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Figure 1: Foundation model training aims for broad generalization, by using all data available, usually
from massive internet-scale datasets. In practice, we find these models are often suboptimal for
specific deployments, which may exhibit different distributions over categories or data characteristics
from the general training data pool. Dataset subset selection for specialization seeks to identify model
training subsets closely aligned with the target deployment, achieving superior performance under
the given distribution and attribute shifts.

ABSTRACT

In many real-world machine learning applications (e.g. detecting broken bones
in X-rays or species in camera traps), models need to perform well on specific
deployments (e.g. a specific hospital or national park) rather than the domain
broadly. However, deployments often have imbalanced, unique data distributions.
Discrepancies between training and deployment distributions lead to suboptimal
performance, highlighting the need to curate training data for specialized models for
specific deployment needs. We formalize dataset subset selection for specializa-
tion (DS3): given a training set drawn from a general distribution and a (potentially
unlabeled) query set drawn from a deployment-specific distribution, the goal is to
select a subset of the training data that optimizes deployment performance.

We introduce DaTaS?; the first dataset and benchmark designed specifically for
the DS3 problem. DaT2S? encompasses five real-world application domains, each
with a set of distinct deployments to specialize in. We conduct a comprehensive
study evaluating different state-of-the-art data curation algorithms and find that
methods trained on general distributions consistently fail to perform optimally on
deployment tasks. Additionally, we demonstrate the existence of expert-curated
(deployment-specific) subsets that outperform training on all available data by up
to 51.3%. Our benchmark highlights the critical role of tailored dataset curation in
enhancing performance and training efficiency on deployment-specific distributions,
which we posit will only become more important as global, public datasets become
available across domains and ML models are deployed in the real world.

1 BACKGROUND AND MOTIVATION

Machine learning models are typically trained on large datasets with the assumption that the training
distribution closely matches the distribution of the deployment where the model will be applied.
However, in real-world applications, deployment data distributions often diverge from general and/or
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global training set distributions (Shen et al.|, [2024; [Taori et al., 2020). Selecting relevant data subsets
aligned with specific deployments is crucial to maximize field performance. The problem of data
subset selection for specialization (DS3) is thus critical: given all available training data for a domain
and a small (usually unlabeled) query set that represents the desired deployment, the goal is to identify
a subset of the training data, such that training the ML model on this subset maximizes performance
on the deployment distribution.

Real world example. Consider a wildlife ecologist who aims to build a classifier to detect the
presence of invasive species in camera trap images collected at the Channel Islands. Existing labeled
training data in this context is limited, thus training a classifier from scratch is likely to be unsuccessful.
A common approach is to finetune a general pre-trained model (such as ViT or CLIP) on all relevant
camera trap data. But what does "relevant data"” mean? Would using similar species data from
other camera trap locations (perhaps on the mainland) improve performance, or introduce noise?
What about including data from non-similar species at that location? While adding data to a training
set can sometimes improve performance, it can also decrease individual subgroup performance in
a biased way (Compton et al., 2023) and introduce spurious correlations that can enable models
to learn potentially dangerous “shortcuts,” resulting in biased predictions, shown across various
domains (Geirhos et al., 2020; Badgeley et al., [2018; [Wang et al., 2021; Beery et al.,[2022a).

Our contributions. Our key contributions are the following:

(i) We are the first to identify and formalize the challenge of sub-selecting training data to
specialize models to new deployments (dataset subset selection for specialization).

(ii) We propose DaTaS?: A novel benchmark that enables the Al community to investigate and
make progress on DS3. DaT aS3 reformulates, adapts, and adds to five diverse datasets, each
from a different application domain. We worked directly with domain experts throughout
the curation and reformulation process to ensure that DaTaS? accurately reflects (1) real-
world dataset distribution challenges that require model specialization (i.e., covariate shifts,
subpopulation shifts, and long-tailed distributions), and (2) evaluation settings (test splits)
representative of real-world deployment scenarios in each domain.

