Under review as a conference paper at ICLR 2026

ALIGNING LLMS WITH GRAPH NEURAL SOLVERS
FOR COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research has demonstrated the effectiveness of large language models
(LLMs) in solving combinatorial optimization problems (COPs) by represent-
ing tasks and instances in natural language. However, purely language-based ap-
proaches struggle to accurately capture complex relational structures inherent in
many COPs, rendering them less effective at addressing medium-sized or larger
instances. To address these limitations, we propose AlignOPT, a novel approach
that aligns LLMs with graph neural solvers to learn a more generalizable neural
COP heuristic. Specifically, AlignOPT leverages the semantic understanding ca-
pabilities of LLMs to encode textual descriptions of COPs and their instances,
while concurrently exploiting graph neural solvers to explicitly model the under-
lying graph structures of COP instances. Our approach facilitates a robust integra-
tion and alignment between linguistic semantics and structural representations,
enabling more accurate and scalable COP solutions. Experimental results demon-
strate that AlignOPT achieves state-of-the-art results across diverse COPs, un-
derscoring its effectiveness in aligning semantic and structural representations. In
particular, AlignOPT demonstrates strong generalization, effectively extending to
previously unseen COP instances.

INTRODUCTION

Combinatorial optimization problems (COPs), which involve finding optimal solutions from finite
sets of objects, underpin numerous real-world applications in logistics, scheduling, and network
design Bengio et al.| (2021)). Typical COPs, such as the Traveling Salesman Problem (TSP), Vehi-
cle Routing Problem (VRP), and Knapsack Problem (KP), are notoriously challenging due to their
NP-hard nature, requiring efficient heuristic or meta-heuristic solutionsWang & Sheu|(2019); Kon-
stantakopoulos et al.| (2022); [Lin et al.| (2024). Traditionally, COPs have been approached through
exact optimization methods and domain-specific heuristics. However, these methods often require
extensive domain knowledge and manual tuning, making them less adaptable to new problem vari-
ants or different application contexts.

Recent studies indicate that large language models (LLMs) have emerged as powerful and versatile
tools for tackling a diverse range of COPs. By framing COPs within natural language descriptions,
LLM-based methods have demonstrated initial success in automatically solving optimization prob-
lems. Nevertheless, despite these advancements, the current capability of LLMs to directly generate
solutions remains primarily restricted to relatively small-scale problem instances, such as TSP with
fewer than 30 nodes [Yang et al.| (2023)); Iklassov et al.| (2024). In addition, existing LLM-based
solutions still encounter inherent limitations when addressing COPs characterized by complex un-
derlying structures, particularly graph problems|Cappart et al.|(2023)); Bengio et al.|(2021);|Drakulic
et al.| (2024). Pure language models inherently lack explicit structural reasoning capabilities, mak-
ing it difficult for them to effectively capture and represent intricate relational information in graphs.
Consequently, these limitations can significantly degrade solution optimality and overall quality,
substantially limiting the applicability of LLM-driven approaches in realistic, large-scale settings,
particularly in fields such as logistics, transportation, and supply chain management, where typical
problem instances involve hundreds to thousands of nodes Bengio et al.| (2021).

To address these challenges, we propose AlignOPT, a novel framework designed to integrate the
complementary capabilities of LLMs and graph-based neural solvers for COPs. Specifically, LLMs

Under review as a conference paper at ICLR 2026

provide robust semantic understanding and flexible representation of natural language instructions,
while graph-based neural solvers explicitly capture relational structures and topological dependen-
cies inherent in COP instances. To effectively align these two modalities, AlignOPT introduces
a multi-task pre-training strategy comprising two novel objectives: (1) a Text-Graph Contrastive
(TGC) loss, designed to align semantic node embeddings from LLMs with structural embeddings
from graph-based neural solvers, and (2) a Text-Graph Matching (TGM) loss, facilitating fine-
grained multimodal node representation. By jointly optimizing these objectives, AlignOPT produces
unified representations that enhance the accuracy and richness of COP embeddings. Since the graph-
based neural solver is aligned with LLM-derived representations during pre-training, LL.Ms can be
excluded in the subsequent fine-tuning, thereby reducing the heavy inference burden and substan-
tially improving computational efficiency. AlignOPT then undergoes reinforcement learning-based
fine-tuning, achieving superior generalization and solution quality across diverse COP benchmarks.

The main contributions of this work to the COPs research can be summarized as follows.

* We introduce a novel framework AlignOPT, that explicitly aligns LLMs with graph-
based neural solvers, bridging the gap between semantic and structural representations
in COPs and moving beyond the single-modality reliance of current LLM-based models.

* AlignOPT employs multi-task pre-training across diverse text-attributed COPs for a more
informative encoding process that facilitates the decoder fine-tuning, which enables the
generation of effective and unified solutions for various COPs.

» Extensive experiments demonstrate the effectiveness of AlignOPT, achieving high perfor-
mance gains over state-of-the-art solvers. Notably, it exhibits strong generalization, effi-
ciently fine-tuning on previously unseen COPs without further reliance on LLMs.

RELATED WORK

Neural Combinatorial Optimization Constructive neural combinatorial optimization (NCO)
methods aim to learn policies that iteratively construct solutions in an autoregressive manner. Early
approaches primarily employed pointer networks [Vinyals et al.|(2015); [Bello et al.|(2016), a class of
recurrent neural networks (RNNs) that encode inputs and generate outputs through a sequence-to-
sequence framework. Building on the Transformer architecture Vaswani et al.|(2017), the Attention
Model (AM)Kool et al| (2018) was subsequently developed to address vehicle routing problems
(VRPs), demonstrating superior performance compared to traditional heuristic methods. Follow-
ing this, various strategies have been proposed to further improve Transformer-based NCO models
by exploiting the inherent symmetries in combinatorial optimization problems (COPs) Kwon et al.
(2020); [Kim et al.| (2022); |[Fang et al.| (2024) and incorporating efficient active search techniques
Hottung et al.| (2021); |Choo et al.| (2022); (Qiu et al.| (2022). More recently, some work extends
constructive NCO to be one-for-all solvers aiming at multiple COPs by a single model [Zhou et al.
(2024); [Zheng et al.| (2024); |Berto et al.; [Drakulic et al.| (2024); |L1 et al.l However, they are con-
strained by specific problem structures, such as vehicle routing, which limits their representational
scope and undermines the model’s learning capacity. In contrast, our AlignOPT delves into general
text-attributed COPs described in natural language. Leveraging the unified semantic representations
inherent in LLMs, AlignOPT enables a general model to accommodate a wide range of COPs.

