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Abstract

Speculative decoding has emerged as a promis-001
ing technique to accelerate the inference of002
Large Language Models (LLMs) by employing003
a small language model to draft a hypothesis004
sequence, which is then validated by the LLM.005
The effectiveness of this approach heavily re-006
lies on the balance between performance and ef-007
ficiency of the draft model. In our research, we008
focus on enhancing the proportion of draft to-009
kens that are accepted to the final output by gen-010
erating multiple hypotheses instead of just one.011
This allows the LLM more options to choose012
from and select the longest sequence that meets013
its standards. Our analysis reveals that hypothe-014
ses produced by the draft model share many015
common token sequences, suggesting a poten-016
tial for optimizing computation. Leveraging017
this observation, we introduce an innovative ap-018
proach utilizing a directed acyclic graph (DAG)019
to manage the drafted hypotheses. This struc-020
ture enables us to efficiently predict and merge021
recurring token sequences, vastly reducing the022
computational demands of the draft model. We023
term this approach as Graph-structured Spec-024
ulative Decoding (GSD). We implement GSD025
on 70B language models and observe a remark-026
able speedup of 1.70× to 1.94×, significantly027
surpassing the performance of standard specu-028
lative decoding.029

1 Introduction030

The impressive performance of Large Language031

Models (LLMs) comes with an efficiency bottle-032

neck that hinders their broader adoption (Vaswani033

et al., 2017; Touvron et al., 2023a; OpenAI, 2022;034

Touvron et al., 2023b). In this context, speculative035

decoding (SD) emerges as a promising direction036

to accelerate the decoding process by reducing the037

number of forward passes of LLMs (Chen et al.,038

2023; Leviathan et al., 2023; Zhou et al., 2023;039

Spector and Ré, 2023; Miao et al., 2023). The un-040

derlying idea of SD is “draft then verify": rather041

than generating one token at a time using the LLM,042

Hypothesis 1
The hungry purple dinosaur ate the kind, zingy fox.
Hypothesis 2
The hungry purple dinosaur play with the kind, zingy fox.

Token Sequence     Token Tree     Token Graph

Figure 1: An illustrative comparison between the tree-
and graph-structured draft token management.

SD employs a smaller model to draft a hypothe- 043

sis sequence of tokens covering several decoding 044

steps and then uses the LLM to verify the hypothe- 045

sis. Consequently, the decoding process includes a 046

draft stage and a verification stage. In this scheme, 047

the number of forward calls of LLMs can be signif- 048

icantly reduced. 049

However, SD faces its own set of challenges: 050

the trade-off between performance and efficiency 051

of the draft model limits the potential for accel- 052

eration. Ideally, the draft model should generate 053

high-quality hypotheses while maintaining compu- 054

tational efficiency — a balance that is notoriously 055

difficult to strike, echoing the adage that "there’s no 056

such thing as a free lunch." In this study, we address 057

the challenge of enhancing the acceptance rate 058

of the draft model’s hypotheses without increas- 059

ing the computational burden. Inspired by beam 060

search (Graves, 2012) and tree attention (Spector 061

and Ré, 2023; Miao et al., 2023), our approach in- 062

volves producing a bunch of hypotheses instead of 063

a solitary one. Then, the LLM verifies these mul- 064

tiple hypotheses in a singlar forward pass and ac- 065

cepts the longest one. While tree decoding, which 066

adopts a tree structure to organize the drafted to- 067

kens, presents an efficient implementation for si- 068

multaneously drafting all hypotheses, it also leads 069

to exponential growth in the number of tokens at 070
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deeper levels of the tree, resulting in a prohibitive071

