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Abstract
We survey recent work on machine learning (ML)
techniques for selecting cutting planes (or cuts)
in mixed-integer linear programming (MILP). De-
spite the availability of various classes of cuts, the
task of choosing a set of cuts to add to the linear
programming (LP) relaxation at a given node of
the branch-and-bound (B&B) tree has defied both
formal and heuristic solutions to date. ML offers
a promising approach for improving the cut selec-
tion process by using data to identify promising
cuts that accelerate the solution of MILP instances.
This paper presents an overview of the topic, high-
lighting recent advances in the literature, common
approaches to data collection, evaluation, and ML
model architectures. We analyze the empirical re-
sults in the literature in an attempt to quantify the
progress that has been made and conclude by sug-
gesting avenues for future research.

1 Introduction
ML has recently been applied to accelerate the solution of
optimization problems, with MILP being one of the most ac-
tive research areas [Bengio et al., 2021; Kotary et al., 2021;
Mazyavkina et al., 2021]. A MILP is an optimization prob-
lem that involves both continuous and discrete variables, and
aims to minimize or maximize a linear objective function
c⊺x, over its decision variables x ∈ Z|J| × Rn−|J| while
satisfying a set of m linear constraints Ax ≤ b. Here,
J ⊆ {1, · · · , n}, |J| ≥ 1, corresponds to the set of indices of
integer variables. Similarly, Integer programming (IP) prob-
lems are of the same form only with discrete variables, i.e
x ∈ Zn. The MILP problem is written as:

zIP = min{c⊺x | Ax ≤ b, x ∈ Z|J| × Rn−|J|} (1)

The MILP formalism is widely used in supply chain and lo-
gistics, production planning, etc. While the MILP (1) prob-
lem is NP-hard in general, modern solvers are able to effec-
tively tackle large-scale instances, often to global optimality,
using a combination of exact search and heuristic techniques.
The backbone of MILP solving is the implementation of a
tree search algorithm, Branch and Bound (B&B) [Land and

Doig, 2010], which relies on repeatedly solving computation-
ally tractable versions of the original problem where discrete
variables are relaxed to take on continuous values. Formally,
we denote the linear programming (LP) relaxation of prob-
lem (1):

zLP = min{c⊺x | Ax ≤ b, x ∈ Rn} (2)

To render the B&B search more efficient, valid linear in-
equalities (or tightening constraints) to problem (1)– cutting
planes –are added to LP relaxations of the MILP with the aim
of producing tighter relaxations and thus better lower bounds
to problem (1), as illustrated in figure 1; this approach is re-
ferred to as the Branch and Cut (B&C) algorithm. Cuts are es-
sential for MILP solving, as they can significantly reduce the
feasible region of the B&B algorithm and exploit the structure
of the underlying combinatorial problem, which a pure B&B
approach does not do. The incorporation of cutting planes in
the B&B search necessitates appropriate filtering and selec-
tion as there can be many such valid inequalities and adding
them to a MILP comes at a cost in computation time. As
such, cut selection has been an area of active research in re-
cent years.

Various families of general-purpose and problem-specific
cuts have been studied theoretically and implemented in
modern-day solvers [Dey and Molinaro, 2018]. However,
there is an overall lack of scientific understanding regarding
many of the key design decisions when it comes to incor-
porating cuts in B&B. Traditionally, the management of cut-
ting plane generation and selection is governed by hard-coded
parameters and manually-designed expert heuristic rules that
are based on limited empirical results. These rules include
deciding:

– the number of cuts to generate and select;
– the number of cut generation and selection rounds;
– add cuts at the root node or all nodes of the B&B tree;
– which metrics to use to score cuts for selection;
– which cuts to remove and when to remove them.

A cut selection strategy common in modern solvers is to use
a scoring function parameterized by a linear weighted sum
of cut quality metrics that aim to gauge the potential effec-
tiveness of a single cut. This process is iteratively used to
produce a ranking among a set of candidate cuts. However,
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Figure 1: A 2-dimensional IP. The optimum of the LP relaxation is
shown as a blue star, whereas the integer optimum is shown as a red
star. The colored cuts separate the LP optimum as desired. The best
cut is cut 1 as it produces the convex hull, shaded in pale green, and
evaluation metrics calculated for this cut are shown above the graph.

manually-designed heuristics and fixed weights may not be
optimal for all MILP problems [Turner et al., 2022b], and as
such, researchers have proposed using ML to aid in cuts se-
lection. Figure 1 gives the reader a 2D visualization of cuts
and potential selection rules.