LLM for Combinatorial Optimization Recent research on the application of LLMs to COPs
has demonstrated promising and impactful results. As early attempts, LLMs operate as black-box
solvers that either directly generate feasible solutions with natural language problem descriptions
Abgaryan et al.|(2024) or iteratively refine initial solutions through guided search mechanisms|Yang
et al.| (2023); [Liu et al.| (2024b). Notably, recent findings indicate that LLMs often exhibit limited
generalization capabilities, tending instead to replicate memorized patterns from training data rather
than performing robust, adaptable reasoning|Zhang et al.| (2024); [Iklassov et al.|(2024)). On the other
hand, LLMs can be tasked with generating executable code that implements heuristic algorithms for
solving COPs |Romera-Paredes et al.| (2024); [Liu et al.| (2024a)); |Ye et al|(2024). By initializing a
code template, LLMs iteratively refine algorithmic heuristics through an evolutionary process. While
this approach demonstrates promising flexibility, it often requires substantial domain expertise and
incurs high token usage for each specific problem instance. The most relevant work to us is LNCS
Jiang et al. (2024)), which integrates LLMs with NCO model to unify the solution process across

Under review as a conference paper at ICLR 2026

\‘\ ’ nstance hy \\ /
[Vo
i Lo o Graph- i
! "o OO —— based i
b o Encoder 3 3
3 ' i
n
i
i

i
i
, | | Constraints i

] i
! Unified '
n] D'DD—EH_’ Decoder ! !
° o Graph- i i One-hotCOP "
H lepresentation
° OO — based i v Selected Node j i
o Encoder) [F—— /A
SN RN

First Node

Output
Adapter

l

(a) Pre-training with TGM and TGC (b) Fine-tuning without LLM (c) Graph-based Encoder

Figure 1: Overall workflow of AlignOPT. (a) AlignOPT first performs multi-task pretraining on
diverse COPs to align semantic and structural node representations with TGC and TGM losses. The
LLM remains frozen and processes the TAls to generate semantic node representations. (b) The
encoder and decoder are then fine-tuned through reinforcement learning to solve COPs. Notably,
LLMs are excluded during this phase to ensure computational efficiency, as the encoder has already
been aligned with LLM-derived representations during pre-training. (c) The model architecture of
the graph-based encoder, which applies a mixed attention mechanism that enables handling COPs
represented by graphs.

multiple COPs. However, LNCS sequentially utilizes LLMs and Transformer architectures, result-
ing in a notable modality gap when compared to specialized neural solvers designed explicitly for
COPs. Moreover, LNCS heavily depends on the inference efficiency of LLMs, which is frequently
constrained by significant computational requirements and limited context lengths. , thus restrict-
ing their scalability when fine-tuning on large-scale COPS. Instead, we propose AlignOPT to align
LLMs, adept at semantic understanding, with graph-based neural solvers, proficient in capturing
structural information, aiming to enhance solution quality and generalization capabilities.

PRELIMINARIES

Combinatorial Optimization Problems Solving COPs involves identifying the optimal solution
from a finite set of feasible candidates. Such problems are defined by their discrete nature, with
solutions commonly represented as integers, sets, graphs, or sequences Blum & Roli| (2003)). Most
COPs can be defined over a graph G with nodes and edges. Specifically, a COP P = (S, f) can be
formulated as follows:

min f(X,P) st ¢(X,P)<0,j=01,....J. (1)

where X = {z; € D; | i =1,...,n} is a set of discrete variables; f(X, P) indicates the objective
function of COP and ¢(X, P) denotes the problem-specific constraints for the variable X . Note that
typical COPs (e.g., TSP, CVRP, KP) are NP-hard problems. As a result, identifying the optimal
solution s* is computationally intractable in many practical scenarios. Therefore, a more tractable
approach involves searching for a set of feasible solutions .S rather than striving for exact optimality.
The set S is formally defined as:

S={s={(z1,v1),, (Tn,vn)} | v; € D;, ¢(X,P) <0}.)
where a solution s satisfies f(s, P) > f(s*,P),Vs € S.

Neural Construction Heuristics for COPs Learning construction heuristics has become a widely
adopted paradigm for addressing Vehicle Routing Problems (VRPs) |Bello et al.|(2016)); Kool et al.
(2018); Kwon et al.| (2020). In this framework, solutions are constructed incrementally by sequen-
tially selecting valid nodes, a process effectively modeled as a Markov Decision Process (MDP).
At each step, the agent observes a state composed of the problem instance and the current partial
solution, and selects a valid node from the remaining candidates. This process continues iteratively
until a complete and feasible solution is obtained.

The solution construction policy is typically parameterized by a neural network, such as a Long
Short-Term Memory (LSTM) or Transformer, denoted by 6. At each decision step, the policy in-
fers a probability distribution over the valid nodes, from which one is sampled and appended to

Under review as a conference paper at ICLR 2026

the partial solution. The overall probability of generating a tour 7 is then factorized as py(7|G) =

Hthl po(mt|G, m<+), where ; denotes the node selected at time step ¢, and 7w, represents the se-
quence of previously selected nodes (i.e., the current partial solution). To optimize the policy pa-
rameters 6, the REINFORCE algorithm |Williams| (1992)), a foundational policy gradient method in
deep reinforcement learning, is commonly utilized.

VoL(0|9) = Epy(xj)[(c(m) = b(G))V log pg(]G)].)

where ¢(7) is the cost of the constructed tour 7 (e.g., total length), and b(-) is an action-independent
baseline function employed to reduce the variance of the gradient estimates.

THE PROPOSED FRAMEWORK

We propose AlignOPT, a unified framework to align LLMs with graph-based neural solvers for
solving COPs. The overall framework of AlignOPT is illustrated in Fig.|1} This section first describes
how AlignOPT derives node representations from LLMs and graph-based encoders, followed by
detailing its pre-training objectives.

COP-SPECIFIC TEXT-ATTRIBUTED REPRESENTATIONS

We start from a recent work LNCS, which represents each COP instance as a text-attributed instance
(TAI) Jiang et al. (2024). Specifically, the COPs are denoted by 7 (G7) = {xk”, v}, where s’ is
the task description specifying the general structure of the problem, such as decision variables, con-
straints, and objective function, while v*” is the instance description detailing node- or edge-specific
features. Specifically, both the instance and the task description are encoded by the LLM, denoted
by 2P = LLM(v}) and k¥ = LLM(kT), respectively. The resulting node embeddings {z7}"_;
encapsulate information specific to each instance, whereas the task embedding k" captures domain-
specific semantic attributes pertinent to the COP P. In this work, AlignOPT incorporates task rep-
resentation k¥ into the LLM pathway to obtain COP-specific text-attributed representations. Each

node’s LLM representation is enhanced with its task representations (i.e., 2’ = Concat (z£, k%))

While this design verifies that neural solvers can be enhanced by the semantics representation of
COPs with LLMs, the semantic and structural modalities of COPs remain loosely coupled. In the
following subsection, we present how AlignOPT addresses this limitation by: (1) modeling COPs
with a graph-based neural encoder that captures the structural dependencies among nodes; and (2)
pretraining the solver on a diverse set of COP instances while aligning its representations with those
of an LLM through a contrastive loss objective.