computational overhead. Consequently, the length072

of the hypotheses must be kept relatively short,073

which in turn leads to suboptimal use of the draft074

model’s capabilities.075

Our objective is to extend the length of drafted076

hypotheses without a corresponding rise in com-077

putational cost. To this end, we meticulously ex-078

amined the hypotheses to find opportunities for079

improvement. We observe that hypotheses based080

on the same context are often semantically simi-081

lar or related, and the variations among differing082

hypotheses typically boil down to only a handful083

of tokens. Notably, more than 70% of the drafted084

tokens tend to recur across various hypotheses. If085

we could discern when the draft model is likely to086

predict these re-occurring tokens, we could sim-087

ply reuse them from previous drafts, thereby re-088

ducing the overall number of tokens that need089

to be generated. Capitalizing on this revelation,090

we propose Graph-structured Speculative Decod-091

ing (GSD), which uses a directed acyclic graph092

to organize the drafted tokens (Figure 1). In this093

graph, each path that stems from the root node cor-094

responds to a unique hypothesis. This approach095

allows different hypotheses to share a substantial096

number of common nodes.097

The pipeline of GSD follows that of standard098

SD (also the Sequence-structured SD, SSD), which099

encompasses a draft stage and a verification stage.100

In the draft stage, the draft model constructs a to-101

ken graph containing multiple hypotheses. In the102

verification stage, the token graph is flattened into103

a sequence, enabling the LLM to validate all hy-104

potheses concurrently. The longest one is then105

adopted as part of the final output. We conduct106

extensive experiments using LLaMA-70b, one of107

the largest open-source LLMs, showing that GSD108

drafts tokens not exceeding 2× the amount drafted109

by SSD on average, while tree-structured SD (TSD)110

drafted a token count that is more than 15 times111

greater. In terms of speedup, GSD outperforms all112

other methods, marking a significant advancement113

in speculative decoding techniques114

2 Related Works115

2.1 LLM Compression116

Improving the efficiency of LLM inference has117

emerged as a pivotal research focus in recent years.118

The primary objective of model compression is to119

decrease computational demands and speed up the120

inference process. Research into the compression 121

of large language models branches out into several 122

directions, including knowledge distillation (Jiao 123

et al., 2020; Sanh et al., 2019; Wang et al., 2021; 124

Passban et al., 2021), quantization (Tao et al., 2022; 125

Liu et al., 2023a,b; Dettmers et al., 2023; Xiao 126

et al., 2023), network pruning (Liang et al., 2021; 127

Frantar and Alistarh, 2023). Despite their inno- 128

vations, these methods can be classified as lossy 129

compression. This means that their efficiency im- 130

provements are intrinsically linked to a trade-off in 131

performance, leading to the likelihood that a com- 132

pressed LLM might produce compromised results. 133

2.2 LLM Decoding Acceleration 134

Alongside conventional model compression tech- 135

niques, there is another branch of research that fo- 136

cuses on accelerating LLM inference without incur- 137

ring information loss. Among these studies, specu- 138

lative decoding (SD) (Chen et al., 2023; Leviathan 139

et al., 2023; Zhou et al., 2023; Spector and Ré, 140

2023; Miao et al., 2023) emerges as a promising 141

technique. SD does not modify the model archi- 142

tecture, nor does it require supplemental data or 143

retraining. SD typically employs a smaller model 144

to draft initial predictions for “easy" tokens, while 145

the LLM itself verifies these drafted tokens and 146

generates “hard" tokens. Some researchers sug- 147

gest that the smaller model is not essential for SD. 148

For instance, the smaller model can be substituted 149

with the LLM itself (Zhang et al., 2023) or a large 150

text database (He et al., 2023). In addition to SD, 151

other efforts are being made to enhance the decod- 152

ing efficiency of LLMs. Blockwise parallel decod- 153

ing (Stern et al., 2018), for example, is introduced 154

to make predictions for multiple time steps in par- 155

allel. More recently, Medusa (Cai et al., 2023) has 156

