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Abstract— Non-prehensile manipulation methods refer to
manipulation without grasping (i.e., utilizing unilateral contacts).
Compared to the grasping method, more compact and flexible
end effectors can be applied, making it possible to perform tasks
in a constrained workspace; As a trade-off, it has relatively
few degrees of freedom (DoFs), resulting in an under-actuation
problem with complex constraints for planning and control.
This paper proposes a new non-prehensile manipulation method
for the task of object retrieval in cluttered environments, using
a rod-like pusher. Different from existing methods, the proposed
approach is with the contact-aware feature, which enables the
synthesized effect of active removal of obstacles, avoidance
behavior, and switching contact face for improved dexterity.
Hence both the feasibility and efficiency of the task are greatly
promoted. The performance of the proposed method is validated
in a planar object retrieval task, where the target object,
surrounded by many fixed or movable obstacles, is manipulated
and isolated. Simulation and experimental results are presented.

I. INTRODUCTION AND RELATED WORKS

Manipulation in clutter is a skill commonly demanded in
daily life and production. Such a task is challenging for a
robot manipulator because the dexterity of the robot end
effector is often restricted by the cluttered environment and
unknown object properties. For example, the stable grasp pose
might be occluded by surrounding obstacles; Another example
is that fragile or heavy objects are generally dangerous to
lift up. Non-prehensile manipulation proposed by Mason [1]
only requires no penetration constraints and does not rely
on stable grasping [2], which is suitable for manipulation in
cluttered environments.

This paper considers a representative scenario in the
problem of non-prehensile manipulation, that is, retrieving
a target object from clutter with a single rod-like pusher
overhead, as seen in Fig. 1. To achieve it, the pusher should
contact and move the object (i.e., the planar slider) to the goal
location in the presence of multiple obstacles. Such a task is
not trivial, and the challenges include complex kinodynamic
constraints of the underactuated hybrid system, and the narrow
corridor problem which restricts solving efficiency.

To address the problems above, existing methods add extra
constraints to reduce the search space, such as demanding the
contact mode to be consistent [3] or limiting the slider’s
movement to a particular pattern (i.e., Dubins path) [4].
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Fig. 1. Object retrieval task through planar pushing. The target object
in red is separated from the clutter with a rod-like pusher through pushing
manipulation. Left: The purple cylinder is pushed aside and the target object
quickly navigates through fixed obstacles on both sides. Right: the cyan
cube is pushed away and the target object bursts through the clutter.

However, such methods fail to sufficiently explore the state
space, which might affect the solution quality. Besides, most
existing works consider avoidance of simple obstacles [5] or
implicitly assume an open space is required [3], [6]. However,
in cluttered environments, there might be no feasible path
to the goal position if the manipulated object merely avoids
obstacles, or the total efficiency is unacceptable as it might
take a long time to complete all the avoidance.

To improve the feasibility and efficiency of the task in Fig.
1, this paper proposes a contact-aware non-prehensile manip-
ulation method using the rod-like pusher, which integrates
multiple actions of active removal of obstacles, avoidance
behavior, and switching contact face to create a feasible path
to the goal if it is not available at the beginning.

Such a contact-aware feature allows the robot to explore
different actions to generate more opportunities in cluttered
environments. Moreover, the simplification of pushing dynam-
ics yields the design of reachable set and object interaction
model, which efficiently guides motion planning. Simulation
results and further robot experiments are presented to verify
the effectiveness of the proposed method.

II. METHOD

The block diagram of the proposed framework is depicted
in Fig. 2.

A. Pushing Task and Pushing Planner

1) Problem Formulation: This paper considers a planar
workspace with the target object (also referred to as the planar
slider) os and multiple fixed or movable obstacles denoted as
Ot and Om, respectively. We assume all objects are convex
polygons with known geometric parameters and initial poses.
The target object is actuated by a single rod-like pusher p
through frictional point contact. A graphical representation
of the task is shown in Fig. 3.