GRAPH-BASED NEURAL ENCODER

We apply a graph-based neural encoder in AlignOPT, capturing the structural node representa-
tions that inherently exist in COPs. Specifically, the encoder stems from the architecture of GOAL
Drakulic et al.| (2024)), which employs a backbone comprising shared self-attention transformer lay-
ers alongside task-specific adapter modules for learning a generalist solver. Specifically, the back-
bone architecture includes (1) fask-specific low-rank adapter modules for input and output process-
ing, (2) a shared codebook that projects low-dimensional node/edge features into the full hidden
space, (3) a stack of shared mixed attention blocks. Keeping the same use of the first two parts, we
detail how we structure the mixed attention to extend standard self-attention for integrating node
and edge components in attention scores. Instead of attention scores solely computed with node
representations, for each mixed-attention head h, node representations are linearly projected into

query (Q%h)), key (Kf#)), and value (V,,(lh)) vectors, while edge representations E,,,, are projected
separately into corresponding query-like (Q',SL]ZL)) and key-like (K ,’,(L},,LL)) vectors as follows:

QW) = EnuWo™, K0 = B Wi ™. @)
Consequently, the attention score is computed as:
St = (K + K3R1Q + Qil)).)

Under review as a conference paper at ICLR 2026

where the inner product (|} adds node and edge representations and calculates the attention scores
by standard self-attention |Vaswani et al.[|(2017). The resulting attention scores across all heads are
processed by an optional mask M and column-wise softmax normalization. The final output repre-
sentation of mixed attention {g!” } Y, of the NV input query nodes is an g € R™*%s matrix:

g” = softmaxe (S + M) TV W (6)
h

where M is a log-binary mask for enforcing task-dependent feasibility and graph structure. To en-
sure dimensional compatibility with LLM-generated semantic embeddings, both textual representa-
tions and graph-based representations are collected into x¥ € RV <4 (h; is the dimension of LLM
embeddings) and gF € R *9s_ which are linearly projected into a unified latent space, resulting in
h, € RV*dn and hy € RV for each COP instance.

ALIGNING LLM WITH GRAPH-BASED NEURAL SOLVERS

While the graph-based encoder captures structural patterns of COPs, LLMs encode semantic as-
pects, such as textual objectives, constraints, and heuristic rules. Aligning these representations en-
ables integrated structural-semantic reasoning, enhancing solution quality and generalization. To
this end, we introduce two pre-training objectives: a text-graph contrastive (TGC) loss that aligns
semantic and structural node representations, and a text-graph matching (TGM) loss that facilitates
fine-grained multimodal node embeddings.

Text-Graph Contrastive (TGC) Loss Inspired by recent advances in vision-language contrastive
paradigms (Chen et al.| (2020); [Li et al.| (2022), AlignOPT extends the InfoNCE loss to bridge the
modality gap between textual and graph-based representations for solving COPs. Positive pairs com-
prise LLM and graph representations of identical nodes, whereas negative pairs include embeddings
from distinct nodes within the same batch. The proposed text-graph contrastive (TGC) loss maxi-
mizes positive pair similarity and minimizes negative pair similarity:

exp (Q(hi, h;)/’]’)
S Wy exp (0(hs, 1) /)

where h and h!, are LLM and graph representations of node i retrieved from h,, € RY*% and

h, € RV Xdn ¢(.,-) denotes the cosine similarity function, 7 is a temperature hyperparameter
scaling similarity scores, and B represents the batch size.

Lrcc = —log (N

Text-Graph Matching (TGM) Loss In addition to the TGC loss, which aligns the textual node
representations and graph-based node representations in a shared latent space, we further introduce
a Text-Graph Matching (TGM) objective, which is formulated as a binary classification task that
encourages the model to explicitly distinguish between positive (matched) or negative (unmatched)
text-graph pairs. Specifically, each graph-based representation hg = % > h; is paired with two
types of textual features: positive textual features hy, = % >, h% from the identical problem in-
stance, and negative textual features randomly sampled from other instances within the same batch.
Therefore, TGM loss is defined by Lrgn = —32; >, 1jj=; log(Sigmoid(MLP([hy,, hg]))),
where ¢ and j here are indexes of instances. A textual representation is considered to be noisy if
the TGM head predicts it as unmatched to the graph-based representation. The overall training ob-
jective is:

L = Lrce + A+ L16m- (®)
where) is a task-balancing coefficient. This dual-loss framework explicitly encourages fine-grained
alignment between textual semantics and structural graph embeddings, enhancing robustness against
modality misalignment and improving generalization to diverse combinatorial optimization in-
stances. We provide an ablation study to investigate the effectiveness of the joint loss functions
in Table

FINE-TUNING SCHEMES

After pretraining the model to align textual (LLM-derived) and structural (graph-derived) represen-
tations, AlignOPT employs two distinct fine-tuning paradigms, both leveraging a unified decoder

Under review as a conference paper at ICLR 2026

Method n =20 n =50 n = 100
AEL 7.78% 10.50% 12.35%
ReEvo 7.77% 10.23% 11.87%
SGE 11.32% 45.28%)
LMEA* 3.94% _

e ORPO* 4.40% 133.0%]
TNCS 039% 1.62% 338%
AlignOPT(MTFT) 0.00% 0.53% 1.03%
AlignOPT(STFT) 0.00% 0.35% 0.38%
ReEvo 5.19% 14.27% 19.59%
SGE 76.46% 144.21% ;

CVRP LNCS 2.54% 363% 558%
AlignOPT(MTFT) 131% 3.47% 5.05%
AlignOPT(STFT) 0.49% 3.09% 4.39%
ReEvo 0.14% 4.31% 9.40%
SGE 42.62% 39.08% ;

KP LNCS 0.10% 0.07% 0.04%
AlignOPT(MTET) 0.08% 0.03% 0.12%
AlignOPT(STFT) 0.00% 0.00% 0.00%

Table 1: The optimality gaps of LLM-based approaches on different tasks. *: Results are drawn from
the original literature. -: Excessively long time leads to unavailability. Bold indicates the best results
among comparable methods.

trained via reinforcement learning. Single-Task Fine-Tuning (STFT) optimizes model parameters us-
ing data exclusively from every single COP. Multi-Task Fine-Tuning (MTFT) simultaneously trains
on diverse COPs, using a stochastic sampler that constructs batches by selecting p% (p ~ U(30, 50))
samples from a single randomly chosen task and the remaining (100 — p)% uniformly from other
tasks. AlignOPT follows existing works to utilize a multi-head self-attention based decoder to gen-
erate COP solutions Kool et al.|(2018)). The model is then trained with a conflict-free reinforcement
learning for multi-task training for COPs Jiang et al.| (2024)).

