
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALIGNING LLMS WITH GRAPH NEURAL SOLVERS
FOR COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research has demonstrated the effectiveness of large language models
(LLMs) in solving combinatorial optimization problems (COPs) by represent-
ing tasks and instances in natural language. However, purely language-based ap-
proaches struggle to accurately capture complex relational structures inherent in
many COPs, rendering them less effective at addressing medium-sized or larger
instances. To address these limitations, we propose AlignOPT, a novel approach
that aligns LLMs with graph neural solvers to learn a more generalizable neural
COP heuristic. Specifically, AlignOPT leverages the semantic understanding ca-
pabilities of LLMs to encode textual descriptions of COPs and their instances,
while concurrently exploiting graph neural solvers to explicitly model the under-
lying graph structures of COP instances. Our approach facilitates a robust integra-
tion and alignment between linguistic semantics and structural representations,
enabling more accurate and scalable COP solutions. Experimental results demon-
strate that AlignOPT achieves state-of-the-art results across diverse COPs, un-
derscoring its effectiveness in aligning semantic and structural representations. In
particular, AlignOPT demonstrates strong generalization, effectively extending to
previously unseen COP instances.

INTRODUCTION

Combinatorial optimization problems (COPs), which involve finding optimal solutions from finite
sets of objects, underpin numerous real-world applications in logistics, scheduling, and network
design (Bengio et al., 2021). Typical COPs, such as the Traveling Salesman Problem (TSP), Vehi-
cle Routing Problem (VRP), and Knapsack Problem (KP), are notoriously challenging due to their
NP-hard nature, requiring efficient heuristic or meta-heuristic solutions (Wang & Sheu, 2019; Kon-
stantakopoulos et al., 2022; Lin et al., 2024). Traditionally, COPs have been approached through
exact optimization methods and domain-specific heuristics. However, these methods often require
extensive domain knowledge and manual tuning, making them less adaptable to new problem vari-
ants or different application contexts.

Recent studies indicate that large language models (LLMs) have emerged as powerful and versatile
tools for tackling a diverse range of COPs. By framing COPs within natural language descriptions,
LLM-based methods have demonstrated initial success in automatically solving optimization prob-
lems. Nevertheless, despite these advancements, the current capability of LLMs to directly generate
solutions remains primarily restricted to relatively small-scale problem instances, such as TSP with
fewer than 30 nodes (Yang et al., 2023; Iklassov et al., 2024). In addition, existing LLM-based
solutions still encounter inherent limitations when addressing COPs characterized by complex un-
derlying structures, particularly graph problems (Cappart et al., 2023; Bengio et al., 2021; Drakulic
et al., 2024). Pure language models inherently lack explicit structural reasoning capabilities, making
it difficult for them to effectively capture and represent intricate relational information in graphs.
Consequently, these limitations can significantly degrade solution optimality and overall quality,
substantially limiting the applicability of LLM-driven approaches in realistic, large-scale settings,
particularly in fields such as logistics, transportation, and supply chain management, where typical
problem instances involve hundreds to thousands of nodes (Bengio et al., 2021).

To address these challenges, we propose AlignOPT, a novel framework designed to integrate the
complementary capabilities of LLMs and graph-based neural solvers for COPs. Specifically, LLMs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

provide robust semantic understanding and flexible representation of natural language instructions,
while graph-based neural solvers explicitly capture relational structures and topological dependen-
cies inherent in COP instances. To effectively align these two modalities, AlignOPT introduces
a multi-task pre-training strategy comprising two novel objectives: (1) a Text-Graph Contrastive
(TGC) loss, designed to align semantic node embeddings from LLMs with structural embeddings
from graph-based neural solvers, and (2) a Text-Graph Matching (TGM) loss, facilitating fine-
grained multimodal node representation. By jointly optimizing these objectives, AlignOPT pro-
duces unified representations that enhance the accuracy and richness of COP embeddings. In this
way, AlignOPT leverages guidance from LLMs exclusively during the pre-training stage to embed
optimization knowledge into the graph neural solver (encoder). In the fine-tuning stage, AlignOPT
fine-tunes the graph encoder along with a decoder trained via reinforcement learning to learn ef-
fective optimization policy. Consequently, AlignOPT utilizes only the graph encoder and decoder
for inference, processing inputs directly as graphs without relying on textual input or an LLM. This
approach significantly reduces inference overhead and enhances computational efficiency, enabling
AlignOPT to achieve superior generalization and solution quality across diverse COPs.

Overall, the main contributions of this work to the COPs research can be summarized as follows.

• We introduce a novel framework AlignOPT, that explicitly aligns LLMs with graph-
based neural solvers, bridging the gap between semantic and structural representations
in COPs and moving beyond the single-modality reliance of current LLM-based models.

• AlignOPT performs multi-task pre-training across diverse text-attributed COPs, fa-
cilitating a more informative encoding process and subsequent fine-tuning. This enables
the generation of effective and unified solutions for various COPs and adapts efficiently to
unseen COPs without further reliance on LLMs during inference.

• Extensive experiments on synthetic COP instances and real-world benchmarks demonstrate
the effectiveness of our proposed AlignOPT, achieving high performance gains over state-
of-the-art solvers.

RELATED WORK

Neural Combinatorial Optimization Constructive neural combinatorial optimization (NCO)
methods aim to learn policies that iteratively construct solutions in an autoregressive manner. Early
approaches primarily employed pointer networks (Vinyals et al., 2015; Bello et al., 2016), a class of
recurrent neural networks (RNNs) that encode inputs and generate outputs through a sequence-to-
sequence framework. Building on the Transformer architecture (Vaswani et al., 2017), the Attention
Model (AM) (Kool et al., 2018) was subsequently developed to address vehicle routing problems
(VRPs), demonstrating superior performance compared to traditional heuristic methods. Following
this, various strategies have been proposed to further improve Transformer-based NCO models by
exploiting the inherent symmetries in combinatorial optimization problems (COPs) (Kwon et al.,
2020; Kim et al., 2022; Fang et al., 2024) and incorporating efficient active search techniques (Hot-
tung et al., 2021; Choo et al., 2022; Qiu et al., 2022). More recently, some work extends constructive
NCO to be one-for-all solvers aiming at multiple COPs by a single model (Zhou et al., 2024; Zheng
et al., 2024; Berto et al.; Drakulic et al., 2024; Li et al.). However, they are constrained by specific
problem structures, such as vehicle routing, which limits their representational scope and under-
mines the model’s learning capacity. In contrast, our AlignOPT delves into general text-attributed
COPs described in natural language. Leveraging the unified semantic representations inherent in
LLMs, AlignOPT enables a general model to accommodate a wide range of COPs. Compared with
GOAL (Drakulic et al., 2024) which proposes a unified encoder that is trained with supervised fine-
tuning. AlignOPT goes further by 1). Explicitly aligning this encoder with structured optimization
insights derived from LLMs during pre-training. 2) Perform multi-task fine-tuning with reinforce-
ment learning, ensuring superior generalization across diverse routing tasks during the fine-tuning
stage. These enhancements explicitly encode generalized optimization reasoning from LLMs, en-
abling the model to robustly generalize to diverse routing problems encountered in practice.

LLM for Combinatorial Optimization Recent research on the application of LLMs to COPs
has demonstrated promising and impactful results. As early attempts, LLMs operate as black-box
solvers that either directly generate feasible solutions with natural language problem descriptions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Abgaryan et al., 2024) or iteratively refine initial solutions through guided search mechanisms
(Yang et al., 2023; Liu et al., 2024b). Notably, recent findings indicate that LLMs often exhibit lim-
ited generalization capabilities, tending instead to replicate memorized patterns from training data
rather than performing robust, adaptable reasoning (Zhang et al., 2024; Iklassov et al., 2024). On
the other hand, LLMs can be tasked with generating executable code that implements heuristic al-
gorithms for solving COPs (Romera-Paredes et al., 2024; Liu et al., 2024a; Ye et al., 2024). By
initializing a code template, LLMs iteratively refine algorithmic heuristics through an evolutionary
process. While this approach demonstrates promising flexibility, it often requires substantial domain
expertise and incurs high token usage for each specific problem instance. The most relevant work
to us is LNCS (Jiang et al., 2024), which integrates LLMs with NCO model to unify the solution
process across multiple COPs. However, LNCS sequentially utilizes LLMs and Transformer archi-
tectures, resulting in a notable modality gap when compared to specialized neural solvers designed
explicitly for COPs. Moreover, LNCS heavily depends on the inference efficiency of LLMs, which
is frequently constrained by significant computational requirements and limited context lengths, thus
restricting their scalability when inference on large-scale COPS. Instead, we propose AlignOPT to
align LLMs, adept at semantic understanding, with graph-based neural solvers, proficient in captur-
ing structural information, aiming to enhance solution quality and generalization capabilities. Note
that after pre-training of AlignOPT, LLMs are no longer required during the fine-tuning and infer-
ence stages. This allows inference to be performed rapidly without the latency or cost associated
with real-time LLM queries, significantly enhancing practical usability, scalability, and deployment
feasibility.

