
Under review as submission to TMLR

A Theoretical Study of The E�ects of Adversarial Attacks
on Sparse Regression

Anonymous authors

Paper under double-blind review

Abstract

This paper analyzes ¸1 regularized linear regression under the challenging scenario of having
only adversarially corrupted data for training. Firstly, we prove existing deterministic
adversarial attacks (e.g., FGSM and variants) focusing on maximizing the loss function can
be easily handled with a few samples for support recovery. problem. Hence, we consider
a more general, challenging stochastic adversary which can be conditionally dependent on
uncorrupted data and show existing models attacking support (Goodfellow et al., 2015; Madry
et al., 2018) or Huber model (Prasad et al., 2020) are particular cases of our adversarial
model. This enables us to show the counter-intuitive result that an adversary can influence
sample complexity by corrupting the “irrelevant features”, i.e., non-support. Secondly, as
any adversarially robust algorithm has limitations, our theoretical analysis identifies that the
dependence (covariance) between adversarial perturbation perturbations and uncorrupted
data plays a critical role in defining the regimes under which this challenging adversary or
Lasso can dominate over each other. Thirdly, we derive a necessary condition for support
recovery for any algorithm (not restrictive to Lasso), which corroborates our theoretical
findings for Lasso. Fourthly, we identify the fundamental limits and address critical scientific
questions of which parameters (like mutual incoherence, perturbation budget i.e., mutual
incoherence, the maximum and minimum eigenvalue of the covariance matrix, and the budget
of adversarial perturbations) play a role in the high or low probability of success of the Lasso
algorithm. Also, the derived sample complexity is logarithmic with respect to the size of the
regression parameter vector. Our theoretical claims are validated by empirical analysis.

1 Introduction

A well-known instance of the failure of machine learning (ML) models is when they are confronted with
adversarial attacks. The vulnerability of ML models to possibly small perturbations imperceptible to the
human eye in input features such as one-pixel attacks (Su et al., 2019) may produce inaccurate predictions
with high confidence (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018). Hence, demystifying
empirical failure with theoretical analysis to design certifiable learning algorithms has been an active area
of research recently. In this work, we consider the support recovery problem under adversarial attacks and
theoretically analyze the behavior of the widely accepted Lasso algorithm.

We begin by providing theoretical evidence of the limitations of existing adversarial attack models in the
context of the support recovery problem. We propose a more comprehensive and demanding adversarial
model that addresses these limitations. Existing gradient descent-based methods, such as FGSM (Goodfellow
et al., 2015) and various others (Madry et al., 2018; Szegedy et al., 2014; Xing et al., 2021; Yin et al., 2019;
Awasthi et al., 2020; Qin et al., 2021) target the support (the entries corresponding to non-zero coe�cients)
on a per-sample basis. These methods primarily focus on maximizing the loss function rather than making
parameter estimation more challenging. Attacks that exclusively target the support can be easily countered
by inspecting the mean in with just �(log(p)) samples, as demonstrated in Section 2.1 and 2.2. To ensure a
non-trivial and intriguing problem, we introduce a more general and challenging adversary.
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In this work, we consider a zero-mean sub-Gaussian adversary that can be conditionally dependent on the
uncorrupted data, aiming to maximize the complexity of the learning process (for Lasso). Our adversary is
more challenging as compared to existing attacks (Goodfellow et al., 2015; Szegedy et al., 2014; Xing et al.,
2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021), as it demands a larger number of samples
for support recovery. Specifically, as proved in Theorem 10, our adversary demands �

!
k

2 log(p)
"

samples,
whereas existing attacks only need �(log(p)) samples (in Section 2.2). Here, k denotes the number of elements
in the support. Furthermore, it is worth noting that under a specific condition, our adversary can be so
powerful that achieving successful support recovery becomes impossible, even with infinite samples.

The attack in existing methods is just one possible attack model that fits our assumptions; hence, our
adversarial model is more general. For instance, approaches by Goodfellow et al. (2015); Madry et al. (2018);
Szegedy et al. (2014); Xing et al. (2021); Yin et al. (2019); Schmidt et al. (2018); Awasthi et al. (2020); Qin
et al. (2021) consider deterministic attacks within an ‘-ball, which can be considered as is sub-Gaussian since
any bounded random variable is known to be sub-Gaussian. Also, note that stochastic attack is attacks are
more general as any deterministic value is a random variable with a Dirac delta probability density function.
Furthermore, it is worth noting that the –-Huber model (Prasad et al., 2020; Diakonikolas et al., 2019)
corrupting only – < 1 fraction of samples is a particular case of our adversarial model.

In the presence of a more challenging adversary, our analysis (as demonstrated in Lemma 12) reveals an
intriguing aspect: the adversary can impact the sample complexity by manipulating not only the “relevant
features” or support (i.e., entries corresponding to non-zero coe�cients of the regression parameter vector)
but also the “irrelevant features” or non-support (i.e., entries corresponding to zero coe�cients). This is a
counter-intuitive result as the existing methods (Madry et al., 2018; Szegedy et al., 2014; Xing et al., 2021;
Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) attack only the support only (Lemma 6). We also
address critical scientific questions of which parameters (like i.e., mutual incoherence (after Eq (8)), the
maximum and minimum eigenvalue (Lemma 19) of the covariance matrix, and the budget of adversarial
perturbation perturbations (Eq (15))) play a role in the high or low probability of success of Lasso. The
adversary can also increase the sample complexity by designing the covariance matrix of perturbations in
the support such that its eigenvector corresponding to the maximum eigenvalue is parallel to the regression
parameter vector (discussed after Eq (15)).

