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Abstract: Large-scale demonstration data has powered key breakthroughs in
robot manipulation, but collecting that data remains costly and time-consuming.
We present Constraint-Preserving Data Generation (CP-Gen), a method that uses
a single expert trajectory to generate robot demonstrations containing novel object
geometries and poses. These generated demonstrations are used to train closed-
loop visuomotor policies that transfer zero-shot to the real world and generalize
across variations in object geometries and poses. Similar to prior work using
pose variations for data generation, CP-Gen first decomposes expert demonstra-
tions into free-space motions and robot skills. But unlike those works, we achieve
geometry-aware data generation by formulating robot skills as keypoint-trajectory
constraints: keypoints on the robot or grasped object must track a reference trajec-
tory defined relative to a task-relevant object. To generate a new demonstration,
CP-Gen samples pose and geometry transforms for each task-relevant object, then
applies these transforms to the object and its associated keypoints or keypoint tra-
jectories. We optimize robot joint configurations so that the keypoints on the robot
or grasped object track the transformed keypoint trajectory, and then motion plan
a collision-free path to the first optimized joint configuration. Experiments on 16
simulation tasks and four real-world tasks, featuring multi-stage, non-prehensile
and tight-tolerance manipulation, show that policies trained using our method
achieve an average success rate of 77%, outperforming the best baseline which
achieves an average of 50%.

1 Introduction

Teaching robots to act by imitating humans is one of the most powerful, yet costly, ideas in robotics.
At its best, large-scale imitation learning has enabled robots to tie shoelaces, fix broken grippers, and
even cook shrimp [1–4]. Further scaling promises to unlock broad generalization across complex
manipulation tasks. Behind these successes, however, lies a steep cost: human labor, months of
continuous robot operation, and heavy infrastructure demands. For example, ALOHA Unleashed [3]
collected 26,000 demonstrations over 8 months across 10 robots and 35 operators, while DROID [5]
gathered 76,000 real-world demonstrations over a year. As the field pushes forward, reducing the
burden of demonstration collection will be a key challenge.

Automated data generation promises to reduce the manual effort required in data collection. One
line of work [6–10] generates demonstrations for scenes with diverse object poses by collecting a
handful of teleoperated demonstrations and algorithmically multiplying them using pose transforma-
tions and action replay. Conceptually, these works aim to enable data efficient spatial generalization
by exploiting SE(3) equivariance of robot actions with respect to object poses [9]. However, be-
cause they rely on SE(3) transformations, these works cannot generate demonstrations that adapt
to geometric variations (such as different aspect ratios) with a given object instance. For example,
robot actions that succeed in hanging a short, wide wine glass onto a rack may fail entirely for a tall,
narrow one, even if both are aligned under the same pose transformation.
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Figure 1: CP-Gen uses one expert demonstration and keypoint-trajectory constraints to generate diverse
demonstrations in simulation involving novel object geometries and poses, enabling large-scale policy train-
ing and zero-shot sim-to-real transfer. For the Wine Glass Spiral Hanging task, the first keypoint-trajectory
is anchored to the wine glass and constrains the motion of points on the end effector. The second keypoint-
trajectory is anchored relative to the spiral-shaped wine glass rack, and constrains a keypoint on the wine glass
stem to track a complex spiral motion.

A complementary strategy to ease the burden on manual data collection is to increase learning effi-
ciency by embedding structure—specifically, equivariance—into policy architectures [11–23]. One
line of work focuses on open-loop manipulation, exploiting symmetry to generalize across different
object poses [24–27]. More recent work has moved toward closed-loop policy learning, embedding
equivariances directly into the policy architecture and directly predicting robot actions [11, 28–32].
However, embedding equivariance bottlenecks can limit policy expressiveness and be insufficient
when dealing with scenes that involve multiple interacting objects or symmetry-breaking variations.

In this work, we propose Constraint-Preserving Data Generation (CP-Gen), a geometry-aware
data generation method that takes as few as a single expert demonstration and generates new demon-
strations with both novel object poses and novel geometries. With CP-Gen, we aim to achieve the
benefits of equivariant policy architectures without the bottleneck of embedding structure directly
into policies.