Recently, the field of ML for cutting plane selection has
gained significant attention in MILP [Tang et al., 2020;
Huang et al., 2022; Balcan et al., 2021b; Berthold et al.,
2022; Turner et al., 2022b; Paulus et al., 2022; Turner
et al., 2022a] and even mixed-integer quadratic program-
ming [Baltean-Lugojan et al., 2019] and stochastic integer
programming [Jia and Shen, 2021]. To select more effective
cutting planes, researchers have proposed ML methods rang-
ing from reinforcement to imitation and supervised learning.
This survey aims to provide an overview of the field of ML for
MILP cut selection starting with the relevant ML and MILP
background (Section 2), the state of cut selection in current
MILP solvers (Section 3), recently proposed ML approaches
(Section 4), relevant learning theory (Section 5), and avenues
for future research (Section 6).

2 Background
2.1 Integer programming and Cutting planes
Cutting planes (or cuts) are valid linear inequalities to prob-
lem (1) of the form αTx ≤ β,α ∈ Rn, β ∈ R. They are
“valid” in the sense that adding them to the constraints of the
LP relaxation in (2) is guaranteed not to cut off any feasi-
ble solutions to (1). Additionally, one seeks cuts that sepa-
rate the current LP solution, x∗

LP , from the convex hull of
integer-feasible solutions; see Figure 1. While adding more
cuts can help achieve tighter relaxations in principle, a clear
trade-off exists: as more cuts are added, the size of the LP
relaxation grows resulting in an increased cost in LP solving
at the nodes of the B&B tree [Achterberg, 2007]. Adding too
few cuts, however, may lead to a large number of nodes in the
search tree as more branching is required.

We note that the so-called cutting plane method can theo-
retically solve integer linear programs by iteratively solving
relaxed versions of the given problem then adding cuts to sep-
arate the fractional relaxed solution x∗

LP ∈ Rn, and terminat-
ing when x∗

LP ∈ Zn. Despite theoretical finite convergence

results for the cutting plane method using Gomory cuts, nu-
merical errors and design decisions such as cut selection will
often prevent convergence to an optimal solution in practice.

2.2 ML for Combinatorial Optimization
The use of ML in MILP and combinatorial optimization
(CO) has recently seen some success, with a diversity of ap-
proaches in the literature [Bengio et al., 2021] that can be
split into two main categories. The first is to directly predict
near-optimal solutions conditioned on the representation of
particular instances. Notable examples of this include learn-
ing for quadratic assignment problems[Nowak et al., 2018],
solving CO problems with pointer networks [Vinyals et al.,
2015], and using attention networks to solve travelling sales-
man problems [Kool et al., 2018]. These approaches aim to
completely replace traditional solvers with ML models and
are hence very appealing given their black-box nature. In
contrast, a second approach focuses on automating decision-
making in solvers through learned inductive biases. This can
take on the form of replacing certain challenging algorith-
mic computations with rapid ML approximations or using
newly learnt heuristics to optimize solution time. Notable
examples include the learning of computationally challeng-
ing variable selection rules for B&B [Khalil et al., 2016;
Gasse et al., 2019; Zarpellon et al., 2021], learning to sched-
ule heuristics [Chmiela et al., 2021], or learning variables bi-
ases [Khalil et al., 2022].
Representing MILPs for ML. One of the key challenges in
applying ML to MILP is the need for efficient and clever
feature engineering. This requires a deep understanding of
solver details, as well as a thorough understanding of the
underlying problem structure. In recent years, graph neu-
ral networks (GNNs) have emerged as a popular architecture
for several ML applications for MILP [Cappart et al., 2021].
GNNs have the ability to handle sparse MILP instances and
exhibit permutation invariance, making them well-suited for
representing MILP instances. The GNN operates on the so-
called variable-constraint graph (VCG) of a MILP. The VCG
has n variable nodes and m constraint nodes corresponding
to the decision variables and constraints of 1. The edges be-
tween a variable node j and constraint node k represent the
presence of that variable xj in constraint k (i.e, Ajk ̸= 0),
where the weight of the edge is Ajk.

2.3 Common Learning Paradigms in ML for CO
Supervised Learning: The simplest and most common learn-
ing paradigm is supervised learning (SL) where the learn-
ing algorithm aims to find a function (model) f : X →
Y, f ∈ F , where F is the function’s hypothesis space,
given a labelled dataset of N training samples of the form
{(x1, y1), · · · (xN , yN )} where xi ∈ X represents the feature
vector of the i-th sample and yi ∈ Y its label. The goal is
to find a f such that a loss function L(yi, ŷi) measuring how
well predictions, ŷi, from f fit to the training data with the
hope of generalizing to unseen test instances.
Reinforcement Learning: A Markov Decision Process
(MDP) is a mathematical framework for modelling sequential
decision-making problems commonly used in reinforcement
learning (RL). At time step t ≥ 0 of an MDP, an agent in state



st ∈ S takes an action at ∈ A and transitions to the next
state st+1 ∼ p(·|st, at), incurring a scalar reward rt ∈ R.
A policy, denoted by π, provides a mapping S 7→ P (A)
from any state to a distribution over actions π(·|st). The
goal of an MDP is to find a policy π that maximises the ex-
pected cumulative rewards over a horizon T , i.e, maxπ J(π)
= Eπ[

∑T−1
t=0 γtrt], where γ ∈ (0, 1] is the discount factor.