We derive a necessary condition for support recovery that applies to any algorithm, extending beyond the scope
of Lasso. Notably, we observe that this condition aligns with our separate analysis of the Lasso algorithm,
strengthening our findings in that context. With slight abuse of terminology, both conditions essentially
indicate that support recovery is impossible when the absolute value of the coe�cient in the parameter vector
(for an entry in the support) is not large enough as compared to the entries in the covariance matrix between
the adversarial perturbation and the uncorrupted data of the support. This aspect of our main result in
Theorem 10 is discussed in Section 3.2 and verified empirically. Please refer to Figure 1 for a demonstration
of possible and impossible support recovery scenarios in the cases of b = 0 and b ”= 0 respectively. For more
detailed experiments on the three cases of the regularization parameter, ⁄ in Theorem 10, characterizing
possible and impossible support recovery, please refer to Section Appendix E.4 in the supplementary material.

Some initial attempts have been made in the sparse regression literature (Herman & Strohmer, 2010), but
we believe that the particular theoretical framework did not allow prior work to make important findings
such as noting that when adversarial perturbations correlate with uncorrupted data, then support recovery
is impossible. In addition, there is prior literature in robust optimization (Bertsimas & Den Hertog, 2020),
where there is uncertainty in the input coe�cients of an optimization problem. Their goal is to provide
guarantees that the unperturbed optimal solution is still feasible (although not optimal) in the problem with
perturbed inputs. Bertsimas & Den Hertog (2020) treats canonical problems such as linear programming,
for instance. While we also focus on an optimization problem, Bertsimas & Den Hertog (2020) provides a
general treatment and lacks the focus on machine learning aspects, e.g., support recovery and adversarial
perturbations.

Our Contributions. Our key contributions are summarized below:
• A challenging adversary: We show the limitations of existing adversarial models and use a more general

and challenging adversary (in Section 2.1 and 2.2). In this regard, our work o�ers theoretical insights
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into the reasons behind the failure of existing adversarial training approaches, even for seemingly simple
problems such as sparse regression.

• Necessary condition: We derive the necessary condition (in Section 2.4) for the support recovery problem,
which is applicable for to any method and not limited to Lasso. Further, our independent analysis for Lasso
derives similar requirements (in Section 3).

• Identifying fundamental limitations: While adversarially robust algorithms have their limitations,
our theoretical analysis (in Section 3.2) reveals that the dependence (covariance) between the adversarial
perturbation perturbations and uncorrupted data relative to the magnitude of coe�cients in the parameter
vector plays a crucial role in determining the regimes in which either the challenging adversary or the Lasso
algorithm can outperform the each other.

• Sample complexity: We derive the a sample complexity as of order �
!
k

2 log(p)
"

(Theorem 10) for
support recovery under adversarial attacks, which is known to be �(k log(p)) for the non-adversarial regime
(Wainwright, 2009). If we assume the adversarial perturbation to be Gaussian, the sample complexity
improves to � (k log(p)) (Appendix D.10). This improved complexity is proven to be minimax optimal,
indicating that further improvement is not possible.

• Empirical validation: We verify our theoretical findings via experiments on synthetic and real-world
data where the adversarial perturbation can be dependent on the uncorrupted data. This identifies the
regimes when Lasso (Fig. 1(a)) or the adversary (Fig. 1(b)) can dominate over each other (Appendix E.4).

• Theoretical tools: Our contribution can be seen as a first step towards the study of learning from
adversarial training data. As a byproduct, we also obtain several technical results related to a new
concentration inequality (Theorem 14), necessary condition (Lemma 9) which could be useful for other
problems.

While we focus on sub-Gaussian data, our proofs can be extended to heavy-tailed data. Before proceeding
further, we introduce the notations used in this paper.

Notation. We use a lowercase letter, e.g., a to denote a scalar, a lowercase bold letter such as a to denote
a vector, and an uppercase bold letter such as A to denote a matrix. A vector 1m or 0m represents a vector
of ones or zeros respectively, of size m. We denote a set with a calligraphic alphabet letter, e.g., P. Also, [n]
denotes the set {1, 2, . . . , n}. For a vector, ai denotes the i

th entry of the vector a. For a matrix A œ Rp◊q,
we represent the sub-matrix with rows P ™ [p] and columns Q ™ [q] as APQ œ R|P|◊|Q|.

For a vector vector a œ Rm, we denote the ¸p norm as ||a||
p

= (
q

m

i=1 |ai|
p)

1
p . Similarly ||A||Œ denotes

the entrywise ¸Œ norm of a matrix A and ||A||2 denotes the spectral norm. We denote the induced ¸Œ
norm using |||A|||Œ = maxiœ[m] ||ai||1 for a matrix A œ Rm◊k, where ai denotes its i

th row. Minimum and
maximum eigenvalues of a matrix A are denoted by ⁄min (A), ⁄max (A). A function f(m) = �(g(m)) implies
that there exists a constant c1 such that f(m) Ø c1g(m), ’m Ø m0. Similarly, f(m) = O(g(m)) denotes that
there exists a constant c2 such that f(m) Æ c2g(m), ’m Ø m0. For a vector w œ Rp, S(w) = {i œ [p], wi ”= 0}

denotes the support of w and similarly S
c(w) = [p] \ S(w) denotes the non-support.

