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Abstract

Machine-Generated Text (MGT) detection, a001
task that discriminates MGT from Human-002
Written Text (HWT), plays a crucial role in003
preventing misuse of text generative models,004
which excel in mimicking human writing style005
recently. Latest proposed detectors usually take006
coarse text sequences as input and fine-tune007
pretrained models with standard cross-entropy008
loss. However, these methods fail to consider009
the linguistic structure of texts. Moreover, they010
lack the ability to handle the low-resource prob-011
lem which could often happen in practice con-012
sidering the enormous amount of textual data013
online. In this paper, we present a coherence-014
based contrastive learning model named COCO015
to detect the possible MGT under low-resource016
scenario. To exploit the linguistic feature, we017
encode coherence information in form of graph018
into text representation. To tackle the chal-019
lenges of low data resource, we employ a con-020
trastive learning framework and propose an im-021
proved contrastive loss for preventing perfor-022
mance degradation brought by simple samples.023
The experiment results on two public datasets024
and two self-constructed datasets prove our ap-025
proach outperforms the state-of-art methods026
significantly.027

1 Introduction028

Thriving progress in the field of text generative029

models (TGMs) (Kenton and Toutanova, 2019;030

Yang et al., 2019; Liu et al., 2019; See et al., 2019;031

Keskar et al., 2019; Dathathri et al., 2019; Lewis032

et al., 2020; Brown et al., 2020; Gao et al., 2021a;033

Madotto et al., 2021; Ouyang et al., 2022), e.g.,034

ChatGPT1, enables everyone to produce MGTs035

massively and rapidly. However, the accessibility036

to high-quality TGMs is prone to cause misuses,037

such as fake news generation (Zellers et al., 2019;038

Brown et al., 2020; Yanagi et al., 2020), product re-039

view forging (Adelani et al., 2020), and spamming040

1https://chat.openai.com

Figure 1: Illustration of sentence-level structure differ-
ence between HWT and MGT, the MGT is generated by
GROVER (Zellers et al., 2019). HWT is more coherent
than MGT as the sentences share more same entities
with each other.

(Tan et al., 2012), etc. MGTs are hard to distin- 041

guish by an untrained human for their human-like 042

writing style (Ippolito et al., 2020) and the exces- 043

sive amount (Grinberg et al., 2019), which calls for 044

the study of reliable automatic MGT detectors. 045

Previous works on MGTs detection mainly con- 046

centrate on sequence feature representation and 047

classification (Gehrmann et al., 2019; Solaiman 048

et al., 2019; Zellers et al., 2019). Recent studies 049

have shown the good performance of automated 050

detectors in a fine-tuning fashion (Solaiman et al., 051

2019). Although the fine-tuning based detectors 052

have demonstrated their effectiveness, they still suf- 053

fer from two issues that limit their conversion to 054

practical use: (1) Existing detectors treat input doc- 055

uments as flat sequences of tokens and use neural 056

encoders or statistical features (e.g., TF-IDF) to 057

represent text as the dense vector for classification. 058

These methods rely much on the token-level dis- 059
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tribution difference of texts in each class, which060

ignores high-level linguistic representation of text061

structure. (2) Compared with the enormous num-062

ber of online texts, annotated dataset for training063

MGT detectors is rather low-resource. Constrained064

by the amount of available annotated data, tradi-065

tional detectors sustain frustrating accuracy and066

even collapse during the test stage.067

As shown in Fig. 1, MGTs and HWTs exhibit068

difference in terms of coherence traced by entity069

consistency. Thus, we propose an entity coherence070

graph to model the sentence-level structure of texts071

based on the thoughts of Centering Theory (Grosz072

and Sidner, 1986) , which evaluates text coherence073

by entity consistency. Entity coherence graph treats074

entities as nodes and builds edges between entities075

in the same sentences and same entities among dif-076

ferent sentences to reveal the text structure. Instead077

of treating text as flat sequence, coherence mod-078

eling helps to introduce distinguishable linguistic079

feature at input stage and provides explainable dif-080

ference between MGTs and HWTs.081

To alleviate the low-resource problem in the sec-082

ond issue, inspired by the resurgence of contrastive083

learning (He et al., 2020; Chen et al., 2020), we084

utilize proper design of sample pair and contrastive085

process to learn fine-grained instance-level features086

under low resource. However, it has been proven087

that the easiest negative samples are unnecessary088

and insufficient for model training in contrastive089

learning (Cai et al., 2020). To circumvent the per-090

formance degradation brought by the easy samples,091

we propose a novel contrastive loss with capability092

to reweight the effect of negative samples by diffi-093

culty score to help model concentrate more on hard094

samples and ignore the easy samples.095

Extensive experiments on multiple datasets096

(GROVER, GPT-2, GPT-3) and a case study with097

ChatGPT-generated texts demonstrate the effective-098

ness of our proposed method.099

In summary, our contributions are summarized100

as follows:101

• Coherence Graph Construction: We model102

the text coherence with entity consistency and103

sentence interaction while statistically prov-104

ing its distinctiveness in MGTs detection, and105

further introduce this linguistic feature at in-106

put stage.107

• Improved Contrastive Loss: We propose a108

novel contrastive loss in which hard negative109

samples are paid more attention for improving 110

detection accuracy of challenging sample. 111

• Outstanding Performance: We achieve state- 112

of-art performance on four MGT datasets in 113

both low-resource and high-resource setting. 114

Experimental results verify the effectiveness 115

of our model. 116

2 Related Work 117

Machine-generated Text Detection. Machine- 118

generated texts, also named deepfake or neural fake 119

texts, are generated by language models to mimic 120

human writing style, making them perplexing for 121

humans to distinguish (Ippolito et al., 2020). Gen- 122

erative models like GROVER (Zellers et al., 2019), 123

GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 124

2020) and emerging ChatGPT has been evaluated 125

on the MGT detection task and achieve good results. 126

Bakhtin et al. (2019) train an energy-based model 127

by treating the output of TGMs as negative sam- 128

ples to demonstrate the generalization ability. Deep 129

learning models that incorporate stylometry and ex- 130

ternal knowledge are also feasible for improving 131

the performance of MGT detectors (Uchendu et al., 132

2019; Zhong et al., 2020). Our method differs 133

from the previous work by analyzing and model- 134

ing text coherence as distinguishable feature and 135

emphasizing the performance improvement under 136

low-resource scenario. 137

Coherence Modeling. For generative models, co- 138

herence is the critical requirement and vital target 139

(Hovy, 1988). Previous works mainly discuss two 140

types of coherence, local coherence (Mellish et al., 141

1998; Althaus et al., 2004) and global coherence 142

(Mann and Thompson, 1987). Local coherence 143

focus on sentence-to-sentence transitions (Lapata, 144

2003), while global coherence tries to capture com- 145

prehensive structure (Karamanis and Manurung, 146

2002). Our method strives to represent both local 147

and global coherence with inner- and inter-sentence 148

relations between entity nodes. 149

Contrastive Learning. Contrastive learning in 150

NLP demonstrates superb performance in learn- 151

ing token-level embeddings (Su et al., 2021) and 152

sentence-level embeddings (Gao et al., 2021b) for 153

natural language understanding. With in-depth 154

study of the mechanism of contrastive learning, 155

the hardness of samples is proved to be crucial 156

in the training stage. Cai et al. (2020) define the 157

dot product between the queries and the negatives 158
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Figure 2: Overview of COCO. Input document is parsed to construct a coherence graph (3.1), the text and graph are
utilized by a supervised contrastive learning framework (3.2), in which coherence encoding module is designed
to encode and aggregate to generate coherence-enhanced representation (3.2.3). After that, we employ a MoCo
based contrastive learning architecture in which key encodings are stored in a dynamic memory bank (3.2.4) with
improved contrastive loss to make final prediction (3.2.5).