Imitation Learning: Imitation Learning (IL) aims to find a
policy π that mimics the behaviour of an expert in a given
task through demonstrations. This is often formalized as an
optimization problem of the form minπ L(π, π̂), where π̂ is
the expert policy and L is a loss function measuring the dif-
ference between the expert and the learned policy. IL can be
seen as a special case of RL where the agent’s objective is to
learn a policy that maximizes the likelihood of the expert’s
actions instead of the expected cumulative reward. In ML-
for-MILP, IL (and SL) has been used to amortize the cost of
powerful yet computationally intractable scoring functions.
Such functions appear in cut generation/selection [Amaldi et
al., 2014; Coniglio and Tieves, 2015] and have been recently
approximated using IL [Paulus et al., 2022], as we will dis-
cuss hereafter.

3 Cutting Planes in MILP solvers
3.1 Cut generation
At a node of the search tree during the B&C process and prior
to branching, the solver runs the cutting plane method for a
pre-specified number of separation rounds, where each round
k involves i) solving a continuous relaxation P (k) to get a
fractional xk

LP ; ii) generating cuts Ck, referred to as the cut-
pool followed by selecting a subset Sk ⊆ Ck; iii) adding
Sk to the relaxation and proceeding to round k + 1. After
k separation rounds the LP relaxation P k will consist of the
original constraints Ax ≤ b and any cuts of the form (α, β)
that have been selected. Concretely, we write P k as:

P k = {Ax ≤ b, αTx ≤ β ∀ (α, β) ∈
k⋃

i=1

Si, x ∈ Rn}

= {Akx ≤ bk,x ∈ Rn} with A0 = A, b0 = b
(3)

Global cuts are cuts that are generated at the root node
whereas local cuts are cuts generated at nodes further down
the tree. Traditionally, solely relying on global cuts is re-
ferred to as Cut & Branch, in comparison to B&C which uses
both global and local cuts. Solvers use various hard-coded
parameters determined experimentally to control the number
of separation rounds, types of generated cuts, their frequency,
priority among separators, whether to use local cuts or not,
among others. We use SCIP’s internal cut selection subrou-
tine to highlight key decisions regarding cut selection. How-
ever, similar methodologies are used in other MILP solvers.

3.2 Cut selection
During the cut selection phase, the solver selects a subset of
cuts Sk from the cut-pool to add to the MILP. In particular,
SCIP scores each cut using a simple linear weighted sum of

cut quality metrics from the MILP literature:

S = λ1eff + λ2dcd + λ3isp + λ4obp λ ≥ 0, λ ∈ R4 (4)

Here, the weights (λ1, λ2, λ3, λ4) are solver parameters that
correspond to four metrics: efficacy (eff), directed cutoff dis-
tance (dcd), integer support (isp), and objective parallelism
(obp). Cuts are then added greedily by the highest-ranking
score S and added to Sk, followed by filtering the remaining
cuts for parallelism. This is done until a pre-specified number
of cuts have been selected or no more candidate cuts remain.
The current default weights for SCIP version 8.0 [Bestuzheva
et al., 2021] are λDEF

T = [0.9, 0.0, 0.1, 0.1].

3.3 Cut Metrics
Cheap metrics such as the ones above are used to gauge the
potential bound improvement that will result from adding a
cut (α, β) to a current relaxation with optimal solution xLP

and best known incumbent x̂. Efficacy is the Euclidean dis-
tance between the hyperplane αTx = β and xLP and can be
interpreted as the distance cut off by a cut [Wesselmann and
Stuhl, 2012], eXpressed as:

eff(α, β, xLP ) :=
αTxLP − β

∥α∥
. (5)

Directed cutoff distance [Gleixner et al., 2018] is the distance
between the hyperplane αTx = β and xLP in the direction
of x̂ and is measured as:

dcd(α, β, xLP , x̂) :=
αTxLP − β

|αTy|
, y :=

x̂− xLP

∥x̂− xLP ∥
. (6)