2 A Novel Generative Model For Adversarial Training Data

In this section, we propose a novel generative model for adversarial training. Let
!
x

ı(j)
, y

ı(j)" denote the
j

th noise-free sample. In our model, we assume the adversary has attacked the system and disturbed the
noise-free features x

ı(j) as shown below:

y
ı(j) = w

ı|
x

ı(j)
, y

(j) = y
ı(j) + e

(j)
, x

(j) = x
ı(j) + �(xı(j)) (1)

where y
ı(j)

œ R, x
ı(j)

œ Rp, w
ı

œ Rp, and �(xı(j)) is the adversarial perturbation which can be any
sub-Gaussian random variable possibly dependent on x

ı(j) (See Appendix E.3 for an example). Let S = S(wı)
denote the support of w

ı, i.e., the set of indices corresponding to non-zero entries of w
ı. Let k = |S| denote

the cardinality of the support, and hence p ≠ k = |S
c
|. We argue that our proposed model is more general

than other existing models in the literature, including the Huber model in Lemma 3. Our theoretical and
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empirical analysis (Appendix E.4) draws interesting inferences using this model. We assume only adversarially
corrupted data, that is, n independent samples of

)
y

(j)
, x

(j)* for j œ [n] are available for training, which
makes the problem challenging as compared to existing works which assume availability of uncorrupted
features x

ı(j). Let X œ Rn◊p be the collection of n samples of x
(j) for j œ [n]. For brevity, we may drop

the superscript (j) later. Let the population covariance matrix of X
ı be denoted by �

xı . We assume that
xı

i/
Ô

�xı
ii is a zero-mean sub-Gaussian random variable with variance proxy parameter ‡

2 for i œ [p]. We
assume that e is a zero-mean sub-Gaussian random variable with variance proxy ‡

2
e
.

Proceeding to adversarial perturbation, it should be obviously Adversarial perturbations are typically
bounded by some budget for each sample (Zhai et al., 2019; Balda et al., 2019; Yin et al., 2019; Cohen
et al., 2019) so that the underlying model is learnable. We model this fixed budget as a parameter in
our analysis, and hence, the we provide performance guarantees can be analyzed as a function of this parameter.
As the adversarial perturbation is bounded, it can be considered as sub-Gaussian random variable. Also, it can
We choose adversarial perturbations to be sub-Gaussian random variables, which generalizes the regime of
bounded perturbations. Adversarial perturbations can also be dependent on the uncorrupted regressors, x

ı

for each sample. To clarify, �(xı(i)) can be dependent on uncorrupted regressors x
ı(i), where i denotes the

i
th sample, but �(xı(i)) is independent of x

ı(j), if i ”= j, where j denotes another sample. Note that the
adversary does not have control over the uncorrupted regressors x

ı, but has access to x
ı, which can be

used to design �(xı) in an arbitrary manner (that may make the support recovery problem most more
challenging).

Assumption 1. (Adversarial Perturbation) �(xı) is a zero-mean sub-Gaussian random vector with pa-
rameters (��

, r
2), which can be conditionally dependent on uncorrupted data. Here �

� is the population
covariance matrix of the adversarial perturbation (�(xı)) and r

2 is the variance proxy parameter for some
r œ R.

In the above definition, we require that E (exp (–|
�(xı))) Æ exp

!
–|��–r

2
/2

"
, for all – œ Rp which is akin

to the classical definition (Hsu et al., 2012) as discussed briefly in Appendix A.1.

2.1 Existing attacks are special cases of our adversarial model

Note that a random variable is more general than a deterministic one, i.e., a deterministic quantity is a
random variable with a Dirac delta probability density function. Hence, existing deterministic adversarial
attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014; Xing et al., 2021; Yin et al., 2019;
Awasthi et al., 2020; Qin et al., 2021) are a special case of our adversarial model specified in Assumption 1.

Lemma 2. Existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014;
Xing et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) are a special case of our adversarial
model specified in Assumption 1.

This is because The proof of the above lemma uses the fact that the aforementioned attacks use a vector
�(xı) with bounded norm, and then shows that any vector with a bounded norm is a sub-Gaussian random
vector.

Lemma 3. The –-Huber-model (Prasad et al., 2020; Diakonikolas et al., 2019) corrupting only – < 1 fraction
of samples is a special case of our adversarial model specified in Assumption 1.

The proof of the above lemma designs an adversarial attack �(xı) that returns 0 with probability 1 ≠ – and
a carefully defined perturbation that depends on x

ı with probability –.

Remark 4. Also note that the sub-Gaussian family covers a wide variety of random variables (such as Bernoulli, multinomial, uniform, etc.), possibly unbounded variables, or any random variable with strictly log-concave density.
The class of sub-Gaussian variates includes for instance some unbounded random variables (e.g., Gaussian
variables), any bounded random variable (e.g. Bernoulli, multinomial, uniform), any random variable with
strictly log-concave density, and any finite mixture of sub-Gaussian variables. Hence, our adversarial model is
more general.

4



Under review as submission to TMLR

2.2 Our adversarial attack is more challenging than existing attacks

It may look obvious for an adversary to spend its fixed budget for a sample to disturb the support entries
(xS) only, since y

ı(j) = w
ı|

x
ı(j) = w

ı|
S x

ı(j)
S , ’j. We assume the adversary attacks the non-support entries

(xSc) as well, to make the learning task of estimating S and S
c tougher, which is formalized in the following

lemma.
Lemma 5. If the adversary attacks only the support entries (xS) or the non-support entries (xSc) with
non-zero-mean of adversarial perturbation, then the learner can guess the support trivially with probability at
least 1 ≠ O (1/p) if n = � (log(p)).