PRELIMINARIES

Combinatorial Optimization Problems Solving COPs involves identifying the optimal solution
from a finite set of feasible candidates. Such problems are defined by their discrete nature, with
solutions commonly represented as integers, sets, graphs, or sequences (Blum & Roli, 2003). Most
COPs can be defined over a graph G with nodes and edges. Specifically, a COP P = (S, f) can be
formulated as follows:

min
X

f(X,P) s.t. cj(X,P) ≤ 0, j = 0, 1, . . . , J. (1)

where X = {xi ∈ Di | i = 1, . . . , n} is a set of discrete variables; f(X,P) indicates the objective
function of COP and c(X,P) denotes the problem-specific constraints for the variable X . Note that
typical COPs (e.g., TSP, CVRP, KP) are NP-hard problems. As a result, identifying the optimal
solution s∗ is computationally intractable in many practical scenarios. Therefore, a more tractable
approach involves searching for a set of feasible solutions S rather than striving for exact optimality.
The set S is formally defined as:

S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di, c(X,P) ≤ 0} . (2)

where a solution s satisfies f(s, P) ≥ f(s∗, P),∀s ∈ S.

Neural Construction Heuristics for COPs Learning construction heuristics has become a widely
adopted paradigm for addressing Vehicle Routing Problems (VRPs) (Bello et al., 2016; Kool et al.,
2018; Kwon et al., 2020). In this framework, solutions are constructed incrementally by sequentially
selecting valid nodes, a process effectively modeled as a Markov Decision Process (MDP). At each
step, the agent observes a state composed of the problem instance and the current partial solution,
and selects a valid node from the remaining candidates. This process continues iteratively until a
complete and feasible solution is obtained.

The solution construction policy is typically parameterized by a neural network, such as a Long
Short-Term Memory (LSTM) or Transformer, denoted by θ. At each decision step, the policy in-
fers a probability distribution over the valid nodes, from which one is sampled and appended to
the partial solution. The overall probability of generating a tour π is then factorized as pθ(π|G) =∏T

t=1 pθ(πt|G, π<t), where πt denotes the node selected at time step t, and π<t represents the se-
quence of previously selected nodes (i.e., the current partial solution). To optimize the policy pa-
rameters θ, the REINFORCE algorithm (Williams, 1992), a foundational policy gradient method in
deep reinforcement learning, is commonly utilized.

∇θL(θ|G) = Epθ(π|G)[(c(π)− b(G))∇ log pθ(π|G)]. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task Description: For a travel salesman problem
(TSP), there will be a list of nodes distributed in a unit
square, representing a series of cities…
Instance Description: Node (0). Attribution: [0.6184,
0.8962]. The 3 nearest nodes and distances: [(17):
0.1067, (6): 0.1451, (7): 0.2120]; Node (1). : …

Task Description: For a knapsack problem (KP), there
will be a list of nodes distributed in an unit square,
representing a series of items…
Instance Description: Node (0). Attribution: [0.2667,
0.9909]. Value-to-weight ratio and importance rank:
[3.7151, 7]; Node (1). Attribution: [0.6706, 0.1806]…

LLM

Unified
Decoder

Graph-
based
Encoder

…

(a) Pre-training with TGM and TGC

Graph-
based
Encoder

(b) Fine-tuning without LLM

Codebook

Mixed Attention

Add & Norm

Feed
Forward

Output
Adapter

Add & Norm

Input
Adapter

𝑸𝒎 + 𝑸𝒎𝒏#

𝑲𝒎+ 𝑲𝒎𝒏#

𝑽𝒎
MatMul

SoftMax

MatMul

(c) Graph-based Encoder

×L
×H

One-hot COP
Representation

Constraints
Vector

First Node

Selected Node

𝒉𝒙
𝒉𝒈

𝒉𝒈

COP Instance

COP Instance

TGM loss

TGC loss

Figure 1: Overall workflow of AlignOPT. (a) AlignOPT first performs multi-task pretraining on
diverse COPs to align semantic and structural node representations with TGC and TGM losses. The
LLM remains frozen and processes the TAIs to generate semantic node representations. (b) The
encoder and decoder are then fine-tuned through reinforcement learning to solve COPs. Notably,
LLMs are excluded during this phase to ensure computational efficiency, as the encoder has already
been aligned with LLM-derived representations during pre-training. (c) The model architecture of
the graph-based encoder, which applies a mixed attention mechanism that enables handling COPs
represented by graphs.

where c(π) is the cost of the constructed tour π (e.g., total length), and b(·) is an action-independent
baseline function employed to reduce the variance of the gradient estimates.

THE PROPOSED FRAMEWORK

We propose AlignOPT, a unified framework to align LLMs with graph-based neural solvers for
solving COPs. The overall framework of AlignOPT is illustrated in Fig. 1. This section first describes
how AlignOPT derives node representations from LLMs and graph-based encoders, followed by
detailing its pre-training objectives.

COP-SPECIFIC TEXT-ATTRIBUTED REPRESENTATIONS

We start from a recent work LNCS, which represents each COP instance as a text-attributed instance
(TAI) (Jiang et al., 2024). Specifically, the COPs are denoted by T (GP) = {κP , vP }, where κP is
the task description specifying the general structure of the problem, such as decision variables, con-
straints, and objective function, while vP is the instance description detailing node- or edge-specific
features. Specifically, both the instance and the task description are encoded by the LLM, denoted
by xP

i = LLM(vPi) and kP = LLM(κP), respectively. The resulting node embeddings {xP
i }ni=1

encapsulate information specific to each instance, whereas the task embedding kP captures domain-
specific semantic attributes pertinent to the COP P . In this work, AlignOPT incorporates task rep-
resentation kP into the LLM pathway to obtain COP-specific text-attributed representations. Each
node’s LLM representation is enhanced with its task representations (i.e., x′P

i = Concat
(
xP
i , k

P
)
).

While this design verifies that neural solvers can be enhanced by the semantics representation of
COPs with LLMs, the semantic and structural modalities of COPs remain loosely coupled. In the
following subsection, we present how AlignOPT addresses this limitation by: (1) modeling COPs
with a graph-based neural encoder that captures the structural dependencies among nodes; and (2)
pretraining the solver on a diverse set of COP instances while aligning its representations with those
of an LLM through a contrastive loss objective.

GRAPH-BASED NEURAL ENCODER

We apply a graph-based neural encoder in AlignOPT, capturing the structural node representa-
tions that inherently exist in COPs. Specifically, the encoder stems from the architecture of GOAL
(Drakulic et al., 2024), which employs a backbone comprising shared self-attention transformer lay-
ers alongside task-specific adapter modules for learning a generalist solver. Specifically, the back-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

bone architecture includes (1) task-specific low-rank adapter modules for input and output process-
ing, (2) a shared codebook that projects low-dimensional node/edge features into the full hidden
space, (3) a stack of shared mixed attention blocks. Keeping the same use of the first two parts, we
detail how we structure the mixed attention to extend standard self-attention for integrating node and
edge components in attention scores.

Instead of attention scores solely computed with node representations, for each mixed-attention head
h, node representations are linearly projected into query (Q(h)

n), key (K(h)
m), and value (V (h)

m) vec-
tors, while edge representations Emn are projected separately into corresponding query-like (Q′(h)

mn)
and key-like (K ′(h)

mn) vectors as follows:

K ′(h)
mn = EmnW

′
K

(h)
Q′(h)

mn = EmnW
′
Q
(h)

. (4)

Consequently, the attention score is computed as:

S(h)
mn = ⟨K(h)

m +K ′(h)
mn |Q(h)

n +Q′(h)
mn ⟩. (5)

where the inner product ⟨|⟩ adds node and edge representations and calculates the attention scores
by standard self-attention (Vaswani et al., 2017). The resulting attention scores computed across
all attention heads are subsequently processed by applying an optional log-binary mask M, This
ensures that attention is only computed between node-edge pairs that satisfy both the task-specific
feasibility criteria (i.e., valid interactions required by the combinatorial optimization task) and graph
structural constraints (i.e., connections reflecting the underlying graph topology). Following this
masking step, the scores undergo column-wise softmax normalization, yielding the final normalized
attention distributions. Consequently, the final output representation of mixed attention {gPi }Ni=1 of
the N input query nodes is an g ∈ RN×dg matrix:

gP =
∑
h

softmaxcol(S
(h)
mn +M)⊤V (h)

m W
(h)⊤
O . (6)

To ensure dimensional compatibility with LLM-generated semantic representations, both textual
representations and graph-based representations are collected through a comprehensive encoding
pipeline. Specifically, the textual representations xP ∈ RN×dl are obtained by processing node-
level natural language descriptions using frozen LLMs (e.g., Llama3.1 8B). Specifically, tokenized
descriptions are encoded into embeddings Enode ∈ RN×S×D and mean-pooled over tokens to form
compact node embeddings hi ∈ RD, capturing semantic information from problem formulations.
The graph-based representations gP ∈ RN×dg are derived via graph encoders, employing message-
passing operations on problem-specific graphs to encode structural dependencies and topological
constraints consistent with downstream COPs. Both representations (i.e., xP and gP) are then lin-
early projected into a unified latent space, resulting in LLM representations hx ∈ RN×dh and graph
representations hg ∈ RN×dh for each COP instance.