in normalized embedding space as hardness and159

figured out the easiest 95% negatives are insuffi-160

cient and unnecessary. Song et al. (2022) propose161

a difficulty measure function based on the distance162

between classes and apply curriculum learning to163

the sampling stage. Differently, our method pays164

more attention to hard negative samples for improv-165

ing the detection accuracy of challenging samples.166

3 Methodology167

The workflow of COCO mainly contains coher-168

ence graph construction, and supervised contrastive169

learning discriminator, and Fig. 2 illustrates its170

overall architecture.171

3.1 Coherence Graph Construction172

In this part, we illustrate how to construct coher-173

ence graph to dig out coherence structure of text by174

modeling sentence interaction.175

According to Centering Theory (Grosz and Sid-176

ner, 1986), coherence of texts could be modeled by177

sentence interaction around center entities. To bet-178

ter reflect text structure and avoid semantic overlap,179

we proposed to construct an undirected graph with180

entities as nodes. Specifically, we first implement181

the ELMo-based NER model TagLM (Peters et al.,182

2017) with the help of NER toolkit AllenNLP2183

2https://demo.allennlp.org/named-entity-recognition

to extract the entities from document. An rela- 184

tion < inter > is constructed between same enti- 185

ties in different sentences and nodes within same 186

sentences are connected by relation < inner > 187

for their natural structure relevance. Formally, the 188

mathematical form of coherence graph’s adjacent 189

matrix is defined as follows: 190

Aij =

1 rel ⟨inner⟩ vi,a ̸= vj,b, a = b
1 rel ⟨inter⟩ vi,a = vj,b , a ̸= b
0 rel None others

191

where vi,a represents i-th entity in sentence a, 192

which is regarded as node in coherence graph. 193

3.2 Supervised Contrastive Learning 194

3.2.1 Model Overview 195

The training process is illustrated in Fig. 2. Each 196

entry in the dataset is document with its coher- 197

ence graph. The entries in training set are sampled 198

randomly into keys and queries. Two coherence 199

encoder modules (CEM) fk and fq, are initialized 200

the same to generate coherence-enhanced represen- 201

tation Dk and Dq for key and query. A dynamic 202

memory bank with the size of all training data is 203

initialized to store all key representation and their 204

annotations for providing enough contrastive pairs 205

in low-resource scenario. In every training step, the 206

newly encoded key graphs update memory bank 207

following First In First Out (FIFO) rule to keep 208

it updated and the training process consistent. A 209
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novel loss composed of improved contrastive loss210

and cross-entropy loss ensures the model’s ability211

to achieve instance-level intra-class compactness212

and inter-class separability while maintaining the213

class-level distinguishability. A linear discrimina-214

tor takes query representations as input and gener-215

ates prediction results. The pseudocode of training216

process is shown in Appendix A.8.217

3.2.2 Positive/Negative Pair Definition218

In supervised setting, where we have access to la-219

bel information, we define two samples with same220

label as positive pair and that with different labels221

as negative pair for incorporating label information222

into training process.223

3.2.3 Encoder Design224

In this part, we introduce how to initialize node225

representation and graph neural network structure226

which is utilized to integrate coherence information227

into semantic representation of text by propagating228

and aggregating information from different granu-229

larity with an innovated coherence encoder module230

(CEM).231

Node Representation Initialization. We initialize232

the representation of entity nodes with powerful233

pre-trained model RoBERTa for its superior ability234

to encode contextual information into text repre-235

sentation.236

Given an entity e with a span of n tokens, we237

utilize RoBERTa to map input document x to em-238

beddings h(x). The contextual representation of e239

is calculated as follows:240

Zv =
1

n

n∑
i=0

h(x)ei , (1)241

where ei is the absolute position where the i-th242

token in e lies in the whole document.243

Relation-aware GCN. Based on the vanilla Graph244

Convolutional Networks (Welling and Kipf, 2016),245

we propose a novel method to assign different246

weight Wr for inter and inner relation r with247

Relation-aware GCN. Relation-aware GCN con-248

volute edges of each kind of relation in the coher-249

ence graph separately. The final representation is250

the sum of GCN outputs from all relations. We251

use two-layer GCN in the model because more lay-252

ers will cause an overfitting problem under low253

resources. We define the relation set as R, and the254

calculation formula is as follows:255

H(i+1) =
∑
r∈R

ÂReLU((ÂH(i)W (i)
r )W (i+1)

r ),

Â = D̃− 1
2 ÃD̃− 1

2 ,

(2) 256

where H(i) ∈ RN×d is node representation in i-th 257

layer. Ã = A+I , A is the adjacency matrix of the 258

coherence graph, Â is the normalized Laplacian 259

matrix of Ã, Wr is the relation transformation 260

matrix for relation r. 261

Sentence Representation. Afterward, we aggre- 262

gate updated node representation from last layer of 263

Relation-aware GCN into sentence-level represen- 264

tation to prepare for concatenation with sequence 265

representation from RoBERTa. The aggregation 266

follows the below rule: 267

Zsi =
1

Mi

Mi∑
j

σ(WsH(i,j) + bs), (3) 268

where Mi represents the number of entities in i- 269

th sentence, H(i,j) represents the embedding of 270

j-th entity in i-th sentence, Ws is weight matrix 271

and bs is bias. All the sentence representations 272

within same document are concatenated as sentence 273

matrix Zs. 274

Document Representation with Attention 275

LSTM. We design a self-attention mechanism for 276

discovering the sentence-level coherence between 277

one sentence and other sentences, and apply 278

LSTM with the objective to track the coherence in 279

continuous sentences and take the last hidden state 280

of LSTM for aggregated document representation 281

containing comprehensive coherence information. 282

The calculation is described as follows: 283

Zc = LSTM(softmax(γ
norm(K)norm(Q)T√

dZ
)V ), (4) 284

where K,Q,V are linear transformations of Zs 285

with matrix Wk,Wq,Wv, dZ is the dimension 286

of representation Zs, and γ is a hypergammar- 287

parameter for scaling. 288

Finally, we concatenate Zc and the sequence 289

representation h([CLS]) from the RoBERTa’s last 290

layer to generate document coherence-enhanced 291

representation D. 292

3.2.4 Dynamic Memory Bank 293

The dynamic memory bank is created to store as 294

much as key encoding Dk to form adequate posi- 295

tive and negative pairs within a batch. The dynamic 296
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Figure 3: Illustration of coherence encoder module (CEM) which encodes and fuses the coherence graph and text
sequence to generate coherence-enhanced representation of document.