Our key insight is to bring geometry awareness into the data generation process through a keypoint-
trajectory constraint formulation. Given an expert demonstration, we segment the trajectory into
free-space motions (segments replaceable with point-to-point collision-free motion planning) and
robot skills (segments requiring some interaction with task-relevant objects). We then formulate
each skill as a keypoint-trajectory constraint: selected robot or grasped-object keypoints must track
a reference trajectory defined in the frame of a task-relevant object. For example, in the Wine Glass
Spiral Hanging task (Figure 1), grasping is formulated as a trajectory-tracking constraint between
keypoints on the gripper tips and a target pre-grasp trajectory in the wine-glass frame. The spiral in-
sertion introduces a second constraint: keypoints on the glass stem must track a spiral-like trajectory
defined relative to the rack. By anchoring keypoints to the reference frame of task-relevant objects,
we can sample new object geometries and poses, adapt the keypoint-trajectory constraints according
to the transforms applied to the original object geometry, and generate thousands of demonstrations
covering diverse shapes and geometries. Using these demonstrations, we can train a visuomotor pol-
icy that naturally generalizes robustly across changes in object pose and geometry, without requiring
additional human demonstrations.

Our contributions are threefold. First, we propose CP-Gen, a data generation method that produces
robot demonstrations from a single expert demonstration using a keypoint-trajectory constraint for-
mulation. Unlike prior work, and due to this formulation, CP-Gen generates data in a geome-
try aware manner. Second, we validate our keypoint-trajectory data generation formulation on the
MimicGen simulation benchmark. We achieve state-of-the-art performance (85% vs. 63%) on the
default, pose-variation only task settings, as well as on our proposed simulation benchmark featuring
novel object geometries (70% vs. 37%). Third, we demonstrate successful zero-shot sim-to-real on
a set of four real-world tasks featuring multi-stage, non-prehensile and tight-tolerance manipulation.
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2 Related Work

Data Generation for Robotics. One approach to addressing data scarcity in robotics is to gen-
erate new demonstrations from teleoperated source data [6–8, 10, 33]. MimicGen [6] generates
demonstrations by resetting object poses and replaying pose-transformed versions of the source tra-
jectory. IntervenGen [33] extends MimicGen with human interventions mid-trajectory to correct
failures, while DexMimicGen [8] adapts MimicGen for bimanual and dexterous settings. Skill-
Gen [7] segments demonstrations into skills and motions, alternating between learned policies and
motion planning to improve robustness. At the core of these methods is a relative-pose formulation
and the exploitation of SE(3)-equivariance [9]: given an SE(3) transformation applied to an object,
they apply the same SE(3) transformation to robot actions to replicate the original effect. As a result,
they particularly struggle to generate demonstrations with new object geometries for tasks requiring
tight-tolerance manipulation. CP-Gen addresses this limitation by introducing a keypoint-trajectory
constraint formulation, representing skills in terms of robot or grasped-object keypoints tracking a
reference trajectory. This formulation enables demonstration generation not only across novel object
poses, but also across significantly different object geometries.

Equivariance for Robotic Manipulation. Another strategy to improve generalization is to em-
bed geometric structure into policy inference and architecture. Open-loop methods design SE(2)
or SE(3) equivariant feature representations on point clouds or images [11–23], achieving strong
sample efficiency but often relying on expensive inference-time optimization [24–27] and lack-
ing reactivity to dynamic changes. To address these limitations, recent work has moved toward
closed-loop policies, beginning with planar SO(2) symmetries and extending to full SIM(3) equiv-
ariance [11, 28–32], where SIM(3) captures rotation, translation, and uniform scaling transforma-
tions. While SIM(3)-equivariant policies enable more flexible closed-loop control compared to
SE(3)-equivariant policies, they still fundamentally assume that object geometry variations can be
captured by uniform scaling, and for larger geometry variations, they rely on policy generalization.
These closed-loop equivariance works [30–32] also tend to focus on single-object to robot equivari-
ance, instead of the multi-object scenario. In CP-Gen, rather than using architectural equivariance,
we leverage data generation to generalize to both novel poses and arbitrary geometry variations via
a keypoint-trajectory constraint formulation.

3 Problem Setting

We are given a single expert demonstration in the form of a trajectory τsrc = {ot ,at}H
t=1 consisting of

H observations o, and H actions a. Actions at = {aeef,agrip} contain end-effector poses aeef ∈ SE(3)
along with gripper actions agrip for a given manipulation task. Observations ot = {Ihand, I3pv,qt} at
each time step consist of a wrist-mounted camera image Ihand, a third-person view camera image I3pv,
and robot proprioception data qt . We aim to train a visuomotor policy πθ (a|o) mapping observations
o ∈ O to actions a ∈ A.