ALIGNING LLM WITH GRAPH-BASED NEURAL SOLVERS

While the graph-based encoder captures structural patterns of COPs, LLMs encode semantic as-
pects, such as textual objectives, constraints, and heuristic rules. Aligning these representations en-
ables integrated structural-semantic reasoning, enhancing solution quality and generalization. To
this end, we introduce two pre-training objectives: a text-graph contrastive (TGC) loss that aligns
semantic and structural node representations, and a text-graph matching (TGM) loss that facilitates
fine-grained multimodal node embeddings.

Text-Graph Contrastive (TGC) Loss Inspired by recent advances in vision-language contrastive
paradigms (Chen et al., 2020; Li et al., 2022), AlignOPT extends the InfoNCE loss to bridge the
modality gap between textual and graph-based representations for solving COPs. Positive pairs com-
prise LLM and graph representations of identical nodes, whereas negative pairs include embeddings
from distinct nodes within the same batch. The proposed text-graph contrastive (TGC) loss maxi-
mizes positive pair similarity and minimizes negative pair similarity:

LTGC = − log
exp

(
sim(hi

x,h
i
g)/τ

)
∑B

j=1 1[j ̸=i] exp
(
sim(hi

x,h
j
g)/τ

) . (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where hi
x and hi

g are LLM and graph representations of node i retrieved from hx ∈ RN×dh and
hg ∈ RN×dh , sim(·, ·) denotes the cosine similarity function, τ is a temperature hyperparameter
scaling similarity scores, and B represents the batch size.

Text-Graph Matching (TGM) Loss In addition to the TGC loss, which aligns the textual node
representations and graph-based node representations in a shared latent space, we further introduce
a Text-Graph Matching (TGM) objective, which is formulated as a binary classification task that
encourages the model to explicitly distinguish between positive (matched) or negative (unmatched)
text-graph pairs. Specifically, each graph-based representation h̄g = 1

N

∑
i h

i
g is paired with two

types of textual features: positive textual features h̄x = 1
N

∑
i h

i
x from the identical problem in-

stance, and negative textual features randomly sampled from other instances within the same batch.
The ground truth labels are constructed automatically based on instance correspondence: a pair
(h̄xi

, h̄gj
) is labeled as positive (y = 1) if j = i, and negative (y = 0) otherwise. The concatenated

vector [h̄xi
, h̄gj

] is fed into a binary classification head to predict the matching probability:

pij = σ
(
MLP([h̄xi

, h̄gj
])
)
, (8)

where σ is the sigmoid function. The TGM loss is then defined as the binary cross-entropy:

LTGM = − 1

M

M∑
i=1

M∑
j=1

[yij log pij + (1− yij) log(1− pij)] , (9)

where M is the batch size, and yij = 1[j=i] is the ground truth label indicating whether the text
and graph representations originate from the same instance. A textual representation is considered
to be noisy if the TGM head predicts it as unmatched to the graph-based representation. The overall
training objective is:

L = LTGC + λ · LTGM, (10)

where λ is a task-balancing coefficient. This dual-loss framework explicitly encourages fine-grained
alignment between textual semantics and structural graph embeddings, enhancing robustness against
modality misalignment and improving generalization to diverse combinatorial optimization in-
stances. We provide an ablation study to investigate the effectiveness of the joint loss functions
in Table 3.

FINE-TUNING SCHEMES

After pretraining the model to align textual (LLM-derived) and structural (graph-derived) represen-
tations, AlignOPT employs two distinct fine-tuning paradigms, both leveraging a unified decoder
trained via reinforcement learning. Single-Task Fine-Tuning (STFT) optimizes model parameters us-
ing data exclusively from every single COP. Multi-Task Fine-Tuning (MTFT) simultaneously trains
on diverse COPs, using a stochastic sampler that constructs batches by selecting p% (p ∼ U(30, 50))
samples from a single randomly chosen task and the remaining (100 − p)% uniformly from other
tasks. AlignOPT follows existing works to utilize a multi-head self-attention based decoder to gen-
erate COP solutions (Kool et al., 2018). The model is then trained with a conflict-free reinforcement
learning for multi-task training for COPs (Jiang et al., 2024).

EXPERIMENTS

Experimental Settings The proposed AlignOPT is evaluated across five representative COPs: the
Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Problem (CVRP), Knapsack Prob-
lem (KP), Minimum Vertex Cover Problem (MVCP), and Single-Machine Total Weighted Tardiness
Problem (SMTWTP). Additionally, the pre-trained AlignOPT is fine-tuned on two unseen tasks, in-
cluding the Vehicle Routing Problem with Backhauls (VRPB) and the Maximum Independent Set
Problem (MISP). The evaluation leverages synthetic COP instances, with detailed procedures for
data generation and their corresponding TAI examples provided in the supplementary materials.

Baselines We compare our AlignOPT with LLM-based solvers, traditional solvers, and NCO
solvers. (1) LLM-based Solvers: We begin by comparing our approach with existing LLM-based

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method n = 20 n = 50 n = 100

TSP

AEL 7.78% 10.50% 12.35%
ReEvo 7.77% 10.23% 11.87%
SGE 11.32% 45.28% -
LMEA∗ 3.94% - -
ORPO∗ 4.40% 133.0% -
LNCS 0.39% 1.62% 4.38%
AlignOPT(MTFT) 0.00% 0.53% 1.03%
AlignOPT(STFT) 0.00% 0.35% 0.38%

CVRP

ReEvo 5.19% 14.27% 19.59%
SGE 76.46% 144.21% -
LNCS 2.54% 3.63% 5.58%
AlignOPT(MTFT) 1.31% 3.47% 5.05%
AlignOPT(STFT) 0.49% 3.09% 4.39%

KP

ReEvo 0.14% 4.31% 9.40%
SGE 42.62% 39.08% -
LNCS 0.10% 0.07% 0.04%
AlignOPT(MTFT) 0.08% 0.03% 0.12%
AlignOPT(STFT) 0.00% 0.00% 0.00%

Table 1: The optimality gaps of LLM-based approaches on different tasks. *: Results are drawn from
the original literature. -: Excessively long time leads to unavailability. Bold indicates the best results
among comparable methods.

methods, including OPRO (Yang et al., 2023) and LMEA that aim to directly generate solutions
from textual descriptions of the optimization problems. We further consider (Liu et al., 2024b), AEL
(Liu et al., 2023), ReEvo (Ye et al., 2024), and SGE (Iklassov et al., 2024), which leverage LLMs
to autonomously generate heuristic strategies for solving COPs. Specifically, AEL and ReEvo are
applied to evolve constructive heuristics for the TSP, while ReEvo is also employed to enhance the
ant colony optimization (ACO) method for solving the CVRP and the KP. (2) Traditional Solvers:
We utilize OR-Tools, a heuristic optimization framework, to address the TSP, CVRP, and KP. In
addition, we benchmark against established heuristic methods, including the nearest neighbor and
farthest insertion heuristics for TSP; the sweep algorithm and the parallel savings algorithm for
CVRP (Rasku et al., 2019); a greedy policy for KP; the MVCApprox method (Bar-Yehuda &
Even, 1985) and the REH (Pitt, 1985) for MVCP; and EDD dispatching rule (Jackson, 1955) for
SMTWTP. We also include Ant Colony Optimization (ACO) as a metaheuristic baseline, configured
with 20 ants and 50 iterations (Ye et al., 2023). (3) NCO Solvers: Since AlighOPT aims at a wide
spectrum of COPs, we compare it with GOAL (Drakulic et al., 2024), the state-of-the-art one-for-all
solver trained with supervised learning for assorted COPs. Likewise, we compare with LNCS (Jiang
et al., 2024), a LLM-based NCO solver that addressed disparate COPs.

Comparison with LLM-based Solutions The experimental comparison presented in Table 1
evaluates the performance of our proposed AlignOPT method against recent LLM-based methods
across 3 representative COPs. To be specific, AlignOPT(STFT) consistently achieves the lowest op-
timality gaps across TSP, CVRP, and KP, significantly outperforming other recent LLM-based meth-
ods such as AEL, ReEvo, SGE, LMEA, and ORPO. For instance, in TSP, AlignOPT(STFT) attains
gaps of only 0.00%, 0.35%, and 0.38% at problem sizes 20, 50, and 100, respectively, markedly
better than LNCS (0.39%, 1.62%, 4.38%) and competitors like ReEvo and SGE, which exhibit
gaps exceeding 10% at larger sizes. In CVRP, AlignOPT(STFT) demonstrates significantly smaller
gaps (0.49%, 3.09%, and 4.39% respectively), substantially outperforming methods like ReEvo and
SGE, which present notably higher gaps, especially at larger instances. For KP, AlignOPT(STFT)
achieves perfect optimality (0.00% gap) across all evaluated sizes, clearly surpassing the perfor-
mance of LNCS (0.10%, 0.07%, 0.04%), ReEvo (up to 9.40% on n = 100), and SGE (up to 42.62%
on n = 20). These results validate the effectiveness of AlignOPT in solving relatively large COPs
(i.e., n > 30) by leveraging the structural information inherently embedded in their formulations.

