):

EPα

[
∥Mi(t)∥22

]
= EPα

[∫ t

ti

∥∥∥e−∆i(s)Ai

∥∥∥2
2
ds

]
=

1

2
A−1

i (I− e−2∆i(t)Ai). (16)

Hence, we get the Gaussian law of Xt at time t ∈ [ti, ti+1), which is given by

N
(
e∆i(t)Aimti +A−1(e∆i(t)Ai − I)αi, e

2∆i(t)AiΣti +
1

2
A−1

i (e2∆i(t)Ai − I)

)
. (17)

Furthermore, given recurrence forms of mean (12) and covariance (15), the first two moments of
Gaussian distribution for each time steps ti can be computed sequentially. For simplicity, assume that
A = Ai = Aj for all i, j ∈ [1, · · · , k], as this can be easily extended to the case where Ai ̸= Aj .
Then, for a mean mti we have,

mt1 = e∆0(t1)Amt0 +A−1(e∆0(t1)A − I)α1 (18)

mt2 = e∆0(t2)Amt0 + e∆1(t2)AA−1(e∆0(t1)A − I)α1 +A−1(e∆1(t2)A − I)α2 (19)
... =

... (20)

mti = e∆0(ti)Amt0 +

i∑
k=1

(
e∆k(ti)AA−1(e∆k−1(tk)A − I)αk

)
(21)

Moreover, for a covariance Σti , similar calculation yields

Σt1 = e2∆0(t1)AΣt0 +
1

2
A−1(e2∆0(t1)A − I) (22)

Σt2 = e2∆0(t2)AΣt0 +
1

2
e2∆1(t2)AA−1(e2∆0(t1)A − I) +

1

2
A−1(e2∆1(t2)A − I) (23)

... =
... (24)

Σti = e2∆0(ti)AΣt0 +
1

2

i∑
k=1

(
e2∆k(ti)AA−1(e2∆k−1(tk)A − I)

)
(25)

Therefore, given a quadruplet (mt0 ,Σt0 ,A, {αi}Ki=1), the mean and covariance for any time t ∈
[0, T ] can be computed. This concludes proof.
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B Parallel Scan

The parallelization of scan operation so called all-prefix-sums algorithms [2] have been well studied.
Given an associative operator ⊗ and a sequence of elements [st1 , · · · stK ], the parallel scan algorithm
computes the all-prefix-sum which returns the sequence [st1 , (st1⊗st2), · · · , (st1⊗st2⊗· · ·⊗stK )] in
O(logK) time. We already have verified that the first two moments {mti ,Σti}Ki=1 of the controlled
distributions {µα

ti}
K
i=1 can be estimated by the linear recurrences in (12, 15),

mti = Âi−1mti−1
+ B̂i−1αi−1 (26)

Σti = Â2
i−1Σt−1

+ B̄i−11d, (27)

where, for brevity, we define Âi−1 = e∆i−1(ti)Ai−1 , B̂i−1 = A−1
i−1(e

∆i−1(ti)Ai−1 − I), B̄i−1 =
1
2A

−1
i−1(e

2∆i−1(ti)Ai−1 − I) and 1d = (1, · · · , 1) ∈ Rd. For a parallel scan, we will define the
sequence of tuple {Mi}ki=1, such that each element is Mi = (Âi−1, B̂i−1αi−1) and {Si}ki=1, such
that each element is Si = (Â2

i−1, B̄i−11d) for {mti}ki=1 and {Σti}ki=1, respectively.

Now, let us define a binary operator ⊗:

Mi ⊗Mi+1 = (Âi ◦ Âi−1, Âi ◦ B̂i−1αi−1 + B̂iαi) (28)

Si ⊗ Si+1 = (Â2
i ◦ Â2

i−1, Â
2
i ◦ B̄i−11d + B̄i1d) (29)

We can verifying that ⊗ is associative operator since it satisfying:

(Ms+1 ⊗Mt+1)⊗Mu−1 = (Ât ◦ Âs, Ât ◦ B̂sαs + B̂tαt)⊗ (Âu, B̂uαu) (30)

= (Âu ◦ Ât ◦ Âs, Âu ◦ Ât ◦ B̂sαs + Âu ◦ B̂tαt + B̂uαu) (31)

Ms+1 ⊗ (Mt+1 ⊗Mu+1) = (Âs, B̂sαs)⊗ (Âu ◦ Ât, Âu ◦ B̂tαt + B̂uαu) (32)

= (Âu ◦ Ât ◦ Âs, Âu ◦ Ât ◦ B̂sαs + Âu ◦ B̂tαt + B̂uαu). (33)

Now, the operator ⊗ yields similar results for Si, both Mi and Si can be computed using a parallel
scan algorithm. In other words, we can access the marginal distributions for Pα at each observed
time stamp in a parallel way. See [21] for a comprehensive example.