trained multiple prediction heads to predict the next 157

set of tokens simultaneously. 158

3 Preliminaries: Sequence-structured 159

Speculative Decoding 160

In this section, we establish the notation and 161

provide a foundational overview of sequence- 162

structured speculative decoding (SSD). 163

Consider an input sequence at time step t, de- 164

noted by x≤t = {x1, x2, ..., xt}, where each xi 165

symbolizes the i-th token from the sequence. Let 166

Mp be the target LLM we want to accelerate, and 167

let Mq denote the draft model. The probabilities 168

p(xt+1|x≤t) and q(xt+1|x≤t) represent the predic- 169
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Figure 2: Overview of our method. (Left) GSD advances beyond TSD and SSD by implementing pruning strategies
along with a re-occurring node merging technique. (Right) An illustration demonstrates the process by which the
token tree (or graph) is flattened to a sequence. The sequence is then paired with a customized attention mask
designed to uphold the proper dependencies between tokens to perform efficient drafting and verifying.

tive distributions for the next token as given by Mp170

(the LLM) and Mq (the draft LM), respectively.171

SSD leverages the draft model, Mq, to propose a172

hypothesis comprising γ tokens, which we denote173

as h = {x̃t+1, x̃t+2, ..., x̃t+γ}. The drafting of174

each token, x̃t + i, is modeled probabilistically as175

follows:176

x̃t+i ∼ q(x|x≤t, x̃t+1, ..., x̃t+i−1) (1)177

Upon completion of the draft stage, the LLM, Mp,178

proceeds to verify the γ drafted tokens in a singu-179

lar forward pass. The verification process involves180

comparing the predictions made by Mp and Mq to181

determine which tokens shall be accepted. This182

process employs the sampling method used in pre-183

vious studies (Chen et al., 2023). For the i-th token184

in the hypothesis, the acceptance probability is cal-185

culated as min(1, p(x̃t+i)/q(x̃t+i)). Should the186

token x̃t+i face rejection, all subsequent tokens in187

the hypothesis are also discarded, the verification188

process comes to a halt, and Mp regenerates the189

discarded token. This method ensures that the to-190

kens that are ultimately accepted are representative191

of the output distribution characterized by Mp.192

4 A Step Forward: Tree-structured193

Speculative Decoding194

An intuitive idea for improving SSD is to draft195

multiple hypotheses instead of merely one. This is196

where Tree-structured SD (TSD) comes into play.197

In each drafting step of SSD, the draft model198

predicts a single next token as described in Equa-199

tion 1. After γ steps, the drafted tokens compose a200

sequence {x̃t+1, x̃t+2, ..., x̃t+γ}. In contrast, TSD 201

allows the draft model to consider k different alter- 202

natives for the next token at each drafting step. The 203

resulting drafted tokens thus create a tree structure, 204

with the root representing the context at the com- 205

mencement of drafting, and each branch from the 206

root depicting a different hypothesis. 207

After γ drafting steps, the resulting token tree 208

has a depth of γ and a treewidth of k and can con- 209

tain up to kγ+1−1
k−1 nodes, representing as many as 210

kγ unique hypotheses. Let’s denote the collection 211

of all hypotheses as {hi}k
γ

i=1. TSD holds a signifi- 212

cant advantage over SSD; by enabling the genera- 213

tion of a larger pool of hypotheses in a single draft- 214

ing stage, it raises the chances of having longer 215

sequences of tokens accepted by the LLM. This 216

boosts the acceptance rate of the SD process. Fun- 217

damentally, TSD operates in a manner analogous 218

to beam search, maintaining multiple potential hy- 219

potheses within its tree structure during the draft 220

stage and then selecting the most promising one 221

during the verification stage. 222

4.1 Parallelized drafting and verifying via 223

tree attention 224

The draft stage of TSD generates a multitude of 225

hypotheses. A significant challenge within this 226

framework is the efficient drafting of these multiple 227

hypotheses. If one were to adhere to the traditional 228

inference scheme that decodes one token at a time 229

(akin to extending one branch of the token tree), 230

the computational demands are apparently unac- 231

ceptable given that the token tree contains kγ+1−1
k−1 232
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tokens to be decoded.233