EXPERIMENTS

Experimental Settings The proposed AlignOPT is evaluated across five representative COPs: the
Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Problem (CVRP), Knapsack Prob-
lem (KP), Minimum Vertex Cover Problem (MVCP), and Single-Machine Total Weighted Tardiness
Problem (SMTWTP). Additionally, the pre-trained AlignOPT is fine-tuned on two unseen tasks, in-
cluding the Vehicle Routing Problem with Backhauls (VRPB) and the Maximum Independent Set
Problem (MISP). The evaluation leverages synthetic COP instances, with detailed procedures for
data generation and their corresponding TAI examples provided in the supplementary materials.

Baselines We compare our AlignOPT with LLM-based solvers, traditional solvers, and NCO
solvers. (1) LLM-based Solvers: We begin by comparing our approach with existing LLM-based
methods, including OPRO |Yang et al.| (2023) and LMEA that aim to directly generate solutions
from textual descriptions of the optimization problems. We further consider|Liu et al.|(2024b), AEL
Liu et al.| (2023)), ReEvo |Ye et al.| (2024), and SGE |Iklassov et al.| (2024), which leverage LLMs
to autonomously generate heuristic strategies for solving COPs. Specifically, AEL and ReEvo are
applied to evolve constructive heuristics for the TSP, while ReEvo is also employed to enhance the
ant colony optimization (ACO) method for solving the CVRP and the KP. (2) Traditional Solvers:
We utilize OR-Tools, a heuristic optimization framework, to address the TSP, CVRP, and KP. In
addition, we benchmark against established heuristic methods, including the nearest neighbor and
farthest insertion heuristics for TSP; the sweep algorithm and the parallel savings algorithm for
CVRP Rasku et al.|(2019); a greedy policy for KP; the MVCApprox method |Bar-Yehuda & Even
(1985) and the REH Pitt/(1985) for MVCP; and EDD dispatching rule Jackson|(1955)) for SMTWTP.
We also include Ant Colony Optimization (ACO) as a metaheuristic baseline, configured with 20
ants and 50 iterations [Ye et al.|(2023). (3) NCO Solvers: Since AlighOPT aims at a wide spectrum
of COPs, we compare it with GOAL Drakulic et al.| (2024), the state-of-the-art one-for-all solver for
assorted COPs. Likewise, we compare with LNCS |Jiang et al.[(2024), a LLM-based NCO solver
that addressed disparate COPs.

Under review as a conference paper at ICLR 2026

Method n = 20 n = 50 n = 100
Ob;. Gap Time Obyj. Gap Time Oby;. Gap Time
LKH3 3.85 0.00% 0.05 5.69 2.80% 0.26s 7.76 0.00% 2.05s
OR tools 3.85 0.00% 0.36s 5.87 3.07% 0.60s 8.13 4.77% 1.32s
Nearest neighbor 3.91 1.45% 0.06s 5.89 3.51% 0.03s 9.69 24.87% 0.10s
& Farthest insertion 3.96 2.89% 0.21s 5.98 4.97% 4.73 8.21 5.80% 126s
&~ Aco 3.94 2.23% 0.74s 6.54 14.54% 1.53s 9.99 28.74% 2.01s
LNCS 3.87 0.55% 0.72s 5.79 1.64% 1.64s 8.10 4.38% 3.60s
GOAL 3.86 0.26% 0.1s 5.76 1.23% 0.3s 7.98 2.84% 0.8s
AlignOPT(MTFT) 3.85 0.00% 0.1s 5.74 0.53% 0.4s 7.84 1.03% 1s
AlignOPT(STFT) 3.85 0.00% 0.1s 5.71 0.35% 0.4s 7.79 0.38% 1s
HGS 6.10 0.00% 0.2s 10.36 0.00% 0.6 15.49 0.00% 2.22s
OR tools 6.18 1.30% 0.27s 11.05 6.63% 0.48s 17.36 12.07% 1.40s
@ Sweep heuristic 7.51 23.17% 0.01s 15.65 50.95% 0.05s 28.40 83.39% 0.25s
& Parallel saving 6.33 3.85% <0.01s | 10.90 5.18% <0.01s 16.42 6.03% 0.03s
o ACO 7.72 26.56% 0.80s 15.76 52.12% 1.97s 26.66 72.11% 4.90s
LNCS 6.25 2.51% 0.90s 10.74 3.62% 2.15s 16.35 5.59% 4.80s
GOAL 6.20 1.50% 0.1s 10.73 3.55% 0.3s 16.30 5.30% 0.8s
AlignOPT(MTFT) 6.18 1.31% 0.1s 10.72 3.47% 0.4s 16.27 5.048% 1s
AlignOPT(STFT) 6.13 0.49% 0.1s 10.68 3.09% 0.4s 16.17 4.39% 1s
OR tools 7.948 0.00% <0.01s | 20.086 0.00% <0.01s | 40.377 0.00% <0.01s
Greedy policy 7.894 0.67% <0.01s | 20.033 0.26% <0.01s | 40.328 0.12% <0.01s
a ACO 7.947 0.00% 0.72s 20.053 0.15% 2.19s 40.124 0.62% 3.41s
X LNCS 7.939 0.10% 0.06s 20.071 0.06% 0.17s 40.361 0.03% 0.26s
GOAL 7.941 0.09% 0.1s 20.078 0.04% 0.3s 40.370 0.11% 0.8s
AlignOPT(MTFT) | 7.942 0.08% 0.72s 20.081 0.03% 1.64s 40.372 0.12% 3.60s
AlignOPT(STFT) 7.948 0.00% 0.1s 20.085 0.00% 0.4s 40.380 0.00% 1s
a, Gurobi 11.95 0.00% <0.01s | 28.812 0.00% 0.01s 56.191 0.00% 0.02s
S MVCApprox 14595 22.13% <0.0ls | 34.856 2098% <0.0ls | 68313 21.57% <0.0ls
= REH 16.876 41.22% <0.0ls | 41.426 43.78% <0.01s | 81.860 45.68% <0.01s
LNCS 12.900 7.93% 0.1s 32.101 11.42% 0.43s 64.893 15.49% 1.63s
GOAL 12.750 6.50% 0.1s 31.800 10.40% 0.3s 64.300 14.50% 0.8s
AlignOPT(MTFT) | 12.703 6.30% 0.1s 31.751 10.20% 0.4s 64.257 14.35% 1s
AlignOPT(STFT) | 12.597 5.41% 0.1s 31.562 9.54% 0.4s 64.091 14.06% 1s
& Gurobi 0.1017 0.00% 0.02s 0.2148 0.00% <0.01s | 0.2438 0.00% 0.35s
E ACO 02967 191.74% 0.35s 1.0471 387.48% 1.35s 6.77 2677% 2.00s
S LNCS 02862 181.41% 0.09s 03353 56.10% 0.31s 03316 36.01% 1.10s
“ GOAL 0.2848 179.50% 0.1s 0.3335 55.20% 0.3s 0.3298 35.20% 0.8s
AlignOPT(MTFT) | 0.2835 64.12% 0.1s 0.3328 35.45% 0.4s 03291 25.919% 1s
AlignOPT(STFT) | 0.2829 64.05% 0.1s 0.3318 35.26% 0.4s 0.3285 25.78% 1s

Table 2: Performance comparison on 1K instances. AlignOPT(MTFT) denotes multi-task fine-
tuning on diverse COPs, while AlignOPT(STFT) refers to fine-tuning on the target COP. Obj. indi-
cates the average objective values.