memory bank is maintained as a queue so that the297

newly encoded keys could replace the outdated298

ones, which keeps the consistency between the key299

encoding and current training step.300

3.2.5 Loss Function301

Following the definition of positive pairs and nega-302

tive pairs above, traditional supervised contrastive303

loss (Gunel et al., 2020) treats all positive pairs and304

negative pairs equally.305

However, with recognition that not all negatives306

are created equal (Cai et al., 2020), our goal is307

to emphasize the informative samples for helping308

the model to differentiate difficult samples. Thus,309

we propose an improved contrastive loss which310

dynamically adjusts the weight of negative pair311

similarity according to the hardness of negative312

samples. To be specific, the hard negative samples313

should be assigned larger weight for stimulating the314

model to better pull same class together and push315

different class away. The improved contrastive loss316

is defined as:317

LICL =

M∑
j=1

1yi=yj log
Sij∑

p∈P(i) Sip +
∑

n∈N (i) rfinSin
,

rfij = β
Di

qD
n
k

avg(Di
qD

1:|N (i)|
k )

,

Sij = exp(Di
qD

j
k/τ),

(5)

318

where P(i) is the positive set in which data has the319

same label with qi and N (i) is the negative set in320

which data has different label from qi.321

Apart from instance-level learning mechanism,322

a linear classifier combined with cross entropy loss323

LCE is employed to provide the model with class-324

level separation ability. LCE is calculated by 325

LCE =
1

N

∑N

i=1
−[yilog(pi)+(1−yi)log(1−pi)],

(6) 326

where pi is the prediction probability distribution 327

of i-th sample. The final loss Ltotal is a weighted 328

average of LICL and LCE as: 329

Ltotal = αLICL + (1− α)LCE, (7) 330

where the hyperparameter α adjusts the relative 331

balance between instance compactness and class 332

separability. 333

3.2.6 Momentum Update 334

The parameters of query encoder fq and the clas- 335

sifier can be updated by gradient back-propagated 336

from Ltotal. We denote the parameters of fq as 337

θq, the parameters of fk as θk, The key encoder 338

fk’s parameters are updated by momentum update 339

mechanism: 340

θk ← βθk + (1− β)θq, (8) 341

where the hyperparameter β is momentum coeffi- 342

cient. 343

4 Experiments 344

4.1 Datasets 345

We evaluate our model on the following datasets: 346

• GROVER Dataset is a News-Style dataset 347

provided by (Zellers et al., 2019), in which 348

HWTs are collected from RealNews, a large 349

corpus of news articles from Common Crawl, 350

and MGTs are generated by Grover-Mega, a 351

transformer-based news generator with param- 352

eters sized 1.5B. 353
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Dataset Train Valid Test

GROVER
HWT 5,000 2,000 8,000
MGT 5,000 1,000 4,000

GPT-2
HWT 25,000 5,000 5,000
MGT 25,000 5,000 5,000

GPT-3 unmixed
HWT 5,455 1,000 1,000
MGT 5,455 1,000 1,000

GPT-3 mixed
HWT 5,033 1,000 1,000
MGT 5,033 1,000 1,000

Table 1: Basic statistics of datasets.

• GPT-2 Dataset is a Webtext-style dataset354

provided by OpenAI3 with HWTs adopted355

from WebText and MGTs produced by GPT-2356

XLM-1542M.357

• GPT-3 Dataset is a News-Style open source358

dataset constructed by us based on the text-359

davinci-0034 model of OpenAI, which is the360

most capable GPT-3 model so far and can gen-361

erate longer texts (maximum 4,000 tokens).362

The GPT-3 model refer to various latest news-363

papers (Dec. 2022 - Present) whose full texts364

act as the HWTs part and generate news by365

imitation. We use two subsets: mixed- and366

unmixed-provenances. The details of this367

dataset are explained in Appendix A.1.368

The statistics of datasets is summarized in Table369

1 and the implementation details are in Appendix370

A.3.371

4.2 Comparison Models372

We compare COCO to the state-of-art detection373

methods to reveal the effectiveness. The baselines374

are introduced as follows.375

• GPT-2 (Radford et al., 2019), a strong pre-376

trained language model based on the decoder377

architecture of transformer. We use GPT-2378

small with parameters sized 124M for the fair-379

ness of comparison.380

• RoBERTa (Liu et al., 2019), a power-381

ful transformers-based bidirectional language382

model with robust performance on down-383

stream tasks. We use RoBERTa-base sized384

110M in the experiment.385

• XLNet (Yang et al., 2019), a language model386

which is superb in understanding long docu-387

3https://github.com/openai/gpt-2-output-dataset
4https://beta.openai.com/docs/models/gpt-3

ments. We exploit XLNet-base whose scale is 388

110M. 389

• CE+SCL (Gunel et al., 2020), a state-of-the- 390

art supervised contrastive learning method in 391

various downstream task. We train the detec- 392

tor with Cross-Entropy loss (CE) and super- 393

vised contrastive loss (SCL) calculated within 394

a mini-batch. 395

• DualCL (Chen et al., 2022), a contrastive 396

learning method with the addition of label 397

representations for data augmentation. 398

4.3 Performance Comparison 399

As shown in Table 2, COCO surpasses state-of-the- 400

art methods in MGT detection task 4.25%, 5.98% 401

(limited dataset), and 3.31%, 3.58% (full dataset) 402

in average in terms of accuracy and F1-score, re- 403

spectively. The result indicates the rationality of 404

coherence graph designing and the effectiveness 405

of encoding coherence information into document 406

representation, which further proves the coherence 407

difference between MGT and HWT. Moreover, it 408

should be noticed that COCO gets less affected by 409

randomness, which illustrates that the coherence 410

graph we construct is a robust feature that helps sta- 411

bilize the model performance. Meanwhile, COCO 412

outperforms CE+SCL and DualCL regardless the 413

size of training set, which suggests the success of 414

improved contrastive loss to solve the performance 415

degradation problem brought by simple negative 416

samples. 417

We also find GROVER Dataset is the hardest to 418

detect. It is because GROVER generator is trained 419

in an adversarial fashion with the objective to de- 420

ceive the verifier, which endows the generator with 421

deceptive nature. To our surprise, GPT-3 dataset 422

is overly simple to all detectors. We conduct ex- 423

tensive experiments on different self-constructed 424

and published GPT-3 dataset generated by a series 425

prompts, which also validate this thundering con- 426

clusion. The experiment details and results are in 427

Appendix A.2. 428

Due to the secrecy of GPT-3 implementation 429

details and the lack of interpretability of LLMs, 430

we can only make several inferences for this phe- 431

nomenon up to the best of our knowledge. First, 432

since GPT-3 is fine-tuned with RLHF (Ouyang 433

et al., 2022), we suppose that instructions like "in- 434

timate a piece of news" is rare in prompt dataset 435

used in GPT-3 fine-tuning, which causes its inade- 436

quate ability to imitate news. In fact, we find news 437
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Dataset GROVER GPT-2

Size Limited Dataset (10%) Full Dataset Limited Dataset (10%) Full Dataset

Metric ACC F1 ACC F1 ACC F1 ACC F1

GPT2 0.6401 ± 0.0136 0.4289 ± 0.0413 0.8274 ± 0.0091 0.8003 ± 0.0141 0.8575 ± 0.0041 0.8406 ± 0.0070 0.8913 ± 0.0066 0.8839 ± 0.0078

XLNet 0.6906 ± 0.0321 0.5193 ± 0.0365 0.8156 ± 0.0079 0.7493 ± 0.0073 0.8837 ± 0.0031 0.8732 ± 0.0041 0.9091 ± 0.0091 0.9027 ± 0.0111