(iii)) We show that a well-curated subset can consistently outperform models trained on the entire
dataset for each deployment.

(iv) We also conduct an extensive experimental study comparing current SOTA subset selection
methods on DaTaS3. After training a suite of baselines, our results clearly show that current
subset selection methods fail on DS3, highlighting the need future research to solve the
DS3 problem on DaTAS?.

(v) We release a codebase, python package, and public leaderboard for submission to the
benchmark, available at datas3-benchmark.github.io

2 PROBLEM STATEMENT

DS3 problem formulation. Let X be a pool of data points, ' C X be a given training set
drawn from a training (pool) distribution Pr over X, and let Q C X be a query set drawn from the
desired deployment-specific distribution Pg over X. Given a model ¢, the objective of dataset
subset selection for specialization (DS3), is to design an algorithm SubsetSelection—-ALG,
which takes T (the training set) and @ (the deployment representative query set) as input, and
outputs a subset S* C T that minimizes the expected loss of € trained on S* over the desired
deployment-specific distribution Pg. More formally:

S* = arg minIEquQ [£(0(S),q)], M
SCT

where 6(S) denotes the model trained on the subset S C 7', and L(0(S5), q) is the loss function
evaluated on a single point ¢ sampled from Py and the trained model 6(S). The term E,. p, denotes
the expected value over the distribution Pg. Hence, the algorithm SubsetSelection-ALG
outputs S*, the subset of 7' that minimizes the expected loss of the entire desired deployment
distribution Pp. Notably, SubsetSelection-ALG can only access the desired deployment-
specific distribution via the query set (). Unlike complementary lines of work such as active domain
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adaptation (ADA), which assumes real-time compute and focuses on actively/iteratively selecting and
then collecting labels for data within the deployment during the specialization process, DS3 selects
data in a single-shot approach prior to specialization on an already available pool of data (potentially
for use in resource-constrained applications).

Is the query set labeled? This formalization can be divided into two cases. In the first, the query
set Q) is annotated with a set of labels: @ is a set of m > 0 pairs @ = {(q1,%1),"** , (Gm>Ym)}>
where for every ¢ € [m], ¢; is the ith feature vector describing the ith input, and y; is it corre-
sponding label/annotation. In this case the algorithm SubsetSelection—ALG has access to
the set of labels {y1,- -, yn}. In the second scenario, no labels are provided for ), meaning that
the SubsetSelection-ALG does not have access to the set {y1,- - ,yn} and consequently
Q={q1, - ,qm} Inareal-world example, ) can be thought of as the data collected from a deploy-
ment thus far, enabling additional selection from a larger database (the training pool). Annotating )
for any specific deployment is quite expensive, requiring time, money, and expertise, so progress on
methods without query labels would helpful for real-world applications.

Is SubsetSelection—ALG model agnostic? Similarly, this formalization can be approached
in two different ways: one where the computation of S* depends on a given specific model 6, i.e.,
SubsetSelection-ALG is model dependent, and has access to the model § we wish to train on.
Ideally, a well-performing, robust method should work well for multiple models, and will be more
generalizable than a model-dependent algorithm. We test several different models on our benchmark
for various Subset Selection—ALG baselines to test this.

Should SubsetSelection—-ALG be sample efficient? The goal of our benchmark is to specialize
on a desired deployment distribution. Unlike standard subset selection, where subset size is often a
primary concern, our focus is on selecting subsets based on relevance based on a particular deployment
that yield highest performance evaluated on that deployment. Smaller subsets offer many advantages,
such as training efficiency, lower memory/storage, etc; we analyze these tradeoffs in Appendix