A promising resolution to this problem is by234

employing meticulous tree attention. Tree atten-235

tion operates by flattening the token tree into a236

sequence and then simultaneously predicting the237

next node for all branches during a single forward238

draft, thus circumventing the necessity of perform-239

ing a forward pass for each potential sequence. As240

illustrated in Figure 2, it accomplishes this by cus-241

tomizing the attention mask in such a way that each242

token is only allowed to attend to its ancestor nodes243

in the tree hierarchy, thus maintaining the correct244

dependencies amongst tokens.245

The verification stage benefits from tree atten-246

tion by validating all hypotheses within a single247

forward pass. After this process, the longest path248

that unfolds from the root node is chosen as the249

sequence to be accepted.250

4.2 Pruning inferior branches251

Despite the parallel drafting and verification with252

tree attention, TSD still consumes significantly253

more computation than SSD. The root cause lies254

in the exponentially increased length of input se-255

quences processed in each forward pass. Trans-256

former attention has a computational complexity257

that scales quadratically, O(l2), with the sequence258

length l. While kv-caching does alleviate the com-259

putational load to some degree, the burden remains260

substantially heavier than that of SSD. Thus, to re-261

duce the input sequence length, we need to perform262

pruning on the token tree.263

We introduce two pruning strategies to moder-264

ate the size of the token tree. The first strategy is265

probability pruning. For a given node c within the266

token tree, where sc denotes the path from the root267

to c, the logit probability is given by q(c|x≤t, sc).268

By setting a probability threshold θprob, we can269

filter out nodes: if q(c|x≤t, sc) < θprob, the node270

is deemed unlikely to be verified successfully and271

is marked as a leaf, halting further speculation.272

The second strategy, sibling pruning, focuses on273

a node’s child nodes {ci}ki=1. Among these, we dis-274

cern which nodes should remain as non-leaf nodes275

based on their logit probabilities relative to the high-276

est probability among them. Specifically, let mq =277

maxi=1,...,k p(ci|x≤t, sci). A child node ci is then278

designated as a leaf if p(ci|x≤t, sci) < θsib · mq.279

This approach ensures that the logit probabilities280

among sibling nodes do not deviate excessively281

from the maximum observed, mq. The underlying282
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Figure 3: The proportion of tokens that are part of
re-occurring n-grams within the token tree where the
treewidth k is 4. θprob = 0.2 and θsib = 0.3.

idea is that, during probabilistic sampling, if the 283

generation probabilities across a node’s children 284

vary greatly, the tokens associated with lower prob- 285

abilities are less likely to be chosen. Therefore, it 286

may not be necessary to keep these less probable 287

nodes in the tree. Hence, when the output distri- 288

bution for a current token is peaked—indicating 289

high model confidence in its prediction—we need 290

not preserve many child nodes. However, if the 291

distribution is flatter, meaning multiple tokens have 292

similar probabilities, it then becomes prudent to 293

maintain a broader set of child nodes as candidates. 294

5 Graph-structured Speculative Decoding 295

Empirically, we observe that TSD often fails to sur- 296

pass SSD, contrary to expectations. It appears that 297

despite the utilization of pruning and tree attention, 298

the cost of drafting multiple hypotheses still coun- 299

terbalances the potential benefits that TSD offers. 300

So we would like to ask: Can we further reduce 301

the quantity of drafted tokens to enhance TSD’s 302

efficiency and effectiveness? 303

5.1 Same tokens re-occur among hypotheses 304

Before delving into GSD, we first conduct a pilot 305

study to investigate the drafted hypotheses gener- 306

ated by TSD. We analyze the token trees from 100 307

distinct TSD runs, documenting the statistics of n- 308

gram co-occurrences across various branches. The 309

findings of this analysis are presented in Figure 3, 310

and they give rise to several key insights: 311

• There is a high degree of commonality among 312

the tokens in different hypotheses. As de- 313

picted in Figure 3, within a token tree of 10- 314

depth and 4-treewidth, approximately 70% of 315
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tokens appear across multiple branches. This316