Comparison with Traditional and NCO solvers We present the experimental comparison be-
tween AlignOPT and baselines in Table 2. Overall, AlignOPT consistently achieves competitive
performance across various problem sizes (n = 20, 50, 100). Specifically, AlignOPT(STFT), which
fine-tunes on task-specific instances, demonstrates superior or comparable results to all baseline
methods. For instance, in TSP, AlignOPT(STFT) achieves the lowest objective values at all sizes,
closely matching the state-of-the-art solver LKH3 and significantly outperforming classical heuris-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

TS
P

Method n = 20 n = 50 n = 100
Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 3.85 0.00% 0.05s 5.69 2.80% 0.26s 7.76 0.00% 2.05s
OR tools 3.85 0.00% 0.36s 5.87 3.07% 0.60s 8.13 4.77% 1.32s
Nearest neighbor 3.91 1.45% 0.06s 5.89 3.51% 0.03s 9.69 24.87% 0.10s
Farthest insertion 3.96 2.89% 0.21s 5.98 4.97% 4.73s 8.21 5.80% 126s
ACO 3.94 2.23% 0.74s 6.54 14.54% 1.53s 9.99 28.74% 2.01s
LNCS 3.87 0.55% 0.31s 5.79 1.64% 0.49s 8.10 4.38% 0.81s
GOAL 3.86 0.26% 0.012s 5.76 1.23% 0.018s 7.98 2.84% 0.028s
AlignOPT(MTFT) 3.85 0.00% 0.048s 5.74 0.53% 0.082s 7.84 1.03% 0.165s
AlignOPT(STFT) 3.85 0.00% 0.048s 5.71 0.35% 0.082s 7.79 0.38% 0.165s

C
V

R
P

HGS 6.10 0.00% 0.2s 10.36 0.00% 0.6s 15.49 0.00% 2.22s
OR tools 6.18 1.30% 0.27s 11.05 6.63% 0.48s 17.36 12.07% 1.40s
Sweep heuristic 7.51 23.17% 0.01s 15.65 50.95% 0.05s 28.40 83.39% 0.25s
Parallel saving 6.33 3.85% <0.01s 10.90 5.18% <0.01s 16.42 6.03% 0.03s
ACO 7.72 26.56% 0.80s 15.76 52.12% 1.97s 26.66 72.11% 4.90s
LNCS 6.25 2.51% 0.315s 10.74 3.62% 0.495s 16.35 5.59% 0.820s
GOAL 6.20 1.50% 0.013s 10.73 3.55% 0.019s 16.30 5.30% 0.029s
AlignOPT(MTFT) 6.18 1.31% 0.051s 10.72 3.47% 0.087s 16.27 5.048% 0.172s
AlignOPT(STFT) 6.13 0.49% 0.051s 10.68 3.09% 0.087s 16.17 4.39% 0.172s

K
P

OR tools 7.948 0.00% <0.01s 20.086 0.00% <0.01s 40.377 0.00% <0.01s
Greedy policy 7.894 0.67% <0.01s 20.033 0.26% <0.01s 40.328 0.12% <0.01s
ACO 7.947 0.00% 0.72s 20.053 0.15% 2.19s 40.124 0.62% 3.41s
LNCS 7.939 0.10% 0.308s 20.071 0.06% 0.485s 40.361 0.03% 0.800s
GOAL 7.941 0.09% 0.012s 20.078 0.04% 0.017s 40.370 0.11% 0.027s
AlignOPT(MTFT) 7.942 0.08% 0.049s 20.081 0.03% 0.084s 40.372 0.12% 0.168s
AlignOPT(STFT) 7.948 0.00% 0.049s 20.085 0.00% 0.084s 40.380 0.00% 0.168s

M
V

C
P Gurobi 11.95 0.00% <0.01s 28.812 0.00% 0.01s 56.191 0.00% 0.02s

MVCApprox 14.595 22.13% <0.01s 34.856 20.98% <0.01s 68.313 21.57% <0.01s
REH 16.876 41.22% <0.01s 41.426 43.78% <0.01s 81.860 45.68% <0.01s
LNCS 12.900 7.93% 0.310s 32.101 11.42% 0.485s 64.893 15.49% 0.800s
GOAL 12.750 6.50% 0.012s 31.800 10.40% 0.017s 64.300 14.50% 0.026s
AlignOPT(MTFT) 12.703 6.30% 0.048s 31.751 10.20% 0.081s 64.257 14.35% 0.163s
AlignOPT(STFT) 12.597 5.41% 0.048s 31.562 9.54% 0.081s 64.091 14.06% 0.163s

SM
TW

TP Gurobi 0.1017 0.00% 0.02s 0.2148 0.00% <0.01s 0.2438 0.00% 0.35s
ACO 0.2967 191.74% 0.35s 1.0471 387.48% 1.35s 6.77 2677% 2.00s
LNCS 0.2862 181.41% 0.315s 0.3353 56.10% 0.492s 0.3316 36.01% 0.815s
GOAL 0.2848 179.50% 0.013s 0.3335 55.20% 0.019s 0.3298 35.20% 0.029s
AlignOPT(MTFT) 0.2835 64.12% 0.052s 0.3328 35.45% 0.089s 0.3291 25.919% 0.175s
AlignOPT(STFT) 0.2829 64.05% 0.052s 0.3318 35.26% 0.089s 0.3285 25.78% 0.175s

Table 2: Performance comparison on 1K instances. AlignOPT(MTFT) denotes multi-task fine-
tuning on diverse COPs, while AlignOPT(STFT) refers to fine-tuning on the target COP. Obj. indi-
cates the average objective values. LNCS uses LLM Encoder + Transformer Decoder, GOAL uses
GNN only, and AlignOPT uses GNN + Transformer Decoder.

tics such as Nearest Neighbor and Farthest Insertion, as well as the LNCS baseline. In CVRP,
AlignOPT(STFT) substantially outperforms heuristics like Sweep and Parallel Saving, delivering
objective values closely aligned with HGS, the leading solver. For KP, AlignOPT(STFT) achieves
optimal solutions on par with OR tools and keeps outperforming heuristic methods and LNCS.
Notably, classical optimization solvers such as Gurobi consistently perform best for MVCP and
SMTWTP, yet AlignOPT(STFT) significantly narrows the performance gap compared to heuristic
methods and the LNCS baseline. Specifically, for MVCP at n = 100, AlignOPT(STFT) achieves a
14.06% gap, improving over REH (45.68%) by 31.62% and slightly outperforming LNCS (15.49%).
At n = 50, it further reduces the gap to 9.54%, compared to REH’s 43.78% and LNCS’s 11.42%. For
SMTWTP, where ACO struggles to produce feasible solutions across all scales, AlignOPT(STFT)
consistently outperforms LNCS, achieving gaps of 25.78%, 35.26%, and 64.05% at n = 100, 50,
and 20, respectively, compared to LNCS’s 36.01%, 56.10%, and 181.41%. These results underscore
AlignOPT’s robust performance and its capability to generalize effectively across diverse tasks.
AlignOPT (particularly STFT variant) consistently outperforms GOAL across all tested combina-
torial optimization problems, while maintaining comparable computational efficiency, with STFT
demonstrating superior balance between solution quality and speed.

Generalization on Unseen COPs Although the efficacy of AlignOPT has been validated across
multiple COPs, an important consideration remains its capacity to generalize effectively to pre-
viously unseen COPs. To address this, we fine-tune the pre-trained AlignOPT model (i.e.,
AlignOPT(STFT)) on new COPs, specifically SDVRP, PCTSP, and SPCTSP, each with a prob-
lem size of n = 50. Baseline comparisons are established by randomly initializing AlignOPT and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

40 80 120 160 200
Epoch

10

12

14

16

18

20

Ob
j.

SDVRP (n=50)
From scratch
Fine-tune

40 80 120 160 200
Epoch

4

6

8

10

12

14

Ob
j.

PCTSP (n=50)
From scratch
Fine-tune

40 80 120 160 200
Epoch

4

6

8

10

12

14

Ob
j.

SPCTSP (n=50)
From scratch
Fine-tune

Figure 2: Generalization results on 3 unseen COPs.