3 RELATED WORK

It has become increasingly clear that data work is equally important to architecture design for increased
model performance (Compton et al., [2023)). Data curation for better quality training pools has been
identified as an important line of research within this field. Many methods have been proposed
for data curation and subset selection — we provide a comprehensive overview of these methods in
Appendix@ Current benchmarks for data curation include|Gadre et al.| (2024), [ Mazumder et al.|(2023)
and [Feuer et al.|(2024). However, these benchmarks focus on data curation for a single higher quality
training pool meant for better performance across many different downstream tasks, in contrast
to specialization for a particular deployment. Additionally, data selection methods (Killamsetty
et al., 2021bj [Tukan et al.l [2023) are often evaluated on standard CIFAR10/100 (Krizhevsky:
et al., 2009) or ImageNet (Deng et al.,[2009b) datasets, where test and validation sets have similar
distribution to their training sets. No existing benchmarks focus on the DS3 challenge. DaT2S? is
the first benchmark specifically designed to evaluate subset selection methods for deployment-specific
specialization, rather than generalization, where the training and testing data exhibit distributional
shifts representative of real-world deployment challenges (Figure [I).

4 THEDaATAS? BENCHMARK

Datasets. We describe each DaTaS? dataset. Our benchmark includes five datasets, each capturing
a unique and diverse application of ML: AutoArborist for tree classification (Beery et al.,|2022b),
iWildCam for camera trap species identification (Beery et al.,[2021), GeoDE for diverse object classi-
fication (Ramaswamy et al.||2023)), NuScenes for autonomous driving footage steering regression
(Caesar et al.,[2020), and FishDetection for underwater video fish detection (Dawkins et al.,[2017).
To make the DaTaS? datasets usable, we have made considerable changes to them to better highlight
deployment challenges, augment with additional data, or preprocess the data for use with standard ML
pipelines. For each dataset, we provide a proof-of-concept "oracle" / knowledge-driven subset that
demonstrates the usefulness of subset selection, with improvements over using training on all data.
These subsets were created using information that benchmark users are not provided (e.g. metadata,
GPS location, region, etc). Additional details about each dataset and can be found in Apdx. [E]
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Figure 2: DaTaS3benchmark process, involving dataset splitting, subset selection, model specializa-
tion/finetuning, and then evaluation.

4.1 1TWILDCAM

Motivation: Animal populations have declined by 68% on average since 1970 (Staub),2020). To mon-
itor this biodiversity loss, ecologists deploy camera traps—motion-activated cameras placed in the
wild (Wearn & Glover-Kapfer 2017)—and process the data with machine learning models (Norouz;
zadeh et al.,2019; Beery et al., 2019). However, variations in illumination, camera angle, background,
vegetation, color, and animal frequencies across different locations cause these models to generalize
poorly to new deployments. To specialize models for specific locations, selecting appropriate data
subsets for deployment-specific (in this case location) specialization becomes essential.

Problem Setting & Data: To study this problem, we use the iWildCam 2020 dataset, comprising
of 203, 029 images from 323 different camera traps spread across multiple countries in different
parts of the world. The task is multi-class species classification from 182 different animal species.
Performance is measured by overall classification accuracy for species identification. The original
camera trap data comes from the Wildlife Conservation Society (link).

Deployments: Our deployments were defined to be split across camera trap locations to simulate
the common scenario of researchers setting up new cameras within a region, with poor model
generalization on the new cameras (Wearn & Glover-Kapfer, 2017). Our train/test split was done
randomly across the 200 locations, with the five downstream test tasks created by clustering by the
latitude and longitude of camera GPS location in 4 deployments: (1) Central America, (2) Eastern
Africa, (3) Southern Africa, and (4) Southeast Asia. Similar to most other camera trap datasets,
iWildCam has significant long-tailed label distributions, with variation in species and backgrounds
between locations, as can be seen in Figure E}

Knowledge-driven Subset: These subsets were created by only choosing training data from camera
locations that are within 100km of the camera locations in the deployments (the relevant geographical
area) and eliminating irrelevant classes that are not present in the deployment.

