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Abstract

Machine-Generated Text (MGT) detection, a
task that discriminates MGT from Human-
Written Text (HWT), plays a crucial role in
preventing misuse of text generative models,
which excel in mimicking human writing style
recently. Latest proposed detectors usually take
coarse text sequences as input and fine-tune
pretrained models with standard cross-entropy
loss. However, these methods fail to consider
the linguistic structure of texts. Moreover, they
lack the ability to handle the low-resource prob-
lem which could often happen in practice con-
sidering the enormous amount of textual data
online. In this paper, we present a coherence-
based contrastive learning model named CoCoO
to detect the possible MGT under low-resource
scenario. To exploit the linguistic feature, we
encode coherence information in form of graph
into text representation. To tackle the chal-
lenges of low data resource, we employ a con-
trastive learning framework and propose an im-
proved contrastive loss for preventing perfor-
mance degradation brought by simple samples.
The experiment results on two public datasets
and two self-constructed datasets prove our ap-
proach outperforms the state-of-art methods
significantly.

1 Introduction

Thriving progress in the field of text generative
models (TGMs) (Kenton and Toutanova, 2019;
Yang et al., 2019; Liu et al., 2019; See et al., 2019;
Keskar et al., 2019; Dathathri et al., 2019; Lewis
et al., 2020; Brown et al., 2020; Gao et al., 2021a;
Madotto et al., 2021; Ouyang et al., 2022), e.g.,
ChatGPT!, enables everyone to produce MGTs
massively and rapidly. However, the accessibility
to high-quality TGMs is prone to cause misuses,
such as fake news generation (Zellers et al., 2019;
Brown et al., 2020; Yanagi et al., 2020), product re-
view forging (Adelani et al., 2020), and spamming
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Figure 1: Illustration of sentence-level structure differ-
ence between HWT and MGT, the MGT is generated by
GROVER (Zellers et al., 2019). HWT is more coherent
than MGT as the sentences share more same entities
with each other.

(Tan et al., 2012), etc. MGTs are hard to distin-
guish by an untrained human for their human-like
writing style (Ippolito et al., 2020) and the exces-
sive amount (Grinberg et al., 2019), which calls for
the study of reliable automatic MGT detectors.

Previous works on MGTs detection mainly con-
centrate on sequence feature representation and
classification (Gehrmann et al., 2019; Solaiman
et al., 2019; Zellers et al., 2019). Recent studies
have shown the good performance of automated
detectors in a fine-tuning fashion (Solaiman et al.,
2019). Although the fine-tuning based detectors
have demonstrated their effectiveness, they still suf-
fer from two issues that limit their conversion to
practical use: (1) Existing detectors treat input doc-
uments as flat sequences of tokens and use neural
encoders or statistical features (e.g., TF-IDF) to
represent text as the dense vector for classification.
These methods rely much on the token-level dis-



tribution difference of texts in each class, which
ignores high-level linguistic representation of text
structure. (2) Compared with the enormous num-
ber of online texts, annotated dataset for training
MGT detectors is rather low-resource. Constrained
by the amount of available annotated data, tradi-
tional detectors sustain frustrating accuracy and
even collapse during the test stage.

As shown in Fig. 1, MGTs and HWTs exhibit
difference in terms of coherence traced by entity
consistency. Thus, we propose an entity coherence
graph to model the sentence-level structure of texts
based on the thoughts of Centering Theory (Grosz
and Sidner, 1986) , which evaluates text coherence
by entity consistency. Entity coherence graph treats
entities as nodes and builds edges between entities
in the same sentences and same entities among dif-
ferent sentences to reveal the text structure. Instead
of treating text as flat sequence, coherence mod-
eling helps to introduce distinguishable linguistic
feature at input stage and provides explainable dif-
ference between MGTs and HWTs.

To alleviate the low-resource problem in the sec-
ond issue, inspired by the resurgence of contrastive
learning (He et al., 2020; Chen et al., 2020), we
utilize proper design of sample pair and contrastive
process to learn fine-grained instance-level features
under low resource. However, it has been proven
that the easiest negative samples are unnecessary
and insufficient for model training in contrastive
learning (Cai et al., 2020). To circumvent the per-
formance degradation brought by the easy samples,
we propose a novel contrastive loss with capability
to reweight the effect of negative samples by diffi-
culty score to help model concentrate more on hard
samples and ignore the easy samples.

Extensive experiments on multiple datasets
(GROVER, GPT-2, GPT-3) and a case study with
ChatGPT-generated texts demonstrate the effective-
ness of our proposed method.

In summary, our contributions are summarized
as follows:

¢ Coherence Graph Construction: We model
the text coherence with entity consistency and
sentence interaction while statistically prov-
ing its distinctiveness in MGTs detection, and
further introduce this linguistic feature at in-
put stage.

* Improved Contrastive Loss: We propose a
novel contrastive loss in which hard negative

samples are paid more attention for improving
detection accuracy of challenging sample.

* Outstanding Performance: We achieve state-
of-art performance on four MGT datasets in
both low-resource and high-resource setting.
Experimental results verify the effectiveness
of our model.

2 Related Work

Machine-generated Text Detection. Machine-
generated texts, also named deepfake or neural fake
texts, are generated by language models to mimic
human writing style, making them perplexing for
humans to distinguish (Ippolito et al., 2020). Gen-
erative models like GROVER (Zellers et al., 2019),
GPT-2 (Radford et al., 2019), GPT-3 (Brown et al.,
2020) and emerging ChatGPT has been evaluated
on the MGT detection task and achieve good results.
Bakhtin et al. (2019) train an energy-based model
by treating the output of TGMs as negative sam-
ples to demonstrate the generalization ability. Deep
learning models that incorporate stylometry and ex-
ternal knowledge are also feasible for improving
the performance of MGT detectors (Uchendu et al.,
2019; Zhong et al., 2020). Our method differs
from the previous work by analyzing and model-
ing text coherence as distinguishable feature and
emphasizing the performance improvement under
low-resource scenario.

Coherence Modeling. For generative models, co-
herence is the critical requirement and vital target
(Hovy, 1988). Previous works mainly discuss two
types of coherence, local coherence (Mellish et al.,
1998; Althaus et al., 2004) and global coherence
(Mann and Thompson, 1987). Local coherence
focus on sentence-to-sentence transitions (Lapata,
2003), while global coherence tries to capture com-
prehensive structure (Karamanis and Manurung,
2002). Our method strives to represent both local
and global coherence with inner- and inter-sentence
relations between entity nodes.