Similar to prior data generation methods using source demonstrations [6, 7, 33], we assume that
an expert demonstration τsrc can be decomposed into a sequence of alternating free-space motion
segments τ

(i)
motion and robot skill segments τ

(i)
skill: τsrc = [τ

(1)
motion,τ

(1)
skill,τ

(2)
motion,τ

(2)
skill, . . .]. For each skill

segment, we additionally assume access to a set of annotated keypoints on the robot gripper or a
grasped object that are relevant to the completion of the skill. We refer to these as actor keypoints
and denote them by Kactor(t)= {kactor

1 (t), . . . ,kactor
N (t)}, where each keypoint kactor

i (t)∈R3 is defined
in the local frame of the robot gripper or the grasped object at time t. Although in this work we
manually selected these keypoints, in future work, keypoints can be predicted using vision-language
models [34–36], or inferred via task-specific keypoint detectors [37–40].

4 CP-Gen: Constraint-Preserving Data Generation

We present Constraint-Preserving Data Generation (CP-Gen), a data generation method that en-
ables one-shot visual imitation learning by adapting a source demonstration trajectory to scenes with
novel object geometries and poses (see Figure 2). Our approach begins by decomposing the original
demonstration trajectory τsrc into a sequence of skill segments τskill interleaved with collision-free
motion segments τmotion, such that τsrc = [τmotion,τskill, . . . ,τmotion,τskill]. A skill segment is a seg-
ment that cannot be replaced by point-to-point collision-free motion planning, without affecting
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Figure 2: CP-Gen Method. In the Source Data Processing stage (top), starting from an expert demonstration
τsrc, we (a) segment the trajectory into free-space motion and skill segments, (b) annotate keypoints on the robot
or grasped object (dubbed actor keypoints), and (c) convert each skill segment into a keypoint-trajectory con-
straint by extracting a keypoint-trajectory expressed in the frame of a task-relevant object. After processing
the source demonstration, in the New Data Generation stage (bottom), we sample scene variations by ap-
plying geometry and pose transforms to every task-relevant object. For each sampled scene, we (a) adapt our
source skill segment to the current observation by transforming the extracted target keypoint-trajectory with
the current object transforms and solving for robot configurations that satisfy the updated keypoint-trajectory
constraint , and (b) motion plan a collision-free path that from the current robot joint configuration to the
first configuration in the solved configuration trajectory. The process iterates over all segments to generate a
demonstration for the new scene, which can subsequently be used to train a visuomotor policy πθ (a | o).

overall task success, while a motion segment is one that can be replaced by collision-free motion
planning. Each skill segment τskill is formulated as a keypoint-trajectory constraint: keypoints on
the robot or grasped object, actor keypoints OKactor(t), must track a reference trajectory defined
relative to a task-relevant object. This reference trajectory is represented as a time-varying sequence
of target keypoints OKtarget(t) expressed in the local frame of the object O. We extract this reference
keypoint-trajectory (Section 4.1) by transforming the actor keypoints into the object frame at each
timestep. We assume that adapting and preserving this keypoint-trajectory constraint to a new scene
leads to successful execution. To generate a new demonstration in a novel scene, we first sample
pose and geometry transforms for each task-relevant object. We then apply the sampled transfor-
mations to the objects (and their associated keypoint trajectories) to produce a new scene reset. For
the new scene, we iterate through two phases of skill segment adaptation (Section 4.2) and motion
planning (Section 4.3). Finally, after filtering out any failed demonstrations using a success detector
(which we assume exists for each task), we use imitation learning to train a visuomotor policy on
the generated demonstrations.

4.1 Keypoint-Trajectory Constraint Extraction
To extract the target keypoint-trajectory for a skill segment τskill from the original demonstration
τsrc, we transform the actor keypoints AKactor = {Ak1, . . . ,

AkN}, defined in the actor’s local frame A
(robot gripper or grasped object), into the task-relevant object frame O via a frame transform from
actor to world frame, then world to task-relevant object frame:

Oki(t) = OTW (t)︸ ︷︷ ︸
object pose−1

· W TA(t)︸ ︷︷ ︸
actor pose

·Aki, (1)

Applying Eq. 1 across all t yields target keypoint-trajectory: OKtarget(t) = {Ok1(t), . . . ,OkN(t)}.
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Figure 3: Simulation Tasks and Geometry Generalization Variants. Top: Tasks from the MimicGen bench-
mark [6] and object geometries sampled from our proposed Geometry Generalization task variants. Bottom:
Uniform scale sampling ranges applied in Geometry Generalization task variants.

4.2 Skill Segment Adaptation
Given a skill segment τskill and a current scene observation, our goal is to adapt the original keypoint-
trajectory constraint to new task-relevant object geometries and poses. Doing so requires updating
both the actor keypoints and the target keypoint-trajectory.