●  predicts the outcome of single-step motion
●  actively generates reliable pushaway actionsObject Interaction Model
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Fig. 2. Block diagram of the proposed framework (the planner and controller). Elements and implementations of the contact-aware feature are highlighted.
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Fig. 3. Graphical representation of the planar object retrieval task, including
the target object (planar slider) painted in grey, the goal region X s

g , movable
obstacles Om and fixed obstacles Ot, i ∈ {1, 2, 3, 4} denotes the discrete
choice of contact face. Yellow shade represents the friction cone constraints.
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Fig. 4. The search tree and reachable set in CA3P. Left: Each node in
tree H consists of the planning scene Ot

⋃
Om, the state xs ∈ X s of

slider os and the corresponding reachable set Rτ . Right: the reachable set
is composed of several convex cones. Generating state x̄ of the reachable
set, the sampled state xnew, nearest neighbor xnear, and terminal state xterm
reached by state connection are shown.

This paper considers actively utilizing contacts with the
environment to create or amplify the pushing path. Hence,
we consider solving the task in the joint state space XE =
X s × Xm

1 × · · · × Xm
|Om|, where × denotes the Cartesian

product. A state xE ∈ XE is called feasible if the fixed
obstacles are not in contact with other objects (i.e., in case
of turning over objects or getting stuck). The state transition
is regulated by pushing dynamics (II-B.1) and the object
interaction model (II-C).

2) Contact-Aware Pushing Planner: The Contact-Aware
Planar Push Planner (CA3P) is outlined in Algorithm 1.
Above all, the contact-aware feature could be divided into
three levels. Specifically, the active avoidance and clearance
of obstacles, and the contact face-switching technique to
increase dexterity. The proposed algorithm a repeated process
derived from the RRT planner. The search tree of RRT is
stored in H, and each node in H records a feasible pose of
the target object os and the corresponding control input. We
simultaneously track the changeable poses of Om and the

Algorithm 1: CA3P
Input: State space X s, obstacles Ot,Om, initial pose

x[0], goal region Xg

Output: Control sequence u[0 : T − 1]
Parameters : Maximum number of nodes nmax

1 while not maximum number of nodes exceeded do
2 Initialize search tree H; H.nodes.add (⟨x[0],∅⟩);
3 Randomly sample xnew ∈ X s;

4 xnear←NearestNeighbor

(
xnew,

⋃
x∈H.nodes

Rτ (x)

)
;

5 xgen ← GetGenerateState(xnear);
6 xterm,uterm ← Connect (xgen,xnear);
7 Ot

gen
⋃
Om

gen ← GetEnviron (H.nodes,xgen);
8 if Simulate(xgen,uterm,Om

gen,Ot
gen) then

9 H.nodes.add (⟨xterm,uterm⟩);
10 H.edges.add (⟨xgen,xterm⟩);
11 UpdateEnviron

(
H.nodes,xgen,uterm,Om

gen

)
;

12 if Connect(xterm,Xg) then
13 return ExtractPath (Xg,H);
14 end
15 end
16 end
17 return ∅;

poses of Ot, which is referred to as the planning scene. The
structure of CA3P search tree is depicted in Fig. 4 Left.

Since the pushing system is subject to non-holonomic
constraints, the Euclidean distance works poorly; we adopt
the concept of reachable sets [7] as a distance metric. Existing
works have shown promising effects of this concept in
prehensile grasping [8], [9], while we extend the approach to
non-prehensile pushing. In Algorithm 1, NearestNeighbor
computes the nearest state xnear in all reachable sets of
states in H to a newly sampled state xnew (Line 4). We
omit the superscript s of the target object for brevity. Then,
GetGenerateState returns the generating state xgen of the
reachable set which contains xnear (Line 5). The notations and
computation of reachable sets will be presented in Sec. II-B.2.
Next, Connect calculates the control input uterm driving the
system from xgen to xnear (Line 6). Due to the linearization
error of pushing dynamics, the rollout of uterm usually does
not reach xnear exactly; We denote the actual terminal state
as xterm. The input matrix B will be derived from (1), the
subscript i is also ignored for brevity.

The core procedure that enables the active clearance of
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Fig. 5. Configurations of the multi-contact system in consecutive time
steps t0 (solid line border) and t0 + τ (dashed line border). At contact point
ci, the normal and tangential α̂, β̂, the contact forces fα, fβ = fβ+−fβ−
and the contact velocities V1,V2 are shown.

obstacles is Simulate (Line 8), which predicts the outcome
of one-step pusher motion. Configuration of the slider and
obstacles is updated through the object interaction model
in Sec. II-C. The state connection is abandoned if collision
with fixed obstacles is detected. Otherwise, the search tree is
updated with new planning scene UpdateEnviron.