4.2 GEODE

Motivation: Object classification datasets are often constructed by scraping images from the web
but contain geographical biases (Shankar et al.l [2017). Instead of scraping images from the web,
GeoDE (Ramaswamy et al.,2023) crowdsources a dataset that is roughly balanced across 40 different
objects and six world regions, showing that common objects (stoves, bicycles, etc), vary in appearance
across the world. Accordingly, specializing models to different regions becomes useful when the
objects have strong covariate shift.

Problem setting & Data: GeoDE is a diverse dataset of 61,490 images comprising 40 different
objects collected from 6 world regions (Africa, Americas, East Asia, Europe, Southeast Asia, West
Asia). The associated task is multiclass classification, where the goal is to predict the object depicted
in each image.

Deployments: We propose 4 different deployments: (1) objects in Indonesia, (2) objects in Nigeria,
(3) indoor objects, and (4) outdoor objects, as shown in Figure 3] Nigeria and Indonesia were selected
as the two countries with the poorest performance, and the indoor/outdoor deployment tasks were
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Figure 3: The five datasets in our benchmark: iWildCam, GeoDE, AutoArborist, FishDetection, and
NuScenes each have real-world applications in deployment. In iWildCam, GeoDE, and AutoArborist,
we show the class distributions of each deployment; in FishDetection, the number of detections per
image is shown, and in NuScenes environment features. These diagrams show that each dataset
has unique challenges in the deployments that lead to a need for model specialization, including
long-tailedness (AutoArborist, iWildCam), covariate shift (all), subpopulation shifts (GeoDE, FishDe-
tection), and more. These axes of variation are described in depth in Section[d] and further in Apdx [E]
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selected for enabling model specialization. The training dataset includes images from all countries,
and the test data contains only images from Nigeria and Indonesia.

Knowledge-driven Subset: These subsets were generated by selecting data from the relevant
countries/categories in the training data, ie. only selecting African subcontient data for the Nigeria
deployment, Asian subcontinent data for the Indonesia deployment, and indoor/outdoor objects within
the training pool for these deployments.

4.3 AUTOARBORIST

Motivation: Ecological imagery for environmental monitoring, such as automated tree classification,
provides policymakers with critical, data-driven insights to support climate adaptation, urban planning,
and more (Brandt et al.l|2016). This task is associated with fundamental challenges such as noisy
labels, non-iid data, fine-grained and long-tailed class distribution, and geospatial distribution shift.
These challenges lead to a need for specialization of models where general-purpose models fail.

Problem Setting & Data: The AutoArborist dataset is a multi-view, fine-grained visual tree catego-
rization dataset containing street-level images of over 1 million public zone trees from 300 genus-level
categories across 23 major cities in the US and Canada.

Deployments: Deployments in AutoArborist correspond to the development models for use by
individual cities. The deployment cities of (1) Surrey with 66 distinct tree genus classes, (2) Calgary
with 30 classes, (3) Los Angeles with 175 classes, and (4) Washington DC with 67 classes were
chosen due to their diverse climates, species distributions, and urban structures, as seen in FigureE}
Surrey and Calgary were treated as our in-distribution (ID) deployments, with some of these cities
data in the training pool. Washington DC and LA were the out-of-distribution deployments, with no
city data in the training pool.

Knowledge-driven Subset: We used the relevant data from Surrey and Calgary in the training pool
for these ID deployments. Accordingly, we used data from San Francisco and San Jose for Los
Angeles and Charlottesville, Pittsburgh, and New York for Washington DC. Label distribution shift
and covariate shift are visualized in Figure [[0]and [0} respectively.

4.4 FISHDETECTION

Motivation: Climate change, pollution, and overfishing continue to threaten marine biodiversity
across the globe (United Nations| 2023; Di Lorenzo et al.,[2022). Marine imagery is an increasingly
common resource to monitor fish stocks and biodiversity. However, ML methods are difficult to apply
across various environmental settings due to differences in lighting, turbidity, species, vegetation,
camera sensors, etc. (Borremans et al.| 2024} Jerlov, |1976; |Akkaynak & Treibitz,|2019), creating a
need for specialized models.

