Graph-Structured Speculative Decoding

Anonymous submission

Abstract

Speculative decoding has emerged as a promis-
ing technique to accelerate the inference of
Large Language Models (LLMs) by employing
a small language model to draft a hypothesis
sequence, which is then validated by the LLM.
The effectiveness of this approach heavily re-
lies on the balance between performance and ef-
ficiency of the draft model. In our research, we
focus on enhancing the proportion of draft to-
kens that are accepted to the final output by gen-
erating multiple hypotheses instead of just one.
This allows the LLM more options to choose
from and select the longest sequence that meets
its standards. Our analysis reveals that hypothe-
ses produced by the draft model share many
common token sequences, suggesting a poten-
tial for optimizing computation. Leveraging
this observation, we introduce an innovative ap-
proach utilizing a directed acyclic graph (DAG)
to manage the drafted hypotheses. This struc-
ture enables us to efficiently predict and merge
recurring token sequences, vastly reducing the
computational demands of the draft model. We
term this approach as Graph-structured Spec-
ulative Decoding (GSD). We implement GSD
on 70B language models and observe a remark-
able speedup of 1.70x to 1.94 X, significantly
surpassing the performance of standard specu-
lative decoding.

1 Introduction

The impressive performance of Large Language
Models (LLMs) comes with an efficiency bottle-
neck that hinders their broader adoption (Vaswani
et al., 2017; Touvron et al., 2023a; OpenAl, 2022;
Touvron et al., 2023b). In this context, speculative
decoding (SD) emerges as a promising direction
to accelerate the decoding process by reducing the
number of forward passes of LLMs (Chen et al.,
2023; Leviathan et al., 2023; Zhou et al., 2023;
Spector and Ré, 2023; Miao et al., 2023). The un-
derlying idea of SD is “draft then verify": rather
than generating one token at a time using the LLM,

Hypothesis 1

The hungry purple dinosaur ate the kind, zingy fox.
Hypothesis 2

The hungry purple dinosaur PlESitAIthe kind, zingy fox.

Token Sequence Token Tree Token Graph

R

Figure 1: An illustrative comparison between the tree-
and graph-structured draft token management.

SD employs a smaller model to draft a hypothe-
sis sequence of tokens covering several decoding
steps and then uses the LLM to verify the hypothe-
sis. Consequently, the decoding process includes a
draft stage and a verification stage. In this scheme,
the number of forward calls of LLMs can be signif-
icantly reduced.

However, SD faces its own set of challenges:
the trade-off between performance and efficiency
of the draft model limits the potential for accel-
eration. Ideally, the draft model should generate
high-quality hypotheses while maintaining compu-
tational efficiency — a balance that is notoriously
difficult to strike, echoing the adage that "there’s no
such thing as a free lunch." In this study, we address
the challenge of enhancing the acceptance rate
of the draft model’s hypotheses without increas-
ing the computational burden. Inspired by beam
search (Graves, 2012) and tree attention (Spector
and Ré, 2023; Miao et al., 2023), our approach in-
volves producing a bunch of hypotheses instead of
a solitary one. Then, the LLM verifies these mul-
tiple hypotheses in a singlar forward pass and ac-
cepts the longest one. While tree decoding, which
adopts a tree structure to organize the drafted to-
kens, presents an efficient implementation for si-
multaneously drafting all hypotheses, it also leads
to exponential growth in the number of tokens at

deeper levels of the tree, resulting in a prohibitive
computational overhead. Consequently, the length
of the hypotheses must be kept relatively short,
which in turn leads to suboptimal use of the draft
model’s capabilities.

Our objective is to extend the length of drafted
hypotheses without a corresponding rise in com-
putational cost. To this end, we meticulously ex-
amined the hypotheses to find opportunities for
improvement. We observe that hypotheses based
on the same context are often semantically simi-
lar or related, and the variations among differing
hypotheses typically boil down to only a handful
of tokens. Notably, more than 70% of the drafted
tokens tend to recur across various hypotheses. If
we could discern when the draft model is likely to
predict these re-occurring tokens, we could sim-
ply reuse them from previous drafts, thereby re-
ducing the overall number of tokens that need
to be generated. Capitalizing on this revelation,
we propose Graph-structured Speculative Decod-
ing (GSD), which uses a directed acyclic graph
to organize the drafted tokens (Figure 1). In this
graph, each path that stems from the root node cor-
responds to a unique hypothesis. This approach
allows different hypotheses to share a substantial
number of common nodes.