Contrastive Learning. Contrastive learning in
NLP demonstrates superb performance in learn-
ing token-level embeddings (Su et al., 2021) and
sentence-level embeddings (Gao et al., 2021b) for
natural language understanding. With in-depth
study of the mechanism of contrastive learning,
the hardness of samples is proved to be crucial
in the training stage. Cai et al. (2020) define the
dot product between the queries and the negatives
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Figure 2: Overview of COCoO. Input document is parsed to construct a coherence graph (3.1), the text and graph are
utilized by a supervised contrastive learning framework (3.2), in which coherence encoding module is designed
to encode and aggregate to generate coherence-enhanced representation (3.2.3). After that, we employ a MoCo
based contrastive learning architecture in which key encodings are stored in a dynamic memory bank (3.2.4) with

improved contrastive loss to make final prediction (3.2.5).

in normalized embedding space as hardness and
figured out the easiest 95% negatives are insuffi-
cient and unnecessary. Song et al. (2022) propose
a difficulty measure function based on the distance
between classes and apply curriculum learning to
the sampling stage. Differently, our method pays
more attention to hard negative samples for improv-
ing the detection accuracy of challenging samples.

3 Methodology

The workflow of COCO mainly contains coher-
ence graph construction, and supervised contrastive
learning discriminator, and Fig. 2 illustrates its
overall architecture.

3.1 Coherence Graph Construction

In this part, we illustrate how to construct coher-
ence graph to dig out coherence structure of text by
modeling sentence interaction.

According to Centering Theory (Grosz and Sid-
ner, 1986), coherence of texts could be modeled by
sentence interaction around center entities. To bet-
ter reflect text structure and avoid semantic overlap,
we proposed to construct an undirected graph with
entities as nodes. Specifically, we first implement
the ELMo-based NER model TagLLM (Peters et al.,
2017) with the help of NER toolkit AllenNLP?

Zhttps://demo.allennlp.org/named-entity-recognition

to extract the entities from document. An rela-
tion < inter > is constructed between same enti-
ties in different sentences and nodes within same
sentences are connected by relation < inner >
for their natural structure relevance. Formally, the
mathematical form of coherence graph’s adjacent
matrix is defined as follows:

rel (inner)

rel (inter)
rel None

1 Vi, 7# Vjb, @ =b
Az‘j = 1 Vi,a = ’Uj,b ,a ;é b

0 others
where v; , represents i-th entity in sentence a,
which is regarded as node in coherence graph.

3.2 Supervised Contrastive Learning
3.2.1

The training process is illustrated in Fig. 2. Each
entry in the dataset is document with its coher-
ence graph. The entries in training set are sampled
randomly into keys and queries. Two coherence
encoder modules (CEM) f;, and f,, are initialized
the same to generate coherence-enhanced represen-
tation Dy, and D, for key and query. A dynamic
memory bank with the size of all training data is
initialized to store all key representation and their
annotations for providing enough contrastive pairs
in low-resource scenario. In every training step, the
newly encoded key graphs update memory bank
following First In First Out (FIFO) rule to keep
it updated and the training process consistent. A

Model Overview



novel loss composed of improved contrastive loss
and cross-entropy loss ensures the model’s ability
to achieve instance-level intra-class compactness
and inter-class separability while maintaining the
class-level distinguishability. A linear discrimina-
tor takes query representations as input and gener-
ates prediction results. The pseudocode of training
process is shown in Appendix A.8.

3.2.2 Positive/Negative Pair Definition

In supervised setting, where we have access to la-
bel information, we define two samples with same
label as positive pair and that with different labels
as negative pair for incorporating label information
into training process.

3.2.3 Encoder Design

In this part, we introduce how to initialize node
representation and graph neural network structure
which is utilized to integrate coherence information
into semantic representation of text by propagating
and aggregating information from different granu-
larity with an innovated coherence encoder module
(CEM).

Node Representation Initialization. We initialize
the representation of entity nodes with powerful
pre-trained model RoBERTa for its superior ability
to encode contextual information into text repre-
sentation.

Given an entity e with a span of n tokens, we
utilize ROBERTa to map input document « to em-
beddings h(x). The contextual representation of e
is calculated as follows:

1 n
Z, = n;h@:)ei, (1)

where e; is the absolute position where the ¢-th
token in e lies in the whole document.

Relation-aware GCN. Based on the vanilla Graph
Convolutional Networks (Welling and Kipf, 2016),
we propose a novel method to assign different
weight W, for inter and inner relation r with
Relation-aware GCN. Relation-aware GCN con-
volute edges of each kind of relation in the coher-
ence graph separately. The final representation is
the sum of GCN outputs from all relations. We
use two-layer GCN in the model because more lay-
ers will cause an overfitting problem under low
resources. We define the relation set as R, and the
calculation formula is as follows:

HY =57 AReLU((AHY W) yWHY),
TER (2)
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where H®) ¢ RN*? is node representation in i-th
layer. A = A+1I, A is the adjacency matrix of the
coherence graph, A is the normalized Laplacian
matrix of A, W, is the relation transformation
matrix for relation 7.

Sentence Representation. Afterward, we aggre-
gate updated node representation from last layer of
Relation-aware GCN into sentence-level represen-
tation to prepare for concatenation with sequence
representation from RoBERTa. The aggregation
follows the below rule:

M.
1 K

Z, = ST Z o(W,H ;) +bs), (3
J

where M; represents the number of entities in -
th sentence, H(; ;) represents the embedding of
j-th entity in ¢-th sentence, Wy is weight matrix
and b, is bias. All the sentence representations
within same document are concatenated as sentence
matrix Zy.

Document Representation with Attention
LSTM. We design a self-attention mechanism for
discovering the sentence-level coherence between
one sentence and other sentences, and apply
LSTM with the objective to track the coherence in
continuous sentences and take the last hidden state
of LSTM for aggregated document representation
containing comprehensive coherence information.
The calculation is described as follows:

norm(K )norm(Q)”
Vdz

where K, Q,V are linear transformations of Z
with matrix Wy, W, W,,, dz is the dimension
of representation Z,, and 7 is a hypergammar-
parameter for scaling.

Finally, we concatenate Z. and the sequence
representation h([CLS]) from the RoOBERTa’s last
layer to generate document coherence-enhanced
representation D.

Z. = LSTM(softmax(~y

W), @

3.2.4 Dynamic Memory Bank

The dynamic memory bank is created to store as
much as key encoding Dy, to form adequate posi-
tive and negative pairs within a batch. The dynamic
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Figure 3: Illustration of coherence encoder module (CEM) which encodes and fuses the coherence graph and text
sequence to generate coherence-enhanced representation of document.

memory bank is maintained as a queue so that the
newly encoded keys could replace the outdated
ones, which keeps the consistency between the key
encoding and current training step.

3.2.5 Loss Function

Following the definition of positive pairs and nega-
tive pairs above, traditional supervised contrastive
loss (Gunel et al., 2020) treats all positive pairs and
negative pairs equally.