Comparison with LLM-based Solutions The experimental comparison presented in Table [I]
evaluates the performance of our proposed AlignOPT method against recent LLM-based methods
across 3 representative COPs. To be specific, AlignOPT(STFT) consistently achieves the lowest op-
timality gaps across TSP, CVRP, and KP, significantly outperforming other recent LLM-based meth-
ods such as AEL, ReEvo, SGE, LMEA, and ORPO. For instance, in TSP, AlignOPT(STFT) attains
gaps of only 0.00%, 0.35%, and 0.38% at problem sizes 20, 50, and 100, respectively, markedly
better than LNCS (0.39%, 1.62%, 4.38%) and competitors like ReEvo and SGE, which exhibit
gaps exceeding 10% at larger sizes. In CVRP, AlignOPT(STFT) demonstrates significantly smaller
gaps (0.49%, 3.09%, and 4.39% respectively), substantially outperforming methods like ReEvo and
SGE, which present notably higher gaps, especially at larger instances. For KP, AlignOPT(STFT)
achieves perfect optimality (0.00% gap) across all evaluated sizes, clearly surpassing the perfor-
mance of LNCS (0.10%, 0.07%, 0.04%), ReEvo (up to 9.40% on n = 100), and SGE (up to 42.62%
on n = 20). These results validate the effectiveness of AlignOPT in solving relatively large COPs
(i.e., n > 30) by leveraging the structural information inherently embedded in their formulations.

Comparison with Traditional and NCO solvers We present the experimental comparison be-
tween AlignOPT and baselines in Table 2] Overall, AlignOPT consistently achieves competitive
performance across various problem sizes (n = 20, 50, 100). Specifically, AlignOPT(STFT), which
fine-tunes on task-specific instances, demonstrates superior or comparable results to all baseline
methods. For instance, in TSP, AlignOPT(STFT) achieves the lowest objective values at all sizes,
closely matching the state-of-the-art solver LKH3 and significantly outperforming classical heuris-
tics such as Nearest Neighbor and Farthest Insertion, as well as the LNCS baseline. In CVRP,
AlignOPT(STFT) substantially outperforms heuristics like Sweep and Parallel Saving, delivering

Under review as a conference paper at ICLR 2026

20 SDVRP (n=50) PCTSP (n=50) SPCTSP (n=50)
From scratch 14 From scratch 14 From scratch
18 Fine-tune Fine-tune Fine-tune
12 12
.16 . .
o o
14 8 8
12 6 6
10 4 4
40 80 120 160 200 40 80 120 160 200 40 80 120 160 200
Epoch Epoch Epoch

Figure 2: Generalization results on 3 unseen COPs.

objective values closely aligned with HGS, the leading solver. For KP, AlignOPT(STFT) achieves
optimal solutions on par with OR tools and keeps outperforming heuristic methods and LNCS.
Notably, classical optimization solvers such as Gurobi consistently perform best for MVCP and
SMTWTP, yet AlignOPT(STFT) significantly narrows the performance gap compared to heuristic
methods and the LNCS baseline. Specifically, for MVCP at n = 100, AlignOPT(STFT) achieves a
14.06% gap, improving over REH (45.68%) by 31.62% and slightly outperforming LNCS (15.49%).
Atn = 50, it further reduces the gap to 9.54%, compared to REH’s 43.78% and LNCS’s 11.42%. For
SMTWTP, where ACO struggles to produce feasible solutions across all scales, AlignOPT(STFT)
consistently outperforms LNCS, achieving gaps of 25.78%, 35.26%, and 64.05% at n = 100, 50,
and 20, respectively, compared to LNCS’s 36.01%, 56.10%, and 181.41%. These results underscore
AlignOPT’s robust performance and its capability to generalize effectively across diverse tasks.
AlignOPT (particularly STFT variant) consistently outperforms GOAL across all tested combina-
torial optimization problems, while maintaining comparable computational efficiency, with STFT
demonstrating superior balance between solution quality and speed.

Generalization on Unseen COPs Although the efficacy of AlignOPT has been validated across
multiple COPs, an important consideration remains its capacity to generalize effectively to pre-
viously unseen COPs. To address this, we fine-tune the pre-trained AlignOPT model (i.e.,
AlignOPT(STFT)) on new COPs, specifically SDVRP, PCTSP, and SPCTSP, each with a prob-
lem size of n = 50. Baseline comparisons are established by randomly initializing AlignOPT and
training it from scratch for 200 epochs per task. Results in Fig. [2] indicate that the pre-trained
AlignOPT exhibits rapid convergence (within 40-80 epochs) and notable performance improve-
ments, attributable to pre-learning on related routing problems (e.g., CVRP, TSP). These outcomes
reinforce the generalizability of the LLM-based AlignOPT architecture and demonstrate its promise
as a foundational model for diverse COPs.

ABLATION STUDY

Effectiveness of Key Components We conducted an ablation study to investigate the importance
of incorporating task descriptions into node representations, and to assess the effectiveness of two
proposed losses (i.e., TGC and TGM) used in the multi-task pre-training stage. Analysis of Table
yields the following insights: (1) Incorporating task descriptions k¥ into node representations from
LLMs consistently improves the model’s performance. For example, on TSP with problem size
100, AlignOPT(STFT) achieved an objective value of 7.79 compared to 7.87 (w/o Task Rep.). (2)
Both proposed losses, TGC and TGM, play critical roles during the pre-training stage. Specifically,
removing either loss individually (w/o TGC or w/o TGM) leads to notably higher objective values
and optimality gaps, such as the increase from 5.71 to 6.33 for the TGC loss ablation in TSP size
50. (3) The combined application of the above components (i.e., AlignOPT(STFT)) consistently
yields the best performance across various COPs and problem sizes, underscoring the effectiveness
and complementary nature of these components in AlignOPT’s pre-training process. These findings
collectively validate the significance of each proposed component in AlignOPT, highlighting their
contributions to enhancing model performance and generalization capabilities.

Analysis of Different LLMs To investigate the influence of different LLMs on AlignOPT during
the pre-training stage, we conducted a comparative analysis between Llama3.1 8B and Qwen2.5 8B,
focusing on problem sizes 50 and 100 under both single-task and multi-task fine-tuning scenarios.