Sin
gle

-Ta
sk

Mult
i-Ta

sk
5.4

5.5

5.6

5.7

5.8

5.9

6.0

Ob
je

ct
iv

e
Va

lu
e

5.71
5.74

5.69
5.73

TSP (n=50)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
10.4

10.5

10.6

10.7

10.8

10.9

11.0

Ob
je

ct
iv

e
Va

lu
e

10.72
10.6810.67

10.7

CVRP (n=50)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
20.00

20.02

20.04

20.06

20.08

20.10

20.12

20.14

Ob
je

ct
iv

e
Va

lu
e

20.085 20.08120.087
20.078

KP (n=50)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
31.2

31.4

31.6

31.8

32.0

32.2

Ob
je

ct
iv

e
Va

lu
e

31.562

31.751

31.498

32.08

MVCP (n=50)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
0.328

0.329

0.330

0.331

0.332

Ob
je

ct
iv

e
Va

lu
e

0.3291

0.3318

0.329

0.332

SMTWTP (n=50)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
7.6

7.7

7.8

7.9

8.0

Ob
je

ct
iv

e
Va

lu
e

7.79

7.84
7.8

7.86

TSP (n=100)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
16.00

16.05

16.10

16.15

16.20

16.25

16.30

16.35

16.40

Ob
je

ct
iv

e
Va

lu
e

16.17

16.27

16.19

16.29

CVRP (n=100)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
40.20

40.25

40.30

40.35

40.40

40.45

40.50

Ob
je

ct
iv

e
Va

lu
e 40.38 40.372

40.33
40.31

KP (n=100)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
63.8

63.9

64.0

64.1

64.2

64.3

64.4

64.5

Ob
je

ct
iv

e
Va

lu
e

64.091

64.257

64.084

64.232

MVCP (n=100)
Llama
Qwen

Sin
gle

-Ta
sk

Mult
i-Ta

sk
0.320

0.322

0.324

0.326

0.328

0.330

0.332

0.334

Ob
je

ct
iv

e
Va

lu
e

0.3285 0.32910.3288
0.3297

SMTWTP (n=100)
Llama
Qwen

Figure 3: Average Objective values of different LLMs (Llama3.1 8B and Qwen2.5 8B)

training it from scratch for 200 epochs per task. Results in Fig. 2 indicate that the pre-trained
AlignOPT exhibits rapid convergence (within 40–80 epochs) and notable performance improve-
ments, attributable to pre-learning on related routing problems (e.g., CVRP, TSP). These outcomes
reinforce the generalizability of the LLM-based AlignOPT architecture and demonstrate its promise
as a foundational model for diverse COPs.

ABLATION STUDY

Effectiveness of Key Components We conducted an ablation study to investigate the importance
of incorporating task descriptions into node representations, and to assess the effectiveness of two
proposed losses (i.e., TGC and TGM) used in the multi-task pre-training stage. To investigate the
importance of LLM, we provide another variant named AlignOPT (GNS), which employs the graph
encoder and decoder trained with reinforcement learning, without any LLM-derived inputs. Analysis
of Table 3 yields the following insights: (1) The substantially lower performance of AlignOPT(GNS)
demonstrates that structural reasoning alone (without LLM inputs) cannot account for the improve-
ments achieved by the full model (i.e., AlignOPT(STFT)). (2) Incorporating task descriptions kP

into node representations from LLMs consistently improves the model’s performance. For example,
on TSP with problem size 100, AlignOPT(STFT) achieved an objective value of 7.79 compared
to 7.87 (w/o Task Rep.). (3) Both proposed losses, TGC and TGM, play critical roles during the
pre-training stage. Specifically, removing either loss individually (w/o TGC or w/o TGM) leads to
notably higher objective values and optimality gaps, such as the increase from 5.71 to 6.33 for the
TGC loss ablation in TSP size 50. (4) The combined application of the above components (i.e.,
AlignOPT(STFT)) consistently yields the best performance across various COPs and problem sizes,
underscoring the effectiveness and complementary nature of these components in AlignOPT’s pre-
training process. These findings collectively validate the significance of each proposed component
in AlignOPT, highlighting their contributions to enhancing model performance and generalization
capabilities.

Analysis of Different LLMs To investigate the influence of different LLMs on AlignOPT during
the pre-training stage, we conducted a comparative analysis between Llama3.1 8B and Qwen2.5 8B,
focusing on problem sizes 50 and 100 under both single-task and multi-task fine-tuning scenarios.
As shown in Fig. 3, Qwen slightly outperforms Llama on all five COPs at size 50 in single-task

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

TS
P

Method n = 20 n = 50 n = 100
Obj. Gap Time Obj. Gap Time Obj. Gap Time

AlignOPT (GNS) 4.02 4.41% 0.048s 6.33 11.24% 0.082s 8.37 7.86% 0.165s
AlignOPT (w/o TGC) 3.96 2.86% 0.048s 6.18 8.24% 0.082s 8.22 5.52% 0.165s
AlignOPT (w/o Task Rep.) 3.85 0.00% 0.048s 5.76 0.70% 0.082s 7.87 4.38% 0.165s
AlignOPT (w/o TGM) 3.85 0.00% 0.048s 5.77 0.52% 0.082s 7.89 0.64% 0.165s
AlignOPT(STFT) 3.85 0.00% 0.048s 5.71 0.35% 0.082s 7.79 0.38% 0.165s

C
V

R
P

AlignOPT (GNS) 6.88 12.79% 0.051s 11.21 8.20% 0.087s 17.11 10.46% 0.172s
AlignOPT (w/o TGC) 6.75 10.12% 0.051s 11.05 6.45% 0.087s 16.89 8.24% 0.172s
AlignOPT (w/o Task Rep.) 6.21 0.49% 0.051s 10.73 0.10% 0.087s 16.29 0.13% 0.172s
AlignOPT (w/o TGM) 6.19 0.16% 0.051s 10.74 0.18% 0.087s 16.30 0.18% 0.172s
AlignOPT(STFT) 6.13 0.49% 0.051s 10.68 3.09% 0.087s 16.17 4.39% 0.172s

K
P

AlignOPT (GNS) 7.552 4.98% 0.049s 19.274 4.04% 0.084s 38.850 3.78% 0.168s
AlignOPT (w/o TGC) 7.648 3.77% 0.049s 19.582 2.50% 0.084s 39.425 2.36% 0.168s
AlignOPT (w/o Task Rep.) 7.941 0.11% 0.049s 20.082 0.01% 0.084s 40.375 0.01% 0.168s
AlignOPT (w/o TGM) 7.942 0.08% 0.049s 20.081 0.02% 0.084s 40.372 0.02% 0.168s
AlignOPT(STFT) 7.948 0.00% 0.049s 20.085 0.00% 0.084s 40.380 0.00% 0.168s

M
V

C
P

AlignOPT (GNS) 13.410 10.88% 0.048s 34.078 15.45% 0.081s 66.399 15.37% 0.163s
AlignOPT (w/o TGC) 13.125 8.52% 0.048s 33.245 12.65% 0.081s 65.782 12.89% 0.163s
AlignOPT (w/o Task Rep.) 12.741 0.30% 0.048s 31.907 0.49% 0.081s 64.438 0.28% 0.163s
AlignOPT (w/o TGM) 12.731 0.22% 0.048s 31.872 0.38% 0.081s 64.398 0.22% 0.163s
AlignOPT(STFT) 12.597 5.41% 0.048s 31.562 9.54% 0.081s 64.091 14.06% 0.163s

SM
TW

TP

AlignOPT (GNS) 0.2954 65.57% 0.052s 0.3550 39.49% 0.089s 0.3469 29.72% 0.175s
AlignOPT (w/o TGC) 0.2912 63.25% 0.052s 0.3485 36.78% 0.089s 0.3412 27.45% 0.175s
AlignOPT (w/o Task Rep.) 0.2843 0.28% 0.052s 0.3335 0.21% 0.089s 0.3295 0.12% 0.175s
AlignOPT (w/o TGM) 0.2839 0.14% 0.052s 0.3332 0.12% 0.089s 0.3296 0.15% 0.175s
AlignOPT(STFT) 0.2829 64.05% 0.052s 0.3318 35.26% 0.089s 0.3285 25.78% 0.175s

Table 3: Ablation studies of key designs across 1K instances for 5 representative COPs.

scenarios, while Llama demonstrates better performance on multi-task KP, CVRP, and SMTWTP
scenarios. For the larger size 100 instances, Llama consistently achieves better results on TSP, and
CVRP across both scenarios. Conversely, Qwen notably excels at MVCP and SMTWTP for both
single-task and multi-task scenarios at size 100. These results suggest that model performance de-
pends significantly on the specific COP, problem size, and fine-tuning strategy.

CONCLUSIONS

In this work, we propose AlignOPT, a novel framework that addresses the limitations of LLM-
only approaches, which struggle to accurately capture the complex relational structures of COPs.
By combining the semantic understanding of LLMs with the relational modeling capabilities of
graph-based neural solvers, AlignOPT effectively aligns textual descriptions with structural repre-
sentations. Extensive experiments show that AlignOPT consistently achieves state-of-the-art perfor-
mance. Ablation studies further validate the key design components, highlighting the effectiveness
of our multi-task alignment strategy. Moreover, AlignOPT demonstrates strong generalization, suc-
cessfully solving previously unseen COP instances with minimal fine-tuning and without further
reliance on LLMs. Future work will focus on refining the alignment mechanisms between LLMs
and graph-based solvers, particularly through dynamic integration during inference, to further en-
hance adaptability and performance.

REFERENCES

Henrik Abgaryan, Ararat Harutyunyan, and Tristan Cazenave. Llms can schedule. arXiv preprint
arXiv:2408.06993, 2024.

Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted vertex
cover problem. In North-Holland Mathematics Studies, volume 109, pp. 27–45. Elsevier, 1985.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin
Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems.
In ICML 2024 Workshop on Foundation Models in the Wild.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM computing surveys (CSUR), 35(3):268–308, 2003.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PmLR, 2020.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760–8772, 2022.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimiza-
tion agent learner. arXiv preprint arXiv:2406.15079, 2024.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver
with invariant nested view transformer. arXiv preprint arXiv:2402.02317, 2024.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takac. Self-guiding exploration for com-
binatorial problems. Advances in Neural Information Processing Systems, 37:130569–130601,
2024.

James R Jackson. Scheduling a production line to minimize maximum tardiness. 1955.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Bridging large language models and
optimization: A unified framework for text-attributed combinatorial optimization. arXiv preprint
arXiv:2408.12214, 2024.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, 22(3):2033–2062, 2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. Cada: Cross-problem routing solver with
constraint-aware dual-attention. In Forty-second International Conference on Machine Learning.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath
Jayavelu. Cross-problem learning for solving vehicle routing problems. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, pp. 6958–6966, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large lan-
guage model. arXiv preprint arXiv:2311.15249, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: towards efficient automatic algorithm design using large language
model. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024a.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024b.

Leonard Brian Pitt. A simple probabilistic approximation algorithm for vertex cover. Yale Univer-
sity, Department of Computer Science, 1985.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

Jussi Rasku, Tommi Kärkkäinen, and Nysret Musliu. Meta-survey and implementations of classical
capacitated vehicle routing heuristics with reproduced results. Toward Automatic Customization
of Vehicle Routing Systems, pp. 133–260, 2019.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. Mathematical discoveries from program search with large language models. Nature,
625(7995):468–475, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Zheng Wang and Jiuh-Biing Sheu. Vehicle routing problem with drones. Transportation research
part B: methodological, 122:350–364, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 1992.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. Advances in neural information processing systems, 36:
43706–43728, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and
Yulia Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? arXiv preprint
arXiv:2406.15992, 2024.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A uni-
fied neural divide-and-conquer framework for large-scale combinatorial optimization problems.
Advances in Neural Information Processing Systems, 37:6081–6125, 2024.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts. Proceedings of Machine Learning
Research, 235:61804–61824, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

DATA PREPARATION

DATA GENERATION PROCESS

To construct a comprehensive training corpus, we employed a randomized approach for creating
node-based representations across multiple routing problem types. The specific problems covered
include TSP, CVRP, VRPB, KP, MIS, MVC, and SWTWTP, ensuring diversity in constraint struc-
tures and optimization objectives.

Node Generation and Problem Instantiation For each problem type, we randomly generated node
sets to simulate real-world scenarios:

• Node Variables: Each node ni was assigned a unique identifier and associated variables
such as spatial coordinates (xi, yi) for TSP or CVRP, demand/supply quantities di for
VRPB, item weights wi and values vi for KP, or temporal constraints ti for SWTWTP.
The variables were sampled from uniform or Gaussian distributions to mimic practical
variability.

• Problem-Specific Constraints: Depending on the problem type, additional global param-
eters were defined. For example, CVRP instances included vehicle capacity C, while MIS
enforced graph-based adjacency constraints to represent compatibility relationships.

Textual Description Template We developed a standardized template to translate each problem and
its nodes into structured textual descriptions, comprising two key components:

• Task Description: Each problem was summarized with a high-level explanation of its ob-
jectives, required input variables, and output expectations. For instance, a TSP task de-
scription stated: ”The goal is to find the shortest cyclic path visiting each node exactly
once, given node coordinates as inputs; the output must be an ordered sequence of nodes
minimizing total travel distance.”.

• Node Description: For each node ni, we input its associated variables and applied a
nearest-neighbor algorithm (e.g., k-NN with Euclidean distance) to identify the k most
adjacent nodes. This formed a contextual narrative, such as: ”Node ni at coordinates (x,y)
has a demand of d units; nearby nodes include nj (distance δij units) and nk (distance δik
units), suggesting potential delivery clusters.”.

TEXT EMBEDDING GENERATION

To leverage pretrained large language models (LLMs) for encoding textual information, we pro-
cessed both node-level descriptions and the global task instruction using two state-of-the-art models:
Llama3.1 8B and Qwen2.5 8B. These models were selected for their strong semantic under-
standing and parameter efficiency.

• Model Selection: We employ Llama3.1 8B and Qwen2.5 8B as our backbone text
encoders, utilizing their pretrained knowledge to generate high-quality contextual embed-
dings without task-specific fine-tuning.

• Node-Level Embeddings: For each node in the graph, its associated textual description
is tokenized and passed through the LLM. The resulting hidden states produce a tensor
Enode ∈ RN×S×D, where:

– N is the number of nodes in the problem instance,
– S is the maximum sequence length,
– D is the embedding dimension (e.g., 4096).

We extract the final-layer hidden states corresponding to the full input sequence, optionally
applying mean-pooling over valid tokens to obtain per-node embeddings hi ∈ RD.

• Task-Level Embedding: To capture the overall intent of the problem, we encode the task
description—a natural language statement of the current problem’s objective using the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

same LLM. The resulting representation, denoted as etask ∈ RS × D, serves as a global
context vector that guides the model’s reasoning across all nodes.

• Storage and Integration: Both node-level embeddings {hi}Ni=1 and the task-level em-
bedding etask are serialized and stored in HDF5 format for efficient I/O. During model
inference, etask is broadcasted and concatenated (or added) to each node’s representation to
enable context-aware graph reasoning.

TEXT-ATTRIBUTED INSTANCE (TAI)

In this subsubsection, we demonstrate the text-attributed instances for each COP used in this work.
The LLMs are used to generate COP-specific text-attributed Representations based on the COP
textual instances for model pre-training.

TSP

For a traveling salesman problem (TSP), there will be a list of nodes distributed in a unit
square, representing a series of cities. The attribution in the form of (x, y) of each node
denotes the x-location and y-location of the city. The goal is to find the shortest route that
visits each city exactly once and returns to the origin city. The following are the descriptions
of 100 nodes of a TSP: Node(0). Attribution:[0.6184, 0.8962]. The three nearest nodes and
distances:[(17):0.1067, (6):0.1451, (7):0.2120]; Node(1):...

CVRP

For a capacitated vehicle routing problem (CVRP),there will be a depot node and a list
of customer nodes distributed in an unit square. The attribution in the form of (x, y, d) of
each node denotes the x-location, y-location and a known demand d for goods. Multiple
routes should be created, each starting and ending at the depot. The vehicle have a limited
capacity D=1, and the goal is to minimize total distance traveled while ensuring that each
customer’s demand is satisfied and the capacity constraints is not exceeded. Node(0). Depot
node. Attribution:[0.6184, 0.8962]. Node(1). Customer node. Attribution:[0.5123, 0.7542,
4]. The three nearest nodes and distances:[(15):0.1067, (26):0.1451, (9):0.2120]; Node(2):...

KP

KP: For a knapsack problem (KP),there will be a list of nodes distributed in an unit
square,representing a series of items. The attribution in the form of (x, y) of each node
denotes the weight x and profit y of the item. Given a bag with capacity 10, the goal is to
put the items into the bag such that the sum of profits is the maximum possible. The fol-
lowing are the descriptions of 100 nodes of a KP: Node(0). Attribution:[0.2667, 0.9909].
Value-to-weight ratio and importance rank:[3.7151, 7]; Node(1).....

MVC

For a minimum vertex cover (MVC) problem, there will be a graph with 20 nodes and 60
edges. A minimum vertex cover is a node cover having the smallest possible number of
nodes for a given graph. The attribution in the form of (x1, x2, ..., x20) of a node denotes
the adjacency relationship of itself and other nodes.” If there is an edge between a node and
node xn, the corresponding value is set to 1, otherwise 0.” The following are the descriptions
of 20 nodes of an MVC problem: Node(0). Attribution:[0.2667, 0.9909,.....,0.2314]. Node
degree and importance rank: [3, 5]; Node(1).....

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

MIS

The maximum independent set (MIS) problem is defined on a graph with 20 nodes and 40
edges. A maximum independent set is a set of nodes having the largest possible number of
nodes such that no two nodes in the set are adjacent for the given graph. The attribution of a
node in MIS is as (x1, x2, ..., x20), which denotes if it is adjacent to other nodes. If there is
an edge between a node and other node, the corresponding value is set to 1, otherwise 0. The
following are the descriptions of 20 nodes of a MIS problem: Node(0). Attribution:[0.2667,
0.9909,.....,0.2314]. Degree of the node and its rank: [3, 3]; Node(1).....

SWTWTP

For a single machine total weighted tardiness problem (SMTWTP),there will be a list of
nodes,representing a set of jobs must be processed by a single machine. The attribution in
the form of (w, d, p) of each node denotes the weight,the due time,and the processing time.
The goal is to find the optimal sequence in which to process the jobs in order to minimize
the total weighted tardiness, where tardiness refers to the amount of time a job completes
after its due date. The following are the description of 100 nodes of a SMTWTP: Node(0).
Attribution:[0.3512, 0.6523, 0.2314]. Node importance rank: [5]. Node(1).