RoBERTa 0.7730 ± 0.0121 0.6370 ± 0.0186 0.8772 ± 0.0029 0.8171 ± 0.0048 0.9244 ± 0.0041 0.9214 ± 0.0045 0.9402 ± 0.0039 0.9384 ± 0.0044

DualCL 0.6926 ± 0.0634 0.5397 ± 0.0971 0.7574 ± 0.0855 0.6388 ± 0.130 0.7874 ± 0.1210 0.6950 ± 0.0944 0.8023 ± 0.1120 0.8046 ± 0.1530

CE+SCL 0.7777 ± 0.0134 0.6447 ± 0.0286 0.8782 ± 0.0044 0.8202 ± 0.0057 0.9255 ± 0.0030 0.9241 ± 0.0016 0.9408 ± 0.0006 0.9390 ± 0.0009

COCO 0.7808 ± 0.0044 0.6543 ± 0.0106 0.8826 ± 0.0018 0.8265 ± 0.0036 0.9271 ± 0.0019 0.9254 ± 0.0018 0.9457 ± 0.0004 0.9452 ± 0.0004

Dataset GPT-3 Unmixed GPT-3 Mixed

Size Limited Dataset (10%) Full Dataset Limited Dataset (10%) Full Dataset

Metric ACC F1 ACC F1 ACC F1 ACC F1

GPT2 0.9631 ± 0.0037 0.9666 ± 0.0044 0.9917 ± 0.0056 0.9905 ± 0.0042 0.9623 ± 0.0039 0.9636 ± 0.0046 0.9910 ± 0.0046 0.9910 ± 0.0033

XLNet 0.9252 ± 0.0052 0.9241 ± 0.0054 0.9620 ± 0.0043 0.9634 ± 0.0068 0.9149 ± 0.0044 0.9152 ± 0.0059 0.9513 ± 0.0052 0.9505 ± 0.0039

RoBERTa 0.9916 ± 0.0043 0.9899 ± 0.0049 0.9928 ± 0.0035 0.9913 ± 0.0040 0.9892 ± 0.0022 0.9893 ± 0.0025 0.9923 ± 0.0017 0.9901 ± 0.0024

CE+SCL 0.9918 ± 0.0039 0.9901 ± 0.0058 0.9944 ± 0.0023 0.9943 ± 0.0031 0.9903 ± 0.0020 0.9898 ± 0.0023 0.9932 ± 0.0017 0.9905 ± 0.0038

COCO 0.9932 ± 0.0042 0.9913 ± 0.0033 0.9972 ± 0.0015 0.9957 ± 0.0020 0.9913 ± 0.0034 0.9911 ± 0.0038 0.9932 ± 0.0019 0.9937 ± 0.0028

Table 2: Results of the model comparison. It should be noticed that DualCL is easily affected by random seed,
which may be caused by its weakness in understanding long texts. We do not present the experiment results for
DualCL on GPT-3 dataset because the documents in GPT-3 dataset is so long that DualCL completely fails.

generated by GPT-3 is more like a short version438

of reference news (far shorter than the max output439

length) instead of the imitation. Second, the HWTs440

we use are latest news which are not included in441

GPT-3’s training data. The lack of knowledge back-442

ground about reference news might limit GPT-3’s443

associative ability.Third, we do not fine-tune GPT-3444

with HWTs we collect while model used in GPT-2445

dataset did. The unfamiliarity of GPT-3 with the446

texts it is required to imitate could impair its ability447

to rewrite news in a similar style. We will further448

investigate our hypotheses and provide possible449

deep insights into this counterintuitive but very in-450

teresting phenomenon, which may also exist in the451

GPT-4 model, in future works.452

4.4 Ablation Study453

To illustrate the necessity of some components of454

COCO, we conduct several ablation experiments455

on limited GROVER dataset and the results are456

shown in Table 3. We introduce the ablation model457

structure below:

Model ACC F1

COCO (Plain) 0.7697 0.6428
COCO (Sentence nodes) 0.7733 0.6379
COCO (Coherence) 0.7777 0.6463
COCO (Coherence + LSTM) 0.7787 0.6471
COCO (Coherence + LSTM + SCL) 0.7827 0.6609

COCO 0.7843 0.6684

Table 3: Results of ablation study.

COCO (Plain) removes graph information and 458

encodes only by RoBERTa parts. Moreover, the 459

model removes contrastive learning and uses CE 460

loss. 461

COCO (Sentence Nodes) treats sentences as nodes 462

instead of entities and establish edges between sen- 463

tences which share same entities. Node represen- 464

tation is initialized by RoBERTa embedding and 465

mean-pooling operation. Document representation 466

is obtained by one CEM discarding sentence repre- 467

sentation and attention LSTM part in section 3.2.3. 468

Document representation is calculated by mean- 469

pooling operation on sentence node representations. 470

A linear classification head with cross-entropy loss 471

is used for detection. 472

COCO (Coherence) incorporates coherence graph 473

into the representation of document and deploys 474

sentence representation part in section 3.2.3. The 475

rest are the same with COCO (Sentence Nodes). 476

COCO (Coherence + LSTM) uses attention 477

LSTM for document-level aggregation and the rest 478

is the same as COCO (Coherence). 479

COCO (Coherence + LSTM + SCL) utilizes the 480

contrastive learning framework but the loss func- 481

tion is traditional supervised contrastive loss in- 482

stead of the improved contrastive loss. 483

As shown in Table 3, coherence information 484

and the contrastive learning framework greatly con- 485

tribute to the development of model performance, 486

especially in F1-Score. Replacing entity nodes in 487
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coherence graph with sentences impairs the detec-488

tor, which could be caused by semantic overlap489

between graph representation and text sequence490

representation. The attention LSTM also plays an491

important role in preserving coherence information492

during sentence aggregation. Lastly, the results493

also shows the advantage of improved contrastive494

loss over standard supervised contrastive loss. We495

also investigate the effect of hyperparameters on496

COCO, the results are shown in Appendix A.4.497

4.5 Discussion: Utility of Coherence Graph498

4.5.1 Case Study499

In this subsection, we conduct a case study with500

HWT and MGT produced by sensational ChatGPT501

with the same metadata. As illustrated in Fig. 4,502

we parse two news as coherence graphs. And we503

observe that although ChatGPT expresses fluently,504

it is not coherent from the perspective of coherence505

graph. Hence, COCO utilizes the distinctive coher-506

ence feature and makes correct predictions while507

RoBERTa fails. This reflects even the most popular508

and advanced language model could suffer from509

weak coherence and be detected by COCO.510

Figure 4: An illustration for case study of our method.
Entities in documents are colored green. The blue solid
box indicates the sentence. The orange dashed lines
are inner edges and green dashed lines are inter edges.
Numbers in red indicate the probability of predicted
label.

4.5.2 Static Analysis for Coherence Graph511

We apply static geometric features analysis on co-512

herence graph we construct to provide an in-depth513

view on linguistic explanation about graph struc-514

ture. In the following discussion, we take the515

dataset of GROVER into the analysis. Some basic 516

metrics of data and the corresponding graph are 517

shown in Table 9. 518

Metric HWT MGT
Sample Num. 4994 4991
Avg. Num. of Token 463.2 456.0
Avg. Num. of Vertex 43.60 32.37
Avg. Num. of Edge 107.4 65.44

Table 4: Basic metrics of texts and corresponding coher-
ence graphs.