The support of a cut is the fraction of coefficients αi that
are non-zero; sparser cuts are preferred for computational ef-
ficiency and numerical stability [Dey and Molinaro, 2018].
The integer support takes this notion one step further by con-
sidering the fraction of coefficients corresponding to integer
variables that are non-zero, measured as:

isp(α) :=

∑
i∈J NZ(αi)∑n
i=1 NZ(αi)

, NZ(αi) :=

{
0 if αi = 0

1 else
(7)

Objective parallelism is measured by considering the cosine
of the angle between c and α, with obp(α, c) = 1 for cuts
parallel to the objective function:

obp(α, c) :=
|αT c|
∥α∥∥c∥

(8)

More directly useful, but expensive, evaluation metrics can be
measured by solving the relaxation obtained by adding the se-
lected cuts and observing its objective value. Specifically, the
integrality gap (IG) after separation round k is given by the
bound difference gk := zIP − zk ≥ 0 whereas the integrality
gap closed (IGC) is measured as :

IGCk :=
g0 − gk

g0
=

zk − z0

zIP − z0
∈ [0, 1] (9)

and represents the factor by which the integrality gap is closed
between the first relaxation P 0 and the relaxation P k ob-
tained after k separation rounds [Tang et al., 2020].



3.4 Precursors to Learning to Cut
Since cut selection is not an exact science and no formal
guideline exists, traditional methods to find good cut selec-
tion parameters for Eq. (4) rely on performing parameter
sweeps using appropriately designed grid searches. For in-
stance, the first large-scale computational experiment regard-
ing cut selection was presented in [Achterberg, 2007] and
many more computational studies in SCIP have since been
published [Gamrath et al., 2020; Bestuzheva et al., 2021].
[Achterberg, 2007] is the basis for SCIP’s scoring function
and involves testing many configurations of cut metrics pre-
sented in [Wesselmann and Stuhl, 2012] for 4 and demon-
strates a large decrease in overall solution time and nodes in
the B&B tree if the parameters are tuned properly.

Overall, the many hard-coded parameters that are used in
MILP solvers can be tuned either by MILP experts or through
black-box algorithm configuration methods. These include
grid search, but also more sophisticated methods such as se-
quential model-based optimization methods [Lindauer et al.,
2022] or black-box local search [Xu et al., 2011].

4 Learning to Cut
The research on “Learning to Cut” can be categorized along
three axes: the choice of the cut-related learning task, the ML
paradigm used, and the optimization problem class of interest
(MILP or others). We use these axes to organize the survey.
Table 1 provides a classification of the surveyed papers.

4.1 Directly scoring individual cuts in MILP
Scoring using Reinforcement Learning [Tang et al., 2020]
Tang et al., 2020, were the first to motivate and experimen-
tally validate the use of any learning for cut selection in MILP
solvers. The authors present an MDP formulation of the itera-
tive cutting plane method (discussed in Section 2) for Gomory
cuts from the LP tableau. A single cut is selected in every
round via a neural network (NN) that predicts cut scores and
produces a corresponding ranking. Given that GNNs were
still in their infancy at the time, the authors instead used a
combination of attention networks for order-agnostic cut se-
lection and an LSTM network for IP size invariance. The
authors used evolutionary strategies as their learning algo-
rithm and considered the following baseline selection poli-
cies: maximum violation, maximum normalized violation,
lexicographical rule, and random selection.

At iteration t of the proposed MDP, the state st ∈ S is
defined by {C(t), x∗

LP (t), P
(t)} and the discrete action space

A includes available actions given by C(t), i.e., the Gomory
cuts parameterized by αi ∈ Rn, βi ∈ R ∀ i ∈ {0, . . . , |C(t)|}
that could be added to the relaxation P (t). The reward rt
is the objective value gap between two consecutive LP so-
lutions, i.e., rt := cT [x∗

LP (t + 1) − x∗
LP (t)] ≥ 0 which

when combined with a discount factor γ < 1, encourages the
agent to reduce the IG and reach optimality as fast as pos-
sible. Given a state st = {C(t), x∗

LP (t), P
(t)} and an ac-

tion at (i.e, a chosen Gomory cut αi
Tx ≤ βi), the new state

st+1 = {C(t+1), c, x∗
LP (t + 1), P (t+1)} is determined by i)

solving the new relaxation P (t+1) = P (t) ∪ {αT
i x ≤ βi} us-

ing the simplex method to get x∗
LP (t + 1), ii) generating the

new set of Gomory cuts C(t+1) read from the simplex tableau.
The RL approach significantly outperformed all metrics

by effectively closing the IG with the fewest number of cuts
for four sets of synthetically generated IP instances. They
demonstrated generalization across the instance types as well
as across instance sizes in two test-bed environments: 1) pure
cutting plane method, 2) B&C using Gurobi Callbacks.