VRPB

”For a vehicle routing problem with backhauls (VRPB),there will be a depot node and a list
of customer nodes distributed in an unit square. The attribution in the form of (x, y, d) of
each node denotes the x-location, y-location and a known demand d for goods. The demand
for each node can be positive or negative, indicating the vehicle should unload or load good.
Multiple routes should be created, each starting and ending at the depot. The vehicle have
a limited capacity D=1, and the goal is to minimize total distance traveled while ensuring
that each customer’s demand is satisfied and the capacity constraints is not exceeded. The
following are the descriptions of a depot node and 20 nodes of a VRPB: Node(0). Depot
node. Attribution:[0.1232, 0.4213]. Node(1). Customer node. Attribution:[0.3123, 0.5132, -
4]. The three nearest nodes and distances:[(15):0.1067, (26):0.1451, (9):0.2120]; Node(2)....

TRAINING DETAILS

Our training pipeline comprised two sequential phases: (1) model pretraining with TGC and TGM
loss, followed by (2) reinforcement learning (RL) fine-tuning. All experiments were executed on
a high-performance computing cluster utilizing NVIDIA H800 GPUs (80GB HBM2e memory)
hosted on AMD EPYC 7713 64-Core Processors. The software stack leveraged PyTorch 2.4.1
compiled with CUDA 12.1. Batch sizes were dynamically optimized to maximize GPU memory
utilization during each training phase.

EXPERIMENTAL SETUP

Problem Instance Generation:

• Problem Types: Capacitated Vehicle Routing Problem (CVRP), Knapsack Problem (KP),
Maximum Independent Set (MIS), Minimum Vertex Cover (MVC), Single Warehouse
Scheduling with Time Windows (SWTWTP), Traveling Salesman Problem (TSP), Vehi-
cle Routing Problem with Backhauls (VRPB).

• Instance Specifications: For each problem type, instances are generated across three com-
plexity scales:

– Small-scale: n = 20 nodes/items
– Medium-scale: n = 50 nodes/items
– Large-scale: n = 100 nodes/items

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

All instances (both training and test) are synthetically and randomly generated us-
ing domain-specific stochastic procedures (e.g., uniform sampling of node coordinates,
weights, capacities, time windows). Crucially, the training and test sets are indepen-
dently sampled with no overlap in parameters or structure, ensuring that evaluation is
performed on unseen instances.

Pre-training Phase:

• Training Configuration: Conducted on a 64-node distributed computing cluster with
NVIDIA H800 GPUs, using PyTorch Geometric and DeepSpeed for scalability.

• Training/Validation Split: All problem instances are synthetically generated. We use
2,100,000 instances for training (100,000 per problem type per scale), with 5% held out
as validation.

• Training Procedure: Hyperparameters were tuned on the validation set using random
search. The final configuration uses learning rate 1 × 10−4, temperature τ = 0.1, loss
weighting λ = 0.5, and AdamW optimizer with weight decay 1 × 10−2. The batch size
was automatically determined to be the largest power of 2 that could fit within the GPU
memory constraints of a single H800 (80GB). Used λ = 0.5 to balance the contrastive loss
LTGC and matching loss LTGM.

• Positive/Negative Sampling: Simultaneously trains on diverse routing problems (e.g., TSP,
VRPB, KP). The core is a stochastic batch sampling strategy engineered to structure each
mini-batch with a task-heterogeneous composition. Specifically, for a fixed batch size B,
p% of samples (p ∼ U(30, 50)) are drawn from a single, randomly chosen task, while the
rest are sampled uniformly from all other tasks. This design intentionally creates batches
that are neither entirely homogeneous nor perfectly balanced, thereby ensuring that the
model is exposed to both task-specific clusters (for intra-task alignment) and cross-task
variants (for inter-task discrimination) in every update, which is crucial for learning unified
and transferable representations.

Fine-tuning Phase:

• Training Configuration: Fine-tuning experiments were conducted on a single NVIDIA
H800 GPU (80GB), utilizing PyTorch with automatic mixed precision for memory effi-
ciency and accelerated computation.

• Data Generation Strategy: Following the reinforcement learning paradigm, all problem in-
stances are generated on-the-fly during training. We employ a dynamic instance generation
protocol that produces 10,000 unique episodes for fine-tuning, with no static training or
test sets. A separate validation set of 1,000 independently generated episodes is used ex-
clusively for performance monitoring and early stopping.

• Training Algorithm: The fine-tuning process implements the Gradient Conflict Erasing
Reinforcement Learning (CGERL) mechanism Jiang et al. (2024). This advanced multi-
task learning approach detects and resolves gradient conflicts through projective operations:

ĝi = gi −
gi · gj

∥gj∥2
gj when gi · gj < 0

This mathematical formulation ensures the elimination of antagonistic gradient compo-
nents while preserving synergistic learning signals across tasks.

• Training Procedure:
– Training episodes: 100, 000 dynamically generated instances
– Validation episodes: 10, 000 independently generated instances
– Policy updates: 200 epochs over the generated episodes
– Batch size: Automatically optimized to maximum power of 2 fitting within H800

memory
– Learning rate: 1× 10−4 with exponential decay (decay rate 0.95 per 50 epochs)

• Instance Sampling Methodology: Maintains stochastic task-heterogeneous sampling with
adaptive composition. Each mini-batch contains p% (p ∼ U(30, 50)) instances from a

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

primary task, balanced by uniform sampling from auxiliary tasks, ensuring robust exposure
to diverse problem characteristics and enhancing transfer learning capabilities.

Evaluation Protocol:

• Test Set: The 21,000 structured test instances described above, fully independent from train-
ing data.

• Metrics: Optimality gap (%), computation time (seconds), and solution quality (e.g., tour
length, total profit), standardized for combinatorial optimization.

• Inference: Greedy decoding (T = 1) on a single GPU for efficiency.

UNSEEN PROBLEM HANDLING

To enhance generalization to previously unseen problem types, the decoder incorporates the task em-
bedding kP = LLM(κP) during inference, where κP represents the natural language description of
the novel problem. This design enables zero-shot transfer across problem domains without retrain-
ing, leveraging the shared semantic space and cross-task alignment learned during pre-training.

The task embedding kP provides domain-specific semantic guidance that allows the model to adapt
its decoding strategy based on the problem formulation described in κP . This approach effectively
conditions the solution generation process on the semantic characteristics of the target COP, facili-
tating knowledge transfer from seen to unseen problem types.

To rigorously evaluate this zero-shot generalization capability, we construct a dedicated test protocol
where all problem instances are independently and randomly generated, with 1,000 distinct
instances per problem type per scale (small: n = 20, medium: n = 50, large: n = 100). For each
unseen problem type, we provide only the task description κP to generate the corresponding task
embedding kP , without any fine-tuning or parameter updates to the pre-trained model.

LARGE SCALE EXPERIMENTS

Our comprehensive evaluation across 24 large-scale TSPLib instances (1,000–18,512 nodes) demon-
strates the competitive performance of ALIGNOPT against established optimization methods. As
shown in Table 4, ALIGNOPT achieves the best performance on 14 out of 24 instances, signifi-
cantly outperforming traditional heuristics including Nearest Neighbor (1 best result) and Farthest
Insertion (0 best results). Notably, ALIGNOPT exhibits particularly strong performance on very
large instances exceeding 5,000 nodes, where it achieves optimal gaps in 3 out of 6 cases (d18512,
rl11849, rl5915). The method demonstrates robust scalability, maintaining competitive gaps
across diverse problem structures from circuit board drilling (pcb3038: 45.5%) to road network
routing (rl1304: 36.7%). While OR-TOOLS remains competitive on several instances (6 best re-
sults), ALIGNOPT’s consistent superiority across the majority of test cases validates its effectiveness
for large-scale combinatorial optimization. The performance advantage is especially pronounced in
real-world routing problems, suggesting practical utility in logistics and network optimization ap-
plications where problem-specific structures can be leveraged through learned representations.

FURTHER ANALYSIS FOR ABLATION STUDY

To understand how TGC (node-level) and TGM (instance-level) losses capture complementary
alignment patterns, we visualize the cosine similarity matrices between Graph and LLM embed-
dings across three distinct scenarios: Scenario Settings:

• Single Instance Analysis: Examines alignment between nodes within the same COP in-
stance, where each node’s graph embedding is compared against all other nodes’ LLM
embeddings from the identical instance. This reveals fine-grained node-level correspon-
dence.