Degree Distribution of coherence graph semanti- 519

cally measures the co-occurrence and TF-IDF fea- 520

ture of keywords, showing global coherence be- 521

cause high-degree nodes devote to the main topic 522

and low-degree nodes are the extension. The de- 523

gree of the graph representation of HWTs is 2.980, 524

which is 15.0% larger than MGTs (2.591), and the 525

distribution of HWTs has a longer tail than MGTs. 526

Furthermore, we prove that degree distribution can 527

robustly detect MGTs and HWTs when impacted 528

by style and genre differences. More details are 529

discussed in the Appendix A.5. 530

5 Conclusion 531

In this paper, we propose COCO, a coherence- 532

enhanced contrastive learning model for MGT de- 533

tection. We construct a novel coherence graph 534

from document and implement a MoCo-based con- 535

trastive learning framework to improve model per- 536

formance in low-resource setting. An innovative 537

encoder composed of relation-aware GCN and at- 538

tention LSTM is designed to learn the coherence 539

representation from coherence graph which is fur- 540

ther incorparated with sequence representation of 541

document. To alleviate the effect of unnecessary 542

easy samples, we propose an improved contrastive 543

learning loss to force the model to pay more at- 544

tention to hard negative samples. We evaluate our 545

method on MGT datasets generated by GROVER, 546

GPT-2, and GPT-3, respectively, in both low- 547

resource and high-resource settings. COCO outper- 548

forms Transformer-based methods and contrastive- 549

learning-based methods on all datasets and both 550

settings. 551
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Limitations556

In this work, we step forward to better distinguish-557

ing MGTs under the low-resource setting. How-558

ever, several limitations still exist for the broader559

applications of this detector. Firstly, MGTs are560

easier to generate and collect than HWTs, which561

may cause an imbalanced label distribution in the562

dataset. And COCO literally corrupts in extremely563

imbalanced data distribution condition, as shown564

in A.6. Future work could build upon the con-565

trastive learning method of COCO with innovation566

on sampling strategy for harsh low-resource and567

imbalanced data settings. Secondly, our method ar-568

tificially generates a coherence graph for every en-569

try, which is not efficient for larger datasets. What’s570

more, short text, codes, and mathematical proofs,571

which are hard to generate coherence graphs, are572

also limitedly detected by CoCo. More distinctive573

and easy-to-calculate features are worth exploring574

for generating distinguishable representations for575

texts with efficiency while better understanding576

the essence of TGMs. Thirdly, with instruct-based577

generation and human-in-loop fine-tuning models578

prevailing, the strategy and defect of TGMs change579

slightly but constantly. The entity relation with580

the same semantic granularity and concretization581

in this paper would not be enough to detect the582

high-quality content by TGMs in the future. More583

generative and adaptive detection models should584

be considered.585

Ethical Considerations586

We provide insight into the potential weakness of587

TGMs and publish GPT-3 news dataset. We un-588

derstand that the discovery of our work can be589

viciously used to confront detectors. And we un-590

derstand that malicious users can copy the contents591

of our GPT-3 news dataset to disguise real news592

and publish them. However, with the purpose of593

calling for attention to detecting and controlling594

possible misuse of TGMs, we believe our work595

will inspire the advance of the stronger detector of596

MGTs and prevent all potential negative uses of597

language models.598

Our work complies with sharing & publication599

policy of OpenAI5 and all data we collect is in600

public domain and licensed for research purposes.601

5https://openai.com/api/policies/sharing-publication/
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A Appendix904

A.1 Details of GPT-3 Dataset905

GPT-3 Dataset for COCO is our latest dataset for906

the MGT detection task. There are two subsets907

in the self-made dataset for easy analysis of the908

impact of provenance and writing styles: unmixed-909

and mixed provinces. We use the text-davinci-003910

model of OpenAI to generate MGT examples. The911

maximum length of HWTs is 1024 tokens, and the912

target generation length is set as 1024 tokens. Here913

is an example of the MGT data.914

"title": "On Eve of World Cup, FIFA Chief Says,
‘Don’t Criticize Qatar; Criticize Me.’",
"text": "DOHA, Qatar. The president of world
soccer’s governing body on Saturday sought to
blunt mounting concerns about the World Cup
in Qatar with a strident defense of both the
host country’s reputation and FIFA’s authority
over its showpiece championship....... Citing
statistics, history and even childhood to
bolster his case, he at one point likened his own
experience as a redheaded child of immigrants
to Switzerland to the assimilation problems of
gays in the Middle East, and defended the laws,
customs and honor of the host country.",
"authors": ["Tariq Panja"],
"publish_date": "2022-11-19 00:00:00",
"source": "The New York Times",
"url": "https://www.nytimes.com/2022/11/19/sports/
soccer/world-cup-gianni-infantino-fifa.html"

915

And the following data shows the corresponding 916

MGT in the dataset. 917

"title": "On Eve of World Cup, FIFA Chief Says,
‘Don’t Criticize Qatar; Criticize Me.’",
"text": "The 2022 FIFA World Cup in Qatar is fast
approaching, and its organizing committee’s
president, Gianni Infantino, is speaking out
about the lingering criticism of the country
hosting the event. ...... he said. “It is a
once-in-a-lifetime opportunity for the region
to show the world its values and aspirations,
and it is vital that this event is seen as a
celebration of football and a celebration of the
region.”",
"authors": "machine",
"source": "The New York Times",
"matched_hwt_id": 202,
"label": "machine""

918

A.1.1 Human Written Texts 919

Unmixed Subset. The HWTs of the unmixed sub- 920

set are all from The New York Times6 to exclude 921

the impact of writing style. The time span of our 922

data is Nov 1, 2022 - Dec 25, 2022, making sure 923

that no pre-trained model has learned them. We 924

develop the crawler based on news-crawler7. 925

Mixed Subset. The HWTs of the mixed subset 926

come from various sources, listed as Table 5. The 927

time span of the data is Jan 1, 2022 - Jan 7, 2023. 928

We develop the crawler based on Newspaper3k8. 929

The dataset is specifically designed for MGTs 930

detection and improving generation models. The 931

contents of dataset are obtained from official news 932

websites and the names of indicidual people are 933

not mentioned maliciously. And we strongly reject 934

using our dataset to create offensive content or peek 935

at private information. 936

6https://www.nytimes.com/
7https://github.com/LuChang-CS/news-crawler
8https://github.com/codelucas/newspaper
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Name Website
Kotaku https://kotaku.com
The Daily World https://www.thedailyworld.com
CNN https://edition.cnn.com
BBC https://www.bbc.com
NBC News https://www.nbcnews.com
Reuters https://www.reuters.com
Huffpost https://www.huffpost.com
Pando http://pandodaily.com
Yahoo https://news.yahoo.com
Sun Times https://chicago.suntimes.com/news
Sfgate https://www.sfgate.com
New Republic https://newrepublic.com
Time https://time.com
Pcmag http://www.pcmag.com
CNBC https://www.cnbc.com/world/
News https://www.news.com.au/
The Atlantic https://www.theatlantic.com/latest/

Table 5: Data sources for the mixed subset.