Update Keypoint-Trajectory Constraint for New Geometry. Suppose that the task-relevant ob-
ject undergoes a geometric transformation X (e.g., non-uniform scaling) in its own local frame O.
Let the original local-frame target keypoint-trajectory be OKtarget(t) = {Ok1(t), . . . ,OkN(t)}. We
therefore apply X to transform the target keypoint-trajectory:

Ok′i(t) = X ·Oki(t), ∀t.

If the actor keypoints AKactor(t) = {Ak1(t), . . . ,AkN(t)} are anchored to a grasped object that has
been geometrically transformed, we similarly apply the object’s local-frame geometric transforma-
tion XA to the actor keypoints: Ak′i = XA · Aki. These updated keypoints Ak′i are then used in the
optimization process to match the newly transformed target trajectory.

Solve for Robot Configuration via Keypoint Matching. Given the updated actor keypoints Ak′i (in
the actor’s local frame) and the updated target keypoint-trajectory Ok′i(t) (in the object’s local frame),
our goal is to solve for the robot joint configuration q∗t at each timestep t such that the transformed
actor keypoints match the target keypoints in the world frame.

First, we compute the world-frame position of each actor keypoint (recall that actor keypoints are
defined on the robot or a grasped object, and that we assume a fixed end-effector to grasped object
frame transformation) via forward kinematics: W k′i(q) = fFK(q,Ak′i). Next, we compute the world-
frame position of each target keypoint by transforming the updated local-frame keypoints using the
current object pose W TO(t) relative to the world frame: W ktarget

i (t) = W TO(t) ·Ok′i(t).

Finally, we solve the following optimization problem for each timestep of the robot skill segment:

q∗t = argmin
q

N

∑
i=1

∥∥ fFK(q, Ak′i)−
(W TO(t) ·Ok′i(t)

)∥∥2
2︸ ︷︷ ︸

match keypoints

+ λ
∥∥q−q∗t−1

∥∥2
2︸ ︷︷ ︸

temporal smoothness penalty

(2)

where λ ≥ 0 trades off keypoint matching and temporal smoothness in joint space. This optimization
encourages a robot trajectory where the transformed actor keypoints Ak′i track the updated keypoint-
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Method StackThree Square Thread Assembly Kitchen Coffee Mug Hammer Avg

MimicGen [RGB] 0.98±0.01 0.72±0.04 0.38±0.04 0.32±0.04 0.98±0.01 0.58±0.04 0.78±0.03 0.64±0.04 0.67
DemoGen [RGB] 0.79±0.03 0.87±0.03 0.87±0.03 0.85±0.03 0.88±0.03 0.98±0.01 0.89±0.03 0.79±0.03 0.87
CP-Gen [RGB] 0.82±0.03 0.87±0.03 0.87±0.03 0.85±0.03 0.96±0.01 1.00±0.00 0.86±0.03 0.80±0.03 0.88

MimicGen [D+S] 0.52±0.04 0.76±0.03 0.44±0.04 0.40±0.04 0.94±0.02 0.56±0.04 0.46±0.04 0.64±0.04 0.59
DemoGen [D+S] 0.56±0.04 0.89±0.03 0.85±0.03 0.80±0.03 0.92±0.02 1.00±0.00 0.81±0.03 0.73±0.04 0.82
CP-Gen [D+S] 0.56±0.04 0.91±0.02 0.85±0.03 0.79±0.03 0.92±0.02 0.99±0.01 0.72±0.03 0.79±0.03 0.82

Method StackThreeG SquareG ThreadG AssemblyG KitchenG CoffeeG MugG HammerG Avg

MimicGen [RGB] 0.60±0.04 0.42±0.04 0.10±0.02 0.16±0.03 0.74±0.04 0.00±0.00 0.38±0.04 0.40±0.04 0.35
DemoGen [RGB] 0.53±0.04 0.82±0.03 0.11±0.02 0.52±0.04 0.42±0.04 0.03±0.01 0.44±0.04 0.62±0.04 0.44
CP-Gen [RGB] 0.68±0.04 0.88±0.03 0.79±0.03 0.55±0.04 0.83±0.03 0.58±0.04 0.82±0.03 0.67±0.04 0.73

MimicGen [D+S] 0.22±0.03 0.64±0.04 0.05±0.02 0.38±0.04 0.84±0.03 0.00±0.00 0.50±0.04 0.45±0.04 0.39
DemoGen [D+S] 0.17±0.03 0.74±0.04 0.11±0.02 0.52±0.04 0.32±0.04 0.04±0.02 0.42±0.04 0.59±0.04 0.36
CP-Gen [D+S] 0.36±0.00 0.83±0.03 0.73±0.04 0.79±0.03 0.86±0.03 0.63±0.04 0.76±0.04 0.74±0.04 0.67