Problem Setting & Data: We use the public VIAME FishTrack23 dataset (Dawkins et al., [2017)
consisting of 854,078 images across various environmental settings, ranging from freshwater rivers
to deeper benthos. Specifically, the task is to predict bounding box localizations around every fish
present in each image. Performance is measured by mAP across various IoU thresholds. Most of
the images across all datasets are taken from video streams, and can be grouped as such, that were
deployed primarily on camera traps, both baited and unbaited.

Deployments: Deployments are split according to the subsets of the VIAME dataset, which roughly
correspond to geographic regions. Train, test and subset splits are either taken as provided or randomly
sampled frames from each dataset, roughly corresponding to: (1) freshwater Pacific Northwest lakes;
(2) Pacific Ocean; (3) East Atlantic Ocean; and (4) Gulf of Mexico.

Knowledge-driven Subset: For each deployment, we use the subset in the relevant geographical
area (e.g., images from Gulf of Mexico for the Gulf of Mexico deployment).

4.5 NUSCENES

Motivation: End-to-end autonomous driving systems streamline vehicle control by directly mapping
sensory inputs, such as images, to control outputs like steering angles (Wang et al.,|2024). Adapting
these systems to specialize in particular streets or environments is made easier as a single model
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encompasses the full system. Thus, training this model to specialize in a specific environment brings
advantages, capturing detailed local road layouts, traffic patterns, area-specific obstacles, and more.

Problem Setting & Data: We explore vision-based control for self-driving across diverse environ-
ments (e.g., different city areas) and driving scenarios (e.g., pedestrians crossing, construction zones),
formulated as a regression task. This dataset includes 88,461 images from the NuScenes dataset,
subsampled from the image sweeps at a rate of 2. The images were captured from a video stream
recorded while driving a car. Each image is paired with a steering angle control from the CAN bus,
synchronized with the sensor timestamps of both the camera and CAN bus data. The model’s goal is
to predict a single scalar value representing the car’s steering angle. Performance is evaluated in an
open-loop manner using metrics like mean squared error.

Deployments: Deployments are organized by the geographic locations where the data was collected,
including (1) Boston Seaport, (2) Singapore Holland Village, (3) Singapore One-North, and (4) Singa-
pore Queenstown. While all tasks are based on expert demonstrations of driving and general driving
behaviors, each location presents varying environmental features—such as vegetation, road types,
roadside infrastructure, and weather—as well as differences in driving style and road regulations.
Train/test splits are randomly sampled within each deployment.

Knowledge-driven subset: Since this training pool is a combination of the four deployment
locations, we simply use the relevant location’s data as the training subset. For example, we use the
subset of the training pool with Boston Seaport data for the Boston Seaport deployment.

4.6 BENCHMARK PIPELINE

To compete on our benchmark, models must select relevant data from the training pool and then
finetune models on that relevant data. Explicitly, (i) given a small query set representing the
deployment data (we consider both labeled and unlabeled query sets), curate a subset of data from
the training for a specific deployment, (ii) finetune/train a fixed model on the chosen subset from the
training pool and (iii) evaluate on the deployment (test) set (Figure [2)).