A.1.2 Machine Generated Texts937

As the GPT-3 and ChatGPT model need prompts to938

generate, we write hints for the generation models939

to generate texts that meet our news-style long text940

generation. The hints format is as follows, and the941

content is related to HWTs.942

Write a news more than 1000 words.
The news is written by {Authors} from {Source}
in {date}. Title is {title}.

943

A.2 GPT-3 Dataset Generated by Different944

Prompts and Experiment Results945

To further validate the conclusion that GPT-3 gener-946

ated texts are easier to detect, we utilize CNN news947

as reference and design different prompts for GPT-948

3 generation. The principle is to provide as more949

information as possible to GPT-3 for alleviating the950

possible gap in semantics and in length.951

Keywords as Prompt (KP). We extract the key-952

words and entities with GPT-3.5-turbo and provide953

examples in original news to form the prompt for954

generation. The prompt format is as follows.955

Example prompt for generation.956

"role": "system", "content": "Extract all
the keywords, entities, and examples in the
following passage:"
"role": "user", "content": {text}

957

Example prompt for generation.958

Generate a news passage.
The news is written by {Authors} from {Source}
in {date}.
Title: Lionel Messi isn’t expected to be back
with PSG until early January after World Cup
success
Keywords: exploring, mountains, space, Poorna
Malavath, Kavya Manyapu, NASA, Mount Everest,
Project Shakthi, girls’ education, Ladakh,
India, virgin peak, climbing, altitude sickness,
safety, motivation, empowerment, education,
gender gap, Mount Aconcagua, sponsorship.
Entities: CNN, Poorna Malavath, Kavya Manyapu,
NASA, Mount Everest, Project Shakthi, Ladakh,
India, Mount Aconcagua, South America, World
Bank.
Examples: designing space suits, youngest
ever woman to summit Mount Everest, climbed a
6,012m virgin peak, raise money to fund girls’
education, difficulties of climbing a virgin
peak, experiences of altitude sickness, purpose
of Project Shakthi, India’s Right to Education
Act, sponsorship for underprivileged school
children, scaling Mount Aconcagua, expanding
sponsorship globally.
The target length for generation is 731 tokens.
Add as much details and examples as you can.
News:

959

Summary as Prompt (SP). We employ GPT-3.5- 960

turbo to summarize the original texts. The com- 961

pression ratio is set to [0.3, 1.0], which means the 962

summary is required to be longer than 0.3 of the 963

length of original text and shorter than whole origi- 964

nal text. The generated summary is used as prompt 965

and the format is as follows: 966

Generate a news based on the following
abstract:
Paris Saint-Germain’s coach Christophe Galtier
has stated that Lionel Messi is not expected
to join the team until early January as he is
spending time in Argentina following the World
Cup. Kylian Mbappé, Neymar Jr. and Achraf
Hakimi, who played for their respective national
teams at Qatar 2022, could return to the team as
long as they are physically and mentally fit...
The news is written by Matias Grez from CNN in
2022-12-28 00:00:00.
Title: Lionel Messi isn’t expected to be back
with PSG until early January after World Cup
success
News:

967

Outline as Prompt (OP). We also outline the skele- 968

ton of original texts by GPT-3.5-turbo and feed the 969

outline into GPT-3 text-davinci-003. The prompt 970

format is as follows: 971

Prompt for extraction. 972

"role": "system", "content": "Write a
hierarchical multi-point outline for the
paragraph."
"role": "user", "content": {text}

973

Example prompt for generation. 974
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News Title: There’s a shortage of truckers, but
TuSimple thinks it has a solution: no driver
needed
The news is written by Jacopo Prisco, CNN from
CNN in 2021-07-15 02:46:59.
Outline:
I. TuSimple’s plan for fully autonomous truck
tests
A. Reliability of software and hardware needs
to improve
B. Fully autonomous tests without human safety
driver planned by end of year
C. Results will determine if company can launch
trucks by 2024
D. 7,000 trucks reserved in US alone
II. TuSimple’s competition
A. ...
Add more details and examples.
News:

975

We first remove the HWTs that do not have de-976

sired length (i.e., 200-1024 tokens). And we take977

half of the selected HWTs as references to formu-978

late different prompts mentioned above and feed it979

into GPT-3 to get MGTs. The MGTs are sampled980

by Gaussion Distribution of their lengths. To avoid981

the possible label leakage brought by text length,982

we directly filter the no-reference HWTs according983

to the Gaussion Distribution of MGT lengths.984

Besides the self-constructed datasets, we also985

utilize the published GPT-3 dataset TuringBench986

benchmark (abbraviate as GPT-3 (TB)) (Uchendu987

et al., 2021) to validate the deceptiveness of GPT-3.988

The statistics of datasets we use is in Table 6.989

Dataset Train Valid Test # of tokens

GPT-3(KP)
HWT 446 148 148 427.96 ±45.49
MGT 446 148 148 403.88 ±75.63

GPT-3(SP)
HWT 446 148 148 427.96 ±45.49
MGT 446 148 148 415.72 ±66.54

GPT-3(OP)
HWT 446 148 148 427.96 ±45.49
MGT 446 148 148 429.34 ±78.62

GPT-3(TB)
HWT 5,964 975 1915 236.17 ±72.96
MGT 5,507 894 1763 147.29 ±70.15

Table 6: Statistics of GPT-3 datasets.

We conduct experiments with 3 random seeds990

and the average results are shown in Table 7. Coun-991

terintuitively, even if we elaborate the prompts and992

eliminate the length difference between MGTs and993

HWTs, the detection results are still superior, even994

on outdated baselines like GPT-2. The conclusion995

might be counterintuitive, but texts generated by996

the most advanced and popular GPT-3 model are997

the easiest to detect.998

A.3 Implementation Details999

This part mentions the implementation details and1000

hyper-parameter settings of all the methods in the1001

experiment. To imitate the situation of low data- 1002

resources, we sample 10% texts from the datasets 1003

as limited dataset, which will test models together 1004

with the complete datasets. And we conduct exper- 1005

iment on 10 different seeds and report the average 1006

test accuracy, F1-Score, and standard deviation. 1007

We use RoBERTa base model to initialize the 1008

embedding of our representation and optimize 1009

the model using AdamW (Loshchilov and Hutter, 1010

2017) optimizer with a 0.01 weight decay. We set 1011

the initial learning rate to 10−5 and the batch size 1012

to 8 for all datasets based on experiences. 1013

We utilize packages, namely transformers, py- 1014

torch, and allennlp to implement COCO. And the 1015

GPT-3 datasets and ChatGPT case is generated by 1016

OpenAI API and websites. We spend $300 for 1017

API costs, including development and final gen- 1018

eration costs. We train and do experiments on 8 1019

NVIDIA A100 GPUs on 2 Ubuntu-based servers. 1020

The total budget for training 20 epochs, dev, and 1021

testing on the GROVER dataset is 2.5 hours. On 1022

GPT-2 dataset is 12 hours, and on GPT-3 dataset 1023

is 1.5 hours. We will publish our code and dataset 1024

recently. 1025

A.4 Effect of Hyper-Parameters 1026

A.4.1 Contrastive Learning Parameters 1027

We evaluate the influence of contrastive learning 1028

hyper-parameters α and τ with experiments on dif- 1029

ferent combinations of them. The result is shown in 1030

Fig. 5. Considering the discovering that smaller τ 1031

leads to better hard negative mining ability (Wang 1032

and Liu, 2021), we select α from {0.1, 0.2, ..., 0.9} 1033

and τ from {0.1, 0.2, 0.3}. We find that the ex- 1034

treme α value causes the performance degrada- 1035

tion and the best hyper-parameter combination is 1036

α, τ = 0.6, 0.2. Our analysis is that large α forces 1037

the model to concentrate on the instance-level con- 1038

trast and small α lets class separation objective 1039

take control. Both will reduce the generalization 1040

performance of the detector on test set. 1041

Figure 5: Effect of parameters α and τ on model perfor-
mance.
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Dataset GPT-3 (KP) GPT-3 (SP) GPT-3 (OP) GPT-3 (TB)