However, with recognition that not all negatives
are created equal (Cai et al., 2020), our goal is
to emphasize the informative samples for helping
the model to differentiate difficult samples. Thus,
we propose an improved contrastive loss which
dynamically adjusts the weight of negative pair
similarity according to the hardness of negative
samples. To be specific, the hard negative samples
should be assigned larger weight for stimulating the
model to better pull same class together and push
different class away. The improved contrastive loss
is defined as:

M

LicL = Z 1y,=y; log 5

j=1

Sz‘j
per () Sip T 2 neniy TinSin
DDy
Sij = exp(DeDi./7),

rfi; =B

(6))

where P (i) is the positive set in which data has the
same label with ¢; and N (7) is the negative set in
which data has different label from g;.

Apart from instance-level learning mechanism,
a linear classifier combined with cross entropy loss
Lcg is employed to provide the model with class-

level separation ability. Lcg is calculated by

N
Lcg = % > ~lyilog(pi)+(1—y:)log(1-pi)],
(6)
where p; is the prediction probability distribution
of i-th sample. The final loss L is a weighted
average of Licr, and Lcg as:

Liotar = oLicr, + (1 — a)LcE, 7

where the hyperparameter o adjusts the relative
balance between instance compactness and class
separability.

3.2.6

The parameters of query encoder f, and the clas-
sifier can be updated by gradient back-propagated
from L. We denote the parameters of f, as
04, the parameters of f; as 0, The key encoder
fi’s parameters are updated by momentum update
mechanism:

Momentum Update

O BO, + (1 — B)by, ®)

where the hyperparameter 5 is momentum coeffi-
cient.

4 Experiments

4.1 Datasets

We evaluate our model on the following datasets:

* GROVER Dataset is a News-Style dataset
provided by (Zellers et al., 2019), in which
HWTs are collected from RealNews, a large
corpus of news articles from Common Crawl,
and MGTs are generated by Grover-Mega, a
transformer-based news generator with param-
eters sized 1.5B.
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Table 1: Basic statistics of datasets.

* GPT-2 Dataset is a Webtext-style dataset
provided by OpenAI® with HWTs adopted
from WebText and MGTs produced by GPT-2
XLM-1542M.

* GPT-3 Dataset is a News-Style open source
dataset constructed by us based on the text-
davinci-003* model of OpenAl, which is the
most capable GPT-3 model so far and can gen-
erate longer texts (maximum 4,000 tokens).
The GPT-3 model refer to various latest news-
papers (Dec. 2022 - Present) whose full texts
act as the HWTs part and generate news by
imitation. We use two subsets: mixed- and
unmixed-provenances. The details of this
dataset are explained in Appendix A.1.

The statistics of datasets is summarized in Table
1 and the implementation details are in Appendix
A3.

4.2 Comparison Models

We compare COCO to the state-of-art detection
methods to reveal the effectiveness. The baselines
are introduced as follows.

* GPT-2 (Radford et al., 2019), a strong pre-
trained language model based on the decoder
architecture of transformer. We use GPT-2
small with parameters sized 124M for the fair-
ness of comparison.

* RoBERTa (Liu et al, 2019), a power-
ful transformers-based bidirectional language
model with robust performance on down-
stream tasks. We use RoBERTa-base sized
110M in the experiment.

* XLNet (Yang et al., 2019), a language model
which is superb in understanding long docu-

3https://github.com/openai/gpt-2-output-dataset
“https://beta.openai.com/docs/models/gpt-3

ments. We exploit XLNet-base whose scale is
110M.

¢ CE+SCL (Gunel et al., 2020), a state-of-the-
art supervised contrastive learning method in
various downstream task. We train the detec-
tor with Cross-Entropy loss (CE) and super-
vised contrastive loss (SCL) calculated within
a mini-batch.

e DualCL (Chen et al., 2022), a contrastive
learning method with the addition of label
representations for data augmentation.

4.3 Performance Comparison

As shown in Table 2, COCO surpasses state-of-the-
art methods in MGT detection task 4.25%, 5.98%
(limited dataset), and 3.31%, 3.58% (full dataset)
in average in terms of accuracy and F1-score, re-
spectively. The result indicates the rationality of
coherence graph designing and the effectiveness
of encoding coherence information into document
representation, which further proves the coherence
difference between MGT and HWT. Moreover, it
should be noticed that COCoO gets less affected by
randomness, which illustrates that the coherence
graph we construct is a robust feature that helps sta-
bilize the model performance. Meanwhile, COCO
outperforms CE+SCL and DualCL regardless the
size of training set, which suggests the success of
improved contrastive loss to solve the performance
degradation problem brought by simple negative
samples.

We also find GROVER Dataset is the hardest to
detect. It is because GROVER generator is trained
in an adversarial fashion with the objective to de-
ceive the verifier, which endows the generator with
deceptive nature. To our surprise, GPT-3 dataset
is overly simple to all detectors. We conduct ex-
tensive experiments on different self-constructed
and published GPT-3 dataset generated by a series
prompts, which also validate this thundering con-
clusion. The experiment details and results are in
Appendix A.2.

Due to the secrecy of GPT-3 implementation
details and the lack of interpretability of LLMs,
we can only make several inferences for this phe-
nomenon up to the best of our knowledge. First,
since GPT-3 is fine-tuned with RLHF (Ouyang
et al., 2022), we suppose that instructions like "in-
timate a piece of news" is rare in prompt dataset
used in GPT-3 fine-tuning, which causes its inade-
quate ability to imitate news. In fact, we find news