However, limitations of this work include weak baselines,
the restriction to Gomory cuts and a state encoding that does
not scale well for large-scale instances as the input to the NN
includes all constraints and available cuts. Additionally, the
instance sizes considered were fairly small for research in
MILP which may have been acceptable given that this was
early work in this space. Although many recent papers out-
perform this approach, it is significant given that it is the first
paper that appropriately defines an RL task for cut selection
in the cutting plane method or B&C.

Scoring using Imitation Learning [Paulus et al., 2022]
In a recent paper, Paulus et al. demonstrate the strength of
a greedy selection rule that explicitly looks ahead to select
the cut that yields the best bound improvement, but they note
that this approach is too expensive to be deployed in practice.
They propose the lookahead score, sLA, that measures the
increase in LP relaxation value obtained from adding a cut Cj

to an LP relaxation P . Formally, Cj ∈ C where C is a pool
of candidate cuts, and Cj is parameterized by (α, β). Let zj

denote the optimal value of LP relaxation P j := P ∪{αTx ≤
β}, the new relaxation obtained by adding Cj to P . The (non-
negative) lookahead score then reads:

sLA(Cj , P ) := zj − z. (10)

In response to this metric’s computational intractability, the
authors propose a NN architecture, NeuralCut, that is trained
using imitation learning with sLA as its expert. The pro-
hibitive cost of the expensive lookahead, which requires solv-
ing one LP per cut to obtain zj , is thus alleviated by an
approximation of the score. The authors collect a dataset
of expert samples by running the cut selection process for
10 rounds and recording the cuts, LP solutions, and scores
from the Lookahead expert creating samples specified by
{C, P, {sLA(Cj , P )}Cj∈C}. They use this expert data to learn
a scoring ŝ that mimics the lookahead expert by minimizing
a soft binary entropy loss overall cuts,

L(s) := − 1

|C|
∑
C∈C

qC log sC + (1− qC) log(1− sC), (11)

where qC := sLA(C)
sLA(C∗

LA) and C∗
LA = argmaxC∈CsLA(C). To

encode the cut selection decision that is described by the cut-
pool and LP relaxation pair (C, P ), the authors use a tripartite
graph whose nodes hold feature vectors for variables, con-
straints of P and any cuts added.
The 4 synthetic IP instance classes from [Tang et al., 2020]
were used in this work. Only large instances were used given
that small and medium-sized instances were observed to be



Paper Learning task Solver ML
paradigm

Instance type/source Instance
size

ML
model

[Tang et al.,
2020]

score single cut Gurobi RL Synthetic small Attention
& LSTM

[Paulus et
al., 2022]

score single cut SCIP IL Synthetic + NN verification large GNN

[Baltean-
Lugojan et
al., 2019]

score single cut CPLEX SL QP + QCQP large MLP

[Jia and
Shen, 2021]

classify single cut Bender’s
for 2SP

SL CFLP + CMND medium SVM

[Huang et
al., 2022]

score bag of cuts Proprietary
solver

SL Proprietary data large MLP

[Turner et
al., 2022b]

learning weights for
cut scoring

SCIP RL MIPLIB 2017 large GNN

[Berthold et
al., 2022]

learning when to cut Xpress SL MIPLIB 2017 + Proprietary
benchmark

large Random
Forest

[Wang et al.,
2023]

learn to score cuts and
order/number of cuts

SCIP RL MIPLIB 2017 + Synthetic +
Proprietary benchmark

large LSTM &
Pointer

Table 1: Table summarizing and categorizing tasks tackled by research embedding ML for cut management in optimization solvers. The three
instance size classifications, small, medium, and large correspond to instances with n × m in the range [0, 1000], [1000, 5000], [5000,∞]
respectively. Additionally, QCQP refers to quadratically constrained QPs and Synthetic refers to the 4 IP instances presented in [Tang et al.,
2020] which are integer/binary packing, max cut and production planning problems

too easy to solve. To evaluate their approach, the GNN is de-
ployed for 30 consecutive separation rounds and adds a sin-
gle cut per round in a pure cutting plane setting. The results
show that NeuralCut exhibits great generalization capabili-
ties, a close approximation of the lookahead policy, and out-
performs the approach in [Tang et al., 2020] as well as many
of the manual heuristics in [Wesselmann and Stuhl, 2012] for
3 out of the 4 instances types; the packing instances tied for
many methods and did not significantly benefit from a looka-
head scorer or NeuralCut. To stress-test their approach, the
authors employ NeuralCut at the root node in B&C for a
challenging dataset of NN verification problems [Nair et al.,
2020] which are harder for SCIP to solve due to their larger
size and notoriously weak formulations. They demonstrated
clear benefits to the learned cut scorer.