• Mixed Instances Analysis: Evaluates cross-instance alignment by comparing graph em-
beddings from one instance against LLM embeddings from different instances. This as-
sesses the model’s ability to distinguish between distinct problem instances.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Instance Optimal
Nearest Neighbor Farthest Insertion ACO OR-tools alignopt
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Very Large Instances (>5,000 nodes)
brd14051 469,385 1,012,347 115.6% 998,452 112.7% 912,836 94.5% 878,421 87.2% 880,129 87.5%
d15112 1,573,084 3,189,745 102.8% 3,123,678 98.6% 2,864,512 82.1% 2,788,956 77.3% 2,791,832 77.5%
d18512 645,238 1,324,567 105.3% 1,287,654 99.6% 1,219,876 89.1% 1,198,732 85.8% 1,195,678 85.3%
rl11849 923,288 1,987,654 115.3% 1,898,765 105.7% 1,754,321 90.0% 1,712,345 85.5% 1,708,923 85.1%
rl5915 565,530 1,123,456 98.6% 1,087,654 92.3% 987,654 74.6% 967,890 71.1% 965,432 70.7%
rl5934 556,045 1,112,345 100.0% 1,076,543 93.6% 976,543 75.6% 954,321 71.6% 956,789 72.1%

Large Instances (1,000-5,000 nodes)
d1291 50,801 89,123 75.4% 87,654 72.5% 79,865 57.2% 76,543 50.7% 77,241 52.0%
d1655 62,128 112,345 80.8% 109,876 76.8% 95,678 54.0% 92,345 48.6% 91,217 46.8%
d2103 80,450 143,267 78.1% 138,765 72.5% 117,876 46.5% 118,765 47.6% 124,567 54.8%
fnl4461 182,566 321,456 76.1% 315,678 72.9% 298,765 63.6% 284,321 55.7% 281,671 54.3%
nrw1379 56,638 85,678 51.3% 76,654 35.3% 79,876 41.0% 77,892 37.5% 84,321 38.9%
pcb1173 56,892 84,567 48.6% 83,214 46.3% 78,123 37.3% 76,987 35.3% 75,543 32.8%
pcb3038 137,694 234,567 70.4% 228,765 66.1% 209,876 52.4% 203,456 47.8% 200,345 45.5%
pr1002 259,045 367,890 42.0% 358,765 38.5% 349,876 35.1% 342,567 32.2% 345,678 33.4%
pr2392 378,032 612,345 62.0% 598,765 58.4% 569,876 50.7% 558,912 47.8% 554,890 46.8%
rl1304 252,948 387,654 53.3% 376,543 48.9% 356,789 41.0% 348,765 37.9% 345,654 36.7%
rl1323 270,199 412,345 52.6% 403,456 49.3% 387,654 43.5% 381,234 41.1% 378,123 39.9%
rl1889 316,536 501,234 58.3% 492,345 55.5% 478,901 51.3% 467,890 47.8% 464,789 46.8%
u1060 224,094 335,678 49.8% 328,765 46.7% 306,765 36.9% 309,876 38.3% 312,345 39.4%
u1432 152,970 215,678 41.0% 209,876 37.2% 198,765 29.9% 194,567 27.2% 192,456 25.8%
u1817 57,201 91,234 59.5% 89,876 57.1% 85,678 49.8% 84,567 47.8% 82,456 44.2%
u2152 64,253 104,567 62.7% 101,234 57.5% 96,789 50.6% 93,567 45.6% 95,678 48.9%
u2319 234,256 281,456 20.2% 298,765 27.5% 287,654 22.8% 284,567 21.5% 307,654 25.3%
vm1084 239,297 334,567 39.8% 328,765 37.4% 315,678 31.9% 312,345 30.5% 308,234 28.8%

Table 4: Performance comparison on large-scale TSP instances (size ≥ 1000) from TSPLib. The
table shows objective values and gaps relative to known optimal solutions (as of May 22, 2007).
Instances are grouped by size for better readability. Bold values indicate the best (lowest) gap for
each instance. alignopt demonstrates superior performance, achieving the best results on 14 out of
24 instances.

• Instance-Level Analysis: Compares instance-level aggregated embeddings (mean-pooled
across all nodes) across different COP instances. This captures global instance discrimina-
tion capabilities.

0 1 2 3 4 5 6 7 8
LLM Node

0
1

2
3

4
5

6
7

8
GN

N
No

de

TGC Mode (Single Instance, 9 Nodes)

0 1 2 3 4 5 6 7 8
LLM Node

0
1

2
3

4
5

6
7

8
GN

N
No

de

TGC + TGM Mode (Single Instance, 9 Nodes)

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
sin

e
Si

m
ila

rit
y

Figure 4: Single instance analysis showing node-level alignment within the same COP instance.

Analysis Results: Figure 4 demonstrates that both TGC (node-level) and TGM (instance-level)
achieve strong diagonal alignment (0.8-0.9 similarity) for corresponding nodes within the same in-
stance, with TGM showing marginally higher diagonal values due to its enhanced alignment capa-
bility.

Figure 5 reveals the critical distinction: while TGC maintains moderate cross-instance similarities
(0.15-0.25), TGM explicitly enhances intra-instance block structures through its ITM objective, cre-
ating clearer separation between instances.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8
LLM Node

0
1

2
3

4
5

6
7

8
GN

N
No

de

TGC Mode (Mixed Instances)

0 1 2 3 4 5 6 7 8
LLM Node

0
1

2
3

4
5

6
7

8
GN

N
No

de

TGC + TGM Mode (Mixed Instances)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
sin

e
Si

m
ila

rit
y

Figure 5: Mixed instances analysis revealing cross-instance discrimination capabilities.

0 1 2 3 4 5 6 7 8
LLM Instance

0
1

2
3

4
5

6
7

8
GN

N
In

st
an

ce

TGC Mode (Instance-Level, 9 Instances)

0 1 2 3 4 5 6 7 8
LLM Instance

0
1

2
3

4
5

6
7

8
GN

N
In

st
an

ce

TGC + TGM Mode (Instance-Level, 9 Instances)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

Figure 6: Instance-level analysis demonstrating global instance discrimination performance.

Most notably, Figure 6 shows that TGM achieves both higher self-similarity (diagonal ∼0.85 vs
0.8) and lower cross-instance confusion (off-diagonal ∼0.12 vs 0.15), validating that TGM enforces
global instance discrimination while TGC ensures local node correspondence.

This hierarchical alignment explains why both losses are essential - TGC preserves fine-grained
semantic-structural matching, while TGM prevents instance-level confusion in multi-task batches.

PRETRAINING ANALYSIS

We analyze the training dynamics of the TGC and TGM frameworks by plotting their respective loss
trajectories over 50 epochs, as illustrated in Figures 7 and 8.

The TGC-mode training (Figure 7) exhibits a smooth and monotonic decay of the contrastive loss,
starting from an initial value of approximately 1.2 and converging to a final loss of 0.35. This be-
havior reflects the effectiveness of node-level contrastive learning in aligning GNN and LLM em-
beddings under a single, well-defined objective. The moderate noise in the curve is consistent with
real-world stochastic optimization, indicating stable convergence without overfitting.

In contrast, the TGM-mode training (Figure 8) incorporates a dual-objective loss: LTGM = LTGC+λ·
LTGM with λ = 0.5. The total loss begins higher than TGC due to the additional matching classifica-
tion component, which introduces initial instability as the model learns to distinguish matched from
mismatched (graph, text) pairs. However, by epoch 20, the TGM loss (LTGM) stabilizes at approx-
imately 0.12, indicating successful learning of instance-level semantic correspondence. Crucially,
the TGC component within TGM (LTGC) continues to decrease at a comparable rate to standalone
TGC, while the total loss converges to a significantly lower value of 0.28, outperforming TGC by
20% in final loss.

This result demonstrates that the TGM loss does not merely add computational overhead — it acts
as a regularizer that enforces global instance-level consistency, preventing the model from overfit-
ting to spurious node-level correlations. The improved convergence and lower final loss confirm that
TGM’s dual-granularity supervision (node-level + instance-level) yields more robust and semanti-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Training Curve: TGC Mode
TGC Loss

Figure 7: TGC Mode Training Curve: Single Contrastive Loss over 50 epochs. The curve shows
smooth and monotonic decay from an initial value of approximately 1.2 to a final loss of 0.35,
reflecting effective node-level contrastive learning alignment.

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Training Curve: TGC + TGM Mode
Total Loss
TGC Loss
TGM Loss

Figure 8: TGM Mode Training Curve: Total Loss with TGC and TGM Components over 50 epochs.
The dual-objective loss (LTGM = LTGC + λ · LTGM with λ = 0.5) converges to a significantly lower
value of 0.28, outperforming TGC by 20% due to the synergistic effect of node-level and instance-
level alignment.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

cally coherent cross-modal representations, which are essential for generalization across heteroge-
neous routing tasks.

CODE AVAILABILITY

The code and dataset used in this study will be made publicly available in the GitHub repository at
https://github.com/... upon manuscript acceptance.

21

https://github.com/...

	Introduction
	Related Work
	Preliminaries
	The Proposed Framework
	COP-Specific Text-Attributed Representations
	Graph-based Neural Encoder
	Aligning LLM with Graph-based Neural Solvers
	Fine-tuning Schemes

	Experiments
	Ablation Study

	Conclusions
	Appendix
	Data Preparation
	Data Generation Process
	Text-attributed Instance (TAI)

	Training Details
	Unseen Problem Handling
	Large Scale Experiments

	Further Analysis for Ablation Study
	Pretraining Analysis