Dataset GROVER GPT-2
Size Limited Dataset (10%) Full Dataset Limited Dataset (10%) Full Dataset
Metric ACC F1 ACC F1 ACC F1 ACC F1
GPT2 0.6401 £0.0136  0.4289 +0.0413  0.8274 £0.0091  0.8003 £ 0.0141 | 0.8575+£0.0041  0.8406 &= 0.0070  0.8913 4 0.0066  0.8839 £ 0.0078
XLNet 0.6906 + 0.0321  0.5193 +£0.0365  0.8156 £ 0.0079  0.7493 £+ 0.0073 | 0.8837 £0.0031  0.8732 £0.0041  0.9091 +0.0091  0.9027 £ 0.0111
RoBERTa | 0.7730 +0.0121  0.6370 +0.0186  0.8772 £0.0029  0.8171 +0.0048 | 0.9244 +0.0041  0.9214 4 0.0045  0.9402 + 0.0039  0.9384 £ 0.0044
DualCL 0.6926 + 0.0634  0.5397 +0.0971  0.7574 £ 0.0855  0.6388+0.130 | 0.7874 £ 0.1210  0.6950 £ 0.0944  0.8023 +0.1120  0.8046 + 0.1530
CE+SCL | 0.7777 £0.0134  0.6447 +0.0286  0.8782 £ 0.0044  0.8202 + 0.0057 | 0.9255 +0.0030  0.9241 4 0.0016 ~ 0.9408 + 0.0006  0.9390 =+ 0.0009
CoCo 0.7808 £ 0.0044  0.6543 - 0.0106  0.8826 + 0.0018  0.8265 = 0.0036 | 0.9271 £ 0.0019  0.9254 & 0.0018  0.9457 + 0.0004  0.9452 £ 0.0004
Dataset GPT-3 Unmixed GPT-3 Mixed
Size Limited Dataset (10%) Full Dataset Limited Dataset (10%) Full Dataset
Metric ACC F1 ACC F1 ACC F1 ACC F1
GPT2 0.9631 £0.0037  0.9666 & 0.0044  0.9917 £ 0.0056  0.9905 £ 0.0042 | 0.9623 £ 0.0039  0.9636 £ 0.0046  0.9910 & 0.0046  0.9910 + 0.0033
XLNet 0.9252 £0.0052  0.9241 +0.0054  0.9620 £ 0.0043  0.9634 £ 0.0068 | 0.9149 +0.0044  0.9152 £0.0059  0.9513 +0.0052  0.9505 + 0.0039
RoBERTa | 0.9916 £ 0.0043  0.9899 +0.0049  0.9928 £ 0.0035  0.9913 +0.0040 | 0.9892 +0.0022  0.9893 +0.0025  0.9923 £ 0.0017  0.9901 =+ 0.0024
CE+SCL | 0.9918 £0.0039  0.9901 +0.0058  0.9944 £ 0.0023  0.9943 + 0.0031 | 0.9903 £ 0.0020  0.9898 4 0.0023  0.9932 + 0.0017  0.9905 =+ 0.0038
CoCo 0.9932 +0.0042  0.9913 £ 0.0033  0.9972 + 0.0015  0.9957 £ 0.0020 | 0.9913 £ 0.0034 0.9911 = 0.0038  0.9932 + 0.0019  0.9937 + 0.0028

Table 2: Results of the model comparison. It should be noticed that DualCL is easily affected by random seed,
which may be caused by its weakness in understanding long texts. We do not present the experiment results for
DualCL on GPT-3 dataset because the documents in GPT-3 dataset is so long that DualCL completely fails.

generated by GPT-3 is more like a short version
of reference news (far shorter than the max output
length) instead of the imitation. Second, the HWTs
we use are latest news which are not included in
GPT-3’s training data. The lack of knowledge back-
ground about reference news might limit GPT-3’s
associative ability. Third, we do not fine-tune GPT-3
with HWTs we collect while model used in GPT-2
dataset did. The unfamiliarity of GPT-3 with the
texts it is required to imitate could impair its ability
to rewrite news in a similar style. We will further
investigate our hypotheses and provide possible
deep insights into this counterintuitive but very in-
teresting phenomenon, which may also exist in the
GPT-4 model, in future works.

4.4 Ablation Study

To illustrate the necessity of some components of
CoCo, we conduct several ablation experiments
on limited GROVER dataset and the results are
shown in Table 3. We introduce the ablation model
structure below:

Model

CoCo (Plain)

ACC F1

0.7697  0.6428
0.7733  0.6379

CoCo (Sentence nodes)

CoCo (Coherence)

CoCo (Coherence + LSTM)
CoCo (Coherence + LSTM + SCL)
CoCo

Table 3: Results of ablation study.

CoCo (Plain) removes graph information and
encodes only by RoBERTa parts. Moreover, the
model removes contrastive learning and uses CE
loss.

CoCo (Sentence Nodes) treats sentences as nodes
instead of entities and establish edges between sen-
tences which share same entities. Node represen-
tation is initialized by RoBERTa embedding and
mean-pooling operation. Document representation
is obtained by one CEM discarding sentence repre-
sentation and attention LSTM part in section 3.2.3.
Document representation is calculated by mean-
pooling operation on sentence node representations.
A linear classification head with cross-entropy loss
is used for detection.

CoCo (Coherence) incorporates coherence graph
into the representation of document and deploys
sentence representation part in section 3.2.3. The
rest are the same with COCO (Sentence Nodes).
CoCoO (Coherence + LSTM) uses attention
LSTM for document-level aggregation and the rest
is the same as COCO (Coherence).

CoCo (Coherence + LSTM + SCL) utilizes the
contrastive learning framework but the loss func-
tion is traditional supervised contrastive loss in-
stead of the improved contrastive loss.

As shown in Table 3, coherence information
and the contrastive learning framework greatly con-
tribute to the development of model performance,
especially in F1-Score. Replacing entity nodes in



coherence graph with sentences impairs the detec-
tor, which could be caused by semantic overlap
between graph representation and text sequence
representation. The attention LSTM also plays an
important role in preserving coherence information
during sentence aggregation. Lastly, the results
also shows the advantage of improved contrastive
loss over standard supervised contrastive loss. We
also investigate the effect of hyperparameters on
CoCo, the results are shown in Appendix A.4.

4.5 Discussion: Utility of Coherence Graph
4.5.1 Case Study

In this subsection, we conduct a case study with
HWT and MGT produced by sensational ChatGPT
with the same metadata. As illustrated in Fig. 4,
we parse two news as coherence graphs. And we
observe that although ChatGPT expresses fluently,
it is not coherent from the perspective of coherence
graph. Hence, COCO utilizes the distinctive coher-
ence feature and makes correct predictions while
RoBERTa fails. This reflects even the most popular
and advanced language model could suffer from
weak coherence and be detected by CoCo.

Shabab Al Ahli Dubai have task cut out

HWT: Gulf News MGT: ChatGPT
Dubai: Shabab AL Ahli Dubai will Shabab Al Ahli Dubai FC, the Dubai-based
continue pushing towards the top while football club, have a difficult task ahead of
Reeping an eye on chasing Al /lin as the them as they gear up for the upcoming season.
20th round of the Arabian Gulf League The team, which plays in the UAL Pro
o (AGL) is played out this weekend. The team | League, is facing a number of challenges, both
H Sfrom Deira climbed into second place for on and off the field, that will need to be
£ the first time last week following their 3-1 | overcome if they hope to be successful in the
gap win over Dibba and a 5-1 thrashing of Al | coming months. In the off-season, several of
2 | i by Al Jazira. Shabab Al Ahli Dubai the team's top performers, including star
now remain tied on 38 points with striker Ahmed Khalil and midfield maestro
defending champions Al Ain, while Omar Abdulrahman. left the club to join
unbeaten Sharjah are at the top with 47 teams in other countries.
points.
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Figure 4: An illustration for case study of our method.
Entities in documents are colored green. The blue solid
box indicates the sentence. The orange dashed lines
are inner edges and green dashed lines are inter edges.
Numbers in red indicate the probability of predicted
label.