Table 1: CP-Gen achieves state-of-the-art results on the MimicGen simulation benchmark. Top: On the
original MimicGen benchmark (default Pose Only task variants), CP-Gen and DemoGen perform similarly (av-
erage success rate of 85% and 84.5% respectively), compared to MimicGen’s 63% which uses neither a motion
planner nor object-object data generation. Bottom: On our custom benchmark containing Geometry General-
ization task variants which feature novel object geometries (denoted as TaskG), CP-Gen achieves an average
success rate of 70%, outperforming MimicGen and DemoGen by a margin of 33% and 30% respectively. These
results highlight CP-Gen’s strong generalization not only to pose variations but also to challenging geometric
variations. Bolded numbers indicate the best-performing method within each modality group. RGB denotes
policies taking RGB image inputs; D+S denotes policies taking depth maps and segmentation mask inputs.

trajectory Ok′i(t) in the world frame under new object geometries and object poses. We solve the
optimization problem using the L-BFGS-B [41] gradient-based optimizer from SciPy [42].

4.3 Motion Planning
After obtaining the optimized robot configurations Q∗ = [q∗1, . . . ,q

∗
H ] from the skill segment adapta-

tion described above, we plan a collision-free trajectory from the robot’s current joint configuration
to the first joint configuration of the upcoming skill segment q∗1. We query a collision-free motion
planner [43, 44] with the robot’s start configuration, the first joint configuration of the upcoming
skill, and provide collision geometries extracted directly from our simulation environment. We use
an inverse-kinematics controller to track trajectories in our end-effector pose action space.

5 Experiments
Through our experiments, we wish to answer the following questions:

Q1: Can a policy trained on data generated from a single demonstration using CP-Gen generalize to unseen
object geometries and poses?

Q2: How does CP-Gen’s keypoint-trajectory formulation affect data generation success rates on tasks with
novel object geometries?

Q3: How does training policies on diverse object geometries affect performance in various settings?

Q4: Can pixel-based policies trained with CP-Gen in simulation transfer zero-shot to the real world?

5.1 Simulation Experiments

Tasks. We evaluate all methods on single-arm Franka Panda tasks from the MimicGen [6] bench-
mark. We evaluate under two environment reset distributions. The default Pose Only distribution
varies only object poses, and corresponds to distribution “D1” in the MimicGen benchmark. The
custom Geometry Generalization distribution introduces shape variations via non-uniform scaling
and retains the same pose reset range as the default Pose Only distribution (Figure 3).

Evaluation Metrics. We report the average success rate achieved by a particular policy network on
the given task, along with the standard error of this metric. For computing standard errors, we use
the best checkpoint rolled out for three seeds of 50 trials each.

Baselines. We compare CP-Gen to MimicGen [6] and DemoGen [10]. MimicGen is a data gener-
ation method that produces demonstrations in which object poses differ from those seen in source
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(a) Mug Cleanup (b) Hammer Cleanup (c) Mug Hanging (d) Wine Glass Spiral Hanging

Figure 4: Real World Tasks. We evaluate on four challenging real-world tasks and show that policies trained
on CP-Gen generated simulation datasets can transfer zero-shot to the real world.

demonstrations. MimicGen first parses each source demonstration into object-centric subtask seg-
ments. To generate a new demonstration, it selects a reference segment, transforms it to match the
new scene’s object pose, runs linear interpolation to reach the start of the transformed reference seg-
ment and executes the resulting end-effector trajectory using a controller. Finally, MimicGen filters
out failed runs using a custom success checker, in the same way as CP-Gen.

The authors additionally add Gaussian action noise to increase state coverage at the cost of the num-
ber of successfully generated demonstrations. In our case, we use 0.01 noise by default, but set noise
to 0 if the number of successfully generated demonstrations drops below 10% for a given task. We
use MimicGen to generate 1000 successful demonstrations per task from 10 human demonstrations.

DemoGen generates synthetic demonstrations for novel object poses using a TAMP-based action
generation method and 3D pointcloud editing. As the original setup does not leverage physics
simulation, we adapt DemoGen to leverage a physics simulator for a fair comparison. Like CP-Gen,
DemoGen assumes a fixed grasp transform between the end-effector and object if the previous robot
skill segment involves grasping an object. DemoGen with physics can be viewed as CP-Gen without
the keypoint trajectory constraints, and is implemented as such for our baseline.

Policy Training. For each method and task, we train a Diffusion Policy [45], specifically the DDPM
variant, on the corresponding generated dataset that contains 1000 successful demonstrations. We
use the same success classifier for CP-Gen, MimicGen and DemoGen to filter for successful demon-
strations. Policy input consists of end-effector pose, gripper width, and observations from a third-
person and wrist-mounted camera. For camera observations, we use either RGB images or a depth
map with segmentation masks.