The pipeline of GSD follows that of standard
SD (also the Sequence-structured SD, SSD), which
encompasses a draft stage and a verification stage.
In the draft stage, the draft model constructs a to-
ken graph containing multiple hypotheses. In the
verification stage, the token graph is flattened into
a sequence, enabling the LLM to validate all hy-
potheses concurrently. The longest one is then
adopted as part of the final output. We conduct
extensive experiments using LLaMA-70b, one of
the largest open-source LLMs, showing that GSD
drafts tokens not exceeding 2x the amount drafted
by SSD on average, while tree-structured SD (TSD)
drafted a token count that is more than 15 times
greater. In terms of speedup, GSD outperforms all
other methods, marking a significant advancement
in speculative decoding techniques

2 Related Works
2.1 LLM Compression

Improving the efficiency of LLM inference has
emerged as a pivotal research focus in recent years.
The primary objective of model compression is to
decrease computational demands and speed up the

inference process. Research into the compression
of large language models branches out into several
directions, including knowledge distillation (Jiao
et al., 2020; Sanh et al., 2019; Wang et al., 2021;
Passban et al., 2021), quantization (Tao et al., 2022;
Liu et al., 2023a,b; Dettmers et al., 2023; Xiao
et al., 2023), network pruning (Liang et al., 2021;
Frantar and Alistarh, 2023). Despite their inno-
vations, these methods can be classified as lossy
compression. This means that their efficiency im-
provements are intrinsically linked to a trade-off in
performance, leading to the likelihood that a com-
pressed LLM might produce compromised results.

2.2 LLM Decoding Acceleration

Alongside conventional model compression tech-
niques, there is another branch of research that fo-
cuses on accelerating LLM inference without incur-
ring information loss. Among these studies, specu-
lative decoding (SD) (Chen et al., 2023; Leviathan
et al., 2023; Zhou et al., 2023; Spector and Ré,
2023; Miao et al., 2023) emerges as a promising
technique. SD does not modify the model archi-
tecture, nor does it require supplemental data or
retraining. SD typically employs a smaller model
to draft initial predictions for “easy" tokens, while
the LLM itself verifies these drafted tokens and
generates “hard" tokens. Some researchers sug-
gest that the smaller model is not essential for SD.
For instance, the smaller model can be substituted
with the LLM itself (Zhang et al., 2023) or a large
text database (He et al., 2023). In addition to SD,
other efforts are being made to enhance the decod-
ing efficiency of LLMs. Blockwise parallel decod-
ing (Stern et al., 2018), for example, is introduced
to make predictions for multiple time steps in par-
allel. More recently, Medusa (Cai et al., 2023) has
trained multiple prediction heads to predict the next
set of tokens simultaneously.

3 Preliminaries: Sequence-structured
Speculative Decoding

In this section, we establish the notation and
provide a foundational overview of sequence-
structured speculative decoding (SSD).

Consider an input sequence at time step ¢, de-
noted by z<; = {1, x2,...,x+}, where each z;
symbolizes the i-th token from the sequence. Let
M, be the target LLM we want to accelerate, and
let M, denote the draft model. The probabilities
P(T41|r<t) and g(x41|2<¢) represent the predic-

e ™
(" Token Sequence)
wish —» you —» were —» here Pruned node O Merged node A7 c v : 1
N J — =
Context Step 1 Step 2 Step 3
Token T N (Token Graph h
oken Tree oken Grap!
wish OO
/ \ / \ 000
& Q0 x0O
000~ 0
/ \ / N/ 000 x O
you I @ are you I OO X O AR O
/ / | 000 0@ x O
Q00 x xOx xO
not here were are am were here not here the are am were OO X O X X O X X O
J L _ \ J

Figure 2: Overview of our method. (Left) GSD advances beyond TSD and SSD by implementing pruning strategies
along with a re-occurring node merging technique. (Right) An illustration demonstrates the process by which the
token tree (or graph) is flattened to a sequence. The sequence is then paired with a customized attention mask
designed to uphold the proper dependencies between tokens to perform efficient drafting and verifying.

tive distributions for the next token as given by M,
(the LLM) and M, (the draft LM), respectively.