4.5.2 Static Analysis for Coherence Graph

We apply static geometric features analysis on co-
herence graph we construct to provide an in-depth
view on linguistic explanation about graph struc-
ture. In the following discussion, we take the

dataset of GROVER into the analysis. Some basic
metrics of data and the corresponding graph are
shown in Table 9.

Metric HWT MGT
Sample Num. 4994 4991

Avg. Num. of Token | 463.2 456.0
Avg. Num. of Vertex | 43.60 32.37
Avg. Num. of Edge | 107.4 65.44

Table 4: Basic metrics of texts and corresponding coher-
ence graphs.

Degree Distribution of coherence graph semanti-
cally measures the co-occurrence and TF-IDF fea-
ture of keywords, showing global coherence be-
cause high-degree nodes devote to the main topic
and low-degree nodes are the extension. The de-
gree of the graph representation of HWTs is 2.980,
which is 15.0% larger than MGTs (2.591), and the
distribution of HWTs has a longer tail than MGTs.
Furthermore, we prove that degree distribution can
robustly detect MGTs and HWTs when impacted
by style and genre differences. More details are
discussed in the Appendix A.5.

5 Conclusion

In this paper, we propose COCO, a coherence-
enhanced contrastive learning model for MGT de-
tection. We construct a novel coherence graph
from document and implement a MoCo-based con-
trastive learning framework to improve model per-
formance in low-resource setting. An innovative
encoder composed of relation-aware GCN and at-
tention LSTM is designed to learn the coherence
representation from coherence graph which is fur-
ther incorparated with sequence representation of
document. To alleviate the effect of unnecessary
easy samples, we propose an improved contrastive
learning loss to force the model to pay more at-
tention to hard negative samples. We evaluate our
method on MGT datasets generated by GROVER,
GPT-2, and GPT-3, respectively, in both low-
resource and high-resource settings. COCO outper-
forms Transformer-based methods and contrastive-
learning-based methods on all datasets and both
settings.
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Limitations

In this work, we step forward to better distinguish-
ing MGTs under the low-resource setting. How-
ever, several limitations still exist for the broader
applications of this detector. Firstly, MGTs are
easier to generate and collect than HWTs, which
may cause an imbalanced label distribution in the
dataset. And COCo literally corrupts in extremely
imbalanced data distribution condition, as shown
in A.6. Future work could build upon the con-
trastive learning method of CoOCoO with innovation
on sampling strategy for harsh low-resource and
imbalanced data settings. Secondly, our method ar-
tificially generates a coherence graph for every en-
try, which is not efficient for larger datasets. What’s
more, short text, codes, and mathematical proofs,
which are hard to generate coherence graphs, are
also limitedly detected by CoCo. More distinctive
and easy-to-calculate features are worth exploring
for generating distinguishable representations for
texts with efficiency while better understanding
the essence of TGMs. Thirdly, with instruct-based
generation and human-in-loop fine-tuning models
prevailing, the strategy and defect of TGMs change
slightly but constantly. The entity relation with
the same semantic granularity and concretization
in this paper would not be enough to detect the
high-quality content by TGMs in the future. More
generative and adaptive detection models should
be considered.

Ethical Considerations

We provide insight into the potential weakness of
TGMs and publish GPT-3 news dataset. We un-
derstand that the discovery of our work can be
viciously used to confront detectors. And we un-
derstand that malicious users can copy the contents
of our GPT-3 news dataset to disguise real news
and publish them. However, with the purpose of
calling for attention to detecting and controlling
possible misuse of TGMs, we believe our work
will inspire the advance of the stronger detector of
MGTs and prevent all potential negative uses of
language models.

Our work complies with sharing & publication
policy of OpenAI° and all data we collect is in
public domain and licensed for research purposes.

Shttps://openai.com/api/policies/sharing-publication/
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A Appendix

A.1 Details of GPT-3 Dataset

GPT-3 Dataset for COCO is our latest dataset for
the MGT detection task. There are two subsets
in the self-made dataset for easy analysis of the
impact of provenance and writing styles: unmixed-
and mixed provinces. We use the text-davinci-003
model of OpenAl to generate MGT examples. The
maximum length of HWTs is 1024 tokens, and the
target generation length is set as 1024 tokens. Here
is an example of the MGT data.
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"title"”: "On Eve of World Cup, FIFA Chief Says,
‘Don’t Criticize Qatar; Criticize Me.’",
"text”: "DOHA, Qatar. The president of world
soccer’s governing body on Saturday sought to
blunt mounting concerns about the World Cup
in Qatar with a strident defense of both the
host country’s reputation and FIFA’s authority
over its showpiece championship....... Citing
statistics, history and even childhood to
bolster his case, he at one point likened his own
experience as a redheaded child of immigrants
to Switzerland to the assimilation problems of
gays in the Middle East, and defended the laws,
customs and honor of the host country.”,
"authors”: ["Tariq Panja"],

"publish_date": "2022-11-19 00:00:00",
"source”": "The New York Times”,

"url”: "https://www.nytimes.com/2022/11/19/spor
soccer/world-cup-gianni-infantino-fifa.html”

ts/

And the following data shows the corresponding

MGT in the dataset.

"title”: "On Eve of World Cup, FIFA Chief Says,
‘Don’t Criticize Qatar; Criticize Me.’",
"text": "The 2022 FIFA World Cup in Qatar is fast
approaching, and its organizing committee’s
president, Gianni Infantino, is speaking out
about the lingering criticism of the country
hosting the event. ...... he said. “It is a
once-in-a-lifetime opportunity for the region
to show the world its values and aspirations,
and it is vital that this event is seen as a
celebration of football and a celebration of the
region.”",

"authors”: "machine",

"source”: "The New York Times",
"matched_hwt_id": 202,

"label”: "machine""

A.1.1 Human Written Texts

Unmixed Subset. The HWTs of the unmixed sub-
set are all from The New York Times® to exclude
the impact of writing style. The time span of our
data is Nov 1, 2022 - Dec 25, 2022, making sure
that no pre-trained model has learned them. We

develop the crawler based on news-crawler’.

Mixed Subset. The HWTs of the mixed subset
come from various sources, listed as Table 5. The
time span of the data is Jan 1, 2022 - Jan 7, 2023.

We develop the crawler based on Newspaper3k®.

The dataset is specifically designed for MGTs
detection and improving generation models. The
contents of dataset are obtained from official news
websites and the names of indicidual people are
not mentioned maliciously. And we strongly reject
using our dataset to create offensive content or peek

at private information.

®https://www.nytimes.com/
"https://github.com/LuChang-CS/news-crawler
8https://github.com/codelucas/newspaper



Name Website

Kotaku https://kotaku.com

The Daily World  https://www.thedailyworld.com
CNN https://edition.cnn.com

BBC https://www.bbc.com

NBC News https://www.nbcnews.com

Reuters https://www.reuters.com

Huffpost https://www.huffpost.com

Pando http://pandodaily.com

Yahoo https://news.yahoo.com

Sun Times https://chicago.suntimes.com/news
Sfgate https://www.sfgate.com

New Republic https://mnewrepublic.com

Time https://time.com

Pcmag http://www.pcmag.com

CNBC https://www.cnbc.com/world/
News https://www.news.com.au/

The Atlantic https://www.theatlantic.com/latest/

Table 5: Data sources for the mixed subset.