Results. From Table 1, we see that policies trained with data generated by CP-Gen (which takes
a single source demonstration) outperform those trained using data generated using MimicGen and
DemoGen across both observation input modalities. On Pose Only task variants, we see that CP-Gen
outperforms policies trained using MimicGen data (85% vs. 63%). We hypothesize that the policy
performance drop is due to dataset quality, and from two reasons. First, CP-Gen uses a collision-
free motion planner, and thus contains collision-avoidance behaviors, while MimicGen data does
not have explicit collision-avoidance behaviors. Second, CP-Gen uses actor keypoints (keypoints on
the robot or grasped object) during data generation which enables the robot to adapt actions based
on how an object is grasped, while MimicGen only preserves relative SE(3) transforms between the
robot and a reference object. For example, on the Threading task, regardless of how the robot grasps
the needle, MimicGen would generate the same end-effector actions in the threading phase, based on
the tripod’s pose. In contrast, CP-Gen would adjust the robot’s actions to align the actor keypoints on
the needle tip with the tripod. In the Pose Only setting, CP-Gen is equivalent to our implementation
of DemoGen and thus achieves similar success rates. On the Geometry Generalization task variants,
CP-Gen’s advantage is more pronounced (70% vs. 37% and 40%). This finding is unsurprising, as
CP-Gen generated demonstrations adapted to changes in object geometries, while MimicGen and
DemoGen do not consider such geometry changes during data generation.

Method Mug Cleanup Hammer Cleanup Mug Hanging Wine Glass Spiral Hanging Average

MimicGen 0.20 ± 0.13 0.00 ± 0.00 0.80 ± 0.13 0.60 ± 0.16 0.40
CP-Gen 0.80 ± 0.13 0.80 ± 0.13 1.00 ± 0.00 0.70 ± 0.15 0.83

Table 2: CP-Gen policies successfully transfer zero-shot sim2real. Policies take in depth and segmentation
masks, and tasks feature both object-geometry and object pose variations.
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(a) Data Generation (b) Policy Evaluation

Method Pose Geometry

MimicGen 0.58 0.23
CP-Gen 0.89 0.62

Method Pose Geometry

CP-Gen (Pose) 0.88 0.45
CP-Gen (Geometry) 0.72 0.73

Table 3: Ablation Results. (a) CP-Gen outperforms MimicGen in data generation under both pose-only and
geometry generalization settings. (b) Generating varied geometries (geometry) boosts policy generalization to
novel objects (73% vs. 45%).

5.2 Real World Experiments
Tasks. We evaluate CP-Gen and baselines on four real-world manipulation tasks (Figure 4): (1)
Mug Cleanup: Open a drawer, pick and place mug into a drawer, and close the drawer. (2) Hammer
Cleanup: Same as Mug Cleanup, except with a small hammer, introducing grasping challenges.
Cleanup tasks test multi-stage, non-prehensile manipulation involving articulated objects. (3) Mug
Hanging: Pick and insert a mug onto a branch-like hook. This task tests constrained insertion
through a small opening. (4) Wine Glass Spiral Hanging: Pick, reorient and hang a wine glass by
threading the stem through a spiral-shaped rack. This task tests tight tolerance path following and
orientation control. For each task, we manually construct a digital twin in simulation, generate 1000
successful demonstrations using a single source demonstration, and train a Diffusion Policy on the
dataset. Policies are evaluated on two novel object geometries for each task.

Policy Inputs. We use end-effector poses, gripper width and two camera observations. Specifically,
we use depth and segmentation masks for the third-person-view camera, and segmentation masks
for the hand camera. We use depth and segmentation masks to reduce the sim-to-real gap [46].

Results. From Table 2, we see that CP-Gen achieves strong zero-shot sim-to-real transfer on all
four manipulation tasks. In contrast, MimicGen struggles with novel geometries, as it generates
fewer successful demos there. In the Cleanup tasks, failures arise from misalignment during drawer
opening. In the Hanging tasks, failures are caused by suboptimal grasp positioning, which prevents
proper insertion. Task failures did not come from collisions with non-relevant objects, so we posit
that the performance gain came from the geometry-aware demonstration data generated by CP-Gen.