The proof of the above lemma relies on the fact that the sample mean of feature vector x
(j) for j œ [n] will

be close to the population mean. If only the support is attacked, the population sample mean is away from
zero for entries in the support, and is zero for entries in the non-support. Hence, the learner can guess the
support by just computing the sample mean.
Lemma 6. The support can be trivially estimated in n = � (log(p)) samples with high probability under
existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014; Xing et al.,
2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) aiming to maximize a per-sample loss function.

The proof of the above lemma first shows that the aforementioned methods attack only the support, and
then uses Lemma 5 to make the final claim.

In order to avoid such a trivial case, we consider the zero-mean in Assumption 1.

2.3 Other assumptions for support recovery

In this section, we define a few quantities used in our analysis later. Let the sample covariance matrix of X

be denoted by �̂
x = 1

n
X

|
X and the population covariance matrix be denoted by �

x. For the uniqueness of
the solution to the problem stated in Eq. (2), we need a submatrix of the sample covariance matrix to be
positive definite. But as X is assumed to be random, we assume the population covariance matrix of X

ı

is to be positive definite as done in prior literature (Wainwright, 2009; Ravikumar et al., 2011; 2010; 2009;
Daneshmand et al., 2014).
Assumption 7. (Positive Definiteness) The minimum eigenvalue of the population covariance matrix of x

ı

fulfills ⁄min
!
�

xı

SS
"

= Cmin > 0.

Let the population covariance matrix between adversarial perturbations �(xı) and measurements x
ı be

denoted by �
�xı . Similarly, the minimum eigenvalue of the population covariance matrix of adversarial per-

turbations in the support S, denoted by �
�
SS , is Dmin Ø 0. The minimum eigenvalue of [��xı + �

xı�]SS/2
is denoted by Fmin, which influences the sample complexity as discussed in Lemma 13. Similarly, the maximum
eigenvalues of matrices {�

x
, �

�
, �

�xı

} are denoted by {Cmax, Dmax, Fmax}, whose influence on sample
complexity can be seen in Lemma 15. Further, we make the assumption on of mutual incoherence, which
basically implies that the regressors in the non-support S

c do not have a strong correlation with regressors in
the support S.

Assumption 8. (Mutual Incoherence) For some “ œ (0, 1],
---
---
---�x

ScS (�x
SS)≠1

---
---
---
Œ

Æ 1 ≠ “.

This assumption is not restrictive (refer see Lemma 18) and has been used in various works related to
support recovery (Wainwright, 2009; Ravikumar et al., 2011; 2010; 2009; Daneshmand et al., 2014). In
addition, we also assume

---
---
---(�x

SS)≠1
---
---
---
Œ

= Gmax Æ Œ and |||�
x
ScS |||Œ = Hmax Æ Œ. We refer to

(r, “, Fmin, Fmax, Dmin, Dmax, Gmax, Hmax) as the budget given to the adversary for corrupting each sample.

2.4 Necessary condition for support recovery

We derive the following necessary condition for support recovery relating the adversarial budget to the model
parameters. Note that the following requirement is for all methods and is not limited to Lasso.
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Lemma 9. The condition 16b

15“

!
1 + “

4
" 3Gmax

2 Æ min
iœS

|w
ı

i
|, where b =

...�
xı�
[p]S w

ı

S

...
Œ

is necessary for support
recovery, even in the population regime, where (intuitively speaking) the learner has access to an infinite
number of samples.

In the above lemma, we prove the necessary condition by considering a case where support recovery is
impossible if the required condition is disobeyed. The proof carefully constructs a specific case where the
uncorrupted data as well as the adversarial perturbations are both Gaussian, and then uses the fact that
Gaussian distributions are fully identifiable from its first and second order moments to argue for impossibility.

With slight abuse of terminology, the above lemma implies that the coe�cients in the parame-
ter vector must be su�ciently large compared to the adversarial budget for successful detection.
In the above lemma, we prove the necessary condition by considering a case where the support recovery is impossible if the required condition is disobeyed.
With a brief discussion of our assumptions in this section, we present our main theoretical result in the next
section.

3 Our Main Result

In this section, we discuss the main theorem for the proposed support recovery problem mentioned in the previous section. In a nutshell, the theorem
In this section, we present and discuss our main theorem that implies a sample complexity of n = �

!
k

2 log(p)
"

for correct support recovery with high probability (except when there is correlation between the adversarial
perturbations and uncorrupted data). We provide formal and intuitive implications of the proposed theorem
first and further present its proof.

The Lasso problem under the adversarial setting can be stated as:

ŵ = arg min
wœRp

l(w) + ⁄||w||1 = arg min
wœRp

1
2n

||y ≠ Xw||
2
2 + ⁄||w||1 (2)

Our main theoretical result for the above problem is as follows.
Theorem 10. If n = �(k2 log(p)), Assumption 1, 7, and 8 hold, and

⁄ Ø max
I

16b

“
,

q1‡e

“

Ú
2 log(p)

n
,

16q

“

Ú
4 log(p)

n

J

where q = r

Ò
w

ı|
S ��

SS wı

S max
iœ[p]

3
‡


�x

ii
+ r

Ò
��

ii

4
, b =

...�
xı�
[p]S w

ı

S

...
Œ

, q
2
1 = 3 (Cmax + 2Fmax + Dmax),

then we claim the following with probability of at least 1 ≠ O (1/p), we have:

1. The true support is recovered, i.e., S(ŵ) ™ S(wı) or equivalently ŵi = 0, ’i /œ S(wı)
2. ŵS is the unique solution for the Lasso problem stated in Eq. (2).
3. The estimated parameter vector satisfies

ÎŵS ≠ w
ı

SÎŒ Æ ⁄ (1 + “/4) 3Gmax/2 = f(⁄) (3)

4. ŵi ”= 0 and furthermore sign(ŵi) = sign(wı

i
), ’i œ S(wı) if min

iœS
|w

ı

i
| Ø 2f (⁄).