A.1.2 Machine Generated Texts

As the GPT-3 and ChatGPT model need prompts to
generate, we write hints for the generation models
to generate texts that meet our news-style long text
generation. The hints format is as follows, and the
content is related to HWTs.

Write a news more than 1000 words.
The news is written by {Authors} from {Source}
in {date}. Title is {title}.

A.2 GPT-3 Dataset Generated by Different
Prompts and Experiment Results

To further validate the conclusion that GPT-3 gener-
ated texts are easier to detect, we utilize CNN news
as reference and design different prompts for GPT-
3 generation. The principle is to provide as more
information as possible to GPT-3 for alleviating the
possible gap in semantics and in length.

Keywords as Prompt (KP). We extract the key-
words and entities with GPT-3.5-turbo and provide
examples in original news to form the prompt for
generation. The prompt format is as follows.

Example prompt for generation.

"role": "system”, "content”: "Extract all
the keywords, entities, and examples in the
following passage:"

"role": "user"”, "content": {text}

Example prompt for generation.
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Generate a news passage.
The news is written by {Authors} from {Source}
in {date}.
Title: Lionel Messi isn’t expected to be back
with PSG until early January after World Cup
success

Keywords: exploring, mountains, space, Poorna
Malavath, Kavya Manyapu, NASA, Mount Everest,
Project Shakthi, girls’ education, Ladakh,
India, virgin peak, climbing, altitude sickness,
safety, motivation, empowerment, education,
gender gap, Mount Aconcagua, sponsorship.
Entities: CNN, Poorna Malavath, Kavya Manyapu,
NASA, Mount Everest, Project Shakthi, Ladakh,
India, Mount Aconcagua, South America, World
Bank.

Examples: designing space suits, youngest
ever woman to summit Mount Everest, climbed a
6,012m virgin peak, raise money to fund girls’
education, difficulties of climbing a virgin
peak, experiences of altitude sickness, purpose
of Project Shakthi, India’s Right to Education
Act, sponsorship for underprivileged school
children, scaling Mount Aconcagua, expanding
sponsorship globally.
The target length for generation is 731 tokens.
Add as much details and examples as you can.
News:

Summary as Prompt (SP). We employ GPT-3.5-
turbo to summarize the original texts. The com-
pression ratio is set to [0.3, 1.0], which means the
summary is required to be longer than 0.3 of the
length of original text and shorter than whole origi-
nal text. The generated summary is used as prompt
and the format is as follows:

Generate a news based on the following
abstract:
Paris Saint-Germain’s coach Christophe Galtier
has stated that Lionel Messi is not expected
to join the team until early January as he is
spending time in Argentina following the World
Cup. Kylian Mbappé, Neymar Jr. and Achraf
Hakimi, who played for their respective national
teams at Qatar 2022, could return to the team as
long as they are physically and mentally fit...
The news is written by Matias Grez from CNN in
2022-12-28 00:00:00.
Title: Lionel Messi isn’t expected to be back
with PSG until early January after World Cup
success
News:

Outline as Prompt (OP). We also outline the skele-
ton of original texts by GPT-3.5-turbo and feed the
outline into GPT-3 text-davinci-003. The prompt
format is as follows:

Prompt for extraction.

"role”: "system”, "content”: "Write a
hierarchical multi-point outline for the
paragraph.”

"role"”: "user"”, "content”: {text}

Example prompt for generation.



News Title: There’s a shortage of truckers, but
TuSimple thinks it has a solution: no driver
needed

The news is written by Jacopo Prisco, CNN from
CNN in 2021-07-15 02:46:59.

Outline:

I. TuSimple’s plan for fully autonomous truck
tests

A. Reliability of software and hardware needs
to improve

B. Fully autonomous tests without human safety
driver planned by end of year

C. Results will determine if company can launch
trucks by 2024

D. 7,000 trucks reserved in US alone

II. TuSimple’s competition

A ...

Add more details and examples.

News:

We first remove the HWTs that do not have de-
sired length (i.e., 200-1024 tokens). And we take
half of the selected HWTs as references to formu-
late different prompts mentioned above and feed it
into GPT-3 to get MGTs. The MGTs are sampled
by Gaussion Distribution of their lengths. To avoid
the possible label leakage brought by text length,
we directly filter the no-reference HWTs according
to the Gaussion Distribution of MGT lengths.

Besides the self-constructed datasets, we also
utilize the published GPT-3 dataset TuringBench
benchmark (abbraviate as GPT-3 (TB)) (Uchendu
et al., 2021) to validate the deceptiveness of GPT-3.
The statistics of datasets we use is in Table 6.

Dataset Train Valid Test # of tokens
GFE3KP) yior|ais 145 148 40898 4759
GFE3SP) \itr | iae 15 148 41572 oo
GFE3OP) yior|ais 145 148 4294 4782
GPITB) e | 507 soa 1763 14729 270,15

Table 6: Statistics of GPT-3 datasets.

We conduct experiments with 3 random seeds
and the average results are shown in Table 7. Coun-
terintuitively, even if we elaborate the prompts and
eliminate the length difference between MGTs and
HWTs, the detection results are still superior, even
on outdated baselines like GPT-2. The conclusion
might be counterintuitive, but texts generated by
the most advanced and popular GPT-3 model are
the easiest to detect.

A.3 Implementation Details

This part mentions the implementation details and
hyper-parameter settings of all the methods in the
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experiment. To imitate the situation of low data-
resources, we sample 10% texts from the datasets
as limited dataset, which will test models together
with the complete datasets. And we conduct exper-
iment on 10 different seeds and report the average
test accuracy, F1-Score, and standard deviation.

We use RoBERTa base model to initialize the
embedding of our representation and optimize
the model using AdamW (Loshchilov and Hutter,
2017) optimizer with a 0.01 weight decay. We set
the initial learning rate to 10~ and the batch size
to 8 for all datasets based on experiences.

We utilize packages, namely transformers, py-
torch, and allennlp to implement COCoO. And the
GPT-3 datasets and ChatGPT case is generated by
OpenAl API and websites. We spend $300 for
API costs, including development and final gen-
eration costs. We train and do experiments on 8
NVIDIA A100 GPUs on 2 Ubuntu-based servers.
The total budget for training 20 epochs, dev, and
testing on the GROVER dataset is 2.5 hours. On
GPT-2 dataset is 12 hours, and on GPT-3 dataset
is 1.5 hours. We will publish our code and dataset
recently.