A drawback of sLA is its limitation to scoring a single cut
due to the computational intractability of scoring a subset of
cuts, of which there are combinatorially many. Additionally,
although [Paulus et al., 2022] improves on [Tang et al., 2020],
both approaches have the inherent flaw of scoring each cut
independently without taking into account the collaborative
nature of the selected cuts (i.e, complementing each other and
uniquely collaborating in tightening relaxations).

Scoring using Hierarchical Sequence Models [Wang et
al., 2023]
The authors of the most recent paper on cut selection, [Wang
et al., 2023], motivate two new factors to consider for ef-
ficient cut selection: the number and order of cuts. They
introduce a hierarchical sequence model (HEM), trained us-
ing RL, consisting of a two-level model: (1) a higher-level
LSTM network that learns the number of cuts to be selected
by outputting a ratio k ∈ [0, 1] of the cuts to be selected, (2)

a lower-level pointer network formulating cut selection as a
sequence-to-sequence learning problem that ultimately gen-
erates an ordered subset of cuts of size ⌊N ∗ k⌋, where N is
the size of a pool of cuts. Experiments show that HEM, in
comparison to rule-based and learned baselines from [Paulus
et al., 2022; Tang et al., 2020], improves solver runtime
by 16.4% and primal dual integral by 33.48% on synthetic
MILP problems. Additionally, HEM was deployed on chal-
lenging benchmark instances from MIPLIB 2017 [Gleixner
et al., 2021] and large-scale production planning problems,
showing great generalization capabilities. The authors also
visualize cuts selected by HEM and [Paulus et al., 2022;
Tang et al., 2020], demonstrating that HEM captures the or-
der information and the interaction among cuts, leading to
improved selection of complementary cuts. The two-level
model of HEM is the only learned approach to consider the
collaborative nature and interactions among cuts for efficient
cut selection which was previously only explored in the MILP
literature [Coniglio and Tieves, 2015].

4.2 Directly scoring individual cuts for
Non-convex Quadratic Programming and
Stochastic Programming

The first work to incorporate any type of learning for data-
driven cut selection policies, even prior to [Tang et al., 2020],
is that in [Baltean-Lugojan et al., 2019]. It similarly focuses
on estimating lookahead scores for cuts. The lookahead cri-
terion in their setting, non-convex quadratic programming
(QP), involves solving a semidefinite program which is not
viable in a B&C framework. Although a different optimiza-
tion setting, many ideas from MILP still apply and a similar
approach of employing a NN estimator that predicts the ob-



jective improvement of a cut is used. However, a supervised
regression task is considered which resulted in a trained mul-
tilayer perceptron (MLP) that exhibited speed-ups for eval-
uating cut selection measures approximately on the order of
2x, 30x and 180x when compared to LAPACK’s eigendecom-
position method [Anderson et al., 1999], Mosek solver [ApS,
2019] and SeDuMi solver [Polik et al., 2007] respectively.

Another optimization setting where appropriate cut se-
lection is crucial is two-stage stochastic programming
(2SP) [Ahmed, 2010]. Traditional solution techniques to 2SP
include using Bender’s decomposition which leverages prob-
lem structure through objective function approximations and
the addition of cuts to sub-problem relaxations and a relaxed
master problem. The authors in [Jia and Shen, 2021] lever-
age SL to train support vector machines (SVM) for the binary
classification of the usefulness of a Bender’s Cut and observe
that their model allows for a reduction in the total solving
time for a variety of 2SP instances. More specifically, so-
lution time reductions ranging from 6% to 47.5% were ob-
served on test instances of capacitated facility location prob-
lems (CFLP) and slightly smaller reductions were observed
for multi-commodity network design (CMND) problems.

4.3 Directly scoring a bag of cuts for MILP
In contrast to learning to score individual cuts, the authors
in [Huang et al., 2022] tackle cut selection through multiple
instance learning [Ilse et al., 2018] where they train a NN,
in a supervised fashion, to score a bag of cuts for Huawei’s
proprietary commercial solver. More specifically, the training
samples, denoted by the tuple {P, C ′, r}, are collected using
active and random sampling [Bello et al., 2016] where r is
the reduction ratio of solution time for a given MILP, with
relaxation P , when adding the bag of cuts C ′. The authors
formulate the learning task as a binary classification prob-
lem, where the label of a bag C ′ is 1 if r ranks in the top ρ%
highest reduction ratios for a given MILP, (0 otherwise), and
ρ ∈ (0, 100) is a tunable hyper-parameter controlling the per-
centage of positive samples. At test time, the NN is used to
assign scores to all candidate cuts and then select the top K%
cuts with the highest predicted scores, where K is another
hyper-parameter. Other notable design decisions include de-
signing bag features from aggregated cut features and a cross-
entropy loss with L2 regularization to combat overfitting.