For each dataset, we fix the training procedure for all subsets, fixing model architecture, optimizers,
and loss functions. We match the label distribution of the query set to the deployment/test set as
closely as possible using stratified sampling, but from each class of the training pool, we sample
uniformly at random. We run a small hyperparameter sweep for each training subset across batch
sizes {32, 64, 128} and learning rates {0.01,0.001, 0.0001} for each deployment. For all classifica-
tion/regression datasets, we use ResNet50 for full-finetuning (He et al.,[2015) (table E]) and a ViT for
LoRA finetuning (Apdx Table[3)), as well as a ViT (Dosovitskiy et al.l 2020) for linear probes (Apdx
Table ). For the detection dataset, we use a YOLOv8n model, using default parameters, though we
subsample images to 640p. Full details are in Apdx [D}

4.7 METRICS

Participants are evaluated across 12 deployments from five datasets, as outlined in Section[d For
the classification task datasets of GeoDE, AutoArborist, and iWildCam, we report accuracy for each
deployment, for the regression task dataset NuScenes, we report mean squared error, and for the
detection task FishDetection, we report mAP50. For each deployment, we evaluate participants of
the benchmark on overall accuracy of training subset; we also report subset size — while the less data
used the better, we mainly focus on optimal performance, in line with the DS3 formulation.

5 BASELINES

We compare performance of dataset subset selection algorithms across our benchmark, across different
scenarios: (a) access to an unlabeled query set, and (b) access to a labeled query set. We also curate a
third category, (c), which leverages domain expertise to generate expert-selected subsets, in order to
demonstrate the existence of better-than-all subsets for these deployments.

Non-subset comparisons:
No filtering: Performance of a model trained on the entire training pool, without any filtering.
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Query Sets: As a comparison, we also include performance of a model trained directly on the labeled
query set for each deployment. Note that this would require access to query labels, which are not
always available. When labels are available, performance of models trained on the small query sets
are often poor, hence the value of learning from larger-scale general-pool data. As a logistical point,
none of the baselines we show in our results train on query set data.

Expert-Driven Subsets: We contribute curated, "expert knowledge" subsets using domain knowledge
and/or metadata. We find these knowledge-guided subsets often outperform using all samples in the
training pool (no filtering). The creation of these subsets is described per-dataset in section 4]

Unlabeled-query baselines:

Image-alignment (Image-Align): We take the cosine similarity between the training and query embed-
ding space, using examples that exceed a threshold for at least  samples, where x is a hyperparameter
chosen from {1,10,100}.

Nearest neighbors features (Near-Nbors): To better align our method with the downstream deploy-
ment, we explore using examples whose embedding space overlaps with the query set of data. To
do so, we cluster image embeddings extracted by an OpenAl ViT model for each image into 1000
clusters using Faiss (Johnson et al.,2019). Then, we find the nearest neighbor clusters for every query
set example and keep the training cluster closest to each query set cluster. This method was inspired
by the similar DataComp baseline (Gadre et al., 2024)).

Labeled-query baselines:

CLIP score filtering (CLIP-score): We also experiment with CLIP score filtering, using examples
that exceed a threshold for cosine similarity between CLIP image and text similarity. Text for each
image was created with manual captioning (e.g. for iWildCam, "This is a camera trap image of a
lion taken at time 10-2-2016 at 04:26:13 in Nigeria"). We select the subset that exceeds a threshold
of CLIP-score similarity, with the threshold calculated for subsets that make up 25%, 50%, 75%, and
90% of the dataset.

Matching relative frequency (Match-Dist): We explore having access to the relative frequency of
each label in the downstream deployment. For example, a domain expert at a national park might
know the relative frequency of species (deployment-specific domain knowledge). We create subsets
by sampling 25%, 50%, 75%, and 90% of the training pool to match the label distribution of the
deployment.

Matching labels (Match-Label): Similarly, a domain expert may know the classes present in the
downstream deployment. For example, a domain expert at a national park might know the species
present (deployment-specific knowledge) that we can utilize for subset selection. For these subsets,
we simply remove the classes present in the training pool that are not present in the testing pool.