Metric ACC(val/test) F1(val/test) ACC (val/test) F1 (val/test) ACC (val/test) F1 (val/test) ACC (val/test) F1 (val/test)

GPT2 0.9914/0.9916 0.9916/0.9918 0.9890/0.9893 0.9885/0.9889 0.9925/0.9928 0.9923/0.9924 0.9884/0.5422* 0.9880/0.6335*

RoBERTa 0.9946/0.9950 0.9950/0.9952 0.9935/0.9941 0.9933/0.9937 0.9946/0.9943 0.9942/0.9940 0.9962/0.6406* 0.9960/0.7273*

COCO 0.9955/0.9950 0.9942/0.9945 0.9938/0.9941 0.9936/0.9940 0.9942/0.9943 0.9942/0.9943 0.9966* 0.9970*

Table 7: Experiment of different detectors on different GPT-3 Dataset. * :The great performance difference between
validation set and test set on GPT-3 (TB) are because the test set randomly sample 50% of the words of each article
in the dataset (Uchendu et al., 2021). We do not test CoCo on GPT-3 (TB) for the reason that such operation greatly
influences the coherence in texts. We provide an example of this in Table 8.

GPT-3 (TB) GPT-3 (OP)

’.video : morne morkel press conference * cricbuzz.video : eng-
land cricbuzz.bevan leads scotland ’s 21-man squad for their first
ever test match against pakistan in edinburgh icc.chris rogers
retires after champions trophy defeat : australian cricketer an-
nounces international retirement the sun.icc super eight teams
: odi ranking results.bahrain host oman on sunday kitply hans
vohra gold cup gulf today.icc results.new zealand series history
: india v new zealandyazan mohsen qawasma : how bahrain
caught

Recent changes to key international indexes have resulted in
the unprecedented exclusion of Russian stocks at a “zero” price,
causing further losses in Moscow’s already-dismal stock ex-
change. This exclusion has made Russia no longer an option for
investors, prompting a shift to other emerging markets.\n\nThe
dramatic shift was made in early March, when FTSE Russell
and MSCI announced the removal of Russian stocks from their
indexes due to the country’s escalating economic and geopoliti-
cal problems. Shortly after, the Moscow Exchange suspended
trading, sending ripples through the market.\n\nThe possible de-
fault on Russian debt has Western investors further reconsidering
their investments in Russia...

Table 8: A comparison example between texts in test set of GPT-3 (TB) and GPT-3 (OP). The GPT-3 (TB) text
shows great disorder while GPT-3 (OP) text is neat.

A.4.2 Graph Parameters1042

We further investigate the effect of max node num-1043

ber and max sentence number on model perfor-1044

mance. The result is shown in Fig. 6. We se-1045

lect max node number from {60, 90, 120, 150} and1046

max sentence number from {30, 45, 60, 75}. The1047

detector performs best when max node number is1048

90 and max sentence number is 45. The experi-1049

ment results prove that the large node and sentence1050

number are not necessary for the improvement of1051

detection accuracy. We infer that even though set-1052

ting large node and sentence number includes more1053

entity information, excessive nodes bring noise to1054

the model and impair the distinguishability of co-1055

herence feature.1056

Figure 6: Performance of COCO with different graph
parameters.

A.5 Static Geometric Analysis on Coherence 1057

Graph 1058

We have witnessed performance enhancement by 1059

applying the graph-based coherence model to the 1060

detection model, but how does the coherence graph 1061

help detection? In this subsection, we apply static 1062

geometric features analysis to coherence graph we 1063

construct to evaluate the distinguishable difference 1064

between HWTs and MGTs with explanation. In 1065

the following discussion, we take the dataset of 1066

GROVER into the analysis. Some basic metrics 1067

of data and the corresponding graph are shown in 1068

Table 9. 1069

Metric HWT MGT
Sample Num. 4994 4991
Avg. Num. of Token 463.2 456.0
Avg. Num. of Vertex 43.60 32.37
Avg. Num. of Edge 107.4 65.44

Table 9: Basic metrics of texts and corresponding
graphs.

Though HWTs and MGTs have approximately 1070

the same number of tokens in every text, coher- 1071

ence graph for HWTs has larger scale than MGTs’ 1072
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Metric Avg. Degree

HWT 2.980

MGT 2.591

Table 10: Average of degree (whole dataset).

with 34.7% more vertexes and 64.1% more edges,1073

which shows that HWTs have more complex se-1074

mantic relation structures than MGTs.1075

A.5.1 Degree Distribution1076

Semantically, degree of coherence graph measures1077

the co-occurrence and TF-IDF feature of keywords.1078

Moreover, degree distribution shows global coher-1079

ence because high-degree nodes devote to the main1080

topic and low-degree nodes are the extension.1081

Figure 7: Distribution of average degree of graphs.

As shown in Table 10, the degree of the graph1082

representation of HWTs is 15.0% larger than1083

MGTs, which shows disparities of MGTs to form1084

coherent interaction between sentences. Fig. 7 mea-1085

sures the distribution of each graph’s average nodes’1086

degree, showing that the distribution of HWTs has1087

a longer tail than MGTs.1088

Figure 8: Distribution of degree with different prove-
nance.

Furthermore, we analyze the distinguishability1089

of degree features when impacted by other factors.1090

One most considerable influences is the style and 1091

genre of different provenance. We chose around 60 1092

articles from The Sun9 and Boston10. Then we use 1093

GROVER to mimic their style to generate similar 1094

topic news. Fig. 8 shows the degree distribution of 1095

HWTs and MGTs of both provenances. 1096

We use Jensen–Shannon divergence to evalu- 1097

ate the similarity of the degree distribution. The 1098

JS-divergence of MGTs mimicking The Sun and 1099

Boston is 0.029, while the JS-divergence of MGTs 1100

and HWTs in Boston is 0.050, in The Sun is 0.061. 1101

The apparent gap shows that degree distribution can 1102

robustly detect MGTs and HWTs when impacted 1103

by provenance differences. 1104

A.5.2 Aggregation 1105

Aggregation is a shared metric for complex net- 1106

works and linguistics, depicting how closely the 1107

whole is organized around its core. We propose 1108

two metrics to evaluate the aggregation of graph- 1109

based text representation in our coherence model, 1110

the size of the largest connected subgraph and the 1111

clustering coefficient. 1112

In our representation, not all sentences have en- 1113

tities related to others. Hence the graph is an un- 1114

connected one. The average number of nodes in 1115

subgraphs of MGTs is 4.49 and of HWTs is 4.84. 1116

We propose that the size of the largest connected 1117

subgraph shows the contents which are closely or- 1118

ganized around the topic. Moreover, the size of 1119

graphs may be an unfair factor, so we use the por- 1120

tion of nodes in the largest connected subgraph to 1121

reflect its size. The average portion in HWTs is 1122

0.6725 and in MGTs is 0.6458. Fig. 9 shows the 1123

distribution of the portion of graphs, and HWTs 1124

distribute more high-portion ones than MGTs. 1125

The clustering coefficient represents how nodes 1126

tend to cluster. For the entities of texts, clustering 1127

evaluates how the author narrates around the cen- 1128

tral theme. The larger the clustering coefficient is, 1129

the tighter the semantic structure is. The average 1130

cluster coefficient of the graphs of HWTs is 0.2213 1131

and of MGTs is 0.1983, HWTs is 11.6% better 1132

than MGTs. Fig. 10 shows the distribution. 1133

A.5.3 Core & Degeneracy 1134

The degeneracy of a graph is a measure of how 1135

sparse it is, and the k-core is the subgraph cor- 1136

responding to its significance in the graph. We 1137

9https://www.thesun.co.uk/
10https://www.boston.com/
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Figure 9: Portion of the largest connected subgraph.