B. Pushing Reachable Sets

1) Pushing Dynamics: Under quasi-static assumptions, the
system dynamics model can now be given as

ẋs = fi (x
s,up) ≜

[
RAJ⊤

c,i 0
0 1

]
up, (1)

where xs,up are the system state and input, i = 1, . . . , N , N
is the number of contact faces (see Fig. 3), R is the slider’s
rotation matrix, A is a positive definite force-motion mapping
matrix, Jc,i is the contact jacobian.

Besides, the system satisfies workspace constraints xs ∈
X s, box constraints on the input variables and Coulomb
friction constraints up ∈ Up.

2) Computation of Reachable Sets: The reachable sets
highlight the states more likely to be connected from the
already explored state space. This technique can provide
directional guidance to kinodynamic push planning. The
reachable sets of arbitrary state x̄ ∈ X is defined as the
set of states reachable from x̄ within finite time horizon τ ,
under the system constraints:

Rτ (x̄) ≜{x ∈ X |∃(x, u) : [0, t0] 7→ (X ,U), t0 ∈ [0, τ ],

x(0) = x̄, x(t0) = x, ẋ(ξ) = fi (x(ξ), u(ξ))}.
(2)

We call x̄ the generating state of the reachable set
Rτ (x̄). The reachable set in this specific problem could
be approximated by the union of convex sets, as shown in
Fig. 4 Right. This special structure enables a discrete choice

TABLE I
STATISTICAL RESULTS OF MOTION PLANNING

Scene 0 1 2 3 4

Success
CA3P 26/30 25/30 29/30 29/30 30/30

CA3P-s 28/30 28/30 30/30 28/30 30/30
RRTc 19/30 7/30 30/30 30/30 30/30

Planning Time (s)1 CA3P 5.73±5.17 8.20±6.64 4.45±2.34 10.66±11.57 4.35±1.94
CA3P-s 6.90±5.84 15.95±10.36 4.36±1.86 8.88±7.87 6.44±4.53

Track Length (m)1 CA3P 0.57±0.08 0.70±0.08 0.55±0.06 0.72±0.09 0.60±0.04
CA3P-s 0.55±0.06 0.70±0.07 0.54±0.05 0.67±0.08 0.61±0.09

1 The results are provided as mean±standard deviation.

of contacts and allows computationally efficient methods for
nearest neighbor search [7].
C. Object Interaction Model

The object interaction model is designed to forecast the
motion of movable objects in contact with the planar slider,
as a resolution to heavy physics engine. Inspired by [10],
for each point of contact ci in the system consisting of the
slider and obstacles, the feasible contact force that satisfies
the non-penetration constraints is equivalent to the solution
to the Linear Complementarity Problem (LCP):

C1
...
Cnc

⇔

z = M

(
xE ,Γ

) [f
λ

]
+N

(
xE ,up,Γ

)
0 ⪯ z ⊥

[
f
λ

]
⪰ 0

, (3)

where f is the contact force, z,λ are auxiliary variables, and
Γ includes geometries and limit surface parameters, M ,N
are nonlinear. The LCP (3) can be efficiently solved with
Newton-based methods [11]. Then, the poses of movable
objects can be updated through forward integration.

III. RESULTS

In this section, we show that CA3P generates a shorter path
in less time compared with baselines, utilizing the contact-
aware feature. Extended robot experiments are carried out
with an integrated model predictive pushing controller.

A. Simulation Studies
The simulations were conducted on a 64-bit Intel Core

i7-12700 4.9GHz Ubuntu workstation with 32GB RAM.
We compared CA3P with the RRTc baseline proposed in
[4]. RRTc is an RRT-based planner utilizing the differential
flatness properties. The slider is manipulated through sticking
contacts and forced to follow trajectories with constant
curvature, i.e., Dubins path.