5.3 Ablations
We conduct a series of ablations to study two aspects of CP-Gen: the use of the keypoint-trajectory
constraint formulation, and the effect of training on diverse object geometries. First, to assess the
impact of the keypoint-trajectory constraint formulation, we compare data generation success rates
between CP-Gen and MimicGen (which uses a relative pose data generation formulation) across
both Pose Only and Geometry Generalization task variants on eight simulation tasks. For each
task, we run 50 data generation trials. In Table 3(a), CP-Gen achieves consistently higher success
rates (89% vs. 58%, 62% vs. 23%), especially on the Geometry Generalization reset distribution,
highlighting the value of the geometry-aware data generation that our keypoint-trajectory constraint
formulation enables. Note that our comparison with DemoGen [10] in Table 1 also serves as an
ablation for using keypoint trajectory constraints versus only using pose transforms, as that is the
difference between CP-Gen and our DemoGen baseline. Keypoint-trajectory constraints lead to a
30% increase in policy success rates for CP-Gen vs. DemoGen in the Geometry Generalization set-
ting. Second, we evaluate how training on diverse object geometries affects policy generalization.
In Table 3(b), we report policy success rates when training with and without geometry diversity, and
evaluated on the Pose and Geometry Generalization environment reset settings. As expected, train-
ing with diverse object geometries substantially improves policy generalization to novel geometries
(73% vs. 45%). We also observe that training and evaluating on the same distribution yields the best
evaluation performance (73% vs. 45% and 88% vs. 72%).

6 Conclusion
In this work, we propose CP-Gen, a data generation framework for generalizable visual imitation
learning given just one expert demonstration. CP-Gen generates geometry-aware demonstrations
using the insight that robot skills can be formulated as keypoint-trajectory constraints: keypoints on
the robot or grasped object must track a reference trajectory defined relative to a task-relevant object.
We demonstrate that CP-Gen’s approach to data generation from just one source demonstration
achieves state-of-the-art success rates on the MimicGen simulation benchmark, and outperforms
baselines on a custom benchmark featuring diverse object geometries. Finally, we show successful
zero-shot sim-to-real transfer of policies trained with CP-Gen data to challenging real-world tasks.
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Limitations. CP-Gen requires manual annotation of robot skill segments and keypoints. The sim-
ulation environment and reward functions are also manually defined; future work could incorporate
foundation model based success classifiers. The method assumes a fixed skill sequence, limiting task
level generalization. Incorporating task level planning via foundation models [47–50] or task and
motion planner methods [51–53] can further improve data generation success. Current results are
limited to a single-arm Panda robot, though the method can be extended to multi-arm, mobile base,
and legged systems [8]. CP-Gen does not handle the situation where one may want demonstrations
generated for a specific object instance within the same category for which a source demonstration
is available. For example, we may have a source demonstration for a mug with a square handle, but
wish to generate demonstrations for a specific mug that might have a round handle. CP-Gen would
need require the geometric transformation from the square handle mug to the round handle mug,
which may be non-trivial to obtain. Future work may explore the use of neural descriptor fields [25]
to assist in this setting.
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Supplementary Material for:
Constraint-Preserving Data Generation for

Visuomotor Policy Generalization

1 Method Details

1.1 Source Demonstration Collection

For all CP-Gen data generation, we collect one expert demonstration per task using a custom tele-
operation system based on the Gello framework [1]. We use the Gello ‘leader’ arm to control the
end-effector pose of the Franka Emika Panda robot in simulation. The underlying controller is a
Whole-Body Inverse Kinematics controller provided by Robosuite [2].

1.2 Keypoint Annotation

We annotate “actor keypoints”—task-relevant 3D points on the gripper and/or the manipulated
object—to extract keypoint-trajectory constraints that enable geometry aware data generation. When
the actor keypoints are located on the gripper (e.g., fingertips or center of grasp), we reuse the same
set of predefined gripper keypoints across all environments. When the keypoints are located on the
object, we use the MuJoCo [3] viewer interface to select 3D keypoints on the task relevant object’s
geometry. As described in the main text, though we opt for manual annotation of keypoints in this
paper, automatic methods are also possible [4].

1.3 Data Generation Noise Details

To improve robustness, we augment expert demonstrations with system noise. Starting from a suc-
cessful demonstration, we inject Gaussian noise into each action, where actions are parameterized
as absolute end-effector commands with respect to the robot base. Given state s and original action
a, we execute in the environment a perturbed action

a′ = a+ ε, ε ∼ N (0,σ2I),

while still recording the original a for training. This setup differs from prior data generation ap-
proaches (e.g., MimicGen [5, 6]) that directly train on noised actions a′, which we found to produce
jerkier motions.

We initialize σ at a high noise level and iteratively decrease it until the rollout completes success-
fully. For each source demonstration, we retain the successful trajectory with the highest feasible
noise level. By decoupling execution (a′) from training supervision (a), the system explores a wider
range of perturbed states while maintaining smoother action labels.

