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Abstract

Patch-level data augmentation such as Cutout and CutMix have shown significant efficacy in enhanc-
ing the performance of image-based tasks. However, a comprehensive theoretical understanding of
these methods remains elusive. In this paper, we study two-layer neural networks trained using three
distinct methods: vanilla training without augmentation, Cutout training, and CutMix training. Our
analysis focuses on a feature-noise data model, which consists of several label-dependent features of
varying rarity and label-independent noises of differing strengths. Our theorems demonstrate that
Cutout training can learn features with low frequencies that vanilla training cannot, while CutMix
training can even learn rarer features that Cutout cannot capture. From this, we establish that CutMix
yields the highest test accuracy among the three. Our novel analysis reveals that CutMix training
makes the network learn all features and noise vectors “evenly” regardless of the rarity and strength,
which provides an interesting insight into understanding patch-level augmentation.

1. Introduction

Data augmentation is a crucial technique in deep learning, particularly in the image domain. It
involves creating additional training examples by applying various transformations to the original
data, thereby enhancing the generalization performance of deep learning models. Traditional data
augmentation techniques typically focus on geometric transformations such as random rotations,
horizontal and vertical flips, and cropping [25], or color-based adjustments such as color jittering [31].

In recent years, several new data augmentation techniques have appeared. Among them, patch-
level data augmentation techniques like Cutout [13] and CutMix [35] have received considerable
attention for their effectiveness in improving generalization. Cutout is a straightforward method
where random rectangular regions of an image are removed during training. In comparison, CutMix
adopts a more complex strategy by cutting and pasting sections from different images and using mixed
labels, encouraging the model to learn from blended contexts. The success of Cutout and CutMix
has triggered the development of numerous variants including Random Erasing [39], GridMask [5],
CutBlur [34], Puzzle Mix [21], and Co-Mixup [22]. However, a lack of comprehensive theoretical
understanding persists: why and how do they work?

In this paper, we aim to address this gap by offering a theoretical analysis of two important
patch-level data augmentation techniques: Cutout and CutMix. Our theoretical framework draws
inspiration from a recent study by Shen et al. [30], which explores a data model comprising multiple
label-dependent feature vectors and label-independent noises of varying frequencies and intensities.
The key idea behind this work is that learning features with low frequency can be challenging due to
strong noises (i.e., low signal-to-noise ratio). We focus on investigating how Cutout and CutMix can
aid in learning such less common features.
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2. Problem Setting

In this section, we introduce the data distribution, neural network architecture, and formal description

of the training methods considered in this paper.

Data Distribution. We consider a structured data, consisting of patches of label-dependent vectors

(referred to as features) and label-independent vectors (referred to as noise).

Definition 1 (Feature Noise Patch Data) We define a data distribution D on R x {1} such

that (X,y) ~ D where y € {£1} is uniformly sampled and X = ( At ) € R™*P s

constructed as follows.

1. Let {vs} se{+1},ke[K] C R? be a set of orthonormal feature vectors. Choose the feature vector
v € R? for data point X as v = vy With probability py, from {Uy,k}ke[K] C RY where
p1+ -+ px =1, and p1 > ...pKr. In our setting, there are three types of features with
significantly different frequencies: common features, rare features, and extremely rare features.
The indices of these features partition [K| into (K¢, Kr, KE).

2. We construct P patches of X as follows.

» Feature Patch: Choose p* uniformly from [P] and we set ?") = v.

* Dominant Noise Patch: Choose p uniformly from [P] \ {p*}. We construct x?) = au +
£®) ywhere o is feature noise drawn uniformly from {ov; 1,av_1 1} and £ ®) is Gaussian
dominant noise drawn from N (0, c3A).

* Background Noise Patch: The remaining patches p € [P]\ {p*,p} consist of Gaussian
background noise, i.e., we set £P) = £P) where £P) ~ N(0,02A).

Here, the noise covariance matrix A =1 — ", 'vsjk'v;rk and the dominant noise is stronger
than the background noise, i.e., oy, < 04.

We refer to data with common, rare, and extremely rare features as common, rare, and extremely
rare data, respectively. Our data distribution captures characteristics of image data, where the input
consists of several patches. Some patches contain information relevant to the image labels, such as
cat faces, while other patches contain information irrelevant to the labels, such as the background.
Intuitively, there are two ways to fit the given data: learning features or memorizing noise. If a model
fits the data by learning features, it can correctly classify test data having the same features. However,
if a model fits the data by memorizing noise, it cannot generalize to unseen data. Thus, learning more
features is crucial for achieving better generalization performance. We refer to data with common,
rare, extremely rare features as common, rare, extremely rare data, respectively.

Neural Network Architecture. We focus on the following two-layer convolutional neural network.

Definition 2 (2-Layer CNN) We define 2-layer CNN fw : R — R parameterized by W =
{w1, w_1} € R™2, For each input X = (w(l), e ,m(P)) € R>P we define

= pez[;] ¢ (<'w1,a:(p)>) - pez[;a] ¢ <<’w717 50(p)>) ;

where ¢(-) is a smoothed version of leaky ReLU activation, defined as follows.

z— (l_ﬁ)r z>r
P(z) = 1524_52 0<z<r, where0<f<1landr >0.
Bz z2<0
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Previous works on the theory of feature learning often consider neural networks with (smoothed)
ReL.U or polynomial activation functions. However, we adopt a smoothed leaky ReL.U activation,
which always has a positive slope, to exclude the possibility of neurons “dying” during the complex
optimization trajectory. Using smoothed leaky ReL.U to analyze the learning dynamics of networks is
not entirely new; there is a body of work that studies phenomena such as benign overfitting [14] and
implicit bias [15, 24] by analyzing networks with (smoothed) leaky ReLU activation. We provide
further discussions on our neural network architecture in Appendix B.1.

We aim to learn a distribution D from the training set using three distinct learning methods:
vanilla training without any augmentation, Cutout, and CutMix. We first introduce necessary
terminology for our data and architecture and next, formalize training methods within our framework.

Training Data. We consider a training set Z = {(Xj, y;) };c|,] comprising n data points, each

independently drawn from D. For each i € [n], let X; = (wgl), e ,a;gp)), and denote p; and p; as

the indices of a feature patch and dominant noise patch, respectively. For each feature vector v
with s € {1} and k € [K], let V, j, represent the set of indices of data points having the feature
vector v, and Vs denotes the set of indices of data with label s. For each data point i 6 [n] and

dominant or background noise patch p € [P] \ {p;}, we refer to the Gaussian noise in ac ) as f

Initialization. We initialize the model parameters in our neural network using random initializa-

{w! (0) (0) w(®) 14
w_q

(t)

tion. Specifically, we initialize the model parameter W (0) = 1} where wy

N(0,021,). Let us denote updated model parameters at iteration ¢ as W) = {w , W
Vanilla Training. The vanilla approach to training a model fy  is solving the empirical risk

minimization problem using gradient descent on the ERM training loss Lgrn(-) with a constant
learning rate 1), where Lgrnm(+) is defined as

Lern(W Z Uy fw (X)) (1)

ze[n
Here, £(-) is the logistic loss ¢(z) = log(1 + e~#), and We refer to this method as ERM.
Cutout Training. Cutout is a data augmentation technique that randomly cuts out rectangular
regions of image inputs. In our patch-wise data, we regard Cutout training as using inputs with

masked patches from the original data. For each subset C of [P] and i € [n], we define augmented
data X; ¢ € R*P as a data generated by cutting C part of data X;. We can represent X cas

a” ifpgcC
Xic = (:pl(lc), . .,wE?) , Where a:l(pc) — % ifp ¢ .
' ’ 0 otherwise

The objective function for Cutout training can be defined as

Lcutout (W) == % > Bean [y fw (X)),

i€[n]

where De is a uniform distribution on the set of subsets of [P] with size C, where C' is a hyperparam-
eter satisfying 1 < C' < g . 'We refer to the process of training our model using gradient descent on
Cutout loss Lcytout (W) with constant learning rate 1 as Cutout.

1. DeVries and Taylor [13] also employ a moderate size of cutting, such as cutting 16 x 16 pixels on CIFAR-10 data,
which originally has 32 x 32 pixels.
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CutMix Training. CutMix involves not only cutting parts of images, but also pasting them into
different images as well as assigning them mixed labels. For each subset S of [P] and i, j € [n], we
define augmented data X; ; s € R¥*P ag the data obtained by cutting patches with indices in S from
data X; and pasting them into X; at the same indices S. We can represent X; ; s as

(») .
i ") o T ifpes,
Xijs = ( LijSr- - ’mi,j,S) , Where z; 63,8 {a)l(.p) otherwise
; .

The one-hot encoding of the labels y; and y; are also mixed with proportions EP‘ and 1 — ‘%',
respectively. This mixed label results in the CutMix training loss Lcoyutmix(W), the objective
function of CutMix training, which can be defined as

S|

Lcutmix(W Z ESNDS (ysz( i.3,5))) + ( - P) e(yij(Xi,j,S))]~

i,5€[n]

Here, D is a probability distribution on the set of subsets of [P] which samples S ~ D as follows.’
1. Choose the size s of S uniformly random from {0, 1, ..., P}, and
2. Choose S uniformly at random from the set of subsets of [P] with size s.

We refer to the process of training our network using gradient descent on CutMix loss Lcutmix (W)
with constant learning rate n as CutMix.

Assumptions on the Choice of Hyperparameters. To control the quantities that appear in the
analysis of training dynamics, we make assumptions on several quantities in our problem setting.
For simplicity, we use choices of hyperparameters as a function of the dimension of patches d and
consider sufficiently large d. We use the standard asymptotic notation O(-), Q(-), ©(-), o(-),w(:)
to express the dependency on d. We also use O(-),Q(-),0(-) to hide logarithmic factors of d.
Additionally, poly(d) (or polylog(d)) represents quantities that increase faster than d“ (or (log d)*)
and slower than d°2 (or (log d)“?) for some constant 0 < ¢; < ¢. Finally, o(1/poly(d)) denotes
some quantities that decrease faster than 1/d° for any constant c. We provide discussions on the
choice of hyperparameters in Appendix B.2 and list our assumptions in Assumption 8. There are
many choices of parameters satisfying the set of assumptions, including:

1
- polylog(d)’
oy =0 (d—0.305) o, =0 (d—0.375) Py (d—O.l) = O (d—0.195) = 0(d"),

P=6,C=2n=0(d"",a=0(d"""?),p a0 = O(d~"?),r = ©(d*?),

3. Main Results

In this section, we provide a characterization of the high probability guarantees for the behavior of

models trained using three distinct methods we have introduced. We denote by 7™ the maximum

poly(d)
n

admissible training iterates and we assume 7™ = with a sufficiently large polynomial in

2. Other types of distributions, such as those considered in Yun et al. [35], make the same conclusion. We adopt this
distribution for ease of presentation.
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d. In all of our theorem statements, the randomness is over the sampling of training data and the
initialization of models. We provide overviews of analysis in Appendix D.
The following theorem characterizes training accuracy and test accuracy achieved by ERM.

Theorem 3 Let W) be iterates of ERM. Then with probability at least 1 — o (m), there

exists Tgrwm such that any T € [Tgrwm, 1] satisfies the following:
* (Perfectly fits training set): For all i € [n],y; fyyy ) (X;) > 0.
* (Random on (extremely) rare data): P x yy~p [y fyy ) (X)>0]=1— 3> prto (m) .
keKRUKE
Theorem 3 demonstrates that ERM achieves perfect training accuracy; however, it performs
almost like random guessing on unseen data points with rare and extremely rare features. This is
because ERM can only learn common features and overfit rare or extremely rare data in the training
set by memorizing noises to achieve perfect training accuracy. The formal proof is in Appendix F.2.
In comparison, we show that Cutout can perfectly fit both augmented training data and original
training data, and it can also learn rare features that ERM cannot. However, Cutout still makes
random guesses on test data with extremely rare features. We state these in the following theorem,
with the proof in Appendix G.2:

Theorem 4 Let W) be iterates of Cutout training. Then with probability at least 1 — o <po+y(d)>,

there exists Touout such that any T € [Tcoutout, 1] satisfies the following:

* (Perfectly fits augmented data): For all i € [n] and C C [P] with |C| = C, y; fyy ) (Xic) > 0.

* (Perfectly fits original training data): For all i € [n], y; fyyy ) (X;) > 0.

* (Random on extremely rare data): P x ,\p [y fyy (X) >0l =1~ % kez’gE prto <P0+§’(d)> :
In the case of CutMix, it is challenging to discuss train accuracy directly because the augmented

data have soft labels generated by mixing pairs of labels. Instead, we prove that CutMix achieves

a sufficiently small gradient norm of loss, and the training accuracy on the original training data is

perfect. We also demonstrate that CutMix achieves almost perfect test accuracy by learning all kinds

of features.

Theorem 5 Let W) be iterates of CutMix training. Then with probability at least 1 — o (W),

there exists some Tounix € [0, T*] that satisfies the following:

* (Finds a near stationary point): vaﬁcutMiX (W(TCutMix)) H = ﬁ'

* (Perfectly fits original training data): For all i € [n], y; fy (reunm (Xi) > 0.

TCutMix) (

X)>0}:1—o(po+y(d)).

To prove Theorem 5, we characterize the global minimum of objective loss of CutMix. Surprisingly,
at the global minimum, the model has even outputs for all features and noise vectors regardless
of the frequency and strength. The complete proof appears in Appendix H.2. We believe that our
approach can be applied to the analysis of other patch-level techniques using mixed labels such as
Puzzle-Mix [21] and Co-Mixup [22].

Our three main theorems elucidate the benefits of Cutout and CutMix. Cutout enables a model
to learn rarer features than ERM, while CutMix can outperform even Cutout. These advantages in
learning features lead to improvements in generalization performance.

* (Almost perfectly classifies test data): P(x ,)~p {y fW(
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Appendix A. Related Works

Feature Learning Theory. Our work aligns with a recent line of studies investigating how training
methods and neural network architectures influence feature learning. These studies focus on a specific
data distribution composed of two components: label-dependent features and label-independent
noise. The key contribution of this body of work is the exploration of which training methods or
neural networks are most effective at learning meaningful features and achieving good generalization
performance. Allen-Zhu and Li [1] demonstrate that an ensemble model can achieve near-perfect
performance by learning diverse features, while a single model tends to learn only certain parts of the
feature space, leading to lower test accuracy. In other works, Cao et al. [3], Kou et al. [23] explore
the phenomenon of benign overfitting when training a two-layer convolutional neural network. The
authors identify the specific conditions under which benign overfitting occurs, providing valuable
insights into how these networks behave during training. Several other studies seek to understand
various aspects of deep learning through the lens of feature learning [7, 8, 18-20, 26, 40].

Theoretical Analysis of Data Augmentation. Several works aim to analyze traditional data
augmentation from different perspectives, including kernel theory [12], margin-based approach [29],
regularization effects [33], group invariance [6], and impact on optimization [16]. Moreover, many
papers have explored various aspects of a recent technique called Mixup [36]. For example, studies
have explored its regularization effects [4, 37], its role in improving calibration [38], its ability
to find optimal decision boundaries [27] and its potential negative effects [9, 10]. Some works
investigate the broader framework of Mixup, including CutMix, which aligns with the scope of our
work. Park et al. [28] study the regularization effect of mixed-sample data augmentation within a
unified framework that contains both Mixup and CutMix. In Oh and Yun [27], the authors analyze
masking-based Mixup, which is a class of Mixup variants that also includes CutMix. In their context,
they show that masking-based Mixup can deviate from the Bayes optimal classifier but require
less training sample complexity. However, neither work provides a rigorous explanation for why
CutMix has been successful. The studies most closely related to our work include Chidambaram
etal. [11], Shen et al. [30], Zou et al. [41]. Shen et al. [30] regard traditional data augmentation as a
form of feature manipulation and investigate its advantages from a feature learning perspective. Both
Chidambaram et al. [11] and Zou et al. [41] analyze Mixup within a feature learning framework.
However, patch-level data augmentation such as Cutout and CutMix, which are the focus of our
work, have not yet been explored within this context.

Comparison to Previous Work. Our data distribution is similar to those considered in Shen et al.
[30] and Zou et al. [41], which investigate the benefits of standard data augmentation methods and
Mixup by comparing them to vanilla training without any augmentation. These results consider two
types of features—common and rare—with different levels of rarity, along with two types of noise:
feature noise and dominant noise. However, we consider three types of features: common, rare, and
extremely rare, and three types of noise: feature noise, dominant noise, and background noise. this
distinction allows us to compare three distinct methods and demonstrate the differences between
them, whereas Shen et al. [30] and Zou et al. [41] compared only two methods.

10
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Appendix B. Further Discussion on Problem Setting

B.1. Discussion on the Choice of Neural Network Architecture

A key difference between ReLLU and leaky ReLU lies in the possibility of ReLU neurons “dying”
in the negative region, where some negatively initialized neurons remain unchanged throughout
training. As a result, using ReLU activation requires multiple neurons to ensure the survival of
neurons at initialization, which becomes increasingly probable as the number of neurons increases.
In contrast, the derivative of leaky ReLU is always positive, ensuring that a single neuron is often
sufficient. Therefore, for mathematical simplicity, we consider the case where the network has a
single neuron for each positive and negative output. We believe that our analysis can be extended to
the multi-neuron case as we validate numerically in Appendix C.1.

B.2. Discussion on the Choice of Hyper parameters

We assume that P = O(1) for simplicity. Additionally, we consider a high-dimensional regime
where the number of data points is much smaller than the dimension d, which is expressed as
n=o (ﬁa;labd%) We also assume that ppn = w (n% log d), which ensures the sufficiency of
data with each feature.

In addition, as we will describe in Appendix D, the relative scales between the frequencies of
features and the strengths of noises play crucial roles in our analysis, as they serve as a proxy for
the “learning speed” in the initial phase. For common features k& € K¢, we assume p, = O(1) and
the learning speed of common features is much faster than that of dominant noise which can be
formulated as o3d = o(a?3?n). For rare features k € K g, we assume p;, = O(pp) for some pg, and
we consider the case where the learning speed of rare features is much slower than that of dominant
noise but faster than background noise, which is expressed as prn = o(a?82%03d), w(a™2B~20id).
Finally, for extremely rare features k € Kg, we say pp = O(pg) for some pg and their learning is
even slower than that of background noises, which can be expressed as ppn = o(a? Bzaﬁd).

. . 2d 1 -1
Lastly, we assume the strength of feature noise satisfies « = o (max { B, % }) , W (nadab La—2 ) ,

and r, o9, n > 0 are sufficiently small so that og, 7 = o (nﬁ_ladogld_%), n= o(a(}Qd_l).

11
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Appendix C. Experiments

We conduct experiments both in our setting and real-world data CIFAR-10 to support our theoretical
findings.

C.1. Numerical Experiments on Our Data

For the numerical experiments on our setting, we set the number of patches P = 3, dimension
d = 2000, number of data points n = 300, dominant noise strength o4 = 0.25, background noise
strength o, = 0.15, and feature noise strength a = 0.005. The feature vectors are given by the
standard basis e1, es, e3, e4, €5, eg € R, where e, es, e3 are features for the positive label y = 1
and ey, e5, eg are features for the negative label y = —1. We categorize e; and e4 as common
features with a frequency of 0.8, es and ey as rare features with a frequency of 0.15, and lastly,e;
and eg as extremely rare features with a frequency of 0.05. For the learner network, we set the slope
of negative regime S = 0.1 and the length of the smoothed part » = 1. We train models using three
methods: ERM, Cutout, and CutMix with a learning rate n = 1. For Cutout, we cut a single patch
of data. We apply full-batch gradient descent and for Cutout and CutMix, we utilize all possible
augmented data.’

For each feature vector v for a positive label , we plot the output of feature vector ¢(<w§t), v)) —

qﬁ((w@l, v)) throughout training. Our numerical findings confirm that ERM can only learn common
features, Cutout can learn common and rare features but cannot learn extremely rare features, and
CutMix can learn all types of features. Especially, CutMix learn common features, rare features, and
extremely rare features almost evenly. Also, we observed non-monotone behavior of the output in
case of CutMix, which motivated our novel proof technique.
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Figure 1: Numerical results on our problem setting. We validate our findings on the trends of
ERM, Cutout, and CutMix in learning common feature (Left), rare feature (Center), and
extremely rare feature (Right). The output of a common feature trained by CutMix shows
non-monotone behavior.

The same trends are observed with different architectures, such as a smoothed (leaky) ReLU
network with multiple neurons . We further conducted numerical experiments on our data distribution

3. For CutMix, this may induce different choices of Ds from those assumed in our analysis, but we mention that other
general choices of Ds do not affect trends in analysis.
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by applying two variations to our architecture: increasing the number of neurons, and increasing the
number of neurons with a smoothed ReLU activation (instead of smoothed leaky ReL.U). We follow
the same setting as previously introduced, except for the neural network architecture, the strength of
dominant/background noise o4, o1, and the frequencies of features. We observed the same trends as
predicted by our theoretical findings and shown in Figure 1.

For the multi-neuron with smoothed Leaky ReLLU case (Figure 2), we use 10 neurons for each
positive/negative output with the slope of negative regime § = 0.1 and the length of polynomial
regime » = 1. We set the strength of dominant noise o4 = 0.25, and the strength of background
noise o, = 0.12 . In addition, frequencies of common features, rare features, and extremely rare
features are set to 0.72, 0.15, and 0.03, respectively.

For the multi-neuron with smoothed ReLU case i.e., 8 = 0 (Figure 3), we set the length of the
polynomial regime as r = 1, and we use 10 neurons for each positive/negative output. We set the
remaining hyperparameters as follows: the strength of dominant noise o4 = 0.25, and the strength
of background noise o, = 0.12. In addition, frequencies of common features, rare features, and
extremely rare features are set to 0.75, 0.2, and 0.05, respectively.
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Figure 2: Multi-neuron with a smoothed leaky ReLU actiation
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Figure 3: Multi-neuron with a smoothed ReLLU
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C.2. Experiments on CIFAR-10 Dataset

We compare three methods, ERM training, Cutout training, and CutMix training on CIFAR-10
classification. For ERM training, we apply only random cropping and random horizontal flipping
on train dataset. In comparison, for Cutout training and CutMix training, we additionally apply
Cutout and CutMix, respectively, on training data. For Cutout training, we randomly cut 16 x 16
pixels of input images, and for CutMix training, we sample the mixing ratio from a beta distribution
Beta(0.5,0.5). We train ResNet-18 [17] for 200 epochs with a batch size of 128 using SGD with a
learning rate 0.1, momentum 0.9, and weight decay 5 x 10~%. Trained models using ERM, Cutout,
and CutMix achieve test accuracy 95.16%, 96.05%, and 96.29%, respectively.

We randomly generate augmented data using CutMix from pairs of cat images and dog images in
CIFAR-10 with varying mixing ratios A = 1,0.8,0.6 (Dog:Cat = A : 1 — X). We randomly make
5, 000 (cat, dot)-pairs in CIFAR-10 training set and apply CutMix randomly 10 times. By repeating
this procedure 10 times, we generate total 5,000 x 10 x 10 = 500, 000 augmented samples for each
mixing ratio A. We plot a histogram of dog prediction output subtracted by cat prediction output
(before applying the softmax function), evaluated on 500, 000 augmented data in Figure 4.

0.40 0.35

0.40 ERM ERM ERM
Cutout 0.35 Cutout 030 Cutout
0.35 CutMix CutMix CutMix
0.30
0.30 0.25
> >0.25 >
Qo.25 2 20.20
) g g
20,20 30.20 3
£ 2 2o1s
015 0.15
0.10
0.10 0.10
0.05 0.05 0.05
0003530 5 o 5 10 15 20 0005550 5 9 5 10 15 20 0005550 5 o 5 10 15 20
Dog Output - Cat Output Dog Output - Cat Output Dog Output - Cat Output

Figure 4: Histogram of dog prediction output subtracted by cat prediction output evaluated on data
points augmented by CutMix data using cat data and dog data with varying mixing ratio A
(Dog:Cat=X:1—)) (Left) A\ =1, (Center) A = 0.8, (Right) A = 0.6

The leftmost plot represents the evaluation results for original dog images, as it uses a mixing
ratio of A = 1. We can observe that the output of the model trained using Cutout is skewed toward
higher values compared to the output of the model trained using other methods. We believe this
aligns with the theoretical intuition that Cutout learns more information from the original image
using augmented data.

The remaining two plots show the output for randomly augmented data using CutMix. We
observe that the models trained with CutMix exhibit a shorter tail, supporting our intuition from the
CutMix analysis that the models learn uniformly across all patches.
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Appendix D. Overview of Analysis

In this section, we discuss key proof ideas and the main challenges in our analysis. For ease of
presentation, we consider the case o = 0. Although we assume lower bounds on «, this is to show
guarantees on the test accuracy and does not significantly affect the feature learning procedure.

D.1. Vanilla Training and Cutout Training

We will explain why ERM fails to learn (extremely) rare features, while Cutout can learn rare
features but not extremely rare features. The formal proof of Theorem 3 and Theorem 4 appear in
Appendix F.2 and Appendix G.2. Let us consider ERM. From (1), for s, s’ € {+1},k € [K],i € [n]
and p € [P]\ {p;}, the component of w; in the feature vector vy ;’s direction is updated as

(w40 00 ) = (Wi, 00) = 20 S 0y 0 (X)) (w0 004)) . @

jevs/ N

and similarly, the “update” of inner product of ws with a noise patch ffp ) can be written as

<w§t+1)’§§P)> - <w§t),§i(l7)> _ %g/(yifw(t)(xi))qy <<w§t),ggp)>> Elgp)H?’ 3)

where the approximation is due to the near-orthogonality of Gaussian random vectors in the high-

dimensional regime. This approximation shows that <'wgt+1), Vg )’s and (wgt), i(p )>’s are almost

monotonically increasing or decreasing. We address the approximation errors using a variant of the
technique introduced by Cao et al. [3], as detailed in Appendix E.2.

From (2) and (3), we can observe that in the early phase of training satisfying —¢' (vy; fyy ) (Xi)) =
©(1), the main factor for the speed of learning features and noises are number of feature occurrence
gi(p) ||2

|Vs 1| and the strength of noises || . From our assumption we have introduced in Section B.2, if
we compare the learning speed of each component, we have

common features > dominant noises > rare features > background noises > extremely rare features.
Based on this observation, we conduct a three-phase analysis for ERM.

* Phase 1: Learning common features quickly.
* Phase 2: Fitting (extremely) rare data by memorizing dominant noises instead of learning features.

* Phase 3: A model cannot learn (extremely) rare features since gradients of all data are small.

The main intuition behind why ERM cannot learn (extremely) rare features is that the gradients of
all data containing these features become small after quickly memorizing dominant noise patches. In
contrast, since Cutout randomly cuts some patches out, there exists augmented data that does not
contain dominant noise and includes only features and background noise. This allows Cutout to learn
rare features, thanks to these augmented data. However, extremely rare features cannot be learned
since the learning speed of background noise is much faster and there are too many background noise
patches to cut them all out.

Remark 6 Shen et al. [30] conduct analysis on vanilla training and training using standard data
augmentation, sharing the same intuition in similar but different data models and neural networks.
Also, we emphasize that we proved the inability to learn (extremely) rare features within %@l)
iterations, whereas Shen et al. [30] consider only the first iteration achieving perfect training

accuracy.
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D.2. CutMix Training

In learning dynamics of ERM and Cutout, inner products between weight and data patches evolve
(approximately) monotonically, which makes the analysis much more feasible. However, analyzing
the learning dynamics of CutMix involves non-monotone inner products which are inevitable since
CutMix uses mixed labels, as demonstrated in the experimental results in our setting (Section C.1,
Figure 1). Non-monotonicity and non-convexity of the problem necessitates novel proof strategies.

Let us define Z := {2, 1 }seq+1}ke[r] Y {Zi(p)}ie[n]’pe[[_)]\{p:} as a function of W as follows,

2= 0 ((wi ) =6 ((woi,6?)) 0 2ok = B(wr,ve)) = (w1, v08)).

Then, Z represents the contribution of each noise patch and feature vector to the neural network
output, and the nonconvex function Lcyenix(W) can be viewed as the composition of Z (W) and a
convex function ~(Z). By using the convexity of A(Z), we can characterize the global minimum of
Lcutmix(W). Surprisingly, we show that any global minimizer W* = {w7], w* } satisfies

o ((w5)) = (w5 .

forall s € {£1},7 € Vs, and p € [P], with some constants C1,C_; = O(1). In other words, at
the global minimum, the output of model on each patch of the training data is uniform across the
set of data with the same labels. We also prove that CutMix can achieve a point close to the global
minimum within %Y(d) iterations. As a result, the model trained by CutMix can learn all features

including extremely rare features. The complete proof of Theorem 5 appears in Appendix H.2.

Remark 7 Zou et al. [41] investigate Mixup in a similar feature-noise model and show that Mixup
can learn rarer features than vanilla training, with its benefits emerging from the early dynamics of
training. However, our characterization of the global minimum of Lcuimix(W') and experimental
results in our setting (Section C.I, Figure 1) suggest that the benefits of CutMix, especially for
learning extremely rare features, arise from the later stages of training. This suggests that Mixup
and CutMix have different underlying mechanisms.
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Appendix E. Preliminary

In our analysis, we consider the choice of hyperparameters as a function of the dimension of patches
d and consider sufficiently large d. Let us summarize the assumptions on the parameters for the
problem setting and assume they hold.

Assumption 8 The following conditions hold.

Al (The number of patches) P = ©(1) and P > 3.

A2 (Overparameterized regime): n = o (Baglabd%).

A3 (Sufficient feature data): ppn = w (n% log d).
A4 (Common feature vs dominant noise): o*B?a3d = o(n).
A5 (Rare feature vs dominant/background noise): ppn = o(a?%03d) and prn = w(a=28720id).

A6 (Extremely rare feature vs background noise) pgn = o (a2 BQJgd).

1

A7 (Strength of feature noise) « = o (max {ﬁ, #}) and o = w (nadagld7§>.
A8 r,00 =0 (nﬁ_ladagldf%) = 0(0’;2(1_1)

E.1. Quantities at the Beginning

We characterize some quantities at the beginning of training.
Lemma 9 Let i, the event such that all the following holds:
. g—gn < Wi, V-1l < %n
s Foreach s € {£1} and k € [K], P2 < |V, ;| < ?@T’“n
* Uiev,, {pj} = [P]

e Forany s,s' € {+1} and k € [K], ‘<w£0),vs/’k>‘ < oglogd.

» Forany s € {£1}andi € [n], ’<w§0), .(ﬁ")>’ < 0goqd? log d.

» Forany s € {£1},i € [n]and p € [P]\ {p},Di}.

<w£0), gz(p)>‘ < O'OUbd% log d.

gi(ﬁi))r < %aidand ’<€Z(ﬁi)7€j(ﬁj)>’ < J?ld% log d.

e Foranyi,j € [n] withi # j, %Uﬁd <

* Foranyi,j € [n] and p € [P]\ {pj,p;},

(67,69 < ouondt g

* Foranyi,j € [n] and p € [P]\{p],pi},q € [P]\A{p},p;} with (i,p) # (J,q),
2
Lo2d < ||e”|" < dotdand | (€7, €7)| < o2d3 loga
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* {vsk}sefr1) kel Y {ccgp)}ie[n]me[p]\{pz} is linearly independent.

Then, the event Einiy holds with probability at least 1 — o (poly( )> Furthermore, if ¢ ~ N(0,0%A\)

is independent 0fw§0), wﬂ) and {(Xi, yi) }ic[n), we have

(s0.6)]

foralli € [n] and p € [P]\ {p;}, with probability at least 1 — o (m)

<wg)1),§>‘ < o*oad% logd, and ‘<£,§i(p)>‘ < aadd% log d,

Proof [Proof of Lemma 9] Let us prove the first three bullet points hold with probability at least
l-o (ﬁ@l))‘ By Hoeftding’s inequality,

P HWI‘ - g‘ > 5%} =P Z (Ly=1 — E[1y,—1])| > 5%

i€[n]

2 1
<2exp(——n) =0 ——r
<2on (i) = ()

where the last equality is due to A3. In addition, for each s € {+1},k € [K], by Hoeffding’s
inequality

H‘Vsk‘ - —n’ > %’“n} =P || (Liev., — ElLiev,, )| > &in
i€[n]

coon(80) )

where the last equality is due to A3. Also, for each i € [n] and p € [P],

Plli eVianinf =p}l = 35

Hence,

P [Uievi, 0} # [Pl < 37 B ey (6 € Via} 0 (o = 1))

pE[P]
P( ——) < Pexp (—%n)

=< (v

Next, we will prove the remaining. Let us refer to the standard deviation of the Gaussian noise
vector in p-th patch of i-th data as ;. In other words, for each i € [n] and p € [P]\ {p}},

oa ifp=p;,
Oip = .
oy, otherwise.
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Foreach s, s’ € {1} and k € [K], <'w£0),'05/7k> ~ N(0,0¢). Hence, we have

Pl )| > et <20 (2520 =0 ().

Let {u; }c[a—2k) be an orthonormal basis of the orthogonal complement of Span ({vs k. }se{+1} ke[K])-
Note that for each s € {£1},7 € [n] and p € [P] \ {p}}, we can write 51.(1)) and ¢ as

w,(0) = o9 Z Zs Uy, fﬁp):"i,p Z Zgﬁ)“h =0 Z Zut

le[d—2K] le[d—2K] le[d—2K]

where z, ;, zl(ﬁ), 2 KN (0,1). The sub-gaussian norm of standard normal distribution N (0, 1) is

2
\/§ . Then <z%)) — 1’s are mean zero sub-exponential with sub-exponential norm % (Lemma 2.7.6

’s, zg)zg?l)’s and z
sub-exponential norm less than or equal to % (Lemma 2.7.7 in Vershynin [32]). Using Bernstein’s
inequality (Theorem 2.8.1 in Vershynin [32]), let ¢ be the absolute constant stated therein. We then

have the following:

(p)
il

(p)
N

in Vershynin [32]). In addition, z ;z .1 Z1’s are mean zero sub-exponential with

1 23 2 1
1-P [yipd < |€”] < Qoipd} <P H &7 —otpid - 2K>\ > o7 logd}

2

-p|| ¥ ((zg})) - 1) > dz log d

l€[d—2K]
9cd log? d
< 2exp | ——o T
= 2o < 64(d — 2K)>

<9 _9(:10g2d B 1
=S 64 —¢ poly(d) )’

in addition,

P H<§z‘(p)’€g(‘q)>‘ > Ui7p0j7qd% log d} =P Z z,(f})zf} > 2 logd
le[d—2K]

<96 9¢edlog? d
o [ _2celoga
= 2O\ Th4(d - 2K)

<9 9clog? d 1

exp| ——— | =o .
- P 64 poly(d)
Similarly, we have

P ([ (wl?.62)] 2 ouoiyi oga] < 2ep (-22E0) — o (LY.

Applying the union bound to all events, each of which is at most poly(d), leads us to our first
conclusion.
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In addition, for each s € {£1},7 € [n] and p € [P]\ {p}},

B ([l €)] 2 oot sl < 2exp (22251 ) —o (L),

(6] = ot o] <20 (- *GE) <o (15 )

Lastly, the last results holds almost surely since d > nP.
Applying the union bound to all events, each of which is at most poly(d), leads us to our second
conclusion. |

and

E.2. Feature Noise Decomposition

In our analysis, we use a technique that analyzes the coefficients of linear combinations of feature
and noise vectors. A similar technique in a different data and network setting is introduced by Cao
et al. [3].

Lemma 10 [f we run one of ERM, Cutout and CutMIX training to update parameters W' of

model fy, ), then we can write w® = {w 71} as
0 + Z 7§t)(87 k)'vs,k - Z ’ygt)(—s, k)’vfs,k
ke[K] ke[K]
T Z P (i, p) — 2 Z P (4, p) — p)
i€V, pelPI\(r) f,-("’)H ieV_. pelPM\(p7} e?)|

-\ U— 1
5 1 Z yzps Lp =
iE€F_g

> syip!) (i, i)

1€Fs

where F denotes the set of indices of data with feature noise vs 1. Furthermore, if we run one of

ERM and Cutout, the coefficients ygt) (s',k)’s and pgt) (1, p)’s are monotone increasing.

We provide proof of Lemma 10 for ERM in Appendix F.1, for Cutout in Appendix G.1 and for
CutMix in Appendix H.1.

Since Gaussian vectors in a high-dimensional regime are nearly orthogonal, we can use the
coefficients to approximate inner products or outputs of neurons. The following lemma quantifies the
approximation error.

Lemma 11 Suppose the event Eiy,i; occurs and 0 < ygt)(s’, k), pgt) (i,p) < 5(5*1)f0r all s,s' €
{£1},k € [K],i € [n] and p € [P]\ {p}} at iteration t. Then, for each s € {£1},k € [K],i € [n],
and p € [P)\ {p}}, the following holds:

(wve1) =25, 0)| |6 ({0l w0n ) ) = (s, K ‘ = 6 (- toany ).

<w§t),'v,sﬁk> + %@(—s, k)‘ , ‘gb (<w§t),v,s’k>) + m&”(—s, k)‘ =0 (nﬁ_ladagld_%).
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(o€ = .o ((.67Y) A2 = -t
o (w6 40, 0o ()€Y + 50, i) = O (5~ oaoi a1 ),
. ¢(<w;),$§pi>>) oD (i, i) ’ ‘¢(< ® Eﬁi>>>+ﬁp(jzji(i’ﬁi)‘:5(045_1).

Proof [Proof of Lemma 11] Note that from our Assumption 8, the following hold:

1. opd? =w(l).
2. ooadd%,r =0 (n,@‘ladagldfé),
3. anf~ O'd2d_ —o(nﬁ ladabld %),

4. ng~! oqoy, 1g=3 = o(laB™1).
For each s € {£1},k € [K]\ {1}, we have
t)
(s,

(i)

and
o () =400,
< o ((wlvn)) =0 (400 0)) |+ 6 (10(5,8)) =20 (s. )
< \<wgt>,vs,k> — s, )| + S5
—O(nﬁ Logortd )
Similarly.

Next, we will consider the case of v1 1 and v_; ;. For each s € {£1}, we have

‘ <w§t), vs,1> — 7§t> (s, 1)‘
(o) S b [

1€[n]
O(o0) + 6(anﬁ_1052d_1)

O (nﬁ_ladagld_%> ,

IA

I IA
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and
(0 0sn) +90(=5.1)
\< o) |+ 30 A0 ]

i€[n]
< O(0g) + O(anf™ Lo 2d™1)
[P

IA

(nﬁ adabld )

Foreachi € [n],and p € [P] \ {p}}, we have

® ¢®\ _ 00 | < [{p® ¢® (0) (&”.”)

(o)< N > all
jelnl.aelP\ps) |2
(4,p)#(5,9)

< O (andd2> +nPO (ﬁ 40y, —lq- %>

=0 (nﬁ_ladabld 2) ,

‘qﬁ (<w§?,£§p)>> — ol (i, p)
< ‘sb <<w§?,f§p)>) —¢ (pé? (i,p)ﬂ + ’cb (pé?(i,p)) P (i, p)‘

< ‘<w§?7€§p)> —p®) (i,p)‘ n (1—2@7“

and

= 6(nﬁ_10dag1d_%).
Also, if i € F; for some s € {£1},

< 6(nﬁ_1adag1d_%) +a ‘<wyi ,v571>’

o IA

Similarly,

(
(0 )+ ] < [ N+ Y Sl
j€nl,q[P\{p} } H H
(i,p)#(5,9)

< O(00) + nPO (ﬁ oqoy, td 2 )

=0 (nﬁ_ladagld_%> ,
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and

6 ((w?,.7)) + 80, G.p)| = |0 ((w),,67)) = 6 (=%, (0.m)|
< ‘< w!) & >+p9§ﬁ(i,p)‘
) (nﬁ— gdggld—%) ,
Also, if i € F; for some s € {£1},
(s 2i™)) + 850,50
= o ((w",.€77)) + oY), 0. 5)

+[o ((wla)) o ((08.67)]
(nﬁ_ladagld_%) + ‘<'w%l, vs’1>‘
<0 (nﬁ_ladab g2 ) + (’)( 8- 1) + (5(0400)

[ |
We define the set W as the collection of W = {w;, w_; }, where w; — w(()o), w_q1— w(()o) are ele-
() }
* Jieln].pe[P)\{p;}

guarantees the unique expression of any W' € W in the form of the feature noise decomposition.

ments of the subspace spanned by {v;  }scf+1},ke[x]U {:c . The following lemma

Lemma 12 Suppose the event Eini occurs. Each element W = {wi,w_1} € W is uniquely
expressed as:

Wws = wgo) + Z 'Vs(svk)'vs,k: - Z ’Ys(_sak)'v—s,k

ke[K] ke[K]
R G B e
pelP\{p;} pE[P]\{p} ’
+ o Z yzps pz ( ) + Z Syips(i>ﬁi) ,U(;;)’lg
ieFs 34 i€F s 3

for each s € {£1}. Hence, for each s* € {£1} and k* € [K], we can introduce the function
QU F) W — R¥2 such that for each W = {wy,w_1} € W,

QI W) = {QF ) (w1), @ (w-) }
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is given by:
* 1% E(p)
QgS K )(ws) = 58" Vs (8™, K )Ugr = + 55" Z ps(i,p) (1) 5
i€Vx g ,pE[PI\{p] } &' H
* .~ '057 * - 'U*S,
+ Z ss Ps(lapi) ~_1 5 + Z 58 pS(vai) _ 12
IEF Ve jor f,gpl) EF_Vgn jor fz-(pZ)
Proof From liner independency of {vs 1} u{z? , WE can express an
p y of {vs i }seq+1},ke(K] { i }ie[n],pe[P]\{p;*} p y
element W = {w,w_1} € W as
Wws = wg()) + Z :78(5’ k)vs,k - Z '73(_& k)v—syk
ke[K] ke[K]
L R
+ Z Ps(%p)Hé_(p)H - Z Ps(lap)f(p)H “)
’LEV& 1 16)}757 7
pe[P\{p;} pe[P\{p;}

with unique {9s(s, k), ¥s(—s, k)}se{:l:l},ke[K] and {ps(iap)}sE{:tl},iG[n],pE[P]\{i*}- If we define
vs(8, k) and vs(—s, k) as vs(s, k) = Ys(s, k), vs(—s, k) = Ys(—s, k) for k # 1, and

Ys(5,1) = Fs(5,1) —a S syaps(i, i) ||€7)]]
1€Fs
S -2
78(_57 1) - :78(_87 1) + o Z Sylps(laﬁz) gi(pz) ’
1E€EFs
then we have
ws =w® + Z Vs (8, k)vs e — Z Yo(—8, k)v_g j
kJE[K] kE[K]
+ Z ps(l,p) (Z) 5 Z ps(%p) (’L) 5
i€V Hfip H v, éip H
pE[P\{p}} pelP\{p*}

. Vs 1 .~y Vs
o | D syips (i Pi) s+ Y syips(i i) ——
i€Fs )

)

2
1€F s

7
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To show uniqueness, suppose {:YS(S? k)? :YS(_S: k)}sE{:l:l},kE[K] and {ﬁs (iv p)}sE{:I:l},iE[n],pE[P]\{i*}
satisfies

ws = wgo) + Z &s(svk)vs,k - Z ’%(—S,k‘)’v_&k

ke[K] ke(K]
NS PN 7
+ Z ps(i,p)—=* 7 — Z ps(i, p)—= 2
iV, HEEP)H i€V éi(p)H
pE[P\{p;} PpE[PI\{p;}

n e~ Vs, 1 o~ V_s,1
o | Y syips(p)—5 Y syips (i, i) ——2
i€ Fs fgpl) iEF_s f(pl)

% 7

‘We have

Ws = wgo) + Z ’?S(Sa k)vs,k - Z 'A)/s(_sa k)v—s,k
ke[K\ {1} ke[K\{}

=2
+ (;}/8(87 1) + « Z Sylﬁs(%ﬁz) éi(pl) > Vs,1
1E€Fs

=2
- (&8(871) —« Z 5yiﬁs<iaﬁi) fl-(pl) ) V_s1
1€F_s

+ Z ﬁs(i,p) ‘Sl(p) 2 Z ﬁs(ivp) gfp) 2°
T T
pE[PN\{p}} pE[PN\{p;}

From the uniqueness of (4), we have

ﬁ/s(&k‘i) = ’3/5(8, k) = '78(3>k)>'3/8(_37 k) = ’78(_87 k) = 78(_87k)7

foreach s € {£1},k € [K]\ {1}, ps(i,p) = ps(i,p) foreach i € [n],p € [P]\ {p}},

Fa(s, 1)+ S syapa(i ) |67 = Auls 1) = vals D)+ 0 Y swipsi ) 67|
1€Fs 1E€EFs
and
Y (—s.1)— A (1 D (Bi) _2_‘* —s. 1) = —s.1)— A (Pi) -2
Asl=s, D= Y syips(i, i) || = Fs(=s5,1) = vs(=s, )= Y syips(i, i) ||€;
Z'G}—fs 726]:75

Hence, we obtain the uniqueness of the expression and Q©*"*") is well defined for each s* € {£1}
and k* € [K]. [
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Appendix F. Proof for ERM

In this section, we use g(t) = 1

v 1+GXP(yifW(t) (X))

for each data ¢ and iteration ¢, for simplicity.

F.1. Proof of Lemma 10 for ERM
For s € {£1} and iterate ¢,

w1 _ 4p®)
= —nvwsﬁERM (W(t)>

2% il 3 o {(wb )

i€[n] p€E[P)
S 1 (I S s e F
1€V, pE[P i€V _s pE([P]

and we have

oo’ 3 o ((wal”)) o

1€Vs
- Z Z gz(t ¢’ <w§ 7'Usk>) Vs + Z g Z & <<wgt)7§i(p)>) 57;@)
ke[K} 1€V ko = pelPI\{p" 1}

(
g (<ws v + P >) (avs,1+§fﬁi)>
+ Z 9 (<w5 Lav_g + EP >) (avfsj +§i(ﬁi)),

and

_ Z Z 008 ({000 vt Yo Y o ((wl,e2)) €
ke[K]i€V_,, i€V_s  pe[P\{p].Bi}
+ Z gZ ¢>’ (<w , Qg 1 +£p)>> (av&l —i—fi(ﬁi))
iEV_NFs
() s (t) . Z(ﬁi) . 1(151') )
+,-6V_2;f_ g, ® <<w5 ,av_g1+ & >) <om 1+& )
Hence, if we define 7§t)(s k)’s and p( )(z p)’s recursively by using the rule
(t+1) /s t) ) ,
AW k) = A0 k) + ze;kg’ ¢ ((wv0k)) 5)
P, p) = p(i,p) + ngft)d) (< O, >> (6)
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starting from 7§0)(s’, k) = (0) (i,p) = Oforeachs,s’ € {1}, k € [K],i € [n] and p € [P]\{p}},
then we have

w(t +Z% skvsk—z% (—s,k)v_gp
ke(K] ke (K]
. f(p) . f(p)
+ Z pg)(z’,p) (Z) 7~ Z pg)(z’,p) (Z) 2
i€V pelPI\{p} )} &' H i€V-s pelPN\{p}} &' H
. Vs, .~y U—s,
S suip® G p)—5 + > s p)—5 |
i€Fs l-(pl) i€F_s fgp’)
for each s € {+1}. Furthermore, vét)(s k)’s and p( )(z p)’s are monotone increasing. O

F.2. Proof of Theorem 3

To demonstrate Theorem 3, we present a structured proof comprising the following five steps:
1. Establish upper bounds on mgt) (s',k)’s and pg) (7,p)’s to apply Lemma 11 (Section F.2.1).
2. Demonstrate that the model learns common features quickly (Section F.2.2).

3. Show that the model overfits dominant noises in (extremely) rare data instead of learning its
feature (Section F.2.3).

4. Confirm the persistence of this tendency until 7™ iterates (Section F.2.4).

5. Characterize train accuracy and test accuracy (Section F.2.5).

F.2.1. BOUNDS ON THE COEFFICIENTS IN FEATURE NOISE DECOMPOSITION
The following lemma provides upper bounds on Lemma 10 during 7™ iterations.

Lemma 13 Suppose the event Eiy;y occurs. For any t € [0,T*], we have
(t) (&) * ) (; ) ¢ *
0 <5 (8,k) + Bs (=8, k) < 4dlog(nT™), 0 < py)(i,p) + Bp_y,(i,p) < 4log (nT™),

forall s € {£1},k € [K],i € [n]and p € [P]\ {p}}.

Proof [Proof of Lemma 13] We will prove this by using induction on ¢. The initial case ¢ = 0 is
trivial. Suppose the given statement holds at ¢ = 7" and consider the case t = T" + 1.

Note that from our Assumption 8, the following hold:
e n< log(nzT*))’

« af ! nBogoy, 142 =o(1).
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Let T, < T denote the smallest iteration where fy( skt )(s k)+67(T k+1)(s, k) > 2log(nT™).
We assume the existence of Ts’k, as its absence would directly lead to our conclusion due to our

small choice of 7.
By (5), we have

VT (s, k) + 85 (s, k)
_ 7§Ts k)(s k) +5"}/(_Ts’k)(57k>
T
S ( (D (s, k) + BTV (s, k) — 40 (s, k) —57@(8%))
=T

t s,k

< 2log(nT") + log(nT"*) + i Zg§t><¢’(<w§t>,v57k>)+5¢ ((w ka}))

t=Tg p+1 1€V ks

The inequality is due to fyg(, : k)(s k) + ﬁy(Té (s, k) < 2log(nT™*) and
15 (o (a0 50 () 0)) ) 220
n i€Vs &

from our choice og T& r and 7.
Foreacht =T, +1,...T,and 7 € V;, we have

Yifw o (Xi)

o ({0 vu)) —o (o)) + X (o((wla)) =0 ((wal)) )
pE[P\{p;}

>y (s,k) + 8705, k) + D (pét) (i,p) + ﬁp(_t)s(i,p))

pe[P\{p;}
- 2P6(nﬁ_ladagld_%) —20(af™)
> glog(nT*)

The first inequality is due to Lemma 11 and the second inequality holds because from our choice of

t. 4 (s, k) + B7)(s. k) > 21og(nT™).
Hence, we obtain

{E (e )

tTSkZEVsk
2n
SZZ ZQXP ysz(t)( ))
th’kZEVsk
2|V 3
< 2 T* ——1 T*
< — = )exp< 5 los(n ))
< log(nT™).
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Thus, we have 7§T+1)(s, k) + B'y(_j;ﬂ)(s, k) < 4log(nT™).
Next, we will follow similar arguments to show that

P (i, p) + BV (i, p) < 4log(nT™)

foreachi € [n] andp € [P]\ {pi}.
~ 7(p) 7(p)
Let Ti(p) < T be the smallest iteration such that pg(,ZTl +1)(i,p) + Bpgji +1)(i,p) > 2log(nT™).

We assume the existence of T~i(p ), as its absence would directly lead to our conclusion due to our
small choice of 7.
By (6), we have

P (i, p) + 8o (i, p)
( ﬁp)) ) ( (P))
= py;' (i,p) + Bp_,, "(i,p)

b Y () + 8506 — 06— 86, 6)

(=T V)
< 2log(nT™*) + log(nT™) + Z gzt) <¢ << z(p)>> + B¢’ (<wg’$’(p)>> >
" 741

( (p))

(p)
The inequality is due to py,” " (i,p) + Bp( )( p) < 2log T™* and

7(p) 7(p) n
L o (o) 50 (o)) <0<

7(p)

from our choice of 7" and 7.
Foreacht:Ti(p)—i—l,...,T,wehave
Yifw o (Xi)
=0 (Qwia”)) - ((wSea?)) + 3 (o((wfdal”)) = o (=)

q€[P\{p}
> pl(fi) (i,p) + Bp(f?)ﬁ (i,p) — 2PO (nﬁ_ladagld_%) —20 (ap™)

> - log(nT™).

N W

The first inequality is due to Lemma 11 and the second inequality holds because from our choice of

t, py) (i, p) + Bp") (i, p) = 2log(nT™).
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Therefore, we have

A G R L))
=T 41

T
2n
. > exp (—ifwn (X)) <
=T 41
< log(nT™),

and we conclude péi )(z p) + ﬁp TH (z,p) < 4log(nT™). [ |

F.2.2. LEARNING COMMON FEATURES

In the initial stages of training, the model quickly learns common features while exhibiting minimal
overfitting to Gaussian noises.
First, we establish lower bounds on the number of iterations ensuring that noise coefficients

(®)

ps’ (i, p) remain small, up to the order of o,

Qna

Lemma 14 Suppose the event Fiyi, occurs. There exists T > such that pg )(z p) < a? for

all0 <t <T,s e {*1},i€ [n]andp € [P\ {p’}.

Proof [Proof of Lemma 14] Let T be the smallest iteration such that pgT) (i,p) > a? for some
s € {£1},i € [n]and p € [P]\ {p;}. We assume the existence of 7', as its absence would directly

lead to our conclusion. Then, for any 0 <t < 7', we have

3770C21d
2n

06 = 6+ 0 (0,5 [ < 496,04

2
where the inequality is due to glgt) <1,¢' <1,and Hfﬁp ) H < 353d. Hence, we have

3770dd .

o? < pM(i,p) < =T,

and we conclude T >

2 . . .
2na” which is the desired result. [ |
3nosd

Next, we will show that the model learns common features in at least constant order within T
iterates.

Lemma 15 Suppose the event Ei;; occurs and 371 pk =0 ( ) for some k € [K|. Then, for

each s € {£1}, there exists T, < such that ’y(t)(s, k) + ,B'ygs(s, k) > 1 foranyt > Ty .

nBIV kl

Proof [Proof of Lemma 15] Note that from our Assumption 8, nﬁfladagld_% ;a2 aB7t = o(1).
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Suppose vgt)(s, k) + 57(_2(3, k) <1lforall0 <t < 2”0‘ . Foreach i € V, ,, we have

Yifw o (Xi)

=0 ((wh o)) =0 ((wlhm)) + 3 (¢(<w£t%w5p>>)—¢<< %))
pelPI\{p}}

<0, k) + 806 k) + D (p06p) + Bpi.p)

pe[PI\{p;}
+2P0O (nﬁ—lada,;ld—%) +20 (ap7Y)
< 1+2Pa?+2P0O (nﬁ_ladagld_%) +20 (aﬁ_l)
< 2.
T(};;a first inequality is due to Lemma 11 and the second inequality is due to Lemma 14. Thus,
_ 1

Yi 1+exp<y1 wt (Xe)

D (s k) + By (s, k)

=0, k) + B (s k) + 1S gl (¢’ ((wv,4)) + 89/ ({w “i,vsk)))

) > % and we have

iEVS’k
¢ 16|V x|
> A5, 0) + By (s )+ g
n
From the condition in the lemma statement, we have —22— = o <,2"°§2 ) If we choose ty €
nﬁ‘vs,k| 3770'dd
9 2na?
[nﬂhz,k\’ 3024 |» then
V
152, k) + 5D (s 8 2 ey 5,
n
and this is contradictory. Hence, there exists 0 < Ty < 3277;‘&2(1 such that fyé o k+1)(s,k) +
d
ﬁ’y(_j;s’kﬂ) (s, k) > 1 and choose the smallest one. Then we obtain
)%
1> "}/STS,k)(Sv ]{3) + ﬂ/y(_j;s,k)(& k) > nﬂgn&MTs,k'
Therefore, T ;, < I and this is what we desired. |

nB \Vs

What We Have So Far. For any common feature v, ;, with s € {£1} and k € K, it satisfies
B_lpgl =o (%). By Lemma 15, at any iterate t € [T7,T*] with T} := MaXge 41} keke Lsks
the following properties hold if the event Ejni; occurs:

* (Learn common features): Forany s € {£1} and k € K¢,

A0 (5. k) + 81815, k) = (1),
» Forany s € {£1},i € [n],and p € [P]\ {pj},pg)(i,p) =0 (B71).
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F.2.3. OVERFITTING (EXTREMELY) RARE DATA

In the previous step, we have shown that common data can be well-classified by learning common
features. In this step, we will show that the model correctly classifies (extremely) rare data by
overfitting dominant noise instead of learning its features.

We first introduce lower bounds on the number of iterates such that feature coefficients fygt) (s', k)
remain small, up to the order of . This lemma holds to any kind of features, but we will focus
on (extremely) rare features. This does not contradict the results from Section F.2.2 for common
features since the upper bound on the number of iterations in Lemma 15 is larger than the lower
bound on the number of iterations in this lemma.

Lemma 16 Suppose the event Eiiy occurs. For each s € {+1} and k € [K], there exists

Typ > \V 7 such that ’y( )(s, k) < a’forany0 <t < T,y ands € {+1}.

Proof [Proof of Lemma 16] Let Ts,k be the smallest iterate such that 'ygs’k) (s, k) > a? for some

s e {£1}. We assume the existence of Ts,k, as its absence would directly lead to our conclusion.
Forany 0 <t < T,

) =P8+ L o060 (0, wei)) <0,k + T2,

ZGV; k

n|V

T )
and we have o? < fyi, k) < %"'T % We conclude T} j, > -7 which is the desired result. M

IV

Next, we will show that the model overfits (extremely) rare data by memorizing dominant noise
patches in at least constant order within 7T j, iterates.

Lemma 17 Suppose the event Eiy; 5:3 =0 (a2p;1). Then, for each i € Vs, there
exists T; < Pﬂ 2d such that
. 1
PG, pi) + B0, Bi) > 2

foranyt > T;.

Proof [Proof of Lemma 17] Note that from our Assumption 8, the following hold:
* o = 0(03B),
. aQ,nﬁ_ladagld_%,aﬁ_l =o(1).

Suppose o (i, i) + Bp")(1, 1) < % forall 0 < ¢ < e’
For any p € [P]\ {p;}, by (6) we have

) = o p) = L9l ((w) ) 5@'@)“2
<20 (o2 [
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for each s’ € {£1}, where the inequality holds since o2d = o(803d). Thus,
1

PG, p) + 8o (i, p) <

9

|

forall0 <t < |V mE Therefore, we have

Yifwo (Xi)
of(wmn)) e((wmn)) S (o((un) ()

W, k) + 01Ok + > (K000 + 8o Gp))
pe[P\{p;}

+ 2P0 (nﬁ_lada_ld_%> +20 (046_1)

<(14B)a’+P- +2PO (nﬁ oaoy td~ %>+2(5 (ap™t)
2,

IN

) _ 1 >
and g, Trexp(vif 0 (X0) =

1
3 Also,

P8V, pi) + BTV (6, i)

= 06,70+ 050 + 2ol (o (), 2)) + 0 (w2?)) )

nﬁaﬁd
18n ’

>pg( )+6 (72)+

(Ps)

where the last inequality is due to H§ 10(21d and ¢' > f.

From the given condition in the lemma statement, we have —2%— = o ( ) If we choose
Uﬂadd W‘Vs |
18n na?
tg € WPBo%d’ nIVs,k\] , then we have
1 Ban 1
— ) (; . s b —
> 0> —.

This is a contradiction and thus there exists 0 < T < IV 7 such that pgT i+l ( Di)+BpL (T ) ( ,Di) >

ﬁ and let us choose the smallest one.
Forany 0 <t < T},

1

2 oG o) + 670 (0, 71) 2

Bagd
18n

1,

and we conclude that T; < and this is what we desired. [ |

Pﬁ 2d
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What We Have So Far. Forany s € {£1} and k € Kg U Kp, it satisfies =%~ = o (a2p, ). By

ﬁo‘?id
Lemma 17 at iterate ¢t € [Tgrm, 7] with
TerM = max maxT; € [Tl,T*}
Se{ﬂ:l} ’LAEVS’k
keKrUKE

the following properties hold if the event Ejy;; occurs:

* (Learn common features): For s € {+1} and k € K¢,
A (s, k) + 57 (s, k) = Q(1),

* (Overfit (extremely) rare data): For any s € {£1}, k € Kr UKg, and i € Vs,
Py bs) + BpUA i i) = (1),

¢ (Do not learn (extremely) rare features): Forany s, s’ € {+1}and k € KrUKp, ’Yg/TERM) (s,k) <

a?.

e Forany s € {£1},7 € [n],and p € [P]\ {p}}, pgt)(i,p) =0 (B71).

F.2.4. ERM CANNOT LEARN (EXTREMELY) RARE FEATURES WITHIN POLYNOMIAL TIMES

In this step, we will show that ERM cannot learn (extremely) rare features within the maximum

admissible iterations 7% = %@D.

From now on, we fix any s* € {£1} and k* € Kr U K. Recall the function Q=) : W —
R%*2, defined in Lemma 12 and omit supscripts for simplicity. For each iteration t, Q(W(t)) repre-
sents quantities updates by data with feature vector v+ i+ until ¢-th iteration. We will sequentially
introduce several technical lemmas and by combining these lemmas, quantify update by data with
feature vector v« p+ after Tgryv and derive our conclusion.

Let us define W* = {w], w*; }, where

(i) )
Ti ; T )
wh = w% BRM) | o r Ez~ S, wiy = ElERM) o £z~ -
i€Vgr 51.(4”") i€V g §§p’i)

where M = 5~ !log (ﬁ—?) =0 (6‘1).
Note that W), W* € W for any t > 0.

Lemma 18 Suppose the event Einix occurs. Then,
HQ <W(TERM)) _ Q(W*)
Proof [Proof of Lemma 18] For each s € {£1},

Qs (wy) — Qs <w£TERM)>

Us1 V_s1
* S 5
2 —|—aMs E D) + 5 2 )

IEFsMVgr fgpi) GEF sV gi(”i)

2
‘ < UMV jo|og2d "
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and we have

|@ (W) — v

coe| 5 | (G )

Y

1E€EVgx g 1,JEVex px i ]

2

&'(i’i)

2 2

+2M? | o® > ;
’L‘E.Fsﬂvs*,k* Z’G]'—islmvs*yk*

From E;,;; and nd-z = o(1), we have

‘<§§ﬁi)7§§ﬁ.i)>‘
2 Hg]@j)

-2

7S D

ZAEVS*Y,C*

7

f(ﬁi)

iv.jevs*,k* AFE]

In addition, pin = o(c3d) and a = o(1), we have
2 2

DY +a? 3 -

Z‘E}—sﬁv‘s*yk* ie]—'fs/ﬁvs*’k*

2 2

-2

¢ i(ﬁi) ¢ Z(ﬁi)

{ + Z gi(f)i) -2

1E€EFsNVgx jox 1€EF_ MV jo*

>

ie]—'sm/s*’k* Zefislmvs*’k*

= ¥ ¢

ievs* 7k*

IN

- -2
é‘(pz) é—i(pz)

IN

Hence, from FEj,;;, we obtain

HQ <W(TERM)) - Q(W™) éi(ﬁz‘ -2 < 24M2’V5*’k;* ‘O‘(IQd_l.

2§6M Z

ievs*’k*

Lemma 19 Suppose the Einit occurs. For any t > Tgrv and i € Vs i+, it holds that

YiVw fw o (Xi), QW) >
Proof [Proof of Lemma 19] We have
(YiVw fiw o (Xi), QW)

— Z <q§’ (<w§?,w§p)>> <Qs*(w:*),az§p)> — ¢ <<wg*,w£p)>> <Q_s*(wi5*),az

pe[P]
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Note that nﬁflada};ld_% = o(1) by Assumption 8. For any s € {£1} and p € [P]\ {p},pi},
557 (Qo(w?). &)

— pgTERM)(z”p) 4 Z pgTERM)( <§ 5(Q)> MW

. . . @)%
JEVex i ,q€[P\{p}} JGVS*,k* \{4} i
(4,p)#(4,9)

>0 (nﬁ_lodagld_%) .

Also, for any s € {1}, ss* (Qs(w}), vg« ) = ngERM)(s*, k*) > 0. In addition,

55 (Qu(w?),a)
> ss* <Qs(w:)’£iﬁi)> _o (aﬁ_lpk*“UEQd_l)

.~ i >
= M + pTer) (j, 5,) + ) p{lem) (5, q)A—— L

JEVs= i+ ,q€[PI\{p] }
(4,p:)#(5,)

M<£1@i>7£]@j>>
g(ﬁn 2

+

~0(ap™)

JEVex wx \ {1}

(nﬁ 040y, %) -0 (aﬂfl)

Hence, combining with ¢’ > 3, we have (v; Vwy fyy 0 (X;), Q(W™)) > #

By combining Lemma 18 and Lemma 19, we can obtain the following result.

Lemma 20 Suppose the event Ei,i occurs.

2
+ 2nT*e M5B

. Z Y Lifwo (X HQ( (Ton)) - (W)

t TERM 1€ V* k¥

Proof [Proof of Lemma 20] Note that for any Tgryv < ¢ < T,

QW) =@ (W) —Ivw 3 Llyifwo (X)),

iGVS*,k*
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and thus

2
:2"<VW S yifwo (X3) Q(W<t>)_Q(W )>—”2 Vw Y C(yifwo (X))
EV 1€ Vgx po*
=2”<vw > Uyifwo (X)) Q(W“))>
Ve &
) 2
2
_%77 Z f’(yz‘fwm(Xi))<waz‘fw<t>(Xi)7Q(W*)>—% Vw Z (g fovo (X5))
i€V e EVsx 1=
2
(" 3 wtwnizna ()
, 2 2
S o (X)) - | vw Y e (X))
i€V x pox i€V x pox

where the last inequality is due to Lemma 19. By the chain rule, we have

(v 3 tswoxno(w))

i€V v o

- Z lﬁ’(yifvv(t) (Xi))

1€ Vg po*

X Z (gb’ (<wgi),m§p)>> <QS* (wgi)) ,a:z(-p)> — ¢ <<w£ti,m§p)>> <Q_S* (w(_tl*) ,ml(p)> )]
PE[P]

Foreach s € {1} and i € Vg« j~,

(]

g(q)
<pgt)(jaQ) J Q’xgp)>
FE[\Var oo g€l PIpE} Hffg('q) H
va Y 0065 [ |(vena®)]
FEMN\Vyr v

<0 (nﬁ_ladagld_%) +0 (aﬁ_lpk*na(fd_l)
= O(ap™),
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where the last inequality is due to Lemma 13 and the event Fj,;;. By Lemma 34,

5 (0 () (0 ()-8 (2.5 (0 ()

pE[P]

> Z <q§ (<w§?,w§p)>> — ¢ (<'wgi*,w£p)>> ) —rP - 6@571)

PpE[P]
= i oy (Xi) — O(af™)

where the last equality is due to r = o(af3 _1). Therefore, we have

fo () @ - () oo
2 >V Witwo (X)) (yifw(t)(Xz') —0(ap™) - Néﬁ)

ievs*yk*

2

2
_12 Vw Z C(yi foy o (X))

1E€EVgx jp*

> 20 ST o (X0) (o (X0) — MB)

Zevs* ’k*

2
2

~Tlvw Y i (X))

ievs*’k:*

From the convexity of ¢(-),

. Cifwn (X)) Gifwo (X)) = MB) = Y (Uyifwo (Xi) — £(MB))

ievs*,k* iEV * ko

> Z nyW(t) )) - nefM’g.

1€V k*

In addition, by Lemma 35,

82P2 2d|Ver g
L Ud Vi Z Uyi fw o (X))

ZEV * ok

S% > lyifwo (X)),

ievs* 7k,*

AV DDt witwo (X))

2
n
ievs*’k/.*

where the last inequality is due to A8, and we have
2 2
@ (w®) - - @ (W) - ew)
> Uyifwn (X)) — 2meMP.

1€ Vg jox
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From telescoping summation, we have

! Z Z £( ysz(t> HQ( TERM)) —Q (W) 2

‘ + 2T*e~MP
t TERM 1€V px

Finally, we can prove that the model cannot learn (extremely) rare features within 7™ iterations.

Lemma 21 Suppose the event Ein;y occurs. For any T € [Tgrym, T, we have ’yS(T) (s*,k*) < 3a?
foreach s’ € {£1}.

Proof [Proof of Lemma 21] For any T € [Tgrm, 7], we have

T-1
W (sk) = AT (s k) + 13T 3 g0 ((wl v )

t=TERM 1€ Vx
T—1

> >

t=TERM 1€ Vs* k*

< y{Temn) (5 k%) 4 2 Z > Lifwn (X)),

t= TERM 1€V s* k*

<A ffem(at, k) 4

313

3 \

where the first inequality is due to ¢’ < 1 and the second inequality is due to —¢' < ¢. From the

result of Section F.2.3 we know fyg(, Tera) (s*,k*) < a?. Additionally, by Lemma 20 and Lemma 18,
we have

| /\

(T-1)
LYY twfwo (X)) < Z S it (X))

t=TErM 1€ Vs jo* t TerM 1€ Vex j*

2
HQ (W(TERM)) —Q(W™) ’ + QnT*e*Mﬁ
< 24M2 Ve g |o72d ™ + 20T e MP
<o+ oaTre™

IN

The last inequality is due to prn = o(a?3*03d) by Assumption 8. Since M = 3! log (Q”T ), we
have our conclusion. |

What We Have So Far. Suppose the event Ejy,i; occurs. For any t € [Tgrwm, 7], we have

* (Learn common features): For each s € {£1} and k € K¢,
(5.0 + 81145, 0) = (1),

* (Overfit (extremely) rare data): For each s € {+1},k € Kr UK and i € Vg,
PO 5i) + B0, ) = Q(1).
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* (Cannot learn (extremely) rare features): Foreach s € {1} and k € Kr U Kp,

10 (s,k),7") (s, k) = O(a?).

» Forany s € {£1},i € [n],and p € [P] \ {p;'k}apgt)(iap) =0 (671).

F.2.5. TRAIN AND TEST ACCURACY

In this step, we will prove that the model trained by ERM has perfect training accuracy but has

near-random guesses on (extremely) rare data.
Forany i € Vs, with s € {£1} and k € K¢, by Lemma 11, we have

Yifww (Xi)
S R )
pE[P]
=105, k)+ B/ s )+ > () + 8o p))

PElPN{p)

-0 (nﬁfladaglcf%) - 6(a571)
> 0 (s, k) + 51 (s,k) = O (nfoaer,"d F) = O(as ™)
— Q1) -0 (nﬁ’ladab_ld’ ) —O(af™)

> 0,

N

for any t € [Tgrwm, 7). In addition, for any ¢ € V, j, with s € {£1} and k € Kr U Kg, we have

Yifw o (Xi)
= 3 (st o (w2et) )
PE(P]
=1, k) + B s )+ > (000 + 8o p))

pe[P\{p;}
-0 (nﬁ_ladagld_%) - (5(045_1)
> V(i 1) + Bp )i, i) — O (nﬂfladagld’ﬂ —O(af™)
=Q(1) - 0] (nﬁ_ladagld_%> — (5(aﬁ_1)
> 0,

for any ¢t € [TgrMm, 7]. We can conclude that ERM with ¢ € [Tgrw, 77 iterates achieve perfect

training accuracy.
Next, let us move on to the test accuracy part. Let (X,y) ~ D be a test data with X =
(zV,...,2P)) € RF having feature patch p*, dominant noise patch p, and feature vector vy .
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We have z(?) ~ N (0, o2A) foreach p € [P]\ {p*,p} and x®) — avs1 ~ N(0,03A) for some
s € {£1}. Therefore, for all t € [Tgrm, 1] and p € [P]\ {p*, D},

(o000 <o (1)

- )
@ .(»
~{® _ @ 5@ g M
[ol” - e >)+ie[n1,qezu:ﬂ\{pz}p Z | H
1) (aoabd%> + 1) (nﬂ_ladagld_%>
-0 (nﬁ710d0g1d7%> , @)

IA

with probability at least 1 — o ( m> due to Lemma 9. Similarly, we have

o (w09 ) o (04,5 — 0.1))

< ’<w§t) — w(_t)l,cc(ﬁ) — a’usﬁl>’ =0 <nﬂ_10dag1d_%) , ®)

. iqe 1
with probability at least 1 — o (WM))'

Casel: k € K¢
By Lemma 9

b (. 2)) <o ()

§‘<w§t>_ @, (f))>‘
< (t) _ (t),w(p)—avs,1>’
¢

col( )
<af” ’¢<<w ”1>> (< —1v1>)’

n ‘<w§o) _ w(01) xz® _ avs,1>‘ + ie[n]’qez[;ﬂ\{p:}p(i,q) Héi(q)HQ

O (af?), ©)
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with probability at least 1 — o pol)ll( D > Suppose (7) and (9) holds. By Lemma 11, we have

ny(t> (X)

- <¢(<w$*1wﬁ>)“¢(< 1@k>)>
P T (el o)

*}
<>< k) + B9 (5, k) — OB ogoy, d™2) — O(ap™h)
(nﬁ O'dO'b 5) (ozﬁ )

> 0.

Therefore, we have

>k 1
P xy)~D [yfw(t)(X) >0 | z?) = Vy i,k € /Cc} >1—-o <poly(d)) . (10)

Case2: k€ KrUKE By triangular inequality and ¢’ < 1, we have

o((wl2)) —o ({w27))

= o {(ut, 1>) (< )

+<¢< 0,2)) =0 (105, 1)) ) < ¢(“Nsn)>
¢(<w( o 1>) (< )

a\ > i 1 \< o > 7 1)

In addition,
= (6 (0l (5. 1)) = 0 (075, )))

)
(6 ((w av.1)) -

> (6 (av(5,1) = ¢ (a7, 1) )
—« ‘<w§t),'vs71> — vgt)(s, 1)} —« ‘<'w@g, Vs 1> (t)(s 1)‘
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If (8) holds,then by Lemma 11, we have

o (0l 0w)) = ((wlhaves)
a ( ®)(s,1) + Byt ( )) -0 (anﬁfladagld*% ~-0 (nﬂfladagld*a
Qa),

(AVARRLY,

where the last inequality is due to As a result,

yfw o (X)

() o (b)) o () o ()
B (ol o((we) )

pe[P\{p*,p}

Note that

b (o)) = (%)
S (ol ) -o((ot2)))

pe[PI\{p*,p}

<O +0 (nﬁ_ladagld_%)

(o) o (uho)

Hence, y fyy ) (X) > 0if y = s. Otherwise, y fyy, ) (X) < 0. Therefore, we have

_'_

1 1
() —— -
P(X,y),\,p [yfw(t)(X) >0 | €T yk € KrU ]CE] =5 +o (pOlY(d))

and we conclude

b 0001 3 4 (1 5 ) <o (k)

kekeo

:1—% Z Epkio(M).
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Appendix G. Proof for Cutout

In this section, we use gl(tc) = 1+exp(y~f1 ) for each data ¢, C C [P] with |C| = C and
iJw i,

iteration ¢, for simplicity.

G.1. Proof of Lemma 10: Cutout Training Case
For s € {£1} and iterate ¢,

WY _ 4p®)

= =NV, Lcutout (W(t)>

725%1}2&% {gzcng ((wl,2) ()]

pEC
B g (Z Fe-p, !gl(tc) Z & <<w§t)7w§p)>) mﬁp)]
1€Vs pec
e i ()] )
i€V_, pec

and we have

e {gzczcb (w0 9 5>]

pgC
- 2 3 ren ol (o) b
+z Y Eeene [000' ((w.67)) Tyge] €7

1€Vs pe[P\{p; ,p: }

+ Z IEC’\‘,DC |:gz Cqb, (<w o y XUs1 + f(p >) ]]‘17¢¢C:| (O('Us,l + 5]@1))
1€VsNFs

+ Z ECNDC |:gz Cd)/ (< , V51 + 5 >> : :H‘f?zééc} <O[’U_571 + é‘z(ﬁl)) ,
1EVsNF_g
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and

Z Ec.p, ggchb’ (<wgt)7$1(p>>> ;

1€V_, p¢C

Z Z Ecpc [ ,(< 2 Usk;>> : lpygc] Vs ke

} ’LEV_g ke

+>. Y Ecen [g (<w§t),§i@)>) . 1p¢c:| ¢

’iGV—s pE[P]\{P: 7p’L

+ Z Ecp, [gzccb <<w , QU 1 +§(pb >> . lmzc] (Cws,1 +§Z(15¢))
'

iEV_NFs
<'w(t) av_g1 +§; (B >> : ﬂp‘,-géc} (was,1 + ﬁfﬁi)) .

+ Z ECNDC |:g

1€EV_sNF_s

Hence, if we define 73) (s',k)’s and pgt) (i,p)’s recursively by using the rule

(S k) = +— > e [906 (w0 0,0)) Tyrge| . (D)

’LEV/k

pgt+1)( )_pg)(z p) + ECNDC |:ng¢ << Y ngp)>> gz(p)HQ ' le¢c] ’ (42

starting from 'y( )( k) = p§°> (i,p) = Oforeachs,s’ € {£1},k € [K],i € [n]andp € [P]\ {p}},
then we have

O+ 3" s, kver — Y A0 (=5, kv

ke[K] ke[K]

é-(p) f(p)
+ Z pgt)(zap) (Z) 2 pgt)(zap) () 2
i€Vs,p€[PI\{p} } fip H ieV_s,pe[PI\{p} } f,-p H
Z ylps pl 2 + Z ?/zps 2y% 78 1 )
i€Fs iE€EF_s fz(pl)
for each s € {+1}. Furthermore, vg )(s k)’s and p( )(z,p)’s are monotone increasing. O

G.2. Proof of Theorem 4

To demonstrate Theorem 4, we present a structured proof comprising the following seven steps:

1. Establish upper bounds on 'ygt) (s',k)’s and pgt)(i, p)’s to apply Lemma 11 (Section G.2.1).

2. Demonstrate that the model quickly learns common and rare features (Section G.2.2).

3. Show that the model overfits augmented data if it does not contain common or rare features

(Section G.2.3).
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4. Confirm the persistence of this tendency until 7 iterates (Section G.2.4).

5. Characterize train accuracy and test accuracy (Section G.2.5).

G.2.1. BOUNDS ON THE COEFFICIENTS IN FEATURE NOISE DECOMPOSITION

The following lemma provides upper bounds on Lemma 10 during 7™ iterations.

Lemma 22 Suppose the event Ei, occurs. For any 0 < t < T*, we have

0 < (s,k) + By (=3, k) < 4log(nT™), 0< p(i,p) + Bp"), (i,p) < 4log (nT™),
forall s € {£1},k € [K],i € [n] andp € [P]\ {p}}.

Proof [Proof of Lemma 22] We will prove this by using induction on ¢. The initial case ¢ = 0 is
trivial. Suppose the statement holds at ¢ = 7" and consider the case t =71 + 1.
Note that from our Assumption 8, the following hold:

. log(nT))
n < e

. aﬁ_l,nﬂ_ladagld_% =o(1).
( 5k+ )

Let T, , < T denote the smallest iteration where 75 (s, k)+ 57, =i tl) (s, k) > 2log(nT™).

We assume the existence of Ts,k, as its absence would directly lead to our conclusion due to our
small choice of 7.
By (11), we have

AT (5, k) + BT (5, k)

= 7B, k)+/37 (s, k)

T
S ( (D) (5, k) + By (s, k) — 70 (s, k) —57(_2(57"5))

t= Ts,k
< 210g(77T*) + log(nT™)

1Y YEn {g“@’ (e ) + 56 (w (tl’”sk») 'ﬂpfﬁcy

t Ty x+19€Vs k

The inequality is due to ’yg > k)(s k) + B’Y(TS k)(s, k) < 2log(nT*) and

1 Z Ecp, [Qlc )<¢’ <<w£TS’k),Us,k>> + B¢’ << ( Sk) Usk>>> 'ﬂp;q;c]
lGV k

< 2n <log(nT™),

from our choice of Ts,k and 7.
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Foreacht =T, +1,...T,i € Vs, and C C [P] such that |C| = C and p} ¢ C, we have

Yifwn (Xic)
=9 <<w§t), ’vs,k>> —¢ (<w(_tl, v57k>> + > (¢ <<w§t), w@(p)>) —¢ <<w(_tl’ ml@)>) >
p¢CU{p;}

>0, k) + O+ D (M0 + 800G
pelPI\{p}}

- 2P6(n,8_10d0g1d_%) —20(aB™)
3
> 2 log(nT™)
The first inequality is due to Lemma 11 and the second inequality holds since from our choice of ¢,

¥ (s, k) + 705, k) > 21og(nT™).
Hence, we obtain

TS5 B [o2( ((l2ons) 40 (% 90)) ) ]

t:Ts,k ievs,k

T
< %77 > Y Eeene [eXP(—yz'fwm(Xi,c)) : pr%C:|

(=T €V
< Yokl 7wy e (—Qlog(nT ))

n
og(nT™).

<

[u—

Thus, we have 'ys(,TH)(s, k) + 67(}?1)(5, k) < 4log(nT™).

Next, we will follow similar arguments to show that

P, p) + 8o (i, p) < dlog(nT™)

foreach i € [n] and p € [P]\ {p;}.

~ 7(p)
Let Ti(p ) < T be the smallest iteration such that p(?i +1)(

. (T® . .
y i,p) + Bp_,. " (i,p) > 2log(nT™).
We assume the existence of Ti(p ), as its absence would directly lead to our conclusion due to our
small choice of 7.

+1)(
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By (12), we have

AT, p) + 8oV (i, p)
( ’(I’)) (P)) .
=py' (i p)+ﬂp_ (i, p)
T
+ (Pz(ﬁﬂ)(l )+ 85 () — oD (i p) — ﬁp@yi(i,p»
t:Ti(p)
< 210g(77T*) +log(nT™)

ZHECNDC [gzc(<b (< O,z >) + B¢’ (< w', (p)>)> 'ﬂp¢c’]

The inequality is due to p(yti)(z', p) + /Bp(_t)yi (1,p) < 2log T™ and

7(p) 7(p) ( )
%QZ(Tip) |:(bl <<w§Tip )’ (p >> —l—,@(;ﬁ (< (1;? )7$§P)>>:| <2< log(nT*),

from our choice of Ti(p ) and 7.

For each t = Ti(p) +1,...,T,and C C [P] such that |C| = C and p ¢ C, we have

Yifwo (Xic)
=0 ((ui?al”)) =0 ((wlhoal”)) + 3 (o((ufd=l")) -0 ((uly.2l")))
q¢CU{p}
> p@(/)(z p) + Bp(t) (i,p) — 2PO (nﬂ_ladagld_%) —20 (aﬁ_l)
> glog(nT*)-

The first inequality is due to Lemma 11 and the second inequality holds since from our choice of ¢,

i) (i, p) + 6&2. (4,p) > 2log(nT™).
Therefore, we have

T e [ (o (w22)) + 50 (0, 2)) ) 1y

t:Ti(p)

SR

T
2 . > -
< Zn Y Ecune [exp (—yifwo (Xic)) leane] < = (nT7) exp <—210g(77T ))

(T+

and we conclude py;, Y(i,p) + ﬁp TH )(i,p) < 4log(nT*). |
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G.2.2. LEARNING COMMON FEATURES AND RARE FEATURES

In the initial stages of training, the model quickly learns common features while exhibiting minimal
overfitting to Gaussian noises.
First, we establish lower bounds on the number of iterations, ensuring that background noise

(®)

coefficients ps’ (i, p) for p # p}, p; remain small, up to the order of a?.

Lemma 23 Suppose the event Eiyi, occurs. There exists T > ;7;‘;‘22 such that pgt) (i,p) < a? for
- b
all0 <t <T,se{xl},i€[n]andp € [P)\ {p}.Di}.

Proof [Proof of Lemma 23] Let T be the smallest iteration such that pgT) (i,p) > o for some
s € {£1},i € [n]and p € [P]\ {p;}. We assume the existence of 7', as its absence would directly
lead to our conclusion. Then, for any 0 <t < 7', we have

P (,p) = oG p) + LB, 9124 ((w2)) - Lyge] fi(p)H < (i, p) + ?mj’(i’
where the inequality is due to gl(tc) <1,¢ < i(p ) H2 < %aﬁd. Hence, we have

o? < pD(i,p) < oyl g,
and we conclude 7' > QM - Which is the desired result. |

Next, we will show that the model learns common features in at least constant order within T
iterates.
Lemma 24 Suppose the event Ei; occurs and 71 ,ok =0 ( ) for some k € [K]. Then, for

each s € {£1}. there exists Ty ), < such that 7§t)(s k) + B'y(t)(s k) > 1 foranyt > T .

nBIV k|

Proof [Proof of Lemma 24] Note that from our Assumption 8, nﬁ_ladafld_% a?,apf! =o(1).
Suppose 'ygt)(s, k) + ngl(s, k) <1lforall0 <t < 2”0‘ . Foreach i € V; , and C C [P] with
|C| = C such that p} ¢ C and p; € C, we have

vifw o (Xic)

=6 ((whons)) o ((wlhous)) + 3 (o((ula)) -0 ((what?)) )

p¢CU{p;}

<Ok + 50k + Y (PV60) + 8 p)

p¢CU{p}}
+2P0 (nf oy 'd3) +20 (aB ™)
< 1+2Pa?+ 2P0 (nf~ og0;'d ™3 ) +20 (ap ™)

<2
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The first inequality is due to Lemma 11 and the second inequality is due to Lemma 23. Thus,

t) _ 1 1
ic = L+exp(yifyy 1) (Xic)) > g and we have
WD (s, k) + BT (s, k)
= Wgt) (Sa k) + ﬁ/y(—t) (Sa k)
Z Ecp, [ch(¢ <<w§ )7'Usk>) + 8 << —s7vsk>)) : ]lp:-‘$C:|
’LGV k
t 7]5
> (s, k) + B11Y(s. k) + 5= D7 EcomelLyzgenpiec]
ZEVS k
— O (s k )y 1y o MBCE - C)
78 (S’ )+/B’Y—S(S’ )+ 9nP(P*1)
t np
A (s, k) + BN (s, R) + 5.
From the given condition in the lemma statement, we have _omP_ _ M . If we choose
nﬁ'vs,k‘ 3770bd
9nP _ 2na?
to € | pmaal 37?%51 > then
¢ B[V k|
1> ) (s, k) + 87 (5, k) = F5 00 > 1,
and this is contradictory. Hence, there exists 0 < Ty, < 3277%2(1 such that ,YgTS,kH)( s, k) +
ﬁ’y(_j;s’kﬂ) (s, k) > 1 and choose the smallest one. Then we obtain
Vs k|
1> A 0 (5, 5y > PPWVol
s (8,k) + Brs(s, k) 2 = 2= Tk
Therefore, T j, < —_InP_ and this is what we desired. |

- ﬂﬂ\Vs,M

What We Have So Far. For any common feature or rare feature v, with s € {£1} and k €
Kc U K, it satisfies 87 pt = o . By Lemma 24, at any iterate ¢ € [1,7*]| with T} :=
MaXge (41} kec Ls k> the following propertles hold if the event Fi,j; occurs:

* (Learn common/rare features): For s € {£1} and k € K¢ UK, fyét)(s, k) + 5»&(3, k) =Q(1),
e Forany s € {£1},i € [n|,andp € [P]\ {pj},pg)(i,p) =0 (B71).

G.2.3. OVERFITTING AUGMENTED DATA

In the previous step, we have shown that common data can be well-classified by learning common
features. In this step, we will show that the model correctly classifies rare or extreme data by
overfitting dominant noise instead of learning its features.

We first introduce lower bounds on the number of iterates such that feature coefficients fygt) (s' k)
remain small, up to the order of o. We first introduce lower bounds on the number of iterates such
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that feature coefficients 'yét) (s', k) remain small, up to the order of 2. This lemma holds to any
kind of features, but we will focus on extremely rare features. This does not contradict the results
from Section G.2.2 for common features and rare features since the upper bound on the number of
iterations in Lemma 24 is larger than the lower bound on the number of iterations in this lemma.

Lemma 25 Suppose the event Einiy occurs. For each s € {1} and k € [K], there exists
Top > ‘ n such that 'y( )(s, k) < a’forany0 <t < T,y ands € {+1}.

Proof [Proo of Lemma 25] Let T} ;. be the smallest iterate such that 'yg) (s,k) > o for some s'{41}.
We assume the exister}ce of Ts, &, as its absence would directly lead to our conclusion.
Forany 0 <1t < T,

A s) =20+ 1S Eeun, [60 (0 000)) - rge] <20 by + T2

n
lEVS k

and we have o? < 7(, k) < ”'Vs il 7 T . We conclude TS k> ‘ ‘ which is the desired result. W

Next, we will show that the model overfits data augmented not containing common or rare
features in at least constant order within 7’ . iterates.

Lemma 26 Suppose the event Ei,i occurs and

"2d =o(a?p;'). Foreachi € [n] and C C [P]

with |C| = C, if (1)i € Vs, and p; ¢ C or (2) p; € C then there exists T; ¢ < such that

B 2d
t) .
> (pg,f)(z p)+ /8/)(_2%(@,19)) >1,
pECU{p;}
foranyt > T,c.
Proof [Proof of Lemma 26] Note that from our Assumption 8, the following holds:

. aQ,nﬁ_ladagld_%, af~! =o(1).

t o
Suppose ¢ (pg )(z p) + Bp( )( )) < 1,forall0 <t < ‘Vg L
We have

yifwo (Xice)
—Z< (wi2l)) —o (w4, 27)) )

<0 k) + 89, k) + 0 (6 Gp) + 8%, (1))
pg¢CU{p;}

+2P0 (nf oy 'd3) +20 (aB ™)
<(1+p)a*+1+ 2P0 (nﬁ 40y, ta- %> + 20 (aﬁ_l)
2,

IN
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® _ 1 > 1
and g;” = o (vl (X0 = > 5. Also, for each p ¢ C U {pj }, we have

P06, p) + B (6, p)

_ 112
= p(ip) + BpA(i,p) + L") <¢’ ((w,2)) + 86 ((w,2)) ) £P)
> O ) /. ﬁo'b
> ps(,p) + Bp=s(i,p) + ==
2
where the last inequality is due to Héi(p ) H > %O’%d and ¢’ > 3. We also have
(t+1) (t+1) (t) (s ) . nBoid
> (A + 80 ER)) = Y (06 + 86 p)) + T
p¢CU{p} p¢CU{p;}
From the given condition in the lemma statement, we have nBoZd = © (n\Vs |> If we choose
to € [n;igd, nlﬁi& J then we have
(5 ® (; npoyd,
1> (00w + 800 = 0 >,

p¢CU{p;}

. _ . 2
and this makes a contradiction. Therefore, there exists some 0 < T;¢ < I such that

‘TLOC

n Vs,k

> pdculpt} (pgTi*” )(z p) + Bp_ v CH)(z,p)) > 1 and let us choose the smallest one.
Forany 0 <t < T; ¢, we have

) _ nBopd
1> ( ) ) Uity
> Y(i,p) + 800 i, p)) = T Li
pgCu{p;}
and we conclude that T; ¢ < néig = and this is what we desired.
d

What We Have So Far. For any s € {£1} and k € Kp, it satisfies ﬁ =o0 (oz2,o,;1). By
d
Lemma 26 at iterate t € [Tcoutout, 1] with

Tcutout '= max  max T;c € [Tl,T*]
se{xl} €Vsk
keKg pi¢CAp;eC

the following properties hold if the event Ejni; occurs.:

* (Learn common/rare features): For any s € {1} and k € K¢ U Kg,

v (s, k) + B1)(s, k) = Q(1),
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* (Overfit Data Augmented): For each i € [n], C C [P] with |C| such that (1) i € Vs, and p} ¢ C
or(2)p; €C
Z <pg(fi)(iap) + ﬁp(_tz/i (i,p)) > 1.

pCU{p}}
* (Do not learn extremely rare features): For any s,s’ € {+1} and k € Kp U Kp,

,.y‘g’/TCutout)(S’k) S 042.

» Forany s € {£1},i € [n],and p € [P]\ {p;‘},pgt)(i,p) =0 (5_1)'

G.2.4. CUTOUT CANNOT LEARN EXTREMELY RARE FEATURES WITHIN POLYNOMIAL TIMES

In this step, We will show that Cutout cannot learn extremely rare features within the maximum
admissible iterate T = %@l).

we fix any s* € {#1} and k* € Kp. Recall the function Q*"*") : W — R%*2, defined in
Lemma 12 and omit supscripts for simplicity. For each iteration ¢, Q(W(t)) represents quantities
updates by data with feature vector v+« until ¢-th iteration. We will sequentially introduce several
technical lemmas and by combining these lemmas, quantify update by data with feature vector v« -
after Tcutout and derive our conclusion.

Let us define W* = {w], w*,}, where

(p)
wT _ wETcmout) + s*M Z Z %7
i€V,x 1+ pe[PI\{p}} §i(p) H
(p)
sy 3y
1€Vgx 1+ pE[PI\{p;} gip H

a2

Note that W) W* € W for any t > 0.

where M = 37! log (277T*> =0 (8.

Lemma 27 Suppose the event Ei,; occurs. Then,

2
’ < UM PV jo|or2d "

HQ (W(TCutout)) —Q(W™)

Proof [Proof of Lemma 27] For each s € {41},

Qs (w)) = Qs (w!Teweo)

* é—l(p) % Vs,1 V_s,1
= Mss Z Z s Z (5:)]|? * Z @]’

2
i€Vgx i pE[P\{p}} fz-(p)H TEFNVox por fi PEF_sMVgx px

(]
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and we have
2
HQ (W(TCutout)) _ Q(W*)
() (@)
2 ®] > ‘<§‘ & >’
=2M 2 & H * 2 B2 || @]
i€Vgx o pE[PI\{p} } 1.JEVar H£ NG
pe[PN\{p; },a€[PI\{p}}
(4,p)#(5,9)
2 2
TS VEN P N S 0]l I R -
’L’E]:Sr\lvs*’k* iE‘F_S/ﬂVS*’k*
From FEi,;; and nd~2 = o(1), we have
(®) ¢(a) ‘
3 ‘<£Z 5 > < 3 5(;2)H*2
- @) |2 || )2~ . L
Zajevs*,k* 51 é.] Zevs*,k*7pE[P]\{pi}
pe[P\{p; }a€[PI\{p}}
(4,p)#(5,9)
In addition, pin = o(c3d) and a = o(1), we have
2 2
o2 e I Sl -
iefsﬁvs*,k* ie]—'_S/ﬁVS*,k*
2 2
_ -2 _ -2
S Z gi(pz) + Z £§p1)
’L’E]'-Sﬂvs*yk* ief_slﬁvs*’k*
_ =2 _ -2
S Z é-gpz) + Z é-l(pz)
ie]—'sm/s*’k* ie]’fs/ﬁvs*,k*
-2
< X |
1€V 1 ,pE[P\{p} }
Hence, from FEj,;;, we obtain
(Tern) o |12 (p)]| ™2 2 2,1
HQ (W ERM ) — QW) <6M Z 3 H < 24M P|Vs*,k*|ad d .

i€V o pE[PN\{p}}

Lemma 28 Suppose the Eiyi, occurs. For any t > Tcutout, ¢ € Vs and any C C [P] with |C| = C,
it holds that
Mp

WiVw fwo (Xic), QVT)) > 5
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Proof [Proof of Lemma 28] From the calculation, we have
WiVw fwo (Xic), QW™))

=37 (o ((ul00) (@i a”) = (%)) (@t )

pgC

Note that n,@‘ladagldfé = o(1) by Assumption 8. For any s’ € {+1} and p € [P]\ {p},p:},
* #\ +(P)
ss” ( Qs(w;), &,

> Mgy N pfemen)y, Q)W

Jj€[nl,q€[P\{p;} ‘ fﬂ('q) H2
(4,p)#(4,9)
JEVr g g€ [P} ‘ & H

(4,p)#(5,9)
>0 (nﬂ_ladagld_%>

Also, for any s € {£1}, s5* (Qs(w}), Vs= j+) = ngC““’“t)(s*, k*) > 0. In addition,

o5 (Qu(w), o)
= 5" <Q5(w:),5fi>>
<§Z(p)7£§Q)>

=M + pch‘]tO‘lt)(iaﬁi) + Z pgTCutout) (.]7 q) 5

j€ln]pelP\{p}} \ ¢
(i,p)#(4,9)
(6,60
JEVe ie pe PP} } 3

(1,9:)#(4,9)
(nﬁ 040y, *%> -0 (aﬂfl)

Hence, combining with ¢’ > /3, we have (v; Vw fyyy o) (X;), Q(W*)) > #

By combining Lemma 27 and Lemma 28, we can obtain the following result.

Lemma 29 Suppose the event Ey,; occurs.

+ 2nT*e M5B

Z Z C(yi fwon (X HQ< Tcutout)> QW) 2

t TCutout 1€ Vex Jk*
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Proof [Proof of Lemma 29] Note that for any Tcutout < t < T,

Q (W(t+1)) =Q (W(t)) - %VW > EBewne (¢ (yifwo (Xic))],

.
and thus
o (w®) e = o (W) —ow||
:< Z Ecpe [£(:fwo (Xie))], Q (W) —Q(W*>>
1€V *
© 2
Vw Z Ecpe [€ (yifw o (Xic))]
1€ Vg po*
2: <VW Z Ec~pe { Wifwn (Xic)),Q (W(t))>]
1€V *
=S (Bewme [ i (Xie) Vs fuo (Xic)] Q (W)
1€ Vs* g
2
2
—% Vw Y. Ecupe [ (yifwo (Xic))]
TEV g px
> %T] <VW Z Ecpe [U(yifwo (Xic))], Q (W(t)>>
€V g

)

- M Z O efwo (Xie)) — 2

1€V

Vw Z Ec~pe [ (yifw o (Xic))]

’L‘EVS*J“*

where the last inequality is due to Lemma 28. By the chain rule, for each C C [P] with |C| = C

<VW Z e(yifw(t)(Xi,c)),Q(W(t))>

PE Vg o
= > [f/(yifvv(t) (Xic))
TEVgx pox
<3 (9 (w20 @ (w2) ) - (7)) (0 (w2) 58 )|

p¢C
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For each s € {1} and i € Vg« =,

[{wl? ") = (@ (wl?) =)
=[(wl? - @ ("), #”H

€[] \Vx j PE[P]\{P}

D DRt Hf“”H [(ve.at”)]

SE{H1},JEF ./ \Vyr o

<O (nﬂ_ladagld_i) +0 (aﬁ_lpk*nUJQd_l)
=0 (ap™),
where the last inequality is due to Lemma 22 and the event Fji,;;. By Lemma 34,

5 (¢ () (e ()2~ ((00) (e () 87

p¢C

z};(¢«wgﬂy§)_¢«wgmﬁm»)_wp_5@w4)
p¢C
= yifwo (Xic) — O (a7,

where the last equality is due to r = o (nﬁfladab_ 1d_%>. Therefore, we have

2

o (W) @[ - o (W) - aw|
> 2 S Bene |¢ uwo (Kio) (o (Kie) - 0 a5~ 27 )|

’L‘Evs*yk*

2
2

_% Vw Z ECNDC [g(yifw(t)(Xi,C))]

i€V gn g
2
= Z Ec v, [¢'(yifwo (Xic)) ifwo (Xic) — MB)]
1€V x *
2
2
—% Vw > Eeen, [(yifwo (Xie))])|| -
1E€EVgx px
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From the convexity of ¢(+),

Y Eeene [((yifwo (X0) (yifwo (Xi) — MB)]

1€V x kX

> " B [(Eyifypio (Xic) — £ (MB))]
1€V k*

= Z ECNDC ysz(t ( zC))] —ne MP.
ZGV * ¥

In addition, by Lemma 36,

UV Z Ecpe [ (yi oo (Xic))]

n? ,
zGV * k*
2p2 2
8?7 P?03d|Vs i
n2

> Eewne[l(yifwo (Xic))]

Zevs*,k*

Sg Z Ec~pe [0(yi f o (Xic))],

1€V pox

from our choice of small enough 7, and we have
2 2
l@(w®) —ew)| - @ (W) - ew)

> % > Bewn [(yifwo (Xie))] — 2ne M7,

ievs*,k*

From telescoping summation, we have

2
+ 2nT*e M5,

Z > Eeanelll (i fwn (X HQ< Tcutout)> _ QW)

t Tcutout 1EVs* g*

Finally, we can prove that the model cannot learn extremely rare features within 7™ iterations.

Lemma 30 Suppose the event Eiy, occurs. Forany T € [Tcutout, 1], we have 7§T) (s*,k*) < 3a?
foreach s € {£1}.
Proof [Proof of Lemma 30] For any T € [Tcutout, 7], we have

T-1

A%k = yernd (s k) + L ST S Beane [90] ¢ (w0, v i)

t=TCutout 1€ Vsx Jk*

< A(Teuow) (g k) Z Z Ec~pc [ zt}

t TCutout 1€ Vgx Jk*
T-1

S ,Y'gTCutout)(S*’ k*) + ﬁ Z Z ]ECNDC ylfW(t ( ZC))] ,

n
t=Tcutout 1€ Vs* k*
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where the first inequality is due to ¢’ < 1 and the second inequality is due to —¢' < /. From the
result of Section G.2.3, V(TC““"“) (s*,k*) < a? and by Lemma 29 and Lemma 27, we have

(T-1) (T7)

LYY Benltibwo X <L Y > Eeenel (ifwo (Xic))

t=TcCutout 1€ Vs* Jk* t=TCutout 1€ Vg* k*
S HQ (W(TCutout> _ Q(W*)
< 24M?P|Vys |0y, 2d ™1 + 29T e MP
<a®+ 27’]T*€_MB

313

2
+ 2nT*e~MP

The last inequality is due to pgn = o(a?3%02d) by Assumption 8. Since M = 31 log (Q"T ) we

have our conclusion. [ |

What We Have So Far. Suppose the event Ejy,i; occurs. For any t € [Tcytout, 1], we have
* (Learn common features): fygt)(s, k) + 57(_2(3, k) =Q(1) foreach s € {£1} and k € K¢

* (Overfit rare/extreme data): pgt) (1,pi) + Bp(f)s(i,;ﬁi) = Q(1) foreach s € {£1},k € KrU K¢
and i € Vs 1.

* (Cannot learn rare/extreme features): ()(s k), ()(s k) = O(a?) for each s € {£1} and
ke KrUKE.

» Forany s € {£1},i € [n],and p € [P] \ {p;‘},pgt)(i,p) =0 (5_1)’

G.2.5. TRAIN AND TEST ACCURACY

In this step, we will prove that the model trained by Cutout has perfect training accuracy on both
augmented data and original data but has near-random guesses on test data with extremely rare data.
Forany i € Vs, with s € {£1} k € Ko UKg and C C [P] with |C| = C and p} ¢ C,

Yifwo (Xic)
et o ()

pgC
=100, k) + 810 k) + Y (p () + B D))

pECU{p;}

-0 (nﬁ_ladagld_%) — (5(04B_1)
10 (s,k) + 81005, k) = O (s~ ouoy 'd ™3 ) = O(as™)
Q1) — (nﬁ 40y —La- %> — (5(aﬁ_1)
Q(1),

V
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forany ¢t € [Tcutout, 7. In addition, for any i € [n| and C C [P] with |C| = C does not correspond
to the case above, by Lemma 26 and Lemma 11, we have

vifwo (Xice)

AR CEED)

> Y (pé?(i,p) + 8o (Z}p)) -0 (nﬁflodagld*%) —O(af™)
pECU{p;}

—Q(1)-0 (nﬁfladab—ld*%) —O(ap™)

= Q(1),

for any t € [Tcutout, 7). We can conclude that Cutout with ¢ € [Tcytout, 7] iterates achieve
perfect training accuracy on augmented data.

Next, we will show that Cutout achieves perfect training accuracy on the original data. For any
i € [n], let us choose C C [P] with |C| = C such that p; € C. Then, from the result above, we have

vifwo (Xi) = yifwo (Xic) + <¢> (<wgt>, w§p>>>) —¢ (<wg>, m§p>>>)>
peC

> yifwo (Xi)+ Y (p00) + 805, (0.p)
peC\{p;}

-0 (nﬁ_ladagld_%> —O(ap™)
> (1),
for any ¢t € [Tcutout, 7] and we have our conclusion.

Lastly, let us move on to the test accuracy part. Let (X,y) ~ D be a test data with X =
(m(l), A )) € R?*P having feature patch p*, dominant noise patch p, and feature vector Vy k-

We have ) ~ N(0,02A) for each p € [P]\ {p*,p} and (P) — awvs1 ~ N(0,03A) for some
s € {£1}. Therefore, for all t € [Tcutout, I*] and p € [P] \ {p*, p},

o (a2 0) o ((uho))

<[l - )
(@) 2
[(uf? - w3 *pu,q)W
i€ln],q€[P\{p}} & H
< 1) (aoabd%> + 1) <nﬂ710dag1d’%>

O (nB oucy,"d %), (13)
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with probability at least 1 — o (W) due to Lemma 9. Similarly, we have

(w9 an)) o (w5 )

< )<w§t) — w(j)l,a:(ﬁ) — av371>‘ =0 <nﬁ_ladag1d_%) , (14)

. oqe 1
with probability at least 1 — o (WM))'

Casel: ke KcUKpg
By Lemma 9

o (i9%) o (5,)
(ol i)
oz‘< (t) wt)11)1>‘+‘< t) (p)—a'v 1>‘

st ’¢<<w(t) Vs 1> ¢(<w 1> Vs 1>)’

© .0 () , ’<5i(q)733(’3) - Ows,1>’

‘<'w1 w,x’ oz’vs,1>‘ + ie[nmez[;]\{pﬂ p(i,q) Hgi(q) H2
O (a5 7?) + 0 (o00ud? ) + O (n5~ouoy, d %)
0] (aB_Q) , 15)

INIAN A

+

I IA

with probability at least 1 — o pol}ll( ) ) Suppose (13) and (15) holds. By Lemma 11, we have

yfwo (X)

_ <¢ ((wlp.v,)) —¢(<w(—t3j=%k>)>
LS (o)) o ((wa)

pelPN*)
=10y, k) + 81 (4, k) — OB~ oo 'd"7) — O(af™)
=0(1) - 0 (nB 0407, "d 1) = O (ap™")
>0,

Therefore, we have

. 1
, () — >1— )
P(x oD [ny( (X)> 0| vy k€ Ko U lCR} >1—o0 (poly(d)) (16)

Case2: k€ Kg
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By triangular inequality and ¢’ < 1, we have

o(fua) (e
o))

’<w(t) w(p — Qv 1>‘ ‘<'w(tl,wz@) — av871>‘.

In addition,

If (14) holds,then by Lemma 11, we have

o ((wf?.0v1)) = o (s avr))
o ( O(s,1) + B, )) -0 (anﬂ‘ladagld‘%) -0 (nﬁ_ladagld_%>
Q(a),

AVARRLY,

where the last inequality is due to As a result,

yfwn (X)
=0 ({0l v0n)) =0 () + 0 ({0l 27)) =6 ((w.27))
b E (o) o (o))

pe[PI\{p*,p}
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Note that

b (o)) o (%)
S (ol ) -o((uth )

pe[PI\{p*,p}

<O +0 (nﬁ_ladagld_%)

<o(w10.69)) o ((wlw).

+
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Appendix H. Proof for CutMix

H.1. Proof of Lemma 10 for CutMix
Foreachi,j € [n] and S C [P], let

S S
s = —|Pyz'€' (vifwo (Xijs)) — (1 - |P> yil' (i fwo (Xij.s))-

For s € {£1} and iterate ¢,

wHD) —

= NV, LCutMix (W(t)>

Z Es-ps |50\ s Z¢ (< >) 2P+ 3¢ <<wgt)’w£p)>> 2
pgS

7‘76

1YY e {} o ({1 06))

ke[K]i€Vs ,j€[n]

BT Y Ben [tges ete] ¢ (o)

ke[K]i€V_s p.j€[n]

20 Y Eseng [0 sees + gsToes| o ((w?2(")) 2",
i.jelnl pelPN(p;}

Hence, if we define 7@ (s',k)’s and pgt) (1, p)’s recursively by using the rule

(S k) = 4D (s' k) + % Y. Esups [Qf,?,sﬂpzes +95)s lp:szS} ¢’ (<w§”, 'Uk>) :
1€Vr 1,5 €]

SYi
P ,p) = 0000 + L B [0 styes + o sLpes] o (w0, 20)) [
jeln]
starting from 75(0)(3%) = pl (i,p) = 0 foreach s, s’ € {£1},k € [K],i € [n] and p € [P]\ {p}},
then we have

w® = w® + 3 A0, Ko~ Y 7O (—s. kv

ke[K) ke[K]
0 S(P) . (p)
+ Z pg )(Z,p) (Zp) 3 Z Pg )( P ) (Zp) B}
zE[n},yb?s fz H iE[n],yi:~—s 51 H
pe[P\{p:} pE[PI\{pi}
. Vg
o | S syip® i p) s+ > sy, =
i€Fs Z i€F_s §Z(pl)
foreach s € {£1}. O
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H.2. Proof of Theorem 5

We will prove that the conclusion of Theorem 5 holds when the event Eji,jt occurs. The proof of
Theorem 5 is structured into the following six steps:

1. Introduce a reparametrization of the CutMix loss Lcyutmix (W) to a convex function h(Z) for ease
of analysis (Section H.2.1).

2. Characterize a global minimum of i (Z) (Section H.2.2).
3. Evaluate strong convexity constant in the region near the global minimum of 4(Z) (Section H.2.3).
4. Show that near stationary point of h(Z) is close to a global minimum (Section H.2.4).

5. Prove that gradient descent on the CutMix loss Lcouemix (W) achieves a near-stationary point of
the reparametrized function h(Z) and perfect accuracy on original training data (Section H.2.5).

6. Evaluate the test accuracy of a model in near-stationary point (Section H.2.6).

H.2.1. REPARAMETRIZATION OF CUTMIX L0OSS Lcytmix(W)

It is complicated to characterize the stationary points of CutMix loss Lcutmix(W) due to its non-
convexity. We will overcome this problem by introducing reparameterization of the objective function.

Let us define o ®\Y _ )
=o((unal”)) =0 ().

zs ) 1= d((w1, Vs k) — d((w-1,V5k)),
foreach s € {£1}, k € [K]. We can rewrite CutMiX loss EcutMix(W) as a function h(Z) of the
defined variables Z := {2t} se {41} ke[k] U {z }ze P]\{p:} as follows.

fori € [n],p € [P] and

—% Z Es~ps ‘P Zz —I-Zz(p)

i,5€[n] pES pES

S
(=) e(w (D2 ]

peS p¢S

where we write zi(p )

R2K+n(P—1)

= zs ) if © € V. For notational simplicity, let us consider Z as vectors in
with the standard orthonormal basis { e ;. U {e(p )} which
{esiucenpeim) 1 ). pe[P\{p;}

means
_ »)
Z = {zanductenpreta U {2 } elnl.pelP\{p; )

= Z Zs k€sk Z zf )egp).

se{+1},ke[K] i€[nl,pe[P\{p]}

(29}

If there is no confusion, we will use e, to represent e, i, for i € V.
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By the chain rule,
Vw Louwmix(W) = J(W)Vzh(Z),

where each column of Jacobian matrix J (W) e R24x(m(P=1)+2K) jq

¢/ , 1(10) EI’)
o= (i) s« (S ) e

Let us characterize the smallest singular value op,in(J (W)) of the Jacobian matrix J(W). For any

. . (p) 2K+n(P—1)
unit vector ¢ = {cs i} Use eR , we have
{csptse(x1} keK) { }ie[n],pe[P]\{p;}
2 2
[wWielP = S ElVwaal?+ > () [vwe?|
se{£1},k€e[K] i€[nl,pe[PI\{p; }
+ > Cs1 k1 Csa ko VW Zsy ks VW Zsy iy

s1,82€{£1},k1,k2€[K]
(s1,k1)#(s2,k2)

Y el (T Tl
se{*1},k€[K]
i€[n],pe[PI\{p]}

+ Z cl(p) ng) <szi(p), sz](-q)> .
i€[n].,pe[P\{p} }
Jj€ln],q€[P\{p;}

For each s1, s2 € {£1}, k1, k2 € [K] such that (s1, k1) # (S2,k2), and i € [n],p € [P]\ {p},Di}
<VW2817k1’ VWZ527]§2> = <VWZsl,k1, szZ(p)> == 07

since (Vs, &y, Usy ky) = <vsl7k1,§i(p)> = 0. Also, for each s € {£1} and i € F,, then

csvlcl@i) <VW,Z$,1, VWzi(ﬁi)>’

) (& Cwr 0o’ ({wn2)) + 6w v ((w-1.28)) Yo

637101»

1 a?

< 5eia (¢ ((wi,va1)* + ¢ (o1, 051))?) 73
2 ‘ 2P0
S\ 2 =<\ 2 SN\ 2 =312
+%<C§pi>) <¢, (wr.a?) + o (w12 )Hw(p)
1
< %Cf,l (¢'((w1,v51))? + ¢ ((w_1,vs1))?)
2

mz@i)

)

A () s )|

where we use the fact that na? = o (03d) for the last inequality. Also,
<VW275,1, szfﬁi)> =0.
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Furthermore, for each ¢, j € [n],p € [P] \ {p}},q € [P]\ {p;f} with (i, p) # (J, q) satisfies
e (Tay 2, 72|

= [ee®] (¢ ((wr.a)) o (o)) + 0 ((wora)) o ((wor.al)) ) [ (=.200)|

o ()7 (¢ ((wr o))"+ ((wora))” ) =]

1 (62)7 (¢ ((wra))* 40 (o)) ) 2]

-1 (»))? @ 4 (@) (@ ||?

= i () ow= [+ (50) [vw=)
where the last inequality is due to AM-GM inequality and

(2) (2) (®) ¢(a) 2 p) (@)
] ] 6] = (et
which is implied by the event i,y and n = o (d%> from Assumption 8.
Fors € {£1},k € [K]andi € [n],p € [P]\ {p}},
Vw25 el = & ((wi, v50))* + ¢ ((w-1,v54))* > 257,

= (o (Gmnat?)) 0 ((onsel?))) [

> %07 ,d
> B2

IN

- Z('p)

Ez(p)

and

frwst

Thus, we have
[T (W)e|?
2
= > AllVweasl’+ ) (Cz(p)) HVWZZ@)
se{+1} i€[n],pe[P\{p;}

+ Z Cs,lcrgﬁi) <VWZs,la VWZZ@Z)> + Z CEP)C§Q) <VWZZ‘(p)’ szJ(‘I)>
se{£1}ieFs i€[n],pe[P\{p;}
Jj€lnl.q€[P\{p}}

> Y Zvweal Y () [vwe|
se{x1} i€[n],pe[P\{p;}

1 2 1 @-))2 (i
S (el Vwaal?+ g () 19wl

se{£1}ieFs
P () o)

S, 2 (V[

icln].pe[PI\{p}}
jelnl.ae[P\{p:}

> AllVwaasl® + i | > (Cgp))z HVWZZ@
se{%1},ke[K] i€[n],pe[P\{p] }

‘ 2

>

)

25

NG

and we conclude opin (J(W)) > g for any W.
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H.2.2. CHARACTERIZATION OF A GLOBAL MINIMUM OF h(Z)

In this section, we will check that h(Z) is strictly convex and it has a global minimum.
For each i,j € [n] and S C [P] let us define a; ; 5 € RZKF7(~1) a5

a; ;s = Z egp) + Z 6§p),

pES ¢S
and then
LY Esene | Settaiss. 20+ (1- 1) twitais. 20
n P
,j€[n]
Since £(-) is convex, h(Z) is also convex. Note that
ZE S| ¢ z 1_@ M yla; :c. Z .
S~Ds I2 - Yi (yz<a'lj S >) + P Yj (yj<al,j,57 >) a;js|
i,j€[n]
and
v2h( )
|S S
Z Es~ps [( |€"(yz< ij.s: Z)) + < ‘P|) E"(y](a,JS,Z>)> ai,j,sazj,s}
i,j€[n]
2 Z ]ESNDS |: aZ]S7Z>)a‘i7j,Saz—'|:j,Si| )
i,j€[n]

where the last equality holds since ¢(z) = ¢"(—z) for any z € R. From the equation above, it
suffices to show that {a; j s }; je[n),sc(p) SPans R2K+n(P=1) to show strict convexity of h(Z). We
define a function [ : [P] — [P] such that for each p € [P], Pi(p) = P» Where the existence is
guaranteed by Lemma 9. Then for any ¢ € [n] and p € [p], we have

aigt Y argifg — (P = Daig)im
q€[P\{p}
= > el + ol D e | —(P=1) [v11+ > el”)
p'€[P] q€[P\{p} ' €[P\{q} p'€[P\{p}
=Y "y [(P-1)e? +(P-2) -1 Y ¥
p'€[P] p'€[P\{p} p'€[P\{p}
= Pel?). (a7
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Hence, h(Z) is strictly convex and it can have at most one global minimum. We want to show the
existence of the global minimum and characterize it.

n?Vh(Z)
IS e vo SN i g
Z ESNDS P yze (yz<az,g,6‘7 Z)) + (1 P ng (yj <a'z,],$a Z>) a; ;.S
i,5€[n]
S S
=2 Z Es~pg [(!yigl(ydaz’,g‘,s,zﬂ + ( - |P’) yjf/(yj<ai,j,s,z>)> ]lpES] eﬁp).
i,j€[n]
pE[P]

We can simplify terms as
E S’ Vvila: : . Z — @ W (ula; ;<. Z
Z S~Ds p Y (yilaijs, Z)) + (1 p )Y (yi{aijs, Z)) ) Lpes

z s | (Ml ntaise 2+ (1= 5 ) st (a1, 2) ) 1pes]

JEVy,
S‘ / _ @ P la. -
+ Z Es~pg yze (yz<a'z,],87 Z))+ |1 P y;t (y] <az,j,87 z)) Lpes
JEV_y
=Y Z ESN'DS Z/z az,j S)Z>)]lp63]
JEVy,
_ sl
Z ESNDS yz<a7,] S Z)) + P ]]-pGS
jEV
. _ sl . sl
= YilV—y;[Es~ps | (1 2 lpes| + ¥ Z Es~ps[l'(yi{ais, Z))lpes],

j€ln]
where the second equality holds since ¢'(z) + ¢/(—z) = —1. Also, for any p € [P],

s [ (1) ] = 5 o (1) 1]

q€ [P]

1 S|
= F]ESNDS ( ) Z Tges

qEeS

! S| P-1
=g | (15 8] =

P-1
Z IESN’DS yz a'z,] S Z>)ﬂp€3] + 67P’V*yz| =0,
J€[n]

Hence, if

forall i € [n] and p € [P], then we have Vh(Z) = 0. Let us consider a specific Z parameterized by
(»)

21,%—1, of the form 2z;"” = y;2,, forall i € [n] and p € [P]. We will find a stationary point with this
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specific form and then it should be the unique global minimum in the entire domain. Then we have
foreach i € [n], and p € [P] \ {p;}, we have

Z ESNDS yz al,j S Z>)ﬂp68]

J€[n]
Z ]ESNDS yz az,j s, Z pES Z ESNDS yz az,j S Z>)ﬂp€S]
JEVy, JEV—y,

= |Vy7l| 'ESNDS [gl(szi)JLPGS] + |V*yi| 'ESNDS [ZI(|S|Z% ( - |S|)Z* ) PES]

1
= = 3 (Vul - Espslt/ (P2 Lpes] + Vo] - Esupgll (18125, — (P = S1)2y,) Lpes))
pE([P]
1

- p V| - Es~ps El(szi) Z Ipes
peS

+HVoy| - Bsapgs [£(IS]2y — (P = 18))2—y) Y Lpes
peS

1
N F<|Vyz| 'ESNDSHSMI(PZ%)] + |V*y¢| 'ESNDS[|S|E,(|S|Z% - (P - ‘SDz*yi)])

_ Wl V|
2 P

To show the existence of global minimum and characterize it, we will prove the following lemma.

U'(Pzy,) + Esps[ISIE(IS]2y, = (P = |S])2-y,)]-

Lemma 31 Suppose the event Eii occurs. Let g1,g—1 : R X R — R be defined as

Vs 2 P-1
9s(z1,2-1) == [Vs| 0 (Pzs) + =Espg [|S]£’(\S|zs —(P— \8|)z_5)] + —,
V_sl P 3P

for each s € {£1}. There exist unique zi,z*, > 0 such that gi(z7,2*,) = g-1(27,2*;) = 0.
Furthermore,

Vi V-1
. 3P (1+ |v11|) * 3P <1+ Ml')
Flog W—l SZl Slog W_l +10g97
and
3P (1+ 1) 3P (1+ 24
Flog Tw—l SZil Slog P—|171‘ —1 +10g9
Proof [Proof of Lemma 31] For each z; > 0,
[V_1] 1 2 , P-1
_ = 1)-(—= —Es~ —(P — T
sa(er,0) = (B2 1) (23) 4 ZEsendlisle P - 15D + 5

[V_1] 1 P—-1
1] - — <0
< < |V1| + + 3p <0,
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since ¢/ (z) < —% for any 2z < 0. In addition,

g-1(z1, Pz + log9)

V_ 2 P-1

= | 1’6/(P221 + Plog9) + —ESNDS[|S|€/(|S|P21 +|S|log9 — (P — |S])z1)] + ——=—
V1| P 3P
‘V—l‘ / pP-1

> 1) #(log9 —_—

<Wl\+ (log9) + 5P

> 0.

Since z +— g_1(z1, 2) is strictly increasing and by intermediate value theorem, there exists S' :
(0,00) — (0,00) such that z = S(z1) is a unique solution of g_1(z1,2) = 0 and S(z1) <
Pz; +1og 9. Note that S is strictly decreasing since g—1(z1, z—1) is strictly decreasing with respect
to z1 and strictly increasing with respect to z_;.

Let us choose z > 0 such that

V1]
1 3P<1+|V_11|) B
z= plog 1 :
and thus p_1
¢pz) = -—
1
3P (1+ \vflw)
We have
Vil 2 y P—-1
= P —Es. — (P — —_—
91(2 5(2) = [t £ (P2) + SEswnslISI (812 — (P =SS + 5
V1] , P-1
< 1)0(P _—
_(W_1|+ P2+ 22
=0,
and
P-1

lim ¢1(z,5(2)) = > 0.