A.4 Effect of Hyper-Parameters
A.4.1 Contrastive Learning Parameters

We evaluate the influence of contrastive learning
hyper-parameters a and 7 with experiments on dif-
ferent combinations of them. The result is shown in
Fig. 5. Considering the discovering that smaller 7
leads to better hard negative mining ability (Wang
and Liu, 2021), we select  from {0.1,0.2, ..., 0.9}
and 7 from {0.1,0.2,0.3}. We find that the ex-
treme « value causes the performance degrada-
tion and the best hyper-parameter combination is
o, T = 0.6,0.2. Our analysis is that large o forces
the model to concentrate on the instance-level con-
trast and small « lets class separation objective
take control. Both will reduce the generalization
performance of the detector on test set.
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Figure 5: Effect of parameters o and 7 on model perfor-
mance.



Dataset GPT-3 (KP) GPT-3 (SP) GPT-3 (OP) GPT-3 (TB)

Metric ACC(val/test) Fl(val/test) ACC (val/test)  F1 (val/test)  ACC (val/test)  FI1 (val/test) ACC (val/test) F1 (val/test)

GPT2 0.9914/0.9916  0.9916/0.9918  0.9890/0.9893  0.9885/0.9889  0.9925/0.9928 0.9923/0.9924 0.9884/0.5422* 0.9880/0.6335*
RoBERTa | 0.9946/0.9950 0.9950/0.9952  0.9935/0.9941 0.9933/0.9937 0.9946/0.9943  0.9942/0.9940 0.9962/0.6406* 0.9960/0.7273*

CoCo | 0.9955/0.9950 0.9942/0.9945 0.9938/0.9941 0.9936/0.9940 0.9942/0.9943  0.9942/0.9943 0.9966* 0.9970*

Table 7: Experiment of different detectors on different GPT-3 Dataset. * :The great performance difference between
validation set and test set on GPT-3 (TB) are because the test set randomly sample 50% of the words of each article
in the dataset (Uchendu et al., 2021). We do not test CoCo on GPT-3 (TB) for the reason that such operation greatly
influences the coherence in texts. We provide an example of this in Table 8.

GPT-3 (TB)

GPT-3 (OP)

*.video : morne morkel press conference * cricbuzz.video : eng-
land cricbuzz.bevan leads scotland ’s 21-man squad for their first
ever test match against pakistan in edinburgh icc.chris rogers
retires after champions trophy defeat : australian cricketer an-
nounces international retirement the sun.icc super eight teams
: odi ranking results.bahrain host oman on sunday kitply hans
vohra gold cup gulf today.icc results.new zealand series history
: india v new zealandyazan mohsen qawasma : how bahrain
caught

Recent changes to key international indexes have resulted in
the unprecedented exclusion of Russian stocks at a “zero” price,
causing further losses in Moscow’s already-dismal stock ex-
change. This exclusion has made Russia no longer an option for
investors, prompting a shift to other emerging markets.\n\nThe
dramatic shift was made in early March, when FTSE Russell
and MSCI announced the removal of Russian stocks from their
indexes due to the country’s escalating economic and geopoliti-
cal problems. Shortly after, the Moscow Exchange suspended
trading, sending ripples through the market.\n\nThe possible de-
fault on Russian debt has Western investors further reconsidering
their investments in Russia...

Table 8: A comparison example between texts in test set of GPT-3 (TB) and GPT-3 (OP). The GPT-3 (TB) text

shows great disorder while GPT-3 (OP) text is neat.

A.4.2 Graph Parameters

We further investigate the effect of max node num-
ber and max sentence number on model perfor-
mance. The result is shown in Fig. 6. We se-
lect max node number from {60, 90, 120, 150} and
max sentence number from {30, 45,60, 75}. The
detector performs best when max node number is
90 and max sentence number is 45. The experi-
ment results prove that the large node and sentence
number are not necessary for the improvement of
detection accuracy. We infer that even though set-
ting large node and sentence number includes more
entity information, excessive nodes bring noise to
the model and impair the distinguishability of co-
herence feature.
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Figure 6: Performance of COCoO with different graph
parameters.

A.5 Static Geometric Analysis on Coherence
Graph

We have witnessed performance enhancement by
applying the graph-based coherence model to the
detection model, but how does the coherence graph
help detection? In this subsection, we apply static
geometric features analysis to coherence graph we
construct to evaluate the distinguishable difference
between HWTs and MGTs with explanation. In
the following discussion, we take the dataset of
GROVER into the analysis. Some basic metrics
of data and the corresponding graph are shown in
Table 9.

Metric HWT | MGT
Sample Num. 4994 | 4991

Avg. Num. of Token | 463.2 | 456.0
Avg. Num. of Vertex | 43.60 | 32.37
Avg. Num. of Edge 107.4 | 65.44

Table 9: Basic metrics of texts and corresponding
graphs.

Though HWTs and MGTs have approximately
the same number of tokens in every text, coher-
ence graph for HWTs has larger scale than MGTSs’



Metric | Avg. Degree
HWT 2.980
MGT 2.591

Table 10: Average of degree (whole dataset).

with 34.7% more vertexes and 64.1% more edges,
which shows that HWTs have more complex se-
mantic relation structures than MGTs.

A.5.1 Degree Distribution

Semantically, degree of coherence graph measures
the co-occurrence and TF-IDF feature of keywords.
Moreover, degree distribution shows global coher-
ence because high-degree nodes devote to the main
topic and low-degree nodes are the extension.
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Figure 7: Distribution of average degree of graphs.

As shown in Table 10, the degree of the graph
representation of HWTs is 15.0% larger than
MGTs, which shows disparities of MGTs to form
coherent interaction between sentences. Fig. 7 mea-
sures the distribution of each graph’s average nodes’
degree, showing that the distribution of HWTs has
a longer tail than MGTs.

Figure 8: Distribution of degree with different prove-
nance.

Furthermore, we analyze the distinguishability
of degree features when impacted by other factors.
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One most considerable influences is the style and
genre of different provenance. We chose around 60
articles from The Sun® and Boston'. Then we use
GROVER to mimic their style to generate similar
topic news. Fig. 8 shows the degree distribution of
HWTs and MGTs of both provenances.

We use Jensen—Shannon divergence to evalu-
ate the similarity of the degree distribution. The
JS-divergence of MGTs mimicking The Sun and
Boston is 0.029, while the JS-divergence of MGTs
and HWTs in Boston is 0.050, in The Sun is 0.061.
The apparent gap shows that degree distribution can
robustly detect MGTs and HWTs when impacted
by provenance differences.

A.5.2 Aggregation

Aggregation is a shared metric for complex net-
works and linguistics, depicting how closely the
whole is organized around its core. We propose
two metrics to evaluate the aggregation of graph-
based text representation in our coherence model,
the size of the largest connected subgraph and the
clustering coefficient.