SSD leverages the draft model, M, to propose a
hypothesis comprising 7y tokens, which we denote
as h = {Z¢y1, 442, ..., T4~} The drafting of
each token, Z; + ¢, is modeled probabilistically as
follows:

(D

Upon completion of the draft stage, the LLM, M,
proceeds to verify the ~ drafted tokens in a singu-
lar forward pass. The verification process involves
comparing the predictions made by M), and M, to
determine which tokens shall be accepted. This
process employs the sampling method used in pre-
vious studies (Chen et al., 2023). For the ¢-th token
in the hypothesis, the acceptance probability is cal-
culated as min(1, p(Z¢4;)/q(Z¢+:)). Should the
token Z+; face rejection, all subsequent tokens in
the hypothesis are also discarded, the verification
process comes to a halt, and M, regenerates the
discarded token. This method ensures that the to-
kens that are ultimately accepted are representative
of the output distribution characterized by M,,.

Tppi ~ q(x|T<t, Tpg1, ooy Tigrio1)

4 A Step Forward: Tree-structured
Speculative Decoding

An intuitive idea for improving SSD is to draft
multiple hypotheses instead of merely one. This is
where Tree-structured SD (TSD) comes into play.

In each drafting step of SSD, the draft model
predicts a single next token as described in Equa-
tion 1. After y steps, the drafted tokens compose a

sequence {Z¢41, 442, ..., T4+~ }. In contrast, TSD
allows the draft model to consider k different alter-
natives for the next token at each drafting step. The
resulting drafted tokens thus create a tree structure,
with the root representing the context at the com-
mencement of drafting, and each branch from the
root depicting a different hypothesis.

After ~ drafting steps, the resulting token tree
has a depth of v and a treewidth of k£ and can con-
tain up to m,:f L nodes, representing as many as
k7 unique hypotheses. Let’s denote the collection
of all hypotheses as {h; }*_ ;. TSD holds a signifi-
cant advantage over SSD, by enabling the genera-
tion of a larger pool of hypotheses in a single draft-
ing stage, it raises the chances of having longer
sequences of tokens accepted by the LLM. This
boosts the acceptance rate of the SD process. Fun-
damentally, TSD operates in a manner analogous
to beam search, maintaining multiple potential hy-
potheses within its tree structure during the draft
stage and then selecting the most promising one
during the verification stage.

4.1 Parallelized drafting and verifying via
tree attention

The draft stage of TSD generates a multitude of
hypotheses. A significant challenge within this
framework is the efficient drafting of these multiple
hypotheses. If one were to adhere to the traditional
inference scheme that decodes one token at a time
(akin to extending one branch of the token tree),
the computational demands are apparently unac-

+
ceptable given that the token tree contains % =1 —1

tokens to be decoded.

A promising resolution to this problem is by
employing meticulous tree attention. Tree atten-
tion operates by flattening the token tree into a
sequence and then simultaneously predicting the
next node for all branches during a single forward
draft, thus circumventing the necessity of perform-
ing a forward pass for each potential sequence. As
illustrated in Figure 2, it accomplishes this by cus-
tomizing the attention mask in such a way that each
token is only allowed to attend to its ancestor nodes
in the tree hierarchy, thus maintaining the correct
dependencies amongst tokens.

The verification stage benefits from tree atten-
tion by validating all hypotheses within a single
forward pass. After this process, the longest path
that unfolds from the root node is chosen as the
sequence to be accepted.

4.2 Pruning inferior branches

Despite the parallel drafting and verification with
tree attention, TSD still consumes significantly
more computation than SSD. The root cause lies
in the exponentially increased length of input se-
quences processed in each forward pass. Trans-
former attention has a computational complexity
that scales quadratically, O(I?), with the sequence
length [. While kv-caching does alleviate the com-
putational load to some degree, the burden remains
substantially heavier than that of SSD. Thus, to re-
duce the input sequence length, we need to perform
pruning on the token tree.

We introduce two pruning strategies to moder-
ate the size of the token tree. The first strategy is
probability pruning. For a given node ¢ within the
token tree, where s. denotes the path from the root
to ¢, the logit probability is given by g(c|r<¢, s¢).
By setting a probability threshold 6,,.,,, we can
filter out nodes: if q(c|x<¢, s¢) < Oprob, the node
is deemed unlikely to be verified successfully and
is marked as a leaf, halting further speculation.