5. Additionally if �
xı�
[p]S = 0p◊k, and therefore b = 0, then ⁄ Ø O

1
log(p)/n

2
, statement 1, 2, and 4 still

hold true and statement 3 is modified to

ÎŵS ≠ w
ı

SÎŒ Æ f(⁄) = O

1
log(p)/n

2

The first two claims of the Theorem 10 imply that we can uniquely recover the true support with high
probability, assuming we have a su�cient number of samples if we choose a regularization parameter ⁄ greater
than a certain threshold. Note that choosing a very large value of ⁄ is not desirable as it would also increase
the upper bound for ||ŵS ≠ w

ı

S ||Œ, as per the above theorem (Eq. (3)). The fourth claim of the theorem
states that the minimum magnitude among the support entries of the regression parameter vector should be
greater than a certain function of ⁄ for correct sign recovery.
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Intuition. Note that the adversary can increase the lower bound of ⁄. For example, if b ”= 0, then ⁄ = 16b/“

even for n æ Œ, resulting in a higher value of f(⁄) in Eq. (3). This may lead to the violation of the
requirement in statement 4, miniœS |w

ı

i
| Ø 2f (⁄), if the smallest entry in w

ı

S is not large enough. Support
recovery may not be possible in such a case due to a low probability of non-support recovery P[’i /œ S, ŵi = 0]
(See Appendix E.4).

We have formally proved a similar requirement in Lemma 9 for all methods not limited to Lasso. But it
is worth noting that substituting ⁄ = 16b

“
in Eq. (3) leads to the requirement stated in Lemma 9. The

term min
iœS

|w
ı

i
| can be seen from in statement 4 of Theorem 10. Hence, our analysis for Lasso relates to the

necessary condition for all methods.

In statement 5 with b = 0, such the situation mentioned above can be avoided by increasing the value of
n appropriately despite any e�orts from the adversary. This helps us to identify di�erent regimes under
which we can provide theoretical guarantees of Lasso for successful support recovery under adversarial attack
attacks and also the case which may be favorable to the adversary (refer See Section 3.2).

Proof Sketch. We use a constructive proof technique: primal-dual witness (PDW) method (Wainwright,
2009; Ravikumar et al., 2011; 2010; 2009; Daneshmand et al., 2014) to prove Theorem 10. The proof outline
is summarized below:

• The PDW framework starts by allowing us to find su�cient conditions to estimate the elements of the
non-support (Sc) first by ensuring strict dual feasibility (Section 3.1). This step ensures that we correctly
recover the zeroes, i.e., ŵi = 0 for all i /œ S(wı). This establishes the first claim of exact support recovery
in Theorem 10.

• We then derive the su�cient conditions for uniqueness of ŵS (Section C.1), which proves the second claim
of Theorem 10.

• The goodness of the estimated parameter vector is proved in Section C.2 by deriving an upper bound on
||ŵS ≠ w

ı

S ||Œ to justify the third claim of Theorem 10.
• Armed with the second and third claim, we prove the fourth claim of Theorem 10 for correctly recovering

the non-zeros, i.e., ŵi ”= 0 for all i œ S(wı).

Remark 11. For clarity of exposition, we focus on sub-Gaussian data. Our proofs can be extended to
heavy-tailed data by using m-order moment concentration instead of sub-Gaussian concentration, as done in
(Ravikumar et al., 2011) for other another machine learning problem. This will lead to a sample complexity
polynomial in p, instead of logarithmic in p.

3.1 Exact Support Recovery

In this subsection, we verify the stationarity, complementary slackness, and strict dual feasibility conditions
for the optimal solution ŵS . The stationarity condition is (refer See Appendix D.1):

Òl((ŵS , 0)) + ⁄ẑ = 0p◊1 (4)

where ẑ œ ˆ ||ŵ||1 belongs to the sub-di�erential set of the ¸1 norm at ŵ. In the context of the primal-dual
witness framework (Ravikumar et al., 2010; 2011; 2009; Daneshmand et al., 2014), ŵS and ẑ are referred as
the primal and dual variables respectively. As ẑ belongs to the sub-di�erential set of the ¸1 norm, we can
claim that ||ẑ||Œ Æ 1 by norm duality but for strict dual feasibility we need ||ẑSc ||Œ < 1 as stated in Lemma
1 of (Wainwright, 2009). In order to ensure this condition, we need to first derive ẑSc from the first order
stationary condition in Eq. (4) which is a p≠dimensional vector equation and can be written for elements in
S and S

c separately to derive ẑSc . The final expression is (refer See Appendix D.1 for more details):

ẑSc = ẑSc
t1

+ ẑSc
t2

, ẑSc
t1

= X
|
ScXS (X|

SXS)≠1
ẑS (5)

ẑSc
t2

= X
|
Sc (P/⁄n) (e ≠ � (Xı

S)wı

S) , where P =
1

In ≠ XS (X|
SXS)≠1

X
|
S

2
(6)
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where In represents an identity matrix of dimension n ◊ n, �(X) is n ◊ p matrix containing n samples of
adversarial perturbation. We have decomposed ẑSc in two terms ẑSc

t1
and ẑSc

t2
to bound them separately

in next two sub-sections.