The data for this work consisted of synthetic MILP prob-
lems solved within 25 seconds and large real-world produc-
tion planning problems ranging in the 107 variables. The re-
sults clearly demonstrate the benefit of a learned scorer by
comparing their approach to rules from [Wesselmann and
Stuhl, 2012] and to a fine-tuned manual selection rule used
by Huawei’s proprietary solver. Once again, this method suf-
fers from fixing the size/ratio of selected cuts, K, and scores
cuts independently which neglects the preferred collaborative
nature of selected cuts. Note that this is despite training the
model to predict the quality of a bag of cuts: at test time, a
“bag” has only a single cut.

4.4 Learning Adaptive Cut Selection Parameters
Rather than directly predicting cut scores, Turner et
al., 2022b, motivate learning instance-specific weights,

λACS ∈ R4, for the SCIP cut scoring function in Eq. (4).
The goal is to improve over the default parameterization λDEF
in terms of relative gap improvement (RGI) at the root node
LP with 50 separations rounds of 10 cuts per round and a
best-known primal bound. Besides the learning approach pro-
posed by the authors, a grid search over convex combinations
of the four weights,

∑4
i=1 λi = 1, where λi = βi

10 , βi ∈ N,
was performed individually for a large subset of MIPLIB
2017 instances. This experiment demonstrates the potential
for improvement that one could get with instance-specific
weights. The resulting parameters, referred to as λGS, re-
sulted in a median RGI of 9.6%.

The GNN architecture and VCG features are based on
[Gasse et al., 2019] but LP solution features are not used.
The output of the model µ ∈ R4 represents the mean of a
multivariate normal distribution N4(µ, γI), with γ ∈ R (a
hyper-parameter) that is sampled to generate instance-specific
parameters, λACS. Although the authors claim to use RL to
train their GNNs, they fail to appropriately define the sequen-
tial nature of their MDP given that the time horizon, T , is 1.
In their MDP, an action at corresponds to a weight configu-
ration λACS sampled from N4(µ, γI) which will in turn result
in an RGI that is used as the instant reward rt. As such, we
consider their work to belong to instance-specific algorithm
configuration [Malitsky and Malitsky, 2014], and the gradi-
ent descent approach used to train the GNN can be seen as
approximating the unknowing mapping from (instance, pa-
rameter configuration) to RGI.

GNN trained on an individual instance basis were able
to achieve a relative gap improvement of 4.18%. However,
when trained over MIPLIB 2017 itself, a median RGI of
1.75% was achieved whereas a randomly initialized GNN
produced an RGI of 0.5%. The authors also observe that λGS
and λACS differ heavily from λDEF as seen in Table 2 and none
of the values tend towards zero, meaning that all the metrics
are able to provide utility depending on the given instance. In

Method Grid Search λGS ACS approach λACS

Parameter Mean Median Std. Dev Mean Median Std. Dev

λ1 (eff) 0.179 0.100 0.216 0.294 0.286 0.122

λ2 (dcd) 0.241 0.200 0.242 0.232 0.120 0.274

λ3 (isp) 0.270 0.200 0.248 0.257 0.279 0.088

λ4 (obp) 0.310 0.300 0.260 0.216 0.238 0.146

Table 2: Statistics for λGS and λACS from [Turner et al., 2022b].

comparison to learning to score cuts directly, this methodol-
ogy has clear limitations that should be addressed. The per-
formance of this approach is inherently upper bounded by the
performance of the metrics being considered in the scoring
function. Additionally, the VCG encoding of a given MILP
in [Turner et al., 2022b] is agnostic to the set of candidate
cuts Ck, unlike the tripartite graph from [Paulus et al., 2022].
It is also well known that MILP solvers suffer from perfor-
mance variability when changing minute parameters, for in-
stance as simple as the random seed, see [Lodi and Tramon-
tani, 2013]. For this reason, any trained agent obtained with
such a method will try to learn optimal cut selection parame-



ters for a specific solver environment with specific parameters
being run on specific hardware.

4.5 Learning when to cut
Berthold et al., 2022, focus on applying ML to an old and
rather Hamletic cut-related question: To cut or not to cut?
The authors highlight that there is very little understanding on
whether a given MIP instance benefits from using only global
cuts or also using local cuts, i.e, to Cut (at the root node only)
& Branch or to Branch & Cut (at all nodes of the tree). They
refer to these two alternatives as ”No Local Cuts” (NLC) and
”Local Cuts” (LC), respectively, and demonstrate that if ac-
cess to a perfect decision oracle was possible, a speed-up of
11.36% is attainable w.r.t. the average solver runtime on a
large subset of MIPLIB 2017 instances for FICO Xpress, a
commercial MIP solver.