6 RESULTS

Well chosen subsets outperform training on all data. The knowledge-driven subsets in Table/I]
show that deployment-specific well-chosen subsets of the data can significantly outperform models
trained on all the data, with improvements in deployment accuracy up to 3.6% for GeoDE, 11.9%
for iWildCam, 51.3% for AutoArborist, a 0.03 reduction in MSE for NuScenes, and 0.13 increase
in mAPS50 for FishDetection. Even when the knowledge-driven subsets underperform all training
data, as in NuScenes Deployment 2, there exist subsets from other baselines that outperform using all
the data. In Appendix [E] we provide a additional breakdown of the key factors that contributed to
performance gain on these knowledge-driven subsets.

Training on more data has diminishing returns. For all deployments, we see that we can achieve
near-optimal performance with subsets of the data. The knowledge-driven subsets are significantly
smaller than the total training data size, with the average percentage of the total training pool used
being 4% for GeoDE, 11% for iWildCam, 8% for AutoArborist, 10% for NuScenes, and 20% for
FishDetection. Appendix |C|shows that even 25% of the data can perform near-optimally in some
cases, with little performance loss with 50% of the data on the algorithmic baselines. Overall, these
results demonstrate that greater efficiency for training specialized ML models is possible, potentially
reducing computational and data storage burdens in deployable settings.
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. Non subset . Unlabeled query set Labeled query set
Dataset Metric Deploy # Query-set All-data Knowledge-driven Tmage-Align  Near-Nbors | CLIP-score Match-Label ~ Match-Dist
Deploy 1 | 0.87 (500) 0.89 (53k) 0.92 (2.9k) 0.88 (26k) 0.88 (48k) | 0.89 (40k) 0.88 (53k) 0.89 (48k)
GeoDE Ace (#) Deploy 2 | 0.45 (500) 0.89 (53k) 0.91 (2.6k) 0.90 (26k) 0.89 (48k) | 0.90 (40k) 0.90 (53k) 0.88 (27k)
Deploy 3 | 0.95(500)  0.82 (53k) 0.85 (1.4k) 0.85(24k)  0.76 (48k) | 0.84 (40k)  0.83 (1.4k)  0.88 (48k)
Deploy 4 | 0.83(500)  0.83 (53k) 0.85 (2.6k) 0.79 (24k) 078 (48k) | 0.83 (40k)  0.84 (2.6k)  0.83 (13k)
Deploy 1 | 0.70 301)  0.66 (130k) 0.65 (8.5k) 0.56 36k)  0.50 (117k) | 0.50 (97k)  0.74 (8.1k)  0.74 (117k)
WildCam Accy | Deploy2 | 0.78(302) 034 (130K 0.35 (9.2k) 0.44 (45k) 047 (98k) | 0.46(97k)  0.35(55k)  0.49 (65k)
Deploy 3 | 0.44(301)  0.72 (130k) 0.75 (19k) 0.54(24k)  0.45(98k) | 0.42(97k)  0.72(60k)  0.75 (117k)
Deploy 4 | 0.46 (309)  0.66 (130k) 0.67 (21k) 0.60 (22k) 0.60 (33k) | 0.29 (97k) 0.69 (57k) 0.74 (33k)
Deploy 1 | 0.16 (1.5k)  0.35 (781k) 0.86 (70k) 0.38 (44k) 039 (391k) | 0.38(47k)  0.67 (368k)  0.74 (703k)
AutoArborist | Acc(#) | DePloy2 | 020(15k) 048 (781k) 0.86 (123k) 0.11 (49k)  0.14(703k) | 0.14 (47k)  0.65(532k)  0.56 (391k)
§ Deploy 3 | 0.12(1.5k)  0.16 (781k) 0.38 (35k) 0.16 (46k) ~ 0.10(703k) | 0.17 (47k) ~ 0.16 (534k)  0.23 (703k)
Deploy 4 | 0.12 (1.5k)  0.14 (781k) 0.39 (26k) 0.10 (48k)  0.11(391k) | 0.11 47k)  0.10(527k)  0.23 (195k)
Deploy 1 | 0.063 (6.0k) _0.050 (100k) 0.029 (20K) 0.040 (35k) _ 0.040 (90K) | 0.073 (31k) - -
NuScene MSE () | Deploy2 | 0070(1.0k) - 0.021 (100K) 0.049 (4.6k) 0.15(17k)  0.042 (90k) | 0.032(31k)
Deploy 3 | 0.089 (2.7k)  0.068 (100k) 0.038 (10k) 0.049 (28k)  0.13 (90k) | 0.071 (31k)
Deploy 4 | 0.12(1.9k)  0.048 (100k) 0.039 (7.0k) 0.086 (26k)  0.39 (90k) | 0.050 (31k)
Deploy T | 022 (500) _ 0.68 (841K) 0.69 (179K) 0.50 (630K) _ 0.60 (103K) ,
. - Deploy 2 | 0.26 (600)  0.32 (841k) 0.45 (152k) 0.31 (630k)  0.40 (120k)
FishDetection | mAPSO (#) | poriov3 | 013 (s541) 0,32 (841k) 0.39 (6.0k) 028 (630k)  0.23 (204k)
Deploy 4 | 0.079 (519)  0.59 (841k) 0.60 (320k) 0.54 (630k)  0.39 (45k)