1.4 Policy Training Details

For both simulation and real-world experiments, we leverage the DDPM implementation from the
Diffusion Policy [7] paper. We use the U-Net architecture conditioned on a sequence of RGB images
to predict future actions. We adopt a fixed diffusion horizon and use default policy hyperparameters
across all tasks unless otherwise stated. Key training settings are summarized in Table 1.

For simulation tasks that include depth and segmentation inputs, we use 84×84 image resolutions
and provide both depth and segmentation masks from both robot arm cameras. To mimic the real-
world setup, we do not use depth from the hand-mounted camera.
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Table 1: Training details for diffusion policy.

Category Detail
Horizon 16 steps (2 observation steps, 8 action steps)
Backbone ResNet-18 (GroupNorm, no pretrained weights)
Crop Size 76×76 (random crop from fixed center crop)
Diffusion Steps 100 (DDPM with squaredcos cap v2 schedule)
U-Net Config Downsampling dimensions: [512, 1024, 2048]; kernel size: 5; 8

GroupNorm groups
Optimizer AdamW (learning rate 1e−4, betas = [0.95, 0.999], weight decay

1e−6)
Batch Size 64
Learning Rate Schedule Cosine decay with 500-step warmup
EMA Enabled (inv gamma = 1.0, power = 0.75)

For real-world experiments, raw observations are first resized to 90×160, followed by a center crop
to 90×90. We then apply the same random cropping procedure as in simulation to produce the final
76×76 input.

2 Simulation Experiment Details

We evaluate CP-Gen on eight simulated manipulation tasks introduced in MimicGen [5], covering
short and long-horizon behaviors such as stacking, insertion, drawer manipulation, and object as-
sembly. All tasks are executed in MuJoCo [3] using the Robosuite [2] framework with an inverse
kinematics controller at 20 Hz. The action space is an absolute end-effector pose and gripper joint.

Default Task Setting. For all tasks, we use the MimicGen-defined D1 variant, which introduces
modest spatial variation in object placement and top-down rotation. Below we describe each of the
eight MimicGen [5] tasks used in our study:

• Stack Three: The robot must sequentially stack a red block onto a green block and a blue
block onto the red one. There are 4 subtasks in total.

• Square: The robot picks up a square nut and places it onto a peg. There are 2 subtasks:
grasping the nut and inserting it onto the peg.

• Threading: The robot must grasp a needle and thread it through a tripod hole. The task
requires precise control and involves 2 subtasks.

• Coffee: The robot picks up a coffee pod, inserts it into a coffee machine, and closes the
hinge. This task involves 2 subtasks.

• Three Piece Assembly: The robot picks and inserts two separate pieces into a base struc-
ture to assemble a composite object. The task contains 4 subtasks.

• Hammer Cleanup: The robot opens a drawer, picks up a hammer, places it inside the
drawer, and closes the drawer. There are 4 subtasks in total.

• Mug Cleanup: Similar to Hammer Cleanup, but with a mug object. The task includes
object-centric variations involving different mug geometries. It contains 4 subtasks.

• Kitchen: The robot must switch the stove on, pick and place a pot onto the stove, pick and
place bread into the pot, move the pot to the serving region, and then turn the stove off.
This long-horizon task involves 7 sequential subtasks.

Geometry Generalization Benchmark. To evaluate the robustness of CP-Gen to changes in ob-
ject geometry, we introduce a new benchmark involving geometry generalization. Specifically, we
keep the same pose reset distributions from the default tasks settings, but apply non-uniform scaling
transforms to task relevant objects. We show samples scene resets for our custom benchmark in
Figure 1.
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Figure 1: Examples of Geometry Generalization. For each task, we show two examples of scale factors
applied to each axis on the task-relevant objects.

3 Real-World Experiment Details

Real-World Setup. For our real-world robot, we use a Franka Emika Panda arm, with a UMI
gripper [8] attached to the panda gripper. For our cameras, we use two Intel RealSense cameras: a
3rd-person view (3PV) camera statically mounted, and an eye-in-hand (hand) camera mounted to
the wrist.

Digital Twin Visualizations. For each real-world task, we construct a simulation-based digital twin
environment. Figure 2 shows RGB, depth map and binary segmentation mask renderings for all four
real-world tasks, from both third-person and eye-in-hand perspectives.

Segmentation Masks. To obtain segmentation masks in the real world, we first use the Segment
Anything Model (SAM) [9] to generate binary segmentation masks. Then, we apply adaptive color
thresholding using Otsu’s method [10] within the selected SAM masks to isolate foreground objects
from the black table background.
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