C Proof of Proposition 1.1

Proof. For a latent dynamics X0:T , the ELBO is given as

log p(y0:T ) = logEP

[
K∏
i=1

gti(yti |Xti)

]
(34)

(i)
= logEPα

[
K∏
i=1

gti(yti |Xα
ti)

dP
dPα

(Xα
0:T )

]
(35)

(ii)

≥ EPα

[
K∑
i=1

log gti(yti |Xα
ti) + log

dP
dPα

(Xα
0:T )

]
(36)

(iii)
= EPα

[
K∑
i=1

log gti(yti |Xα
ti)−

∫ T

0

1

2
∥αs∥2 ds

]
, (37)

where (i) follows from the change of measure, (ii) follows by applying the Jensen’s inequality. For
a (iii), we utilize the Girsanov theorem [14], dP

dPα = exp
(
−
∫ T

0
1
2 ∥αs∥2 +

∫ T

0
αsdW̃s

)
with a Pα

adapted Wiener process W̃s and by the definition of α in Sec 1.2, we get

EPα

[
log

dP
dPα

]
= EPα

[
−
∫ T

0

1

2
∥αs∥2 ds+

∫ T

0

αsdW̃s

]
= EPα

[
−
∫ T

0

1

2
∥αs∥2 ds

]
. (38)

This concludes the proof.
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D Derivation of Amortized ELBO in (9).

Let o0:T is given time-series and y0:T ∼ qϕ(y0:T |o0:T ). For a auxiliary variable y0:T , the ELBO is
given as

log pθ(o0:T ) ≥ Eqϕ(y0:T |o0:T )

[
log

∏K
i=1 pθ(oti |yti)p(y0:T )∏K

i=1 qϕ(yti |oti)

]
(39)

= Eqϕ(y0:T |o0:T )

[
K∑
i=1

log pθ(oti |yti) + log p(y0:T )− log

K∏
i=1

qϕ(yti |oti)

]
(40)

≥ Eqϕ(y0:T |o0:T )

[
K∑
i=1

log pθ(oti |yti)− J (α|HT )− log

K∏
i=1

qϕ(yti |oti)

]
(41)

= Eqϕ(y0:T |o0:T )

[
K∑
i=1

log pθ(oti |yti)− J (α|HT )−
K∑
i=1

log qϕ(yti |oti)

]
(42)

(i)
= Eqϕ(y0:T |o0:T )

[
K∑
i=1

log pθ(oti |yti)− J (α|HT )

]
, (43)

where (i) follows from Eqϕ(y0:T |o0:T )

[
−
∑K

i=1 log qϕ(yti |oti)
]
= C since qϕ is Gaussian distribu-

tion with constant covariance matrix.

E Implementation Details

Training. For all experiments, we employed the same experimental setup as [18]. We train our
model for 100 epochs using Adam optimizer with learning rate 1e−3 and batch size of 50. Moreover,
we scale by 1e− 6 for the regularization term in J (α) in (5). We report the mean and std over 5 runs
with different seeds. For a pair comparison, we keep the number of parameters similar with CRU
which approximately 18K and 28K, for USHCN and Physionet respectively.

Network. For fθ and gθ, we adopt the transformer architecture Tθ from [24], which utilizes self-
attention to capture long-term dependencies in the encoded latent observations while maintaining
computational efficiency. Specifically, the transformer encodes the history of observations up to the
current time, i.e., zt = Tθ(Ht), using masked attention. This history-dependent variable zt is then
fed into fθ and gθ, i.e.,w = fθ(zt), αi = gθ(zt). We define fθ as a single linear layer with a softmax
output and gθ as a trainable matrix Bθ ∈ Rd×d. The neural network encoder fϕ is a 3-layer MLP,
and the decoder pθ is a 1-layer MLP. We set L = 20 for the matrix A and set the latent dimension
as 20 for USHCN and 25 for Physionet. For transformer Tθ, we set the depth as 4 for all datasets
without dropout.

E.1 Datasets

USHCN. The USHCN dataset [13] includes daily measurements from 1, 218 weather stations
across the US, covering five variables: precipitation, snowfall, snow depth, and minimum and
maximum temperature. We follow the pre-processing steps outlined in [8], but select a subset of
1, 168 stations over a four-year period starting from 1990, consistent with [18]. Moreover, we make
the time series irregular by subsampling 50% of the time points and randomly removing 20% of the
measurements.

Physionet. The Physionet dataset [20] contains 8000 multivariate clinical time-series obtained from
the intensive care unit (ICU). Each time-series includes various clinical features recorded during the
first 48 hours after the patient’s admission to the ICU. We preprocess the data as in [16]. Although the
dataset contains a total of 41 measurements, we eliminate 4 static features, i.e., age, gender, height,
and ICU-type, leaving 37 time-varying features. We round the time-steps to 6-minute intervals,
following [18].
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For each dataset, we normalize the features to lie within the range [0, 1]. Additionally, we scale the
time stamps by a factor of 0.3 for USHCN and 0.2 for Physionet. The data is split into 60% for
training, 20% for validation, and 20% for testing.
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