For CA3P, we set the goal sampling bias as 0.1. For
all methods, we define the stopping criterion as maximum
planning time 1×103 s or maximum number of nodes 1×103.
A method will return failure if the goal region is unreachable
from explored states when the criterion is met. To evaluate

target object
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movable obstacles

(b) scene 1

start position
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Fig. 6. Five representative problem instances. Start and goal position of the target objects are painted with solid and dashed borders, respectively. Fixed
obstacles are marked with net mesh. The tasks in scene 0 and scene 1 require the obstacles to be cleared away. The search process for scene 2 and scene 3
can be accelerated by pushing aside the obstacles, although not essential. Scene 4 only needs obstacle avoidance.
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Fig. 8. Tracking error of the object retrieval task. Green dashed lines mark
the moments of switching faces; purple shadows report the intervals of contact.
Blue and orange curves represent the x and y dimensions, respectively.

the effectiveness of the proposed method, we generated 5
representative problem instances, as shown in Fig. 6. The
planning time and total path length for each instance across
30 trials are shown in Fig. 7, other statistical results are
presented in Table. I

The proposed CA3P greatly reduced planning time and gen-
erated shorter trajectories. Moreover, CA3P reports narrower
interquartile ranges for all problem instances, indicating that
the method achieves more stable performance with random
scenes and trials. For more complicated scene 0 and scene
1, CA3P increased the success rate by 23% and 60%. RRTc
completed these scenes by utilizing extra workspace at the
expense of growth in the trajectory length. Results of scene
2 and scene 3 showed that actively removing obstacles is an
effective way to obtain consistent path length; since avoiding
obstacles is pretty demanding in the sampling sequence and
quality. Results of scene 4 proved that the reachable set offers
preferable directions in the search process.

In Table. I, CA3P-s simplifies the original algorithm
by assuming the slider’s motion is unaffected even when
in contact. Simulations have found that CA3P-s improves
success rate with no visible effect on the planned path. Thus
CA3P-s will be adopted in Sec. III-B to suppress replanning.

B. Real-World Experiments

We implemented the robot experiments on a 64-bit Intel
Core i7-9700 4.7GHz Ubuntu workstation with 16GB RAM.
We mounted a Φ15× 250mm resin pusher on a UR5 robot.
The perception system was composed of an Intel Realsense
D435i camera and several ArUco markers.

Five keyframes of a complete planar object retrieval task
are depicted in Fig. 9. The initial and goal positions of the
planar slider are xs[0] = [0.53m, 0.41m,−1.57 rad]⊤ and
xs[T ] = [0.50m, 0.00m,−3.14 rad]⊤, respectively. The task
scenerio contains fixed obstacles of 10.0 × 10.2 × 5.0 cm3

and 5.0× 5.0× 5.0 cm3, the additional cylindrical movable
obstacle is of Φ7× 6 cm3. Obstacles are simplified as their
minimum bounding rectangles in CA3P, with an estimated
frictional coefficient µ = 0.3 between all pairs. One notable
fact is that all friction-related parameters are not accurately
measured. The MPC and relatively simple dynamics [12]
suppressed the incurred error in sim-to-real transfer.

Since it is challenging to control contact forces directly, we
converted the control input up to speed command. The pusher
is initialized at the center of each contact face the robot has
switched to. As shown in Fig. 9(a) and Fig. 9(b), the slider
pushed the cylindrical object aside to enlarge the space ahead;
instead of passively performing a time-consuming avoidance
behavior. Later the slider passed through the narrow corridor
and came into contact with another obstacle, as Fig. 9(c)
depicts. We observed the fast-moving behavior of the pusher
on the slider’s periphery as an anti-disturbance mechanism
(Fig. 9(d)). The slider eventually broke out of the clutter in
50.6 s (Fig. 9(e)). The tracking error in the x and y directions
are reported in Fig. 8. When a large deviation from motion
planning is detected, replanning is required for error recovery.

IV. CONCLUSIONS

This work proposes a new manipulation method for non-
prehensile planar pushing in a constrained workspace. We
combine sampling-based approaches with a simplified object
interaction model for motion planning. With the use of those
techniques together, the proposed planner CA3P is with
the novel contact-aware feature, which allows the robot to
actively avoid obstacles, switch contacts, or remove obstacles
simultaneously. Effectiveness of the proposed method has
been comprehensively validated in the task of object retrieval.
Future works will be devoted to post-processing the planned
trajectory through optimization-based methods; and to taking
account of higher-order dynamics for preferable dynamic non-
prehensile manipulation. Improving the method’s scalability
across masses of obstacles is also a meaningful direction.
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Fig. 9. Snapshots of the planar object retrieval task executed on a UR5 robot arm. The slider was manipulated to consecutively push aside a cylindrical
(a-b) and a cubic obstacle (c-d) and was finally pushed to the goal position after switching contact faces. The time consumed on switching faces is ignored.
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