The second strategy, sibling pruning, focuses on
anode’s child nodes {c;}¥_;. Among these, we dis-
cern which nodes should remain as non-leaf nodes
based on their logit probabilities relative to the high-
est probability among them. Specifically, let m, =
max;—1 .k P(ci|T<t, S¢;). A child node ¢; is then
designated as a leaf if p(c;|z<y, s¢;) < Oip - My.
This approach ensures that the logit probabilities
among sibling nodes do not deviate excessively
from the maximum observed, m,. The underlying

Statistics of N-gram co-occurence

100
—a y=6
= 80 y=8
é — y:lo
Y 60
8
T 40
et
&
20
0 1 2 3 4

N-grams

Figure 3: The proportion of tokens that are part of
re-occurring n-grams within the token tree where the
treewidth k is 4. 0,05 = 0.2 and 6,;, = 0.3.

idea is that, during probabilistic sampling, if the
generation probabilities across a node’s children
vary greatly, the tokens associated with lower prob-
abilities are less likely to be chosen. Therefore, it
may not be necessary to keep these less probable
nodes in the tree. Hence, when the output distri-
bution for a current token is peaked—indicating
high model confidence in its prediction—we need
not preserve many child nodes. However, if the
distribution is flatter, meaning multiple tokens have
similar probabilities, it then becomes prudent to
maintain a broader set of child nodes as candidates.

5 Graph-structured Speculative Decoding

Empirically, we observe that TSD often fails to sur-
pass SSD, contrary to expectations. It appears that
despite the utilization of pruning and tree attention,
the cost of drafting multiple hypotheses still coun-
terbalances the potential benefits that TSD offers.
So we would like to ask: Can we further reduce
the quantity of drafted tokens to enhance TSD’s
efficiency and effectiveness?

5.1 Same tokens re-occur among hypotheses

Before delving into GSD, we first conduct a pilot
study to investigate the drafted hypotheses gener-
ated by TSD. We analyze the token trees from 100
distinct TSD runs, documenting the statistics of n-
gram co-occurrences across various branches. The
findings of this analysis are presented in Figure 3,
and they give rise to several key insights:

* There is a high degree of commonality among
the tokens in different hypotheses. As de-
picted in Figure 3, within a token tree of 10-
depth and 4-treewidth, approximately 70% of

tokens appear across multiple branches. This
suggests that the generated hypotheses tend
to form a cluster of semantically similar or
related candidates, rather than branching off
in completely disparate semantic directions.

There is also a notable frequency of recurring
n-grams within the token tree. This observa-
tion suggests that the similarities between dif-
ferent hypotheses extend beyond single tokens
— entire segments of tokens (n-grams) are of-
ten duplicated among the various branches of
the tree. This pattern points to redundancy in
the token sequences being drafted, which may
have implications for optimizing the efficiency
of the speculative decoding process.

5.2 Identifying redundant nodes

Having established that identical tokens tend to
reappear across different hypotheses, we can lever-
age this property to reduce the computation of re-
occurring tokens

To exploit this characteristic, we introduce the
concept of a T-redundant node. A node is desig-
nated as 7-redundant when it corresponds to the
last token of a re-occurring 7-gram. We assume
that the presence of a 7-gram, defined as a sequence
of 7 consecutive identical tokens, signals a high de-
gree of similarity between the current hypothesis
and an alternate hypothesis already explored. This
implies a strong likelihood that the sequence will
continue to predict identical subsequent tokens.

5.3 Merging redundant nodes

Building on the concept of 7-redundant nodes, we
implement a procedure to merge these nodes to
enhance efficiency. The approach is straightfor-
ward: we mark 7-redundant nodes as leaf nodes,
effectively ceasing their further expansion within
the token tree. To merge the nodes, we first lo-
cate the first occurrence of the re-occurring 7-gram.
We then draw a directed edge from the 7-redundant
node to this first occurrence. By doing so, we estab-
lish that the nodes following the 7-redundant node
will not need to be generated anew. Rather, we
can directly reuse the results previously computed
for the initial 7-gram occurrence. As a result of
this merging process, the token tree is transformed
into a directed acyclic graph (DAG), wherein no
n-grams longer than 7 will be repeated.