Under review as a conference paper at ICLR 2026

Method =200 oom=50 o om=1000
Ob;j. Gap Time Ob;j. Gap Time Ob;. Gap Time
AlignOPT (GNS) 4.02 4.41% 0.1 6.33 11.24% 0.4s 8.37 7.86% Is
AlignOPT (w/o Task Rep.) 3.85 0.00% 0.1 5.76 0.70% 0.4s 7.87 4.38% Is
& AlignOPT (w/o TGC) 4.02 0.39% 0.1s 6.33 1.64% 0.4s 8.37 4.38% Is
= AlignOPT (w/o TGM) 3.85 0.00% 0.1s 5.77 0.52% 0.4s 7.89 0.64% Is
AlignOPT(STFT) 3.85 0.00% 0.1s 5.71 0.35% 0.4s 7.79 0.38% 1s
AlignOPT (GNS) 6.88 12.79% 0.1 11.21 8.20% 0.4s 17.11 10.46% Is
a, AlignOPT (w/o Task Rep.) 6.21 0.49% 0.1s 10.73 0.10% 0.4s 16.29 0.13% Is
& AlignOPT (w/o TGC) 6.88 0.39% 0.1s 11.21 1.64% 0.4s 17.11 4.38% Is
O AlignOPT (w/o TGM) 6.19 0.16% 0.1s 10.74 0.18% 0.4s 16.30 0.18% Is
AlignOPT(STFT) 6.13 0.49% 0.1s 10.68 3.09% 0.4s 16.17 4.39% 1s
AlignOPT (GNS) 7.552 4.98% 0.1 19.274 4.04% 0.4s | 38.850 3.78% Is
AlignOPT (w/o Task Rep.) | 7.941 0.11% 0.1s | 20.082 0.01% 0.4s | 40375 0.01% Is
& AlignOPT (w/o TGC) 7.937 0.13% 0.1s | 20.056 0.149% 0.4s | 40368 0.02% Is
AlignOPT (w/o TGM) 7.942 0.08% 0.1s | 20.081 0.02% 0.4s | 40372 0.02% 1s
AlignOPT(STFT) 7.948 0.00% 0.1s | 20.085 0.00% 0.4s | 40.380 0.00% 1s
AlignOPT (GNS) 13.410 10.88% 0.1 34.078 15.45% 0.4s | 66399 15.37% Is
a, AlignOPT (w/o Task Rep.) | 12.741 0.30% 0.1s | 31.907 0.49% 04s | 64438 0.28% Is
8 AlignOPT (w/o TGC) 13.410 0.39% 0.1s | 34078 1.64% 0.4s | 66399 4.38% Is
= AlignOPT (w/o TGM) 12.731 0.22% 0.1s | 31.872 0.38% 0.4s | 64398 0.22% Is
AlignOPT(STFT) 12.597 5.41% 0.1s | 31.562 9.54% 0.4s | 64.091 14.06% 1s
a AlignOPT (GNS) 0.2954 65.572% 0.1 03550 39.49% 04s | 03469 29.72% Is
& AlignOPT (w/o Task Rep.) | 0.2843 0.28% 0.1s | 0.3335 0.21% 04s | 03295 0.12% Is
E AlignOPT (w/o TGC) 0.2954 0.39% 0.1s | 0.3550 1.64% 04s | 0.3469 4.38% Is
E AlignOPT (w/o TGM) 0.2839 0.14% 0.1s | 0.3332 0.12% 0.4s | 0.3296 0.15% Is
AlignOPT(STFT) 0.2829 64.05% 0.1s | 0.3318 3526% 0.4s | 03285 25.78% Is

Table 3: Ablation studies of key designs across 1K instances for 5 representative COPs.

TSP (n=50) CVRP (n=50) KP (n=50) MVCP (n=50) SMTWTP (n=50)

= Lama = Lama = Lama ED
Quen n Quen Quen 03318

= Liama
Quen

1072 20.081 5,078

03291 350

& &
§ &

o

TSP (n=100) CVRP (n=100) KP (n=100) MVCP (n=100) SMTWTP (n=100)

= Lama
Quen

= Lama
Quen

03297
03285 03288 03291

64.091 64,084

*
<& <&

& S
& «

Figure 3: Average bbjective values of different LLMs (Ijlama3.1 8B and sten2.5 8B)

* ; m
4 & & ¢

& & o & o & &

As shown in Fig. Bl Qwen slightly outperforms Llama on all five COPs at size 50 in single-task
scenarios, while Llama demonstrates better performance on multi-task KP, CVRP, and SMTWTP
scenarios. For the larger size 100 instances, Llama consistently achieves better results on TSP, and
CVRP across both scenarios. Conversely, Qwen notably excels at MVCP and SMTWTP for both
single-task and multi-task scenarios at size 100. These results suggest that model performance de-
pends significantly on the specific COP, problem size, and fine-tuning strategy.

CONCLUSIONS

In this work, we propose AlignOPT, a novel framework that addresses the limitations of LLM-
only approaches, which struggle to accurately capture the complex relational structures of COPs.
By combining the semantic understanding of LLMs with the relational modeling capabilities of
graph-based neural solvers, AlignOPT effectively aligns textual descriptions with structural repre-
sentations. Extensive experiments show that AlignOPT consistently achieves state-of-the-art perfor-
mance. Ablation studies further validate the key design components, highlighting the effectiveness
of our multi-task alignment strategy. Moreover, AlignOPT demonstrates strong generalization, suc-
cessfully solving previously unseen COP instances with minimal fine-tuning and without further
reliance on LLMs. Future work will focus on refining the alignment mechanisms between LLMs
and graph-based solvers, particularly through dynamic integration during inference, to further en-
hance adaptability and performance.

Under review as a conference paper at ICLR 2026

REFERENCES

Henrik Abgaryan, Ararat Harutyunyan, and Tristan Cazenave. Llms can schedule. arXiv preprint
arXiv:2408.06993, 2024.

Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted vertex
cover problem. In North-Holland Mathematics Studies, volume 109, pp. 27-45. Elsevier, 1985.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405421, 2021.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin
Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems.
In ICML 2024 Workshop on Foundation Models in the Wild.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM computing surveys (CSUR), 35(3):268-308, 2003.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovié. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1-61, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597-1607. PmLR, 2020.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760-8772, 2022.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimiza-
tion agent learner. arXiv preprint arXiv:2406.15079, 2024.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver
with invariant nested view transformer. arXiv preprint arXiv:2402.02317, 2024.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takac. Self-guiding exploration for com-
binatorial problems. Advances in Neural Information Processing Systems, 37:130569-130601,
2024.

James R Jackson. Scheduling a production line to minimize maximum tardiness. 1955.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Bridging large language models and
optimization: A unified framework for text-attributed combinatorial optimization. arXiv preprint
arXiv:2408.12214, 2024.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936-1949,
2022.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, 22(3):2033-2062, 2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

10

Under review as a conference paper at ICLR 2026

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. Cada: Cross-problem routing solver with
constraint-aware dual-attention. In Forty-second International Conference on Machine Learning.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888-12900. PMLR, 2022.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath
Jayavelu. Cross-problem learning for solving vehicle routing problems. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, pp. 6958-6966, 2024.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large lan-
guage model. arXiv preprint arXiv:2311.15249, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: towards efficient automatic algorithm design using large language
model. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024a.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8.
IEEE, 2024b.

Leonard Brian Pitt. A simple probabilistic approximation algorithm for vertex cover. Yale Univer-
sity, Department of Computer Science, 1985.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531—
25546, 2022.

Jussi Rasku, Tommi Kirkkdinen, and Nysret Musliu. Meta-survey and implementations of classical
capacitated vehicle routing heuristics with reproduced results. Toward Automatic Customization
of Vehicle Routing Systems, pp. 133-260, 2019.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. Mathematical discoveries from program search with large language models. Nature,
625(7995):468-475, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Zheng Wang and Jiuh-Biing Sheu. Vehicle routing problem with drones. Transportation research
part B: methodological, 122:350-364, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 1992.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. Advances in neural information processing systems, 36:
43706-43728, 2023.

11

Under review as a conference paper at ICLR 2026

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571-43608, 2024.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and
Yulia Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? arXiv preprint
arXiv:2406.15992, 2024.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A uni-
fied neural divide-and-conquer framework for large-scale combinatorial optimization problems.
Advances in Neural Information Processing Systems, 37:6081-6125, 2024.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts. Proceedings of Machine Learning
Research, 235:61804—-61824, 2024.

APPENDIX

DATA PREPARATION
DATA GENERATION PROCESS

To construct a comprehensive training corpus, we employed a randomized approach for creating
node-based representations across multiple routing problem types. The specific problems covered
include TSP, CVRP, VRPB, KP, MIS, MVC, and SWTWTP, ensuring diversity in constraint struc-
tures and optimization objectives.

Node Generation and Problem Instantiation For each problem type, we randomly generated node
sets to simulate real-world scenarios:

* Node Variables: Each node n; was assigned a unique identifier and associated variables
such as spatial coordinates (x;,y;) for TSP or CVRP, demand/supply quantities d; for
VRPB, item weights w; and values v; for KP, or temporal constraints ¢; for SWTWTP.
The variables were sampled from uniform or Gaussian distributions to mimic practical
variability.

* Problem-Specific Constraints: Depending on the problem type, additional global param-
eters were defined. For example, CVRP instances included vehicle capacity C', while MIS
enforced graph-based adjacency constraints to represent compatibility relationships.

Textual Description Template We developed a standardized template to translate each problem and
its nodes into structured textual descriptions, comprising two key components:

* Task Description: Each problem was summarized with a high-level explanation of its ob-
jectives, required input variables, and output expectations. For instance, a TSP task de-
scription stated: “The goal is to find the shortest cyclic path visiting each node exactly
once, given node coordinates as inputs; the output must be an ordered sequence of nodes
minimizing total travel distance.”.

* Node Description: For each node n;, we input its associated variables and applied a
nearest-neighbor algorithm (e.g., k-NN with Euclidean distance) to identify the & most
adjacent nodes. This formed a contextual narrative, such as: ”Node n; at coordinates (x,y)
has a demand of d units; nearby nodes include n; (distance §;; units) and ny, (distance 6;),
units), suggesting potential delivery clusters.”.

TEXT-ATTRIBUTED INSTANCE (TAI)

In this subsubsection, we demonstrate the text-attributed instances for each COP used in this work.
The LLMs are used to generate COP-specific text-attributed Representations based on the COP
textual instances for model pre-training.

12

Under review as a conference paper at ICLR 2026

TSP

For a traveling salesman problem (TSP), there will be a list of nodes distributed in a unit
square, representing a series of cities. The attribution in the form of (x, y) of each node
denotes the x-location and y-location of the city. The goal is to find the shortest route that
visits each city exactly once and returns to the origin city. The following are the descriptions
of 100 nodes of a TSP: Node(0). Attribution:[0.6184, 0.8962]. The three nearest nodes and
distances:[(17):0.1067, (6):0.1451, (7):0.2120]; Node(1)....

CVRP

For a capacitated vehicle routing problem (CVRP),there will be a depot node and a list
of customer nodes distributed in an unit square. The attribution in the form of (x, y, d) of
each node denotes the x-location, y-location and a known demand d for goods. Multiple
routes should be created, each starting and ending at the depot. The vehicle have a limited
capacity D=1, and the goal is to minimize total distance traveled while ensuring that each
customer’s demand is satisfied and the capacity constraints is not exceeded. Node(0). Depot
node. Attribution:[0.6184, 0.8962]. Node(1). Customer node. Attribution:[0.5123, 0.7542,
4]. The three nearest nodes and distances:[(15):0.1067, (26):0.1451, (9):0.2120]; Node(2)....

P

l

KP: For a knapsack problem (KP),there will be a list of nodes distributed in an unit
square,representing a series of items. The attribution in the form of (x, y) of each node
denotes the weight x and profit y of the item. Given a bag with capacity 10, the goal is to
put the items into the bag such that the sum of profits is the maximum possible. The fol-
lowing are the descriptions of 100 nodes of a KP: Node(0). Attribution:[0.2667, 0.9909].
Value-to-weight ratio and importance rank:[3.7151, 7]; Node(1).....

MVC

For a minimum vertex cover (MVC) problem, there will be a graph with 20 nodes and 60
edges. A minimum vertex cover is a node cover having the smallest possible number of
nodes for a given graph. The attribution in the form of (1, 22, ..., 220) of a node denotes
the adjacency relationship of itself and other nodes.” If there is an edge between a node and
node z,,, the corresponding value is set to 1, otherwise 0.” The following are the descriptions
of 20 nodes of an MVC problem: Node(0). Attribution:[0.2667, 0.9909,.....,0.2314]. Node
degree and importance rank: [3, 5]; Node(1).....

MIS

The maximum independent set (MIS) problem is defined on a graph with 20 nodes and 40
edges. A maximum independent set is a set of nodes having the largest possible number of
nodes such that no two nodes in the set are adjacent for the given graph. The attribution of a
node in MIS is as (1, 22, ..., £20), which denotes if it is adjacent to other nodes. If there is
an edge between a node and other node, the corresponding value is set to 1, otherwise 0. The
following are the descriptions of 20 nodes of a MIS problem: Node(0). Attribution:[0.2667,
0.9909,......,0.2314]. Degree of the node and its rank: [3, 3]; Node(1).....

13

Under review as a conference paper at ICLR 2026

SWTWTP

For a single machine total weighted tardiness problem (SMTWTP),there will be a list of
nodes,representing a set of jobs must be processed by a single machine. The attribution in
the form of (w, d, p) of each node denotes the weight,the due time,and the processing time.
The goal is to find the optimal sequence in which to process the jobs in order to minimize
the total weighted tardiness, where tardiness refers to the amount of time a job completes
after its due date. The following are the description of 100 nodes of a SMTWTP: Node(0).
Attribution:[0.3512, 0.6523, 0.2314]. Node importance rank: [S]. Node(1).

“For a vehicle routing problem with backhauls (VRPB),there will be a depot node and a list
of customer nodes distributed in an unit square. The attribution in the form of (x, y, d) of
each node denotes the x-location, y-location and a known demand d for goods. The demand
for each node can be positive or negative, indicating the vehicle should unload or load good.
Multiple routes should be created, each starting and ending at the depot. The vehicle have
a limited capacity D=1, and the goal is to minimize total distance traveled while ensuring
that each customer’s demand is satisfied and the capacity constraints is not exceeded. The
following are the descriptions of a depot node and 20 nodes of a VRPB: Node(0). Depot
node. Attribution:[0.1232, 0.4213]. Node(1). Customer node. Attribution:[0.3123, 0.5132, -
4]. The three nearest nodes and distances:[(15):0.1067, (26):0.1451, (9):0.2120]; Node(2)....

TEXT EMBEDDING GENERATION

To leverage pretrained large language models (LLMs) for encoding the textual data, we processed
all descriptions using two state-of-the-art architectures:

¢ Model Selection: We utilized L1ama3.1 8B and Qwen2.5 8B, chosen for their bal-
ance of parameter efficiency and performance in semantic encoding tasks.

* Embedding Extraction: Input descriptions were tokenized and fed into each LLM to gen-
erate fixed-dimensional embeddings. The output tensor F was structured as £ € RV*S*D |
where:

— N denotes the number of nodes per problem instance,

— S represents the sequence length,

— D is the embedding dimension.

* Storage and Integration: Embeddings were serialized and stored locally in HDFS5 format.

TRAINING DETAILS

Our training pipeline comprised two sequential phases: (1) model pretraining with TGC and TGM
loss, followed by (2) reinforcement learning (RL) fine-tuning. All experiments were executed on a
high-performance computing cluster utilizing 64 NVIDIA H800 GPUs (80GB HBM2e memory)
hosted on AMD EPYC 7713 64-Core Processors. The software stack leveraged PyTorch 2.4.1
compiled with CUDA 12.1. Batch sizes were dynamically optimized to maximize GPU memory
utilization during each training phase.

Pre-training Phase: Models were trained for 3 epochs (max_epoch = 20) using the AdamW opti-
mizer with weight decay 17 = 0.05. The learning rate followed a warmup-decay schedule: initialized
at \; = 3 x 1074, warmed up from \,, = 1 x 1075 over 3000 steps, then decayed via cosine
annealing (effective decay rate v = 0.9) to a minimum A;, = 1 x 1076,

Reinforcement Learning Fine-tuning: The contrastive pretrained model was fine-tuned for 200
epochs using the Adam optimizer with learning rate A\ = 1 x 10~* and weight decay = 1 x 1075.

14

Under review as a conference paper at ICLR 2026

LARGE SCALE EXPERIMENTS

Comprehensive evaluation across 15 TSPLIB instances (225-657 nodes) reveals that the single-
task fine-tuning variant (ALIGNOPT-STFT) consistently outperforms its multi-task counterpart
(ALIGNOPT-MTFT) in solution quality. As shown in Table] STFT achieves a mean solution er-
ror of 19.60 relative to optimal solutions, demonstrating a statistically significant improvement of
1.01% over MTFT (20.61%, p < 0.001 by paired ¢-test). This performance gap exhibits a strong
positive correlation with problem scale (r = 0.82, p < 0.001), widening from 0.27% on smaller
instances (e.g., pr226, 226 nodes) to 2.03% on larger problems (e.g., att 532, 532 nodes). Both
variants substantially outperform classical heuristics such as Nearest Neighbor (27.71% error) and
Farthest Insertion (20.86% error), yet remain inferior to specialized solvers like LKH3 (0.05% error)
and OR-Tools (1.78% error). The consistent superiority of STFT suggests that task-specific opti-
mization mitigates negative transfer effects inherent in multi-scale multi-task learning, particularly
for complex problem structures where scale-dependent feature representations require dedicated
parameter allocation. These findings indicate that for large-scale TSP applications, single-task spe-
cialization provides more effective adaptation than parameter-sharing multi-task approaches, though
both learning-based methods demonstrate promising performance relative to traditional heuristics.

Table 4: TSPLIB

Instance Nodes Optimal LKH3 OR-Tools Nearest Farthest =~ ACO AlignOPT AlignOPT
neighbor insertion (MTFT) (STFT)

pr226 226 80,369 80,410.0 81,750 103,808 96,243 95,526 89,231 89,010
ts225 225 126,643 126,672.0 129,000 163,443 153,504 151,295 140,804 140,473
er229 229 134,602 134,651.0 137,000 172,830 163,995 161,234 149,639 149,307
gil262 262 2,378 2,379.0 2,420 3,036 2,871 2,849 2,760 2,738
a280 280 2,579 2,579.5 2,625 3,313 3,119 3,092 2,981 2,959
pr299 299 48,191 48,220.0 49,000 61,843 58,254 57,647 55,217 54,996
1lin318 318 42,029 42,054.0 42,650 53,008 50,247 49916 48,591 48,370
rd400 400 15,281 15,2855 15475 19,546 18,332 18,166 18,773 18,553
1417 417 11,861 11,865.5 12,035 15,240 14,356 14,246 14,908 14,687
pr439 439 107,217 107,258.0 109,250 138,043 129,208 128,104 134,730 133,626
pcb442 442 50,778 50,799.0 51,600 64,604 61,015 60,518 62,947 62,395

d493 493 35,002 35,026.0 35,7700 44,450 42241 41,854 44,173 43,621
att532 532 27,686 27,703.0 28,175 35,173 33,130 32,909 36,443 35,891
p654 654 34,643 34,666.5 35350 44,726 41,965 41,633 46,382 45,830
d657 657 48912 48941.0 49,750 62,119 58,530 58,088 60,739 60,187

CODE AVAILABILITY

The code and dataset used in this study will be made publicly available in the GitHub repository at
https://github.com/... upon manuscript acceptance.

15

https://github.com/...

	Introduction
	Related Work
	Preliminaries
	The Proposed Framework
	COP-Specific Text-Attributed Representations
	Graph-based Neural Encoder
	Aligning LLM with Graph-based Neural Solvers
	Fine-tuning Schemes

	Experiments
	Ablation Study

	Conclusions
	Appendix
	Data Preparation
	Data Generation Process
	Text-attributed Instance (TAI)
	Text Embedding Generation

	Training Details
	Large Scale Experiments