Figure 10: Distribution of clustering coefficient.

propose that, in our graph representation, the de-1138

generacy process of graphs equals summarizing1139

texts semantically. The maximum of core-number1140

shows the complexity of hierarchical structure in1141

texts. Furthermore, the distribution of the core-1142

number reflects the overall sparse and is a graph-1143

perspective N-gram module. Based on experiments,1144

the average core-number of HWTs is 5.772 while1145

MGTs with 4.458. HWTs are 29.5% ahead. Fig. 111146

is the distribution of the core-number.1147

A.5.4 Entropy1148

Entropy is a scientific concept to measure a state1149

of disorder, randomness, or uncertainty. The well-1150

known Shannon entropy is the core of the informa-1151

tion theory, measuring the self-information content.1152

For the graph data, network structure entropy de-1153

fined as the following can examine the information1154

amount of the graph structure.1155

Entropy = −
N∑
i=1

Ii ln Ii = −
N∑
i=1

ki∑N
j=1 kj

ln(
ki∑N
j=1 kj

),

(9)1156

Figure 11: Core-number of nodes in graphs

Figure 12: Structure entropy of graphs

where Ii is the information content represented by 1157

the degree distribution, N is the number of nodes, 1158

and ki is the degree of the i-th node. 1159

Global coherence, from our perspective, equals 1160

refining more information inside the semantic struc- 1161

ture of the whole text, which matches to structure 1162

entropy of our graph representation. From our ex- 1163

periments, the structure entropy of HWTs (2.263) 1164

is 6.80% larger than MGTs (2.119), which means 1165

HWTs obtain more structured information because 1166

their semantic information is globally organized. 1167

We show the network structure entropy distribution 1168

in Fig. 12. 1169

A.6 Exploration on Imbalanced Data 1170

Imbalanced distribution in data is another crucial 1171

limitation in the task of MGTs detection, which is 1172

similar to the low resource limitation. It is imag- 1173

inable that, with the development of generation 1174

technology, MGTs will overwhelmingly dominate 1175

low-quality articles since they are easier and faster 1176

to generate than human writing. The detection 1177

model will face training resources with MGTs as 1178
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the main part and HWTs as the small part. We test1179

the current models in the imbalanced limitation and1180

find the dramatic decline in accuracy when the ratio1181

of HWTs is less than 30%, as shown in the Fig. 13.1182

The test is based on the 10% GROVER dataset.1183

Figure 13: Model comparison results on DL dataset
with 9 different human-generated text portions.

All models show poor performance at low HWTs1184

ratios. With a percentage of HWTs of 0.1 (only1185

100 HWTs in the training set in this case), most1186

of the models have an accuracy below 50%, which1187

performance is close to random and reflects intol-1188

erance for extreme cases. Besides, we find that a1189

high proportion of HWTs also cause a decrease in1190

F1 score to some extent.1191

A.7 Related Work: Graph-based Text1192

Representation1193

Graph can represent text structure and inner-1194

relation (Minsky, 1982). Based on different or-1195

ganizing methods, graphs can reflect static statisti-1196

cal ( e.g., co-occurrence (Cancho and Solé, 2001),1197

collocation (Bordag et al., 2003)), dynamically sta-1198

tistical ( e.g., evolution (Dorogovtsev and Mendes,1199

2001)), lexical (Widdows and Dorow, 2002), ortho-1200

graphic (Choudhury et al., 2007), cognitive (e.g.,1201

conception (Motter et al., 2002)), syntactic (Can-1202

cho et al., 2004; Ferrer Cancho et al., 2007), seman-1203

tic (Steyvers and Tenenbaum, 2005; Sigman and1204

Cecchi, 2002; Kozareva et al., 2008) relations. Has-1205

san et al. (2017) propose an overall survey about1206

graph-based text representation.1207

Graph-of Words (GoW) Model (Turney, 2002;1208

Mihalcea and Tarau, 2004) is a type graph repre-1209

sentation method in which each document is rep-1210

resented by a graph, whose nodes correspond to1211

terms and edges capture co-occurrence relation-1212

ships between terms. Using GoW, keywords can be1213

extracted by retaining the document graph (Turney,1214

2002). Thus, graph representation is sensible to1215

apply in tasks like information retrieval (Blanco1216

and Lioma, 2011), categorization (Malliaros and1217

Skianis, 2015) and sentiment classification tasks1218

(Huang and Carley, 2019; Hou et al., 2021). Most 1219

models enhance classification or detection perfor- 1220

mance by combining graph representation with neu- 1221

ral networks. Text-GCN (Yao et al., 2019) first 1222

builds a single large graph for the whole corpus, 1223

followed by Tensor-GCN (Liu et al., 2020) with 1224

tensor representation. Also, the relation between 1225

words varies, and should be treated as different 1226

edges. COCO matches keywords PLM embedding 1227

to nodes and sentence representation, considers 1228

dealing inner- and inter-sentence relation differ- 1229

ently in GCN, and merges the structure graph and 1230

flat sequence representation to predict accurately. 1231

A.8 Pseudocode of COCO 1232

Algorithm 1 Algorithm of COCO

Input: Input X , consisting of documents D and correspond-
ing coherence graph G, hyperparameters such as the size
of dynamic memory bank M and batch size S, labels Y

Output: A learned model COCO, consisting of key encoder
fk with parameters θk, query encoder fq with parameters
θq , classifier fc with parameters θc

1: Initialize θk = θq , θc
2: Initialize dynamic memory bank with fk(x1, x2...xM ),

where xi is randomly sampled from X .
3: Freeze θk
4: epoch← 0
5: while epoch ≤ epochmax do
6: n← 0
7: while n ≤ nmax do
8: Randomly select batch bk, bq
9: Dq = fq(bq), Dk = fk(bk)

10: p̂ = fc(Dq)
11: Calculate LICL with equation 5, calculate LCE

with equation 6, calculate Ltotal with equation 7
12: Backward on Ltotal and update θq , θc based on

AdamW gradient descent with an adjustable learn-
ing rate

13: Momentum update θk with equation 8
14: Update dynamic memory bank queue with

enqueue(queue,Dk), dequeue(queue)
15: k ← k + 1
16: end while
17: if Early stopping then
18: break
19: else
20: epoch← epoch+ 1
21: end if
22: end while
23: return A trained model COCO

18