3.1.1 Analyzing adversarial attack on support (S) and non-support (S
c)

Let R = 1
n

X
|
ScXS and Q = 1

n
X

|
SXS , and hence E [R] = �

x
ScS , E [Q] = �

x
SS . The simplified expression

obtained after simplification for ẑSc
t1

in Eq. (5) is (refer See Appendix D.2):
----ẑSc

t1

----
Œ Æ

---
---
---X|

ScXS (X|
SXS)≠1

---
---
---
Œ

Æ m1 + m2 + m3 + m4 (7)

where m1, m2, m3, and m4 are defined as:

m1 =
---
---
---(R ≠ E [R]) (E [Q])≠1

---
---
---
Œ

, m2 =
---
---
---E [R]

1
Q

≠1
≠ (E [Q])≠1

2---
---
---
Œ

m3 =
---
---
---(R ≠ E [R])

1
Q

≠1
≠ (E [Q])≠1

2---
---
---
Œ

, m4 =
---
---
---E [R] (E [Q])≠1

---
---
---
Œ

This carefully constructed decomposition of ẑSc
t1

has given us the freedom to study the e�ect of the adversarial
perturbation on the non-support entries and the support entries by analyzing m1 and m2 respectively. The
term m4 in Eq. (7) can be bounded using the mutual incoherence Assumption 8. We propose Lemma 12 and
Lemma 13 to bound the terms m1, m2, and m3 as discussed below.

The variable m1 in Eq. (7) is a function of the adversarial perturbation in S
c for a fixed value of E [Q] = �

x
SS .

To bound m1, we use the sub-multiplicative property of norms:

m1 Æ |||X
|
Sc XS/n ≠ �

x
ScS |||Œ

---
---
---(�x

SS)≠1
---
---
---
Œ

Lemma 12. If n = �
!

k
2
›

2 log(p)/”
2
"

and 0 Æ ” Æ 32›k, then
------ 1

n
X

|
ScXS ≠ �

x
ScS

------
Œ Æ ” with probability at

least 1 ≠ O (1/p), where › = max
iœS

3
‡


�x

ii
+ r

Ò
��

ii

4
max
jœSc

1
‡


�x

jj
+ r

Ò
��

jj

2
.

The proof of the above lemma relies on properties of norms and sub-Gaussian distributions, union bound, and
sub-exponential tail bounds. We can claim the following by substituting ” = “/|||16(�x

SS )≠1
|||Œ

in Lemma 12:

m1 =
---
---
---(R ≠ E [R]) (E [Q])≠1

---
---
---
Œ

Æ “/16 (8)

if n = �
!

k
2
›

2
G

2
max log(p)/“

2
"
.

Intuition. It should be noted that the value of ” chosen to analyze the adversarial perturbation in S
c is

a function of the adversarial perturbation in S as �
x
SS = �

xı

SS + [��xı + �
xı�]SS + �

�
SS . Hence if the

adversarial perturbation in S is designed such that Gmax =
---
---
---(�x

SS)≠1
---
---
---
Œ

increases, then the learner is
forced to choose a smaller value of ” in Lemma 12 for the adversarial perturbation in S

c which increases the
sample complexity. This also demonstrates the counterintuitive point that an adversary can influence the
sample complexity by an attack on the non-support (refer See Lemma 6). The next step is to bound the
term m2 in Eq. (7) using the following lemma.
Lemma 13. If n = �

!
k

2 log(p)/”
2(Cmin+2Fmin+Dmin)4

"
, then we claim with probability of at least 1 ≠ O (1/p)

that we have
---
---
---
! 1

n
X

|
SXS

"≠1
≠ (�x

SS)≠1
---
---
---
Œ

Æ ”.

The proof of the above lemma relies on properties of norms, sub-Gaussian tail bounds, and also the bound
for

---- 1
n

X
ı|
S � (Xı

S) ≠ �
�xı

SS
----

2 derived in the following theorem.

Theorem 14. For 0 < ” <
32r‡abk

n
, � (Xı

S) , X
ı

S œ Rn◊k, a
2 = max

jœS
�jj , b

2
k

= k
q
iœS

(��
ii

)2, we have:

P
5----

----
1
n

X
ı|
S � (Xı

S) ≠ �
�xı

SS

----

----
2

Ø ”

6
Æ 4e

≠n”2
256r2‡2abk (9)
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The proof of this lemma theorem is interesting as X
ı|
S � (Xı

S) is a non-symmetric matrix, which makes the
problem slightly challenging as compared to symmetric matrices. Hence we use Lemma 20 to transform a
non-symmetric matrix to a symmetric matrix without changing its spectral norm. Further, we use Lemma
6.12 from (Wainwright, 2019), which states for a random symmetric matrix M

P [||M||2 Ø ”] Æ 2tr (�M(⁄)) e
≠⁄” (10)

where ” > 0, �M(⁄) denotes the moment generating function (MGF) and tr represents the trace. To Thus,
to derive the bound of ||M||2, we bound the trace of the MGF of M. Using the properties of sub-Gaussian
and sub-exponential distributions, we derive a matrix V œ R2k◊2k such that

�M(⁄) 4 e
⁄2V

2

Hence, in order to bound the trace of �M(⁄), we focus on the eigenvalues of V. We observe that V is a
matrix with only two non-zero eigenvalues. This helps us to derive improved bounds as compared to the case
of all 2k eigenvalues being non-zero. More details can be seen in Appendix D.5.