Draft Stage

o o
L oie O r—
e@0.: 000

re-occurring 2-gram

Verification Stage

Figure 4: An illustration of how the token graph operates
during the draft stage and the verification stage.

5.4 Token graph verification

There is still one step to go to fulfill GSD: the
verification process. In the verification stage, we
need to flatten the token graph to a sequence so that
the LLM can verify all hypotheses simultaneously.
To convert a DAG into a sequence while preserving
the correct dependencies between tokens, we start
by reverting the graph to its original tree structure.
This is done by “unmerging" all previously merged
nodes. During this process, the successor nodes of
any redundant node are replicated from the relevant
merged nodes (Figure 4). With the structure now
back in the form of a tree, we can apply the same
verification procedure as used in TSD.

6 Experiments

6.1 Setup

We conduct evaluations using the LLaMA model
series, with LLaMA-70b and LLaMA-70b-chat
serving as the large LLMs, and LLaMA-7b and
LLaMA-7b-chat as draft models. We employ both
greedy decoding and top-p sampling decoding
methods. Greedy decoding chooses the token with
the highest probability at each step, while top-p
sampling decoding generates tokens by sampling
from the most probable tokens in the model’s pre-
dicted distribution until their cumulative probabil-
ity reaches the threshold p. In our main experi-
ments, we adhere to a deterministic setting, which
only accepts drafted tokens if they align with the
tokens sampled from the LLM. This is because, un-
der this condition, the generated output sequence
is guaranteed to be identical to what would be pro-
duced via standard generation methods, so we can
concentrate solely on efficiency metrics, eschewing
concerns about the quality of the output sequence.

Datasets We conduct experiments on
two datasets: Extreme Summarization
(XSum) (Narayan et al., 2018) and GSM8K (Cobbe
et al., 2021). We evaluate with a batch size of 1
and randomly select 1000 instances from the test

Datasets Mehtod Model Acceptance Drafted Graph Speedup
Rate Token Num Success
GSM8k Self SSD LLaMA-2-70b - - - 1.35x%
GSM8k SSD LLaMA-2-70b 0.791/ 636.7 - 1.82x
GSM8k TSD LLaMA-2-70b 0.891 8565.7 0% 1.76x
GSM8k GSD LLaMA-2-70b 0.915 794.9 27.0% 1.94x
XSUM Self SSD LLaMA-2-70b - - - 1.31x
XSUM SSD LLaMA-2-70b 0.653 776.7 - 1.57x
XSUM TSD LLaMA-2-70b 0.786 22506.6 0% 1.40x
XSUM GSD LLaMA-2-70b 0.829 1576.2 325% 1.70x
XSUM SSD LLaMA-2-70b-chat 0.505 994.4 - 1.21x
XSUM TSD LLaMA-2-70b-chat 0.639 4639.9 0% 1.33x
XSUM GSD LLaMA-2-70b-chat 0.643 1576.2 302% 1.34x

Table 1: Evaluation on GSM8k and XSUM with different speculative decoding methods. Self SSD is the method
proposed by Zhang et al. (2023), which uses the LLM itself as the draft model. Speedup is the averaged result of

greedy and top-p sampling.

set for evaluation.

Configurations We establish both the maximum
input sequence length and output sequence length
at 512. Any input sequences exceeding 512 tokens
are truncated. We set the maximum drafting step at
10 and adopt a draft-exiting mechanism to prema-
turely exit the drafting stage when the token prob-
ability drops below 6,,.,,. For the top-p sampling
decoding, we set the top-p to 0.7 and temperature
to 0.7. For graph decoding and tree decoding, we
set treewidth £ as 4. For the pruning configurations,
we default to 0,5, = 0.2 and 0, = 0.3 . We set
7 = 2. The choice for these hyperparameters will
be further discussed in section 6.3.

6.2 Main Results

Table 1 illustrates a comparison of our method
against other speculative decoding approaches. Fo-
cusing on the speed-up ratio, we can see that GSD
offers a significant advantage over the alternatives,
achieving up to 1.94 and 1.70 times faster speeds.
When examining the acceptance rate, we observe
that both TSD and GSD have an acceptance rate
that exceeds that of SSD by more than 10%. This
indicates that tokens generated by the draft model
are more likely to pