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ABSTRACT

Frontier AI systems are making transformative impacts across society, but such
benefits are not without costs: models trained on web-scale datasets containing
personal and private data raise profound concerns about data privacy and misuse.
Language models are trained on extensive corpora including potentially sensitive
or proprietary information, and the risk of data leakage, where the model response
reveals pieces of such information, remains inadequately understood. Prior work
has demonstrated that sequence complexity and the number of repetitions are the
primary drivers of memorization. In this work, we examine the most vulnerable
class of data: highly complex sequences that are presented only once during
training. These sequences, often containing the most sensitive information, pose
a considerable risk if memorized. By analyzing the progression of memorization
for these sequences throughout training, we uncover a striking observation: many
memorized sequences persist in the model’s memory, exhibiting resistance to
catastrophic forgetting even after just one encounter. Surprisingly, these sequences
may not appear memorized immediately after their first exposure but can later
be “uncovered” during training, even in the absence of subsequent exposures – a
phenomenon we call "latent memorization." Latent memorization presents a serious
challenge for data privacy, as sequences that seem hidden at the final checkpoint
of a model may still be easily recoverable. We demonstrate how these hidden
sequences can be revealed through random weight perturbations, and we introduce
a diagnostic test based on cross-entropy loss to accurately identify latent memorized
sequences.

1 INTRODUCTION

Frontier AI models are trained on vast web-scale datasets (Touvron et al., 2023; Gemini Team et al.,
2023; OpenAI et al., 2023; Brown et al., 2020). The sizes of these pretraining corpora enable fluency,
knowledge about various domains (AlKhamissi et al., 2022; Guu et al., 2020), and the ability to
perform in-context learning (Brown et al., 2020). However, these datasets often include proprietary,
copyrighted, or otherwise private information (Smith et al., 2023; Karamolegkou et al., 2023; Bordt
et al., 2024; Duan et al., 2024; Staab et al., 2023; Shi et al., 2023; Tang et al., 2023; Zanella-Béguelin
et al., 2019), which is problematic because LLMs have been shown to possess a vast capacity for
detailed memorization. Specifically, with appropriate prompting, LLMs can regurgitate verbatim text
from their training corpora.

Prior work has found that even sequences encountered early in training can be extracted from the
model, long after they have been encountered (Biderman et al., 2023b). One possible cause of this is
that memorized sequences appear multiple times within the corpus, allowing the network to reinforce
and store this data in its weights. Our findings confirm that repeated sequences constitute the majority
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of the memorized content. However, we also find many sequences which are encountered only once
during training but are memorized by the model and persist in the model’s memory throughout the
training process. Many of these memories may seem forgotten during certain stages of training but
are later recalled without additional exposure, indicating they remain encoded in the model’s weights.
These ’latent’ memories present significant challenges, as they are not easily detected by current
memorization metrics, raising the question of how to effectively identify and quantify memorized
training data in large language models.

1.1 CONTRIBUTIONS

This work provides significant insights into the dynamics and mechanics of memorization in language
models during pretraining, contributing to the broader understanding of data privacy and security
within machine learning. Our primary contributions are as follows:

• Quantification of Memorization Susceptibility: We systematically evaluate how the
statistical characteristics of training data, specifically sequence complexity and repetition,
influence the likelihood of memorization in language models. Our findings demonstrate that
the probability of memorizing a sequence scales logarithmically with its repetition in the
training data as well as the complexity of the sequence under consideration. These results
extends prior work characterizing which sequences become memorized (Prashanth et al.,
2024; Tirumala et al., 2022).

• Stationarity of Memorized Sequences: By analyzing how memorization changes through-
out training, we discover that the memorization status of sequences remains largely stationary
after initial exposure, despite not being re-encountered. We find that for many sequences,
memorized sequences may disappear and re-appear in the model’s output without repeated
exposure. This indicates a fundamentally persistent property of the memory, revealing how
the state of memorized sequences is preserved and how subsequent training only modifies
the model output.

• Latent Memorization and Recovery: We identify the presence of "latent" memorized
sequences, which are not evident at certain checkpoints but can be uncovered later in
training or through controlled perturbations. Our experimental results show that adding
random Gaussian noise to model parameters can recover these latent memorized sequences,
supporting the hypothesis that further training acts as random additive noise rather than
fundamentally altering the memorization state.

• Development of a Diagnostic Test: We propose a novel diagnostic test for uncovering latent
memorized sequences by analyzing their cross-entropy loss. This test provides a practical
tool for detecting and mitigating potential data leakage in deployed language models.

Our study underscores the risks associated with data leakage in language models, emphasizing the
need for more robust mechanisms to ensure data privacy. The persistence of memorized sequences
poses a challenge for the prevention of data leakage. By characterizing the nature of memorization as
well as the nature of these latent memorized sequences, we elucidate possible mechanisms of how
sequences become memorized and offer practical solutions for mitigating data privacy risks, and
developing safer and more trustworthy models.

2 METHODOLOGY

2.1 PROPERTIES OF PRETRAINING DATA RELEVANT TO MEMORIZATION: REPEATS AND
COMPLEXITY

Previous studies have identified that the number of repeats of a sequence affects whether it will be
memorized, with more frequently occurring strings being more likely to be memorized (Carlini et al.,
2020; Razeghi et al., 2022; Biderman et al., 2023a). Consequently, a starting property to measure is
the number of repeats of specific strings in the pretraining corpus.

In our work, we also consider a second and newer property: the complexity of specific strings. Our
decision to do so is motivated by previous studies (Carlini et al., 2020) which identified a prevalent
class of easily memorized data: simple sequences composed of repeated patterns, numbers, or other
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Figure 1: Data statistics and the probability of memorization a. Plot of average kl-LD as a
function of the number of times the sequence is repeated in the dataset for Pythia-1b and Amber-7b b.
Average kl-LD as a function of the Z-complexity of the sequence. c. Relationship between kl-LD and
repeats for different complexity levels. c. Schematic of pipeline for analyzing memorization over
time. All samples were selected from early on in training. Various model checkpoints are selected
and evaluated to determine if early training sequences are still memorized. The changes in k-LD
over time are used in our analysis to evaluate how the memorization of these sequences changes
throughout training. d Distribution of z-complexity over all of the data.

straightforward patterns. While models readily learn these samples, they often lack substantive
content and are unlikely to represent sensitive information. Thus, it is important to distinguish
between memorization of these trivial sequences from more complex and informative sequences.

In order to quantitatively measure the complexity of specific strings, we use modern compression
algorithms to determine the extent to which sequences have a smaller description than the original
sequence. To calculate the complexity of a sequence we define a metric, z-complexity, which is the
ratio between the compressed sequence length to the original sequence length. This metric contains
values from 0 to 1 and is efficiently computable using the zlib package in Python.

2.2 QUANTIFYING MEMORIZATION

Several different definitions have been put forward to quantify memorization in language models.
Intuitively, a memorized sequence is a training sequence which can be reproduced given the right
context (Carlini et al., 2022; Schwarzschild et al., 2024). One popular definition of memorization is
kl-memorization (Carlini et al., 2022). kl-memorization is evaluated by considering a sequence of
length k + l. The first k tokens are presented to the model as context. The model is used to generate
a continuation of length l via greedy (i.e., temperature = 0 decoding). The model’s continuation is
compared to the "true" continuation, and a sequence is said to be kl memorized if the model’s output
exactly matches the true continuation.

While undoubtedly useful, we introduce and utilize a new metric for measuring memorization.
kl-memorization is an overly strict such that even a single-token deviation from the true continuation
may cause us to misclassify a sequence as forgotten; in many cases, the model may make small errors
such as inserting or modifying a single token. We identified and provide several examples in Table 1.
In order to to be more robust to small changes in the learned sequence, we propose a modification of
kl-memorization by introducing kl-Levenshtein distance (kl-LD).

Definition 2.1 (kl-LD distance). Let S = (s1, s2, . . . , sn) be a sequence of tokens. We denote the first
k tokens as the context C = (s1, . . . , sk) and the last l tokens as the target T = (sk+1, . . . , sk+l). The
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model is provided these context tokens and produces a predicted continuation of T̂ = (m1, . . . ,ml).
We define the kl-LD distance as the Levenshtein distance (Levenshtein, 1965) between sequences
T and T̂ where the Levenshtein distance is the minimum number of (token) insertions, deletions or
substitutions that must be performed on T to obtain T̂ .

We find that this is a natural measure of memorization which also provides a range of values to
provide more granular insight into the strength of the model’s memory, akin to how continuous
metrics have been used to improve evaluations of language models (Schaeffer et al., 2023; 2024).
Throughout this study, we set k = 32 and compare the continuation of the model with the original
sequence by computing the Levenshtein distance between the next 64 tokens.

Table 1: Model continuations at various stages in training for a few selected sequences which were
complex and encountered only once during training. Minimum edits are highlighted such that
character edits are highlighted in orange, deletions are highlighted in red and new characters are
highlighted in green.

Context True Continuation Checkpoint 10000 Checkpoint 15000 Checkpoint 19000
992> por favor ayu-
denme para instalar
DBDesigner <him>
hay <BluesKaj>!es |
Guest17992

<ubottu> Guest17992: En
la mayorÃxada de canales
Ubuntu se comunica en in-
glÃ©s. Para ayuda en
EspaÃ±ol, por favor entre
en los canales #ubuntu-es o
#kubuntu-es. <BluesKaj>!es |

<ubottu> Guest17992: En
la mayorÃ a de canales de
Ubuntu se comunica sÃ³lo en
inglÃ©s. Para busca ayuda en
EspaÃ±ol, por favor entrera
en los canales #ubuntu-es o
#kubuntu-es. <BluesKaj>! es
|

<ubottu> Guest17992: En
la mayorÃ a de canales de
Ubuntu se habla sÃ³lo en in-
glÃ©s. Si busca ayuda en
espaÃ±ol o charlar entra en
el canal #ubuntu-es. Escribe
"/join #ubuntu-es"

<ubottu> Guest17992: En
la mayorÃ a de los canales
de Ubuntu, se habla sÃ³lo
en inglÃ©s. Si busca
ayuda en espaÃ±ol entre al
lar entra en el canal #ubuntu-
es; escriba " /join #ubuntu-
es " (

, findings, beliefs, or ex-
periences on those topics
or products. The views
and opinions expressed
on CateTheOkay.com are
purely my own. Any
product

claim, statistic, quote or other
representation about a prod-
uct or service should be
verified with the manufac-
turer, provider or party in
question. CateTheOkay.com
doesn’t contain any content
which might present a conflict
of interest.

claim, statistic, quote or
other representation about a
product or service should be
verified with the manufac-
turer or provider. Comments.
I have a question.
I have a friend who is a
teacher and she is a
teacher. She is a teacher
and she is a student.
She is a student and she
is a

claim, statistic, quote or
other representation about a
product or service should be
verified with the manufac-
turer or provider or party in
question. CateTheOkay.com
is not affiliated with,
endorsed by, or sponsored
by the Coca-Cola Company.
CateTheOkay.com is not
affiliated with, endorsed by,

claim, statistic, quote or
other representation about a
product or service should be
verified with the manufac-
turer or provider or party in
question. I am not a doctor,
pharmacist, or registered
dietitian. I am not a
registered dietitian.
I am not a registered dietitian.
I am not a registered dietitian.
I am

2.2.1 ANALYZING REPEATED SAMPLES

In this study, we seek to understand both how repeated encounters of a sequence during training
drives memorization and also how sequences which are encountered only once are retained by the
model. To this end, we analyze where training sequences are repeated throughout the course of
training. In our study, we focus on the l portion of the sequence. For this study, we fixed l to 64
tokens. Given a target sequence, we compare the target sequence with all of the training sequences
which were presented to the model during the period of training under consideration. We compute
the largest subsequence match between the target and every individual training example and call a
training example a "repeat" if there was a sub-sequence match of length 30 or longer.

2.3 LANGUAGE MODELS

In this study, we largely focused on the Pythia 1B language model (Biderman et al., 2023a), which
was trained on 300B tokens from the Pile (Gao et al., 2020). For selected experiments, to ensure our
results hold on other language models, we reproduced our results using a second model, Amber-7B
(Liu et al., 2023). We selected these two models as they were large, high performing models complete
with fully reproducible data sequences and frequent checkpoints. As in previous works (Biderman
et al., 2023a), all experiments were run with the models run with half precision (float16) and
temperature 0.

2.4 DATASETS

In this work, we use the deduplicated versions of the Pile (Gao et al., 2020) as well as the Amber
dataset which is a combination of the RedPajama V1, RefinedWeb and StarCoderData datasets
(Computer, 2023; Li et al., 2023; Penedo et al., 2023), all of which employ deduplication. In the
early part of our work we also employ the standard Pile which did not use de-duplication in order to
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observe the effects of repeated exposure on memorization. In the latter part of our work we focus on
the deduplicated versions of the datasets in order to eliminate the influence of repeated exposure on
our analysis of memorization.

2.4.1 LANGUAGE MODEL CHECKPOINTS

In our analysis, we used checkpoints from every 3k training steps between from step 10k-43k in
Pythia-1B and every 10 checkpoints of Amber-7B, corresponding to roughly 1.7 million training
examples between revision 100 to 350. These selections were checkpoints from each model which
represented a sizable portion of training. These were chosen to be offset from the beginning of
training to avoid artifacts or initial transients from random initialization, learning rate warmup and
other peculiarities from initial phases of training.

3 EXPERIMENTAL RESULTS

3.1 DATA STATISTICS PREDICT MEMORIZATION

We analyze two primary drivers of memorization during training: sequence complexity, and the
number of repetitions. Previous work showed that the probability a training string can be extracted
from a model is related to the model size and number of repetitions (Carlini et al., 2020); we find that
this relationship is true in the models we analyzed as well (Figure 1a). Additionally, we found that
the complexity of the string itself was a strong predictor of whether it would be memorized (Figure
1b): strings with smaller z-complexity had smaller kl-Levenshtein distance (kl-LD), meaning simpler
strings are more easily memorized. Interestingly, recent work showed that pretraining language
models on data with lower z-complexity causes the training losses to decrease more rapidly (Pandey,
2024); our results here suggest an explanatory mechanism: with more compressible data, the model
can memorize the data more quickly. Furthermore, we found that for strings of different complexity
exhibited different memorization curves (Figure 1c), whereby lower complexity strings were more
easily memorized with fewer repeats. Both of these factors influenced the memorization probability
with a log-linear relationship. Since highly sensitive information is likely contained in complex and
rare training sequences, we focus our efforts on these sequences. In the rest of this work, we restrict
our analys to sequences which are presented once and have high complexity (> 0.8).

3.2 DYNAMICS OF MEMORIZATION

In order to produce a more complete picture of how successive training affects the state of memorized
sequences within our model, we analyze how the kl-LD changes throughout the course of training for
individual sequences. We select sequences early on in training and evaluate how the memorization
status of these sequences evolves throughout training (Figure 1a). In this section we utilize the
deduplicated version of the Pile dataset (Gao et al., 2020) as well as the Amber LLM360 dataset
which also uses deduplication in order to remove the effects of repeated exposures. We filter
these sequences so that only sequences which have a z-complexity of 0.8 or higher are included in
our analysis. Additionally, we employed our own duplication detection scheme which eliminated
sequences which had a sub-sequence match of length 30 or longer and rerun our analysis using these
sequences (Figure S13).

Surprisingly, we find that the memorization status of a sequence is largely stationary throughout
training. After the initial checkpoint, the kl-LD of the sequences fluctuate (Figure 3) but do so in
a way which is stationary across training (Figure 2a). This is consistent across both Pythia-1b and
Amber-7b models. This is reflected in the individual trajectories, and also in the overall mean of the
population which shows no clear trend as training progresses. Furthermore, unlike a random walk,
we see that the variance of the does not grow over time, but remains fixed. We can quantify this by
running a variance ratio test A.2, where the variance of a random walk is expected to grow linearly.
We can reject the null hypothesis that our data is generated from a random walk with p < 10−8 for
the samples drawn from Pythia-1b and Amber-7b. This is indicative of a mean reversion tendency of
the dynamics and demonstrate the stability of the memories within the model weights. Additionally,
we observe that the changes in the kl-LD between consecutive checkpoints are symmetric (Figure
2c) and roughly follow a laplace distribution (Figure 3). This again confirms the counter-intuitive
property of sequences to become memorized as often as they are forgotten. Notably, the model is able
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Figure 2: a. Visualization of individual samples and the change in the memorized length during
training. Grey lines are subsampled single sequence trajectories throughout training. Each sequence
was normalized such that the distribution of memorization lengths was mean 0 and variance 1. The
red line denotes the mean and shaded area denotes region of two standard deviations of the kl-LD of
all sequences at a single point in time. Notably, the distribution at each timestep is the same for all
checkpoints. This is in contrast to both the expected exponential decay behavior exhibited by models
which experience catastrophic forgetting as well as the linear growth of variance which is expected of
processes exhibiting random walk behavior. b. Conceptual schematic of how memorized sequences
may be stabilized during training in order to resist the interference from weight changes caused by
subsequent training. c. Joint distribution of kl-LD during checkpoints 10k and 13k. Color is the log
of the number of sequences in each bin. The vast majority of sequences are not memorized in either
checkpoint.

to recall memories which, at one point in time, appeared to be forgotten, despite never encountering
that sequence again.

The stationarity of the memorization status of these sequences indicates that the memorized sequence
is stable throughout time, but this is in conflict with the fact that the model weights are constantly
evolving. This stability in the presence of noise is indicative of a stabilizing mechanism by which
the encoding of the sequence memory is preserved by some restorative process illustrated in Figure
2b where the memorized sequence becomes a stable fixed point in the weight space of the model
under training dynamics. Since this is not true of all sequences, but only the few which exhibit this
persistent memorization, it may point to a phase transition that occurs when the sequence is first
encountered.

3.3 LATENT MEMORIZATION AND RECOVERY OF LATENT MEMORIES

Since some sequences exhibited seemingly random variations in their memorization state across
different checkpoints, we hypothesize that these sequences remain memorized but are not be visible
at a given checkpoint and are "latent" memorized. Indeed, we found many sequences which were not
memorized at the initial checkpoint (10k) but exhibited memorization by checkpoint 19k (Table 1).

For these sequences, the nature of the random changes shown in Figure 2a indicate the form of a
random walk. We hypothesize that the process of training in frontier AI models acts as random noise
on the weights with respect to the memory of the sequence. Thus, simply perturbing the weights with
random noise should produce similar effects as training.
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Figure 3: Visualization of how memorization status, measured by kl-LD, changes between consecu-
tive checkpoints for both Pythia-1B and Amber-7B.

We find that this prediction is true. We randomly perturb the model weights by adding a small amount
of random gaussian noise (of magnitude 2 × 10−3) to each of the weight parameters. We repeat
this process 200 times and find the perturbation which yields the lowest kl-LD (Figure 4a). Notably,
in the high dimensional weight space, it is difficult to reproduce arbitrary sequences using random
weight perturbations, thus the recovery of memorized sequences must be due to intrinsic factors of
how the memory is encoded in the weights.

We find that sequences which were "latent" memorized are able to be recovered using random
perturbation (Figure 4bc). In contrast, sequences which were not memorized during the period
of consideration could not be recovered. As a control, we also selected sequences which were
not presented to the model yet, and observed that their distributions closely matched those which
were encountered by not memorized by the model (Figure 4b). Furthermore, we found that the
perturbations yielded memorization patterns which closely matched that of the model at a later
point in training. These observations support the view that with respect to a memorized sequence,
subsequent training acts similar to random noise perturbations to the model weights.

As an additional control, we attempted to recover the latent memorized sequences by sampling from
the model at different temperatures. Since these sequences are stored in the model weights, it may
be the case that the model would simply reproduce the target sequences if prompted enough times.
We tried four different temperatures and sampled 200 different sequence continuations from each
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Figure 4: a. Schematic of how model weights are perturbed in order to extract memories from
the model. The same context is given to 200 perturbed modesl and the best continuation is chosen.
b. Comparison of the distribution of best achievable kl-LD by perturbing the model weights. Data
points were selected such that they were un-memorized (kl-LD > 50) at 10k but we’re memorized
(kl-LD < 10) at some point during the next 10k training steps. Top panel is the histogram of the
perturbations of the checkpoint at 19k and bottom is 10k. Notably, the perturbations cause the 10k
model distances to match the distribution of the 19k model, and perturbing the 19k model does
not have a significant effect. This is indicative of how model training mimics random noise with
respect to the memorization status of the sequences. c. Visualization of the Levenshtein distances
from the target for various weight perturbations. Each row is a single sequence, and the heights of
the bars correspond to the number of perturbations which resulted in a Levenshtein distance of that
corresponding bin.

of the temperatures. We find that the this method fails to recover the latent memories that weight
perturbation was able to produce (Figure 5b).

"Latent" memorized sequences pose a significant risk for leakage since they are not easily detectable
from evaluating kl-memorization of those sequences. To this end, we discovered that these "latent"
memorized sequences had significantly lower cross entropy loss when evaluated by the model (Figure
5c), thus simply evaluating the likelihood of those sequences using the trained model is a natural
diagnostic for detecting these "latent" memorized sequences.

3.4 RELATED WORK

Extracting memorized sequences from language models is an area of high interest. Early work
established that it was possible to extract sensitive data including phone numbers, URLs and personal
information from trained language models (Carlini et al., 2020). Other studies injected canaries
to determine what aspects of the training process contributed to whether a sequence is extractable
(Henderson et al., 2017)(Thakkar et al., 2020). More recent work have extended this to investigate
how these properties scale with model size and data statistics (Carlini et al., 2022). This has motivated
the use of deduplication, which in addition to reducing the chance of data leakage (Kandpal et al.,
2022), also has been shown to improve sample efficiency and improve evaluation (Lee et al., 2021).
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Figure 5: a. Comparison of using perturbations to evoke a target sequence for three different
classes of sequences. In the top panel, we examine the sequences which are "latent" memorized. In
the middle panel, we find sequences which weren’t memorized during training and in the bottom
panel, we analyze sequences which were encountered later in training but were not encountered by
the model. We not that perturbing the weights is only able to evoke sequences which are "latent"
memorized. b. Attempts at evoking latent memories using 200 samples at various temperatures.
None of the temperatures were able to reliably recover the latent memories. c. Comparison of the
cross entropy losses of sequences separated into the three different classes of sequences analyzed in b.
The cross entropy losses of "latent" memorized sequences are much lower.

The definition of memorization is also still debated and various approaches to quantifying memoriza-
tion have been made (Zhang et al., 2021; Feldman & Zhang, 2020). A variety of attacks have been
designed to extract memorized sequences using designed prompts (Thakkar et al., 2020) and model
activation perturbations (Kassem et al., 2024).

More generally, the notion of membership inference has been studied as a way to determine whether
a given training example was part of the corpus (Shokri et al., 2016; Mireshghallah et al., 2022;
Hisamoto et al., 2019), and these approaches have been applied to language models as well (Duan
et al., 2024).

Forgetting has also been studied extensively in neural networks, typically in the context of preventing
forgetting. (Kirkpatrick et al., 2017; Zenke et al., 2017; Chen et al., 2020). Studies have also shown
that forgetting decreases with model size (Tirumala et al., 2022; Mirzadeh et al., 2021). This work
has also been examined in the context of understanding what aspects about a model and the data
contribute to forgetting (Toneva et al., 2018)

Finally, there has also been work studying how the training process affects the status of memorization
(Tirumala et al., 2022; Prashanth et al., 2024). This work focuses on how parameters of training
and size of the model affect the dynamics of training. They find that scaling the model generally
leads to less forgetting. In our work, we focus on sequences which counter-intuitively do not obey
the forgetting laws presented in this work and expanding on the implications of these persistent
"episodic" memories.

4 CONCLUSION AND LIMITATIONS

We study how memorization changes throughout training and focused on sequences which occurred
only once throughout training. Under these conditions, we find that rather than forgetting these
sequences, the model retains them for the duration of training. This stationarity indicates a stability of
the memorized sequence in weight space since the training process necessarily modifies the weights
which encode the memorized sequences. We test this mechanistic view of how the training process
interacts with the memorized sequence by using random weight perturbations to the model weights.
These perturbations confirm that sequences which appeared to be forgotten at one point during
training, may still be memorized by the model and are able to be uncovered with a small amount of
random noise. We concluded by demonstrating a simple diagnostic to distinguish between "latent"
memorized sequences and un-memorized sequences.
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This study highlights one surprising behavior of frontier AI models and begins to uncover what
mechanisms are present in the memorization behavior of these models. Our work suggest a possible
mechanism of how memorized strings are sustained throughout training and further experiments are
needed to confirm the underlying mechanism. Notably, further testing is required across other frontier
AI models which were not considered here. Finally, we propose a mechanistic explanation for this
phenomenon which requires further study to explain the cause of these persistent memories.

5 REPRODUCIBILITY STATEMENT

All code used for this project is available at https://github.com/sunnyddelight/
latent_memorization.
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Chimoto, Hanna Klimczak-Plucińska, David Bridson, Dario de Cesare, Tom Hudson, Piermaria
Mendolicchio, Lexi Walker, Alex Morris, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth
Odoom, Lucia Loher, Victor Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina,
Tom Duerig, Antonio Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Lynette Webb,
Sahil Dua, Dong Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi, Ananth Agarwal, Tomer Shani,
Matan Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay Kale,
Jinliang Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan Lee, Pandu
Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas, Martin Wicke, Xiao Ma,
Evgenii Eltyshev, Nina Martin, Hardie Cate, James Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong,
Kai Kang, Florian Luisier, Nilesh Tripuraneni, David Madras, Mandy Guo, Austin Waters, Oliver

14



Published as a conference paper at ICLR 2025

Wang, Joshua Ainslie, Jason Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Riham
Mansour, Jason Gelman, Yang Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen, Xianghai
Sheng, Emily Xue, Sherjil Ozair, Christof Angermueller, Xiaowei Li, Anoop Sinha, Weiren Wang,
Julia Wiesinger, Emmanouil Koukoumidis, Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark
Goldenson, Parashar Shah, M K Blake, Hongkun Yu, Anthony Urbanowicz, Jennimaria Palomaki,
Chrisantha Fernando, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi, Maria
Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee, Denny Zhou, Komal Jalan,
Dinghua Li, Blake Hechtman, Parker Schuh, Milad Nasr, Kieran Milan, Vladimir Mikulik, Juliana
Franco, Tim Green, Nam Nguyen, Joe Kelley, Aroma Mahendru, Andrea Hu, Joshua Howland, Ben
Vargas, Jeffrey Hui, Kshitij Bansal, Vikram Rao, Rakesh Ghiya, Emma Wang, Ke Ye, Jean Michel
Sarr, Melanie Moranski Preston, Madeleine Elish, Steve Li, Aakash Kaku, Jigar Gupta, Ice Pasupat,
Da-Cheng Juan, Milan Someswar, Tejvi M., Xinyun Chen, Aida Amini, Alex Fabrikant, Eric Chu,
Xuanyi Dong, Amruta Muthal, Senaka Buthpitiya, Sarthak Jauhari, Nan Hua, Urvashi Khandelwal,
Ayal Hitron, Jie Ren, Larissa Rinaldi, Shahar Drath, Avigail Dabush, Nan-Jiang Jiang, Harshal
Godhia, Uli Sachs, Anthony Chen, Yicheng Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai, James
Wang, Chen Liang, Jenny Hamer, Chun-Sung Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vít
Listík, Mathias Carlen, Jan van de Kerkhof, Marcin Pikus, Krunoslav Zaher, Paul Müller, Sasha
Zykova, Richard Stefanec, Vitaly Gatsko, Christoph Hirnschall, Ashwin Sethi, Xingyu Federico
Xu, Chetan Ahuja, Beth Tsai, Anca Stefanoiu, Bo Feng, Keshav Dhandhania, Manish Katyal,
Akshay Gupta, Atharva Parulekar, Divya Pitta, Jing Zhao, Vivaan Bhatia, Yashodha Bhavnani,
Omar Alhadlaq, Xiaolin Li, Peter Danenberg, Dennis Tu, Alex Pine, Vera Filippova, Abhipso
Ghosh, Ben Limonchik, Bhargava Urala, Chaitanya Krishna Lanka, Derik Clive, Yi Sun, Edward
Li, Hao Wu, Kevin Hongtongsak, Ianna Li, Kalind Thakkar, Kuanysh Omarov, Kushal Majmundar,
Michael Alverson, Michael Kucharski, Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo Pelagatti,
Rohan Kohli, Saurabh Kumar, Joseph Kim, Swetha Sankar, Vineet Shah, Lakshmi Ramachandruni,
Xiangkai Zeng, Ben Bariach, Laura Weidinger, Tu Vu, Alek Andreev, Antoine He, Kevin Hui,
Sheleem Kashem, Amar Subramanya, Sissie Hsiao, Demis Hassabis, Koray Kavukcuoglu, Adam
Sadovsky, Quoc Le, Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey Dean, and Oriol Vinyals.
Gemini: A family of highly capable multimodal models. arXiv [cs.CL], December 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM: Retrieval-
augmented language model pre-training. arXiv [cs.CL], February 2020.

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried,
Ryan Lowe, and Joelle Pineau. Ethical challenges in data-driven dialogue systems. arXiv [cs.CL],
November 2017.

Sorami Hisamoto, Matt Post, and Kevin Duh. Membership inference attacks on sequence-to-sequence
models: Is my data in your machine translation system? arXiv [cs.LG], April 2019.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. arXiv [cs.CR], February 2022.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Sogaard. Copyright violations and large
language models. arXiv, October 2023.

Aly M Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin
Choi, Sherif Saad, and Santu Rana. Alpaca against vicuna: Using LLMs to uncover memorization
of LLMs. arXiv [cs.CL], March 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proc. Natl. Acad. Sci. U. S. A., 114(13):3521–3526, March 2017.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv
[cs.CL], July 2021.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
physics. Doklady, 10:707–710, 1965.

15



Published as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. StarCoder: may the source be with you! arXiv
[cs.CL], May 2023.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren,
Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P
Xing. LLM360: Towards fully transparent open-source LLMs. arXiv [cs.CL], December 2023.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
Quantifying privacy risks of masked language models using membership inference attacks. arXiv
[cs.LG], March 2022.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and
Mehrdad Farajtabar. Wide neural networks forget less catastrophically. arXiv [cs.LG], October
2021.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H Pong, Tolly Powell, Alethea Power, Boris Power,

16



Published as a conference paper at ICLR 2025

Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, C J Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. GPT-4 technical report. arXiv [cs.CL], March 2023.

Rohan Pandey. gzip predicts data-dependent scaling laws, 2024.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for falcon LLM: Outperforming curated corpora with web data, and web data only. arXiv
[cs.CL], June 2023.

Usvsn Sai Prashanth, Alvin Deng, Kyle O’Brien, Jyothir S, V, Mohammad Aflah Khan, Jaydeep
Borkar, Christopher A Choquette-Choo, Jacob Ray Fuehne, Stella Biderman, Tracy Ke, Katherine
Lee, and Naomi Saphra. Recite, reconstruct, recollect: Memorization in LMs as a multifaceted
phenomenon. June 2024.

Yasaman Razeghi, Robert L Logan I V au2, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot reasoning, 2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In A Oh, T Naumann, A Globerson, K Saenko, M Hardt, and S Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 55565–55581. Curran
Associates, Inc., 2023.

Rylan Schaeffer, Hailey Schoelkopf, Brando Miranda, Gabriel Mukobi, Varun Madan, Adam Ibrahim,
Herbie Bradley, Stella Biderman, and Sanmi Koyejo. Why has predicting downstream capabilities
of frontier AI models with scale remained elusive?, 2024.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C Lipton, and J Zico Kolter. Rethinking
llm memorization through the lens of adversarial compression. arXiv preprint arXiv:2404.15146,
2024.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. arXiv [cs.CL],
October 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. arXiv [cs.CR], October 2016.

Victoria Smith, Ali Shahin Shamsabadi, Carolyn Ashurst, and Adrian Weller. Identifying and
mitigating privacy risks stemming from language models: A survey. arXiv [cs.CL], September
2023.

Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. arXiv [cs.AI], October 2023.

Ruixiang Tang, Gord Lueck, Rodolfo Quispe, Huseyin A Inan, Janardhan Kulkarni, and Xia Hu.
Assessing privacy risks in language models: A case study on summarization tasks. arXiv [cs.CL],
October 2023.

Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, and Françoise Beaufays. Understanding
unintended memorization in federated learning. arXiv [cs.LG], June 2020.

17



Published as a conference paper at ICLR 2025

Kushal Tirumala, Aram H Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. arXiv [cs.CL],
May 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv [cs.LG], December 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language
models. ArXiv, abs/2302.13971, February 2023.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga
Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to
natural language models. arXiv [cs.LG], December 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
Proc Mach Learn Res, 70:3987–3995, 2017.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. arXiv [cs.CL], December 2021.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 COMPUTE DETAILS

All experiments were run on a cluster with access to 16 concurrent a100 GPUs. All of the language
models were run using a single GPU and multiple GPUs were used to parallelize the experiments in
order to speed up progress. Searching for repeats within the dataset was performed using the library
dask, using 64 CPUs distributed in a cluster, each with 32Gb of RAM.

A.2 VARIANCE RATIO TEST

Random walks have a hallmark property of linearly increasing variance over time. We can demonstrate
statistically that the sequence of memorization lengths does not follow a random walk by conducting
a variance ratio test. Given a sample {{Xij}1≤i≤m}1≤j≤n of m sequences of length n, we can
calculate the F-statistic by taking the ratio of the variances

1
m

∑m
i=1(Xin − X̄in)

2

n 1
m

∑m
i=1(Xi1 − X̄i1)2

which, for a random walk has an F-distribution with m and m degrees of freedom.

A.3 LICENSES

This project used code from the Pythia project Biderman et al. (2023a) released by EleutherAI under
the Apache license version 2.0. We also used the Pile dataset Gao et al. (2020) which is released
under the MIT license. The Amber model was produced by LLM360, and the code and dataset are
both released under Apache 2.0.

A.4 ADDITIONAL FIGURES

We include figures which were omitted from the main paper. These provide additional details that
were not central to the claims made in the paper.
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Figure 7: Histogram of the repeats vs the edit distance split by complexity Hue is log density.

19



Published as a conference paper at ICLR 2025

(-0
.0

10
5,

 0
.2

11
]

(0
.4

21
, 0

.6
32

]
(0

.8
42

, 1
.0

53
]

(1
.2

63
, 1

.4
74

]
(1

.6
84

, 1
.8

95
]

(2
.1

05
, 2

.3
16

]
(2

.5
26

, 2
.7

37
]

(2
.9

47
, 3

.1
58

]
(3

.3
69

, 3
.5

79
]

(3
.7

9,
 4

.0
]

(4
.2

11
, 4

.4
21

]
(4

.6
32

, 4
.8

42
]

(5
.0

53
, 5

.2
63

]
(5

.4
74

, 5
.6

84
]

(5
.8

95
, 6

.1
06

]
(6

.3
16

, 6
.5

27
]

(6
.7

37
, 6

.9
48

]
(7

.1
58

, 7
.3

69
]

(7
.5

79
, 7

.7
9]

(8
.0

, 8
.2

11
]

(8
.4

21
, 8

.6
32

]
(8

.8
42

, 9
.0

53
]

(9
.2

64
, 9

.4
74

]
(9

.6
85

, 9
.8

95
]

(1
0.

10
6,

 1
0.

31
6]

Cumulative repeats

(0.00611, 0.0236]
(0.0403, 0.0569]
(0.0736, 0.0903]

(0.107, 0.124]
(0.14, 0.157]
(0.174, 0.19]

(0.207, 0.224]
(0.24, 0.257]
(0.274, 0.29]

(0.307, 0.324]
(0.34, 0.357]
(0.374, 0.39]

(0.407, 0.424]
(0.44, 0.457]
(0.474, 0.49]

(0.507, 0.524]
(0.54, 0.557]
(0.574, 0.59]

(0.607, 0.624]
(0.64, 0.657]
(0.674, 0.69]

(0.707, 0.724]
(0.74, 0.757]
(0.774, 0.79]

(0.807, 0.824]

co
m

pl
ex

ity

Mean

(-0
.0

10
5,

 0
.2

11
]

(0
.4

21
, 0

.6
32

]
(0

.8
42

, 1
.0

53
]

(1
.2

63
, 1

.4
74

]
(1

.6
84

, 1
.8

95
]

(2
.1

05
, 2

.3
16

]
(2

.5
26

, 2
.7

37
]

(2
.9

47
, 3

.1
58

]
(3

.3
69

, 3
.5

79
]

(3
.7

9,
 4

.0
]

(4
.2

11
, 4

.4
21

]
(4

.6
32

, 4
.8

42
]

(5
.0

53
, 5

.2
63

]
(5

.4
74

, 5
.6

84
]

(5
.8

95
, 6

.1
06

]
(6

.3
16

, 6
.5

27
]

(6
.7

37
, 6

.9
48

]
(7

.1
58

, 7
.3

69
]

(7
.5

79
, 7

.7
9]

(8
.0

, 8
.2

11
]

(8
.4

21
, 8

.6
32

]
(8

.8
42

, 9
.0

53
]

(9
.2

64
, 9

.4
74

]
(9

.6
85

, 9
.8

95
]

(1
0.

10
6,

 1
0.

31
6]

Cumulative repeats

(0.00611, 0.0236]
(0.0403, 0.0569]
(0.0736, 0.0903]

(0.107, 0.124]
(0.14, 0.157]
(0.174, 0.19]

(0.207, 0.224]
(0.24, 0.257]
(0.274, 0.29]

(0.307, 0.324]
(0.34, 0.357]
(0.374, 0.39]

(0.407, 0.424]
(0.44, 0.457]
(0.474, 0.49]

(0.507, 0.524]
(0.54, 0.557]
(0.574, 0.59]

(0.607, 0.624]
(0.64, 0.657]
(0.674, 0.69]

(0.707, 0.724]
(0.74, 0.757]
(0.774, 0.79]

(0.807, 0.824]

co
m

pl
ex

ity

Variance

0

10

20

30

40

50

60

0

250

500

750

1000

1250

1500

1750

Figure 8: Average of the kl-LD metric kl-LD values are binned by number of repeats and complexity
and the mean and variance of the samples in those bins are computed and colored.
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Figure 9: Average of the kl-LD metric kl-LD values are binned by number of repeats and complexity
and the mean and variance of the samples in those bins are computed and colored.
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Figure 10: Examples of strings which were seen once during training. Top left plot shows the kl-LD
over for different trajectories and bottom left plot is a histogram of when the examples were repeated
and at what length with the time on the x axis and the length of the repeat on the y axis. The text of
the context, true continuation and model continuation are shown as well.
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Figure 11: Distribution of weight changes of the model throughout training. Computed as the L2
distance between the flattened model weights at two different times during training
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Figure 12: Distribution of weight magnitudes of the trained model at checkpoint 10k
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Figure 13: Dynamics of sequences with high complexity (>0.7) filtered by using maximum substring
match of 30
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