Returning to deriving bound of m2 in Eq. (7), we substitute ” = “/8|||�x
ScS |||Œ

in Lemma 13:

m2 =
---
---
---E [R]

1
Q

≠1
≠ (E [Q])≠1

2---
---
---
Œ

Æ “/8 (11)

if n = �
!

k
2 log(p)H

2
max/“

2(Cmin+2Fmin+Dmin)4
"
.

Intuition. This analysis provides insight into the nature of the dependence of the sample complexity on the
dimensions (k and p), and also other parameters like such as mutual incoherence (“), minimum eigenvalues
{Cmin, Dmin, Fmin}, and other constants like Hmax.

Further, we proceed to bound the term m3 in Eq. (7) by using the sub-multiplicative property of norms and
substituting ” = Ô

“/4 in Lemma 12 and Lemma 13 to claim:

m3 = |||(R ≠ E [R])|||Œ
---
---
---
1

Q
≠1

≠ (E [Q])≠1
2---

---
---
Œ

Æ “/16

if n = �
!
k

2 log(p)
"
. We substitute Eq. (8), Eq. (11), and the above equation in Eq. (7) to arrive at:

----ẑSc
t1

----
Œ Æ 1 ≠ “ + “/16 + “/8 + “/16 = 1 ≠ 3“/4 (12)

In this sub-section, we derived an upper bound for the infinity norm of ẑSc
t1

which will be used later to
bound the infinity norm of ẑSc defined in Eq. (5) to ensure strict dual feasibility. More importantly, our
analysis also sheds light on the dependence of the sample complexity on parameters like such as mutual
incoherence, minimum eigenvalue, and other constants like Gmax and Hmax, which helps us to study critical
scientific limitations or behavior of the Lasso algorithm under adversarial attacks.

3.1.2 Choosing regularization parameter (⁄)

In this subsection, we continue the discussion on strict dual feasibility and focus on how the adversary a�ects
the regularization parameter. We start from ẑSc

t2
in Eq. (6), which is a (p ≠ k) dimensional random vector.

Using properties of norms, whose details are mentioned in Appendix D.6 and using the bound derived in Eq.
(12), we arrive at:

..ẑSc
t2

..
Œ Æ

1
⁄

....
1
n

X
|
ScPe

....
Œ

+ 1
⁄

....
1
n

X
|
Sc� (Xı

S)wı

S

....
Œ

+ 1
⁄

3
1 ≠

3“

4

4 ....
1
n

X
|
S� (Xı

S)wı

S

....
Œ

(13)

Intuition. This decomposition enables us to analyze the e�ect of the adversarial perturbation on various
model parameters. For example, the first term on the RHS of the above equation is concerned with the
interaction of adversarial perturbation perturbations in S

c with e. This term can be bounded by choosing an
appropriate value of ⁄, as shown in the following lemma.

9
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Lemma 15. If ⁄ = ⁄1 Ø
q1‡e

“

Ò
2 log(p)

n
, where constant q

2
1 = 3 (Cmax + 2Fmax + Dmax), then ÎX|

Sc Pe/n⁄ÎŒ Æ

“/8 with probability of at least 1 ≠ O (1/p).

Similarly, the second term on the RHS of Eq. (13) signifies the interaction of adversarial perturbation
perturbations with X

ı

Sc . It can be bounded by choosing a suitable value of ⁄, as shown in the following
lemma.
Lemma 16. If ⁄ = ⁄2 Ø

16
“

max
Ó

b2, q2


4 log(p)/n

Ô
, then ÎX|

Sc �(Xı
S )wı

S/n⁄ÎŒ Æ “/8 with probability of at

least 1 ≠ O (1/p), where b2 =
...�

xı�
[p]S w

ı

S

...
Œ

and q2 = r

Ò
w

ı|
S ��

SS wı

S max
iœSc

3
‡


�x

ii
+ r

Ò
��

ii

4
.

Similarly, the third term in RHS of Eq. (13) is concerned with the interaction of adversarial perturbation
perturbations in X

ı

S . It can be bounded by selecting a suitable value of ⁄, presented in Lemma 24 in Appendix
D. Substituting the bounds derived in Lemma 15, Lemma 16, and Lemma 24 in Eq. (13), we obtain:

..ẑSc
t2

..
Œ Æ “/8 + “/8 + “/8 = 3“/8 (14)

It should be noted that this bound is derived under some lower bound constraint on the regularization
parameter. The lower bound can be obtained by taking the maximum of ⁄1, ⁄2, and ⁄3 presented in Lemma
15, Lemma 16, and Lemma 24 respectively in Appendix D:

⁄ Ø max {⁄1, ⁄2, ⁄3} = max
I

16b

“
,

q1‡e

“

Ú
2 log(p)

n
,

16q

“

Ú
4 log(p)

n

J
(15)

where q = r

Ò
w

ı|
S ��

SS wı

S max
iœ[p]

3
‡


�x

ii
+ r

Ò
��

ii

4
and b =

...�
xı�
[p]S w

ı

S

...
Œ

. This completes the lower bound

proof of ⁄ used in Theorem 10.

Intuition. Note that for a fixed budget, the adversary can increase the lower bound of ⁄ by designing �
�
SS

such that the eigenvector corresponding to the maximum eigenvalue of �
�
SS is parallel to w

ı

S to increase q

in Eq. (15). A higher value of the lower bound of ⁄ implies more penalization on the regression parameter
vector, which might make the learning algorithm to incorrectly estimate the small non-zero parameters in S

to be as zero.