In our representation, not all sentences have en-
tities related to others. Hence the graph is an un-
connected one. The average number of nodes in
subgraphs of MGTs is 4.49 and of HWTs is 4.84.
We propose that the size of the largest connected
subgraph shows the contents which are closely or-
ganized around the topic. Moreover, the size of
graphs may be an unfair factor, so we use the por-
tion of nodes in the largest connected subgraph to
reflect its size. The average portion in HWTs is
0.6725 and in MGTs is 0.6458. Fig. 9 shows the
distribution of the portion of graphs, and HWTs
distribute more high-portion ones than MGTs.

The clustering coefficient represents how nodes
tend to cluster. For the entities of texts, clustering
evaluates how the author narrates around the cen-
tral theme. The larger the clustering coefficient is,
the tighter the semantic structure is. The average
cluster coefficient of the graphs of HWTs is 0.2213
and of MGTs is 0.1983, HWTs is 11.6% better
than MGTs. Fig. 10 shows the distribution.

A.5.3 Core & Degeneracy

The degeneracy of a graph is a measure of how
sparse it is, and the k-core is the subgraph cor-
responding to its significance in the graph. We

*https://www.thesun.co.uk/
https://www.boston.com/
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Figure 9: Portion of the largest connected subgraph.
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Figure 10: Distribution of clustering coefficient.

propose that, in our graph representation, the de-
generacy process of graphs equals summarizing
texts semantically. The maximum of core-number
shows the complexity of hierarchical structure in
texts. Furthermore, the distribution of the core-
number reflects the overall sparse and is a graph-
perspective N-gram module. Based on experiments,
the average core-number of HWTs is 5.772 while
MGTs with 4.458. HWTs are 29.5% ahead. Fig. 11
is the distribution of the core-number.

A.5.4 Entropy

Entropy is a scientific concept to measure a state
of disorder, randomness, or uncertainty. The well-
known Shannon entropy is the core of the informa-
tion theory, measuring the self-information content.
For the graph data, network structure entropy de-
fined as the following can examine the information
amount of the graph structure.
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where I; is the information content represented by
the degree distribution, IV is the number of nodes,
and k; is the degree of the i-th node.

Global coherence, from our perspective, equals
refining more information inside the semantic struc-
ture of the whole text, which matches to structure
entropy of our graph representation. From our ex-
periments, the structure entropy of HWTs (2.263)
is 6.80% larger than MGTs (2.119), which means
HWTs obtain more structured information because
their semantic information is globally organized.
We show the network structure entropy distribution
in Fig. 12.

A.6 Exploration on Imbalanced Data

Imbalanced distribution in data is another crucial
limitation in the task of MGTSs detection, which is
similar to the low resource limitation. It is imag-
inable that, with the development of generation
technology, MGTs will overwhelmingly dominate
low-quality articles since they are easier and faster
to generate than human writing. The detection
model will face training resources with MGTs as



the main part and HWTs as the small part. We test
the current models in the imbalanced limitation and
find the dramatic decline in accuracy when the ratio
of HWTs is less than 30%, as shown in the Fig. 13.
The test is based on the 10% GROVER dataset.
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Figure 13: Model comparison results on DL dataset
with 9 different human-generated text portions.

All models show poor performance at low HWTs
ratios. With a percentage of HWTs of 0.1 (only
100 HWTs in the training set in this case), most
of the models have an accuracy below 50%, which
performance is close to random and reflects intol-
erance for extreme cases. Besides, we find that a
high proportion of HWTs also cause a decrease in
F1 score to some extent.

A.7 Related Work: Graph-based Text
Representation

Graph can represent text structure and inner-
relation (Minsky, 1982). Based on different or-
ganizing methods, graphs can reflect static statisti-
cal (e.g., co-occurrence (Cancho and Solé, 2001),
collocation (Bordag et al., 2003)), dynamically sta-
tistical ( e.g., evolution (Dorogovtsev and Mendes,
2001)), lexical (Widdows and Dorow, 2002), ortho-
graphic (Choudhury et al., 2007), cognitive (e.g.,
conception (Motter et al., 2002)), syntactic (Can-
cho et al., 2004; Ferrer Cancho et al., 2007), seman-
tic (Steyvers and Tenenbaum, 2005; Sigman and
Cecchi, 2002; Kozareva et al., 2008) relations. Has-
san et al. (2017) propose an overall survey about
graph-based text representation.

Graph-of Words (GoW) Model (Turney, 2002;
Mihalcea and Tarau, 2004) is a type graph repre-
sentation method in which each document is rep-
resented by a graph, whose nodes correspond to
terms and edges capture co-occurrence relation-
ships between terms. Using GoW, keywords can be
extracted by retaining the document graph (Turney,
2002). Thus, graph representation is sensible to
apply in tasks like information retrieval (Blanco
and Lioma, 2011), categorization (Malliaros and
Skianis, 2015) and sentiment classification tasks
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(Huang and Carley, 2019; Hou et al., 2021). Most
models enhance classification or detection perfor-
mance by combining graph representation with neu-
ral networks. Text-GCN (Yao et al., 2019) first
builds a single large graph for the whole corpus,
followed by Tensor-GCN (Liu et al., 2020) with
tensor representation. Also, the relation between
words varies, and should be treated as different
edges. COCO matches keywords PLM embedding
to nodes and sentence representation, considers
dealing inner- and inter-sentence relation differ-
ently in GCN, and merges the structure graph and
flat sequence representation to predict accurately.

A.8 Pseudocode of COCO

Algorithm 1 Algorithm of CoCo

Input: Input X, consisting of documents D and correspond-
ing coherence graph GG, hyperparameters such as the size
of dynamic memory bank M and batch size S, labels Y’

Output: A learned model COCO, consisting of key encoder
fr with parameters 6y, query encoder f, with parameters
0,, classifier f. with parameters 6.

1: Initialize 6y = 64, 6.
2: Initialize dynamic memory bank with fx(z1,2...xM ),
where x; is randomly sampled from X.
3: Freeze 0y,
4: epoch < 0
5: while epoch < epochmax do
6: n<+0
7: while n < . do
8: Randomly select batch by, b,
9: Dy = f4(bq), Di = fi(by)
10: p = fe(Dg)
11: Calculate Lrcr, with equation 5, calculate Lok
with equation 6, calculate L;,t,; With equation 7
12: Backward on Liotq; and update 6, 6. based on
AdamW gradient descent with an adjustable learn-
ing rate
13: Momentum update 0, with equation 8
14: Update dynamic memory bank gqueue with
enqueue(queue, Dy), dequeue(queue)
15: k+—k+1
16:  end while
17:  if Early stopping then
18: break
19:  else
20: epoch < epoch + 1
21:  endif

22: end while
23: return A trained model COCO