Table 1: Best-performing subsets across hyperparameters for baseline methods across all datasets and
deployments (abbreviated as Deploy) for YOLOVS full-finetuning for FishDetection and ResNet50
full-finetuning for the rest. Accuracy is reported for the classification tasks of GeoDE, iWildCam, and
Auto Arborist, mAP50 for FishDetection (greater is better), and MSE for NuScenes (smaller is better).
We include subset size in parentheses. We include results for ViT LoRA finetuning and ViT linear
probes in Appendix [C]in Table [3|and Table[2] which display similar trends. Match-Dist and Match-
Label are not applicable for NuScenes, as it is a regression task and does not have clear classes/labels
for these methods. FishDetection only uses the unlabeled query set, as the ground truth is bounding
boxes, rather than labels themselves. Baselines are distinguished from one another by their access
to information, with each baseline having access to expert knowledge, or a labeled/unlabeled query
set. We do not report the random baseline in this table, but demonstrate results in Appendix [Clas it
mainly refers to subset size. For each deployment, there exists a subset that outperforms training on
all data, indicated in bold.

Methods without access to supervision perform poorly. While the knowledge-driven subsets in
Table [T] demonstrate that a well-chosen subset does exist for all deployments, finding this subset
without extra knowledge is still an open problem. Some of our baselines require access to query
labels, this requirement can in many cases be unrealistic in the deployable ML setting (labels can be
expensive or difficult to collect). The two unsupervised baselines, the nearest neighbors and image
alignment methods, do not perform optimally on the deployments, often underperforming using all
the training data. Our benchmark opens up the line of research for potential unsupervised methods
for this data subset selection process.

7 DISCUSSION AND CONCLUSIONS

DaTaS? is the first benchmark to promote the development of dataset subset selection methods
capable of specialization to diverse real-world deployments. The benchmark is both open-source and
easy to use, lowering the barrier to entry for this new important problem.

DaraS? highlights open challenges for the research community. In our experimental study,
we show that there is no winning baseline that performs well across multiple domains/datasets.
Additionally, while some methods perform well when given access to labeled query sets, no methods
perform well in the unsupervised setting. Finally, some datasets are more challenging than others—
methods may need to specifically target different types of distribution shifts.

DaTtaS? has value beyond subset selection. In addition to the DS3 problem, DaTaS? can be
used as a testbed for various other complementary lines of work, such as domain adaptation, active
learning, coreset selection, and more. We highlight these relevant methods in Appendix [B]

Extensions to other domains. Model specialization for deployments isn’t limited to the domains we
include. We are open to expanding this benchmark to capture more scientific domains, and welcome
further dataset contributions from the broader ML and scientific research community.
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