The authors use SL to identify MIP instances that exhibit
clear performance gains with one method over the other.
Rather than considering this problem as a binary classifi-
cation task, it is tackled as a regression task predicting the
speed-up factor between LC and NLC. The motivation for
this is two-fold; first, the ultimate goal is to improve average
solver runtime which is a numerical metric rather than a cat-
egorical metric. Second, there are some instances where this
decision has negligible impact on solver runtime which com-
plicates creating class labels in the classification approach.

By utilizing feature engineering inspired by the literature
on ML for MILP, the authors represent a MILP instance us-
ing a 32-dimensional vector that incorporates both static and
dynamic features. Static features refer to those that are solver-
independent and closely related to the MILP formulation and
combinatorial structure. On the other hand, dynamic features
are solver-dependent and provide insight into the solver’s cur-
rent behaviour and understanding of a given MILP at different
stages in the solution process. The best results were provided
by a random forest (RF) which exhibited a speedup of 8.5%
on the train set and 3.3% on the test set, prompting further
successful experiments which resulted in the implementation
of RF as a default heuristic into the new version of FICO
Xpress MIP solver.

5 Theoretical results
The nascent line of theoretical work on the sample complex-
ity of learning to tune algorithms for MILP and other NP-
Hard problems [Balcan et al., 2021a] has also been applied
to cut selection. The setting is as follows: There is an un-
known probability distribution over MILP instances of which
one can access a random subset, the training set. The “param-
eters” being learned are m weights which, when applied to
the corresponding constraints in the MILP, generate a single
cut. [Balcan et al., 2022] and [Balcan et al., 2021b] study the
number of training instances required to accurately estimate
the expected size of the B&C search tree for a given param-
eter setting. The expectation here is over the full, unknown
distribution over MILP instances. Theorem 5.5 of [Balcan
et al., 2022] shows that the sample complexity is polynomial
in n and m for Gomory Mixed-Integer cuts, a positive result
which is nonetheless not directly useful in practice.

The authors in [Turner et al., 2022b] prove that fixed cut
selection weights λ for Eq. (4) do not always lead to finite
convergence of the cutting plane method and are hence not
optimal for all MILP instances. More specifically, consider
the convex combination of two metrics (isp and obp), i.e,
λ ∈ R resulting in a finite discretization of λ as well an
infinite family of MILP instances together with an infinite
amount of family-wide valid cuts that can be generated. The
use of a pure cutting plane method with a single cut per round
can result in the aforementioned instances not terminating to
optimality when using λ values in the discretization, whereas
they terminate for an infinite number of alternative λ values.

6 Conclusion and Future Directions
Given the rise in the use of ML in combinatorial and integer
optimization and the challenges that still exist within, this
survey serves as a starting point for future research in
integrating data-driven decision-making for cut management
in MILP solvers and other related discrete optimization
settings. We summarized and critically examined the state-
of-the-art approaches whilst demonstrating why ML is a
prime candidate to optimize decisions around cut selection
and generation, both through a practical and theoretical
lens. Given the reliance on many default parameters that
do not consider the underlying structure of a given gen-
eral MILP instance, learning techniques that aim to find
instance-specific parameter configurations is an exciting area
of future research for both MILP and ML communities.
Many additional future directions remain for the research
surrounding Learning to Cut. These can range from revisiting
algorithmic configuration for cut-related parameters, using
ML to identify new strong scoring metrics, and embedding
ML in other cut components such as cut generation or
removal. Some challenges arise from the aforementioned
discussion on the literature for Learning to Cut:

Fair Baselines: There is a lack of fair baselines for ML
methods that appropriately balance solver viability and the
computational expense from training and data collection
that may or may not warrant the use of complex methods
such as ML. For instance, [Turner et al., 2022b] clearly
motivates instance-specific weights however given the
relatively marginal learning capabilities and even smaller
generalization capabilities we believe analysis into methods
like algorithmic configuration should be considered.

Large-scale parameter exploration: There is an overall
lack of non-commercial and publicly available large-scale in-
stance datasets for the assessment of cut parameter configu-
ration. [Berthold et al., 2022] is a prime example that not
only are there still many decisions in MILP solvers that are
not truly understood, but ML serves as a prime candidate to
learn optimal instance-specific decision-making in complex
algorithmic settings. For example, a recent ”challenge” paper
[Contardo et al., 2022] shows small experiments on MIPLIB
2010 [Koch et al., 2011] that go against the common belief
among MILP researchers that conservative cut generation in
B&B is preferred.
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