suggests that the generated hypotheses tend317

to form a cluster of semantically similar or318

related candidates, rather than branching off319

in completely disparate semantic directions.320

• There is also a notable frequency of recurring321

n-grams within the token tree. This observa-322

tion suggests that the similarities between dif-323

ferent hypotheses extend beyond single tokens324

— entire segments of tokens (n-grams) are of-325

ten duplicated among the various branches of326

the tree. This pattern points to redundancy in327

the token sequences being drafted, which may328

have implications for optimizing the efficiency329

of the speculative decoding process.330

5.2 Identifying redundant nodes331

Having established that identical tokens tend to332

reappear across different hypotheses, we can lever-333

age this property to reduce the computation of re-334

occurring tokens335

To exploit this characteristic, we introduce the336

concept of a τ -redundant node. A node is desig-337

nated as τ -redundant when it corresponds to the338

last token of a re-occurring τ -gram. We assume339

that the presence of a τ -gram, defined as a sequence340

of τ consecutive identical tokens, signals a high de-341

gree of similarity between the current hypothesis342

and an alternate hypothesis already explored. This343

implies a strong likelihood that the sequence will344

continue to predict identical subsequent tokens.345

5.3 Merging redundant nodes346

Building on the concept of τ -redundant nodes, we347

implement a procedure to merge these nodes to348

enhance efficiency. The approach is straightfor-349

ward: we mark τ -redundant nodes as leaf nodes,350

effectively ceasing their further expansion within351

the token tree. To merge the nodes, we first lo-352

cate the first occurrence of the re-occurring τ -gram.353

We then draw a directed edge from the τ -redundant354

node to this first occurrence. By doing so, we estab-355

lish that the nodes following the τ -redundant node356

will not need to be generated anew. Rather, we357

can directly reuse the results previously computed358

for the initial τ -gram occurrence. As a result of359

this merging process, the token tree is transformed360

into a directed acyclic graph (DAG), wherein no361

n-grams longer than τ will be repeated.362

Draft Stage                  Verification Stage

∅

sub-tree sub-tree

sub-tree
re-occurring 2-gram

Figure 4: An illustration of how the token graph operates
during the draft stage and the verification stage.

5.4 Token graph verification 363

There is still one step to go to fulfill GSD: the 364

verification process. In the verification stage, we 365

need to flatten the token graph to a sequence so that 366

the LLM can verify all hypotheses simultaneously. 367

To convert a DAG into a sequence while preserving 368

the correct dependencies between tokens, we start 369

by reverting the graph to its original tree structure. 370

This is done by “unmerging" all previously merged 371

nodes. During this process, the successor nodes of 372

any redundant node are replicated from the relevant 373

merged nodes (Figure 4). With the structure now 374

back in the form of a tree, we can apply the same 375

verification procedure as used in TSD. 376

6 Experiments 377

6.1 Setup 378

We conduct evaluations using the LLaMA model 379

series, with LLaMA-70b and LLaMA-70b-chat 380

serving as the large LLMs, and LLaMA-7b and 381

LLaMA-7b-chat as draft models. We employ both 382

greedy decoding and top-p sampling decoding 383

methods. Greedy decoding chooses the token with 384

the highest probability at each step, while top-p 385

sampling decoding generates tokens by sampling 386

from the most probable tokens in the model’s pre- 387

dicted distribution until their cumulative probabil- 388

ity reaches the threshold p. In our main experi- 389

ments, we adhere to a deterministic setting, which 390

only accepts drafted tokens if they align with the 391

tokens sampled from the LLM. This is because, un- 392

der this condition, the generated output sequence 393

is guaranteed to be identical to what would be pro- 394

duced via standard generation methods, so we can 395

concentrate solely on efficiency metrics, eschewing 396

concerns about the quality of the output sequence. 397

Datasets We conduct experiments on 398

two datasets: Extreme Summarization 399

(XSum) (Narayan et al., 2018) and GSM8K (Cobbe 400

et al., 2021). We evaluate with a batch size of 1 401

and randomly select 1000 instances from the test 402
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Datasets Mehtod Model Acceptance Drafted Graph Speedup
Rate Token Num Success