Z—00 3P
Hence, there exist unique zj,2*; > 0 such that g;(z],2*,) = ¢g-1(2],2*;) = 0. In addition,
z<zjand z*; < S(z) < Pz+log9. Thus,

il
3P (1 + |Vj1|) 1

zi‘zﬁlog F] —-1], 2%, <log ] + log 9
By using a similar argument, we can show that
251> —=log W_l , 21 <log 3P(1+%11|I)—1 +log9,
P P-1 P-1
and we have our conclusion. |
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Therefore, there exists a unique minimizer Z = skt e (+1}ke(K] Y {2-(p )

} €lnl.pe[P\{p} }

h(Z) and it satisfies s25 , = z; = O(1) for all k¥ € [K] and yiz“l-(p) = 2z, = O(1) for all i € [n] and
& [P\ {1}

H.2.3. STRONG CONVEXITY NEAR GLOBAL MINIMUM OF h(Z)

We will show that h(Z) is strongly convex in a set G containing a global minimum Z where G is
defined as follows.

G:= {2 e RFHPD | Z - Ze < || 2]}

here |[- oo is £oo norm. Forany Z € G and aunit vector ¢ € R* 10PN with ¢ = 37 1 1y i) Co kst
(») ()

2 icfn] pelP P\{p:} G € »Wehave
TV2 Z ESNDS CLZ]S7 Z>)<az‘,j,$, C>2]
i,j€[n]
5”(2PHZHOo
2 E ~ 7 5 .
Y Esepgl(aigs.)’]

i,j€[n]
Note that for each ¢ € [n],p € [P], from (17), we have

1

Cl(p):<c7e§p)> %<C azz@>+ﬁ et

Y (eangifg) — —5—

q€[PI\{p}

(€, a1(p).ifp}) -

where we use the notational convention c(pl) = cs for s € {£1},k € [K]and i € V. By
Cauchy-Schwartz inequality and the fact that Psps[S = 0],Psps[S = {q}] > ﬁ for all
q € [P],

2
1 1 P—1
= (P (caii)+5 D (Cangita)——5 (o al<p>,¢,{p}>)

q€[P\{r}

1 P-1 P—1\? 2 2 2
< <pz+ P +(— 5 > ) (<c7am,w> + Y {eargim) +<Caa1<p),i,{p}>)

a€[P\{p}
1 P-1 P-1\? 2
< <P2+ P+ <_ 2 > )P(P+1) Z Es~psl{c,aijs)’]

i,j€[n]

< 2P? Z Es~ps {(C, ai7.7',5>2} :

i,5,€[n]
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Hence, we have

0" (2P| Z|0)
T2 > 0o
¢ VINZ)e z G ionp — 1)) P22

(K +20(P = 1))P* 3" Esupg [(c,ai5)’]

i,J€[n]
2P| Z) ) @)?
> > At X (d”)
AK + 2n(P — 1)) P22 - Z
(4K + 2n( NP\ kel i€[n).a€[P\{p}}
0"(2P||Z||s0)

(4K + 2n(P — 1)) P22’

(2P| 2] o0) 1

4K+2n(P—1))P?n?2 ~ poly(d)"

and we conclude h(Z) is p-strongly convex in G where p := i

H.2.4. e-STATIONARY POINTS OF h(Z) ARE CLOSE TO GLOBAL MINIMUM

In this step, we want to show that near stationary points of h(Z) are close to a global minimum Z.

Z
Lemma 32 Suppose Z € R2E(P=1) sarisfies |Vh(Z)| < pe with some 0 < € < % Then,
we have HZ — Z“ <e

Proof [Proof of Lemma 32] If Z = Z, we immediately have our conclusion. We may assume
Z + Z.
Let us define a function g : R — Ras g(t) = h (Z +t(Z — Z)) Then g is convex and
Jt) = <Vh (Z Y H(Z - Z)) Z z> ,

F0=(2-2) P(213-5) (5-2).

[e'e]

z-2|_

oo’
oo

Furthermore, for 0 < ¢t < ty where ¢y :=

~ ~ ~ 12
Z+UZ-2)eG, 4@ ZuHZ—Z

N
We can conclude g is p HZ -7 H -strongly convex in [0, ¢o]. From strong convexity in [0, to] and

convexity in R, we have
~ 112
(/(t0) = g/ (O)to = g (to)to = 1| 2 = Z|| 8, (/1) = g'(t0))(1 ~ t0) = 0.
If tg < 1, we have
N o ~ 12
IVR2))||Z - 2| = (V1(2), 2 - Z) = 4 (1) 2 g/ (t0) 2 1| 2 - 2| 10,

AHHA‘X AH()(
>

|z-2, — 2
o0

IVI(Z)| = 1|2 - 2| to =
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this is contradictory. Thus, we have top > 1 and Z € G. From the strong convexity of h(Z) in G, we
have

uHZ—ZH < HVh(Z _ Z)]:||Vh(2)\| < e,

and we have our conclusion HZ -7 H < €. [ |

H.2.5. GRADIENT DESCENT ON Lcyutmix(W') ACHIEVES €-STATIONARY POINT OF h(Z)

We will show that £cyemix(W) is a smooth function.

Lemma 33 Suppose the event Einix occurs. CutMix Loss Lowmix(W) is L-smooth with L =
97“_1P0§d.

Proof [Proof of Lemma 33] Note that

V'wlﬁ(}utMix(W)
S’ / _@ P (. .
ZESNDS B Yl Wifw(Xijs)) + (1= 5 )yl (y; fw (Xi5))
i,j€[n]
|2 (o)) 2+ 300 ((wrall”)) 2l
peS p¢S

Let W = {w;,w_1} and W = {w,,w_1 } be any parameters of the neural network fy . For any
i,j € [n]and S C [P],

(—ym Wil (Xi 5,90 + (1- EP‘) 0 iy (Xi5.9))) (p - (@1, 2P)) =P +p§5¢’ (<m1,w§”>)w§”>)
(lip‘yil/(yifw(xi,j,s)) + (1 - %) ;¢ (y; g7 (X5 s))) <p€5¢>’ (w1, 2P)) = + p;s ¢ ((w1.2)) mgp))

= (Bl wirg e+ (1- 2) vt s (X)) <p€5¢’ ((sref) ol + 5 &' ((1.24)) mg.w)
~ (Ep‘yie’(yifw(Xi,j,s)) + (1 - %) yje’(yjfﬁ,(Xi,j,s))) <pes¢’ (m1,2)) 2 +,§; o ((w1,=0)) w§P>)
+ (‘i;yiz’wifW(xi,j,sw + (1 - ‘ip‘) vs (vs Fop (Xi 5 s>>) (pes o' ((m1,e”)) =™ + p%;s o' ((w1,2)) m§-”>
- (B i i + (1= 2 03¢ 5 i (X9 <p€5¢/ ((m =)=l + 5 o (m1.27)) a.-;w) :

Since || < 1,

S S
”P‘yiél (yifW(Xi,j’S)) + (1 - ‘P’> y;l' (yjfﬁ/(Xz‘,j,S))‘ <1,

and since |¢'| < 1,

50 (@) e+ 52 (w15 <2 s, o]

pes oy i€fnl,pelP]
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In addition, since ¢ is 7~ '-smooth,

(S (et e o () o)

peS ¢S

(S (et s (o))
< S (o) - (fma) o
Sl (o)) ¢ ()|
<13 -t M )

2
grlP( max Ha:ip)‘D ||lwi — w1,
i€[n],pe[P]

and since ¢’ and ¢ are 1-Lipschitz, we have

(Bt asn+ (1= 12 e tar (0

s, SIY .0
- <|P|y¢€ (Yi fywr (Xij.s)) + <1 B |P|> yst (yij(Xi’j’S))> '
< | (Xigs) — fw(Xijs)|

< ([(m ot ¢ (- 22
3 () (- o))

p¢S

<Peﬁ%HH@wHw“ﬁmwwﬁl_ﬁqm

<vop max, =W -]
i€[n],j€[P]

Therefore,

|V £cuntis(W) = Ty Lounsis (W)

< g 1) 1 ) |

i€[n],p€[P]

<otp(_mas o)) |7 -],

i€fn],pe[P] Il
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In the same way, we can obtain
)

o)z ) 22 (e | | -1

va,l.ccmMix(W) - vw,lccmMiX(W)H <2 lp < max ‘

i€[n],pelP

and

< 9r~'Po3d

vl

2
where the last inequality holds since Z-(p )H < 303d and o® < 203d. Hence, Loutmix(W) is

L-smooth with L := 9r~! Po3d. n

Since our objective function Lcoyemix(W) is L-smooth and 1 < % descent lemma (see Lemma
3.4 in Bubeck et al. [2]) implies

2

)

LcutMix (W(t+1)> — LcutMix (W(t)) < —g HVEcutMix (W(t)> ‘

and by telescoping sum, we have

T—1
1 2 27]£CutMix (W(O)) @(1)
2 : (®) H < - 1
> |V L (WO)||" < - el (18)
forany 7" > 0.
Choose € = pol poly(@) S° that 26~ e < HZH and p~ 187 1e = m. Then from (18), there

exists Toumix < 22 lz(d) such that

Hv£CutMix (W(TcutMix)) H <e.
From characterization of oy, (J(W)) in Section H.2.1,
€ > HVE <W(TCutMix)) H > Tonin(J(W)) HVh <Z(TCutMix)> H > g th (Z(TCutMix)) H ’

and thus
HV}L (Z(TCutMix)) H < 2[3—1

By Lemma 32 we have seen in Section H.2.4,

N 1
7 (Tcumix) _ ZH <2y 187 le = ’
H a poly(d)

and thus
yifW(TCutMix) (wz(p)) = @(1>7

for all € [n] and p € [P], and therefore it reaches perfect training accuracy.
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H.2.6. TEST ACCURACY OF SOLUTION FOUND BY GRADIENT DESCENT

The final step is showing that W (Teunvix) reaches almost perfect test accuracy.
From the results of Section H.2.5, we have

o (o, 0,0)) o (2, 0.4)) = 00
o (fof0, ) — o {w07).€9Y) < 00,

foreach s € {+1},k € [K],i € [n]and p € [P]\ {p}}.
For any v > v, by the mean value theorem, we have

Blu—v) < d(u) = dp(v) = (u—v)—"———
Hence, we have

o (o, Y) — o ({0CTEw019,,,) < (afFowmn) _ lTous) .

o) T, < 57 (o () ,0)) 0 (T 0,1))).

and
Q(l) < <ngCutMix) _ w(TCutMix)j,vS’k:> < O(ﬁ_l),

—S8

for each s € {1} and k € [K]. Similarly, for all i € [n] and p € [P]\ {p}},
o ((wfes.ef)) = o (w5 .67)) < (wy, —woy. ).

<w§?0utMix) _ w_j;cjutl\hx 75 > < ﬁ_l <¢ <<w?(JiTcutMix),§i(P)>) — & << (_j;(iutMlx 7gz(p)>)> :

and
(1) < <w§/?Cuthlix) _ wg;(;ucMix)’gl(P)> < 0(5—1)_

By Lemma 10,

ngCutMix) _ w(_TCutMix)
©) 0y N
=w —wi+ Y sys, kot > wipli,p)——s,
sl kelK] il pelP\ o7} &

,1 utMix utMix

Tu 1x TcutMix
+Zyz( cuen zpz>+p(_“M ) ¢
’LE.FS

and
v(s, k) = (TCuthhx)(s k) _"_,.Y(TCutMlx)(s k),

p(ng) p( CutMlx)(l p) +p( CutMlx)(,L,p)’
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foreach s € {£1},k € [K|\ {1},i € [n] and p € [P] \ {p;}. If we choose j € [n],q € [P]\ {p}}
such that p(j,q) = MAaX;e ] pe\ {p:} p(i,p), then we have
i 055

. T nt 1X ’
<wé]r0um,x)_ w{Tomss >7§J<,Q>> <w$> 7y],§(q)>+p(j O+ Y. vipli.p) e
i€[n],pe[PI\{p}} 13
(4,p)#(5,9)

From Lemma 9,

1 )
’ <w3(/?) g):'zj , gﬁq > ’ = (gog‘dd2) 5 <w(TCutM1x) _ w(;z;y(;utMlx)’ §§Q)> ,
where the inequality holds since < (Toutmix) _ (_j;cj‘“M"‘ E;q)> = Q(1). In addition, by triangular

inequality, we have

(p) ¢la) (p) ¢l
> yz‘p(i?p)<€7€> < Z p(i,p) s

(p) ®||?
i€[n],pe[P\{p]} § H p)#(5,9) & H
(4,p)#(5,9)
< p(j, ) O(noaoy 'd %) < p(]z’ 2
Hence,
1

500 q) < |(wffens) — o) D)) < 5p(5,q)

and we have p(j,q) = O(B71).

Let (X,y) ~ D be a test data with X = (a:(l), e a:(P)) € R¥P having feature patch
p*, dominant noise patch p, and feature vector v, ;. We have x® ~ N (0, abA) for each p €
[P\ {p*,p} and P) — qw, 1 ~ N(0,02A) for some s € {+1}. Therefore, for all p € [P]\ {p*, i}

(e ) o (w0

< ‘<w§TCutMiX) _ wETlcucMix)7 m(p)>‘

_ ‘<w§0) _ wﬂ),a:(p)>) + Z pli, q) ’<£§q),x(p)>‘

icfn] a<[P)\p}}
< 1) (O’oUbd%) + 1) <nﬂ_10dakj1d_%>
=0 (npoucy'a %), (19)
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with probability at least 1 — o ( S due to Lemma 9. In addition,

p
o () ()
< ‘<w§TCutMix) _ w(;I;CutMix), m(ﬁ)>‘

<a ‘<w§Tc tMix) ,w(:qCutMix)’ 'Us,1>‘ 4 ‘<w§TCutMix) _ w("Z;CutMix)7 2P _ CV’US,1>)

<o o (a2 — 0 (55,

+ ‘<w§0) — w@, zP) — avs71>‘ + Z p(i,q)
i€ln]a€[PI\{p;} H€

<O (04571) +0 (andd%> +0 (nﬁfladagld*%>
= O0(aB™), (20)

. oy 1
with probability at least 1 — o (m).
Suppose (19) and (20) holds. Then,

ny (TCutMix )(X

)
(¢ << (TcutMix) Uy k >> ¢<< (_Z;CutMix)’,vyyk>>>

= o{(aet) o (w500
pE[P]\{P }

= 0(1)- 0 (af™)
> 0.

Hence, we have our conclusion. O
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Appendix I. Technical Lemmas

In this section, we introduce technical lemmas that are used for proving the main theorems. We
present their proofs here for better readability.
The following lemma is used in Section F.2.4:

Lemma 34 Forany z,0 € R,

|6(2) = (2 +8)¢/ (2)] <7 +19].

Proof [Proof of Lemma 34]

z—%r—z:—%r:—%T ifz>r
$(2) — 2¢/(2) = § FL22 + Bz — (TBZJrﬁ)z:%zz if0<z<r,
Bz—pBz=0 if 2<0
and we obtain
1_
|p(2) — (24 0)¢' (2)| < |#(2) — 2¢'(2)| + |6]¢'(2) < 25r+\(5|§r+](5|.

The following lemma is used in Section F.2.4.

Lemma 35 Suppose Einit occurs. Then, for any model parameter W = {w;,w_1}, we have

2

Vw Y Lyfw(X0))|| <8P°03dVerl D Lyifw (X

ievs,k ZEVS k
foreach s € {1} and k € [K].

Proof [Proof of Lemma 35] For each s € {£1} and ¢ € [n], we have

|V, fov (X p;)]ﬁb <<w37 >> (p) < P;ré?;(H (p)H < 2PUdd2
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here the inequality is due to Ej,i;. Therefore, we have

2 2

Vw > Lyfw(X)|| = || D ¢ (wifw (X)) Vw fw (X)

’iEV,gﬂk ’LEVS k

IN

S° O (i w (X)) [V w fw (X))
ZGVsk
2

<4P%03d | Y (yifw (X))

1€V ks
<AP23dVarl D (¢ (wifw (X2))*
1€V, k
<AP?03d|Virl Y (yifw (X0).
1€V, k

The first inequality is due to triangular inequality, the third inequality is due to Cauchy-Schwartz
inequality and the last inequality is due to 0 < —¢' < 1, which can be used to show (¢')2 < —¢' < {.
[ |

The following lemma is used in Section G.2.4.

Lemma 36 Suppose Einiy occurs. Then, for any model parameter W = {w1,w_1}, we have

2

V Y Bl (yifwo (Xic))l|| < 8P%03d Vil Y Eemne [l(yifwo (Xic))]
Zevsk ievs,k

foreach s € {£1} and k € [K].

Proof [Proof of Lemma 36] For each s € {£1},4 € [n] and C C [P] with |C| = C, we have

[V S (Xio)ll = ||>2 ¢/ ((wera)) 2| < Pmax [«]| < 2Paqas,

e pE[P]
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here the inequality is due to Ej,i;. Therefore, we have

2 2
Vw Y Eeune [ (ifw (Xio)l|| = || D Bemnell (vifw(Xic)) Vw fw (Xic)]
1€V ks 1€Vs i
S € ,
< | D2 Eewne [¢ (wifw(Xie)) [V fw (Xie)]

’LIEVSJC
2

< 4P%%d Z Ec~p, [0 (yifw (Xic))]

1€V, k

< AP0Vl Y e, [(¢ (ifw(X0)’]
iEVS,k

< 4P%03d|V, | Z Ec~pe € (yi fw (Xic))]-

1€V &

The first inequality is due to triangular inequality, the third inequality is due to Cauchy-Schwartz
inequality and the last inequality is due to 0 < —¢' < 1, which can be used to show (¢')2 < —¢' < /.
|
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