Returning to the strict dual feasibility condition, the bound for ẑSc defined in Eq. (5) is derived by using the
bound for ẑSc

t2
in Eq. (14) and the bound for ẑSc

t1
in Eq. (12) as follows:

||ẑSc ||Œ Æ 1 ≠
3“

4 + 3“

8 = 1 ≠
3“

8 < 1 (16)

In this sub-section, we have verified the strict dual feasibility condition by proving that ||ẑSc ||Œ < 1 as “ > 0
in the above equation. This ensures that KKT conditions are met, which proves the first claim of Theorem
10, i.e., S(ŵ) ™ S(wı). It should be noted that we derive the lower bound constraint on ⁄ for giving in order
to provide theoretical guarantees. For practical purposes, we choose ⁄ = O

1
log(p)/n

2
as done in the sparse

regression literature (Wainwright, 2009; Ravikumar et al., 2009; 2010; 2011; Daneshmand et al., 2014).

The other remaining claims on uniqueness and upper bound of ÎŵS ≠ w
ı

SÎŒ are discussed in Section Appendix
C.1 and Section Appendix C.2 respectively in Appendix. In the next section, we discuss the interesting
implications of Theorem 10 regarding the regimes when the adversary and Lasso can dominate over each
other.

3.2 Adversary vs Lasso Territory

If ⁄ = max {⁄1, ⁄2, ⁄3} = 16b/“, then we need the following condition as per Theorem 10:

min
iœS

|w
ı

i
| Ø 2f(⁄) = 12Gmax (1 + 4/“) b (17)

10



Under review as submission to TMLR

This requirement on the lower bound of the absolute value of parameters in the support basically states
that these coe�cients should have significant values for detection. If the adversary is given more budget and
designs a large value of b =

...�
xı�
[p]S w

ı

S

...
Œ

to break the above requirement (Eq. (17)), then we may not be
able to provide theoretical guarantees for successful support recovery as proved in Lemma 9. Our theoretical
analysis has identified the critical condition under which the adversary can design malicious attacks such that
the Lasso algorithm may not have a high probability of successful support recovery (See Fig. 1(b)).

Consider the case with �
xı�
[p]S = 0p◊k, and hence b = 0. Therefore ⁄ = max {⁄1, ⁄2, ⁄3} = max {⁄2, ⁄3} =

O

1
log(p)/n

2
, then the same previous requirement is becomes:

min
iœS

|w
ı

i
| Ø 2f(⁄) = O

1
log(p)/n

2
(18)

This condition can be easily fulfilled by increasing the value of n su�ciently high depending on the value
of miniœS |w

ı

i
|, and hence, theoretical guarantees can be established. The adversary can still try to break

the above condition by increasing the value of q1 or q in ⁄2 or ⁄3 respectively, but the user can increase the
sample size (n) accordingly as derived in various lemmas to ensure a high probability of success. Note that
the condition min

iœS
|w

ı

i
| Ø

...�
xı�
[p]S w

ı

S

...
Œ

= 0 specified in Lemma 9 holds true for this case.

In this subsection, we completed the proof of Theorem 10 and discussed the critical regimes which may be
favorable to the adversary or the learning algorithm. We also discussed the counter-intuitive result of how
the adversarial perturbation in S

c can a�ect the guarantees for ŵS indirectly by influencing the lower bound
on the regularization parameter.

4 Experiments

In this section, we validate our proposed theoretical claims with empirical analysis on synthetic data and
real-world data. Please refer to Appendix E for more details.
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Figure 1: Probability of support recovery vs rescaled sample size.

Synthetic data. To verify the sample complexity result of n = �(log(p)) for fixed k, we repeat the
support recovery experiment 200 times for a particular value of (n, p). We report the empirical probability
of successful support recovery. We perform this experiment for p œ {128, 256, 512} and vary n such that

n

log(p) œ (25, 1250). The results presented in Figure 1(a) for b = 0 show that n

log(p) is not a function of p (hence
a constant), as the plots are overlapping (See Appendix E.1 for details regarding the data and adversarial
perturbation generation.). For b ”= 0, Figure 1(b) shows that perfect support recovery is not achievable due
to the dependence between adversarial perturbation perturbations and uncorrupted data (See Appendix E.4
for more details).
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Real-world data. We used the BlogFeedback dataset (Buza, 2014) which contains 52397 samples and
276 features. We first recover the “true” support with the given data and further estimate the support from
adversarially corrupted data, which is generated by adding adversarial perturbation perturbations to all the
features. The Lasso algorithm recovers the support with F1-score of 0.94.

5 Concluding Remarks

Sparsity, support recovery and weight recovery are tightly related concepts. In our paper, support relates to
the zero/nonzero weights in the sparse regression vector (nonzero entries corresponding to relevant features
for prediction) and weight recovery relates to estimating a vector that is close (in ¸Œ distance) to the true
regression vector (See e.g., Theorem 10, Eq. (3)).

Our initial analysis for sparse regression already highlights some fundamental issues that not only pertain to
sample complexity, e.g., impossibility. Our initial results could be later extended to other machine learning
problems where sparsity as well as support and weight recovery is relevant. This includes for instance,
Gaussian graphical models (Ravikumar et al., 2011), Ising models (Ravikumar et al., 2010), non-parametric
regression (Ravikumar et al., 2009) and di�usion networks (Daneshmand et al., 2014).

Besides the aforementioned models, we believe our results could potentially motivate future work on neural
networks. Indeed, there has been a recent interest on sparse neural networks (Liu & Wang, 2023) as well as
weight recovery for two-layer neural networks (Bakshi et al., 2019).
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