GSM8k Self SSD LLaMA-2-70b - - - 1.35×
GSM8k SSD LLaMA-2-70b 0.791/ 636.7 - 1.82×
GSM8k TSD LLaMA-2-70b 0.891 8565.7 0% 1.76×
GSM8k GSD LLaMA-2-70b 0.915 794.9 27.0% 1.94×

XSUM Self SSD LLaMA-2-70b - - - 1.31×
XSUM SSD LLaMA-2-70b 0.653 776.7 - 1.57×
XSUM TSD LLaMA-2-70b 0.786 22506.6 0% 1.40×
XSUM GSD LLaMA-2-70b 0.829 1576.2 32.5% 1.70×
XSUM SSD LLaMA-2-70b-chat 0.505 994.4 - 1.21×
XSUM TSD LLaMA-2-70b-chat 0.639 4639.9 0% 1.33×
XSUM GSD LLaMA-2-70b-chat 0.643 1576.2 30.2% 1.34×

Table 1: Evaluation on GSM8k and XSUM with different speculative decoding methods. Self SSD is the method
proposed by Zhang et al. (2023), which uses the LLM itself as the draft model. Speedup is the averaged result of
greedy and top-p sampling.

set for evaluation.403

Configurations We establish both the maximum404

input sequence length and output sequence length405

at 512. Any input sequences exceeding 512 tokens406

are truncated. We set the maximum drafting step at407

10 and adopt a draft-exiting mechanism to prema-408

turely exit the drafting stage when the token prob-409

ability drops below θprob. For the top-p sampling410

decoding, we set the top-p to 0.7 and temperature411

to 0.7. For graph decoding and tree decoding, we412

set treewidth k as 4. For the pruning configurations,413

we default to θprob = 0.2 and θsib = 0.3 . We set414

τ = 2. The choice for these hyperparameters will415

be further discussed in section 6.3.416

6.2 Main Results417

Table 1 illustrates a comparison of our method418

against other speculative decoding approaches. Fo-419

cusing on the speed-up ratio, we can see that GSD420

offers a significant advantage over the alternatives,421

achieving up to 1.94 and 1.70 times faster speeds.422

When examining the acceptance rate, we observe423

that both TSD and GSD have an acceptance rate424

that exceeds that of SSD by more than 10%. This425

indicates that tokens generated by the draft model426

are more likely to pass the verification process.427

Comparing the number of drafted tokens, we can428

see that TSD produces an order of magnitude more429

tokens than SSD. Hence, while TSD also has a high430

acceptance rate, this advantage is negated by the431

excessive number of tokens generated.432

Additionally, we assess what proportion of to- 433

kens, which passed verification during the specu- 434

lative decoding process, contained nodes from the 435

merged subtrees, and find that approximately 30% 436

of the drafting stages include such tokens. This 437

indicates that, while the token graph is significantly 438

smaller in node count compared to the token tree, 439

we have successfully preserved the decoding in- 440

formation by recognizing and grafting nodes from 441

different branches. 442

6.3 Ablation Study 443

Treewidth k Treewidth k refers to the maximum 444

number of child nodes that each node within the 445

token tree (or graph) can possess. As depicted in 446

Figure 5(a), as the treewidth increases, the model 447

is more likely to accept longer sequences in the 448

verification stage due to the more diverse set of 449

candidate hypotheses, thereby significantly enhanc- 450

ing the acceptance rate. However, the total number 451

of nodes in the token tree increases exponentially 452

as the increase of k as we have discussed in Sec- 453

tion 4. When setting k to 4, the token tree contains 454

more than 20000 tokens which leads to a heavy 455

computation budget. In contrast, the token graph 456

prevents the uncontrolled swell of node count that 457

could impede computational efficiency by merg- 458

ing repeating sub-trees. This optimization allows 459

the GSD to achieve a much higher acceptance rate 460

while free from a rapid increase in nodes and a 461

corresponding deceleration in inference with the 462

increase of k. 463
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Figure 5: A series of ablation studies to investigate the hyperparameter configuration of treewidth, redundant
threshold, and two pruning techniques. All other hyperparameters adhere to the configuration described in section 6.1

Threshold for Redundant Node τ As men-464

tioned in Section 5.2, when two different hypothe-465

ses emanating from different branches share a com-466

mon token sequence of length τ , they are identified467

as repetition and subsequently merged as a single468

branch. Thus, the larger the τ , the more radical the469

node merging becomes. As shown in Figure 5(b),470

as the increase of τ , the method becomes more471

conservative in fusing repeated branches, retaining472

more nodes in the token graph. Besides, the accep-473

tance rate is inversely correlated with the redundant474

threshold. This implies that more aggressive node475

fusion leads to a more diverse set of candidate hy-476

potheses. At first glance, this might seem paradox-477

ical, since one would expect that aggressive node478

fusion, which reduces the number of nodes in the479

token graph, would decrease the diversity of hy-480

potheses by merging similar sequences. However,481

when the merging happens, the two nodes that are482

merged as one then share a common child subtree483

in later drafting steps. By merging, the newly gen-484

erated tokens within the subtree are simultaneously485

added to two different branches, while these to-486

kens might not be generated by both independent487

branches if not merged. Thus, the node merging ef-488

fectively introduces a greater variety of hypotheses489

by allowing for increased sharing of information490

between different parts of the token graph, which491

might otherwise remain isolated, leading to less492

efficient search space coverage.493

Pruning Threshold θprob, θsib The probability494

pruning technique prunes tokens of low logit495

probability and the sibling pruning technique in-496

Methods SSD TSD GSD

GSM8k 1.80× 1.81× 2.14×
XSUM 1.58× 1.46× 1.89×

Table 2: Speedup results on non-deterministic specula-
tive decoding on LLaMA-2-70b.

volves pruning sibling nodes that had passed the 497

probability-based pruning based on the maximum 498

logit probability. As illustrated in the figure, both 499

pruning strategies significantly reduce the number 500

of generated tokens. However, these two prun- 501

ing strategies have opposite effects on the accep- 502

tance rate. When the threshold is raised, probability 503

pruning leads to an increase in the acceptance rate, 504

while sibling pruning has a diminishing effect. This 505

indicates that while probability pruning can help in 506

focusing the speculative decoding process on more 507

likely hypotheses, sibling pruning might lead to 508

the removal of potential candidate hypotheses that 509

could have been valid. The implications of these 510

findings suggest that a delicate balance must be 511

struck between pruning enough to maintain compu- 512

tational efficiency and avoiding overly aggressive 513

pruning that could eliminate valid hypotheses. 514

6.4 Non-deterministic Setting 515

The main experiment is conducted under strict a 516

speculative decoding setting where the output is 517

restricted to be identical to the sequence that would 518

be generated by the vanilla LLM decoding pro- 519

cess. We also test the performance under a non- 520

7



Methods Draft Verification Others

SSD 224.9 ms 133.5 ms 45.8 ms
TSD(k=2) 257.0 ms 172.4 ms 46.9 ms
GSD(k=2) 225.9 ms 170.0 ms 45.5 ms
TSD(k=4) 323.9 ms 184.4 ms 49.8 ms
GSD(k=4) 209.0 ms 178.3 ms 50.2 ms

Table 3: Breakdown of computation of different specu-
lative methods on 50 instances sampled from XSUM.

deterministic setting, where the drafted tokens are521

verified in a probabilistic manner, as described in522

Section 3. This probabilistic verification allows for523

a degree of variation in the output. Implementing524

GSD in this setting is a little tricky due to the way525

it bypasses the computation for redundant tokens.526

Since the logits for these tokens are not explicitly527

computed, we adapt by reusing the logits from their528

respective merged nodes during the "unmerging"529

process of redundant nodes. This adaptation, how-530

ever, might introduce a bias in GSD’s predictions531

compared to those of SSD and TSD, as the logits532

for the "unmerged" tokens are not independently533

computed but are inferred from existing nodes.534

7 Analysis535

7.1 Breakdown of Computation536

Table 3 presents a computational analysis compar-537

ing different speculative decoding methods. All538

methods allocate more time to the drafting stage539

than the verification stage. However, both TSD and540

GSD require additional time during the verification541

stage due to the increased number of drafted to-542

kens that need to be verified. Compared to TSD,543

the primary improvement offered by GSD lies in544

the reduction of time consumed during the draft545

stage, which can be attributed to the fewer number546

of nodes in the token graph, resulting in a reduced547

count of tokens that need to be processed during548

each drafting forward pass.549

Besides, we find that, in addition to drafting and550

verifying, there is a significant portion of compu-551

tation that should not be overlooked. We find that552

this computation is primarily associated with the553

update of the kv-cache of the draft model. Thus,554

improving the efficiency of the kv-caching repre-555

sents a potential direction for further accelerating556

the speculative decoding.557

[Input]Write a story about life on Mars:

[Output] The Martian Chronicles is a 1950 science 
fiction short story collection by Ray Brad bury that 
chronicles the exploration and settlement of Mars in 
the near future. The stories range from the first 
expeditions to the Red Planet to the eventual demise of 
the human race. The collection is notable for its use of 
science fiction to explore social and political themes, 
as well as its vivid and imaginative depiction of life on 
Mars. The stories are also notable for their use of 
allegory and symbolism, as well as their exploration of 
the human condition. The Martian Chronicles is 
considered one of the most influential works of science 
fiction ever written and has been adapted into a number 
of different media, including a television series, a radio
drama, and a comic book. The Martian Chronicles is a 
collection of short stories by Ray Brad bury that 
chronicles the colonization of Mars by humans. 

Graph-like Speculative Decoding

Figure 6: A visualization of the generation process of
graph-structured speculative decoding. The black color
represents the token generated by the verification model.
Both red and blue are the accepted tokens. Red tokens
are ordinarily drafted while blue tokens are from the
merged nodes of the token graph.

7.2 Case Study 558

Figure 6 presents an illustrative example of GSD. 559

We use distinct colors to highlight the diverse ori- 560

gins of each token generated during the process. 561

This case demonstrates how the token graph assists 562

in maintaining various hypotheses while simulta- 563

neously decreasing the total number of drafted to- 564

kens. Notably, approximately 30% of the accepted 565

drafted tokens are derived from the subtrees associ- 566

ated with merged nodes, illustrating the efficiency 567

gains achieved through GSD. 568

8 Conclusion 569

In this paper, we introduce graph-structured specu- 570

lative decoding (GSD), a novel decoding strategy 571

that utilizes a token graph to concurrently record a 572

multitude of sequence hypotheses within a single 573

draft stage. We propose a redundant node merging 574

technique and two pruning strategies to constrain 575

the size of the token graph without unduly compro- 576

mising the diversity of hypotheses. Our extensive 577

experiments demonstrate that GSD significantly in- 578

creases the acceptance rate of drafted tokens while 579

not introducing much computation, achieving a no- 580

ticeable acceleration in speed compared to previous 581

speculative decoding methods. 582
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Limitations583

We discuss the limitations of our work as follows:584

(1) While our investigation has highlighted an inter-585

esting phenomenon of hypotheses generated from586

the same context contexts, we have not thoroughly587

examined the underlying mechanism that gives rise588

to this phenomenon. A deeper exploration into why589

these hypotheses exhibit such close semantic ties590

could unveil further insights that may benefit future591

research and applications. (2) We mainly focus on592

the acceleration of extremely large LLMs, with less593

attention being paid to smaller-scale models. How-594

ever, it is worth noting that our proposed methods595

are versatile and could be easily adapted to enhance596

the efficiency of models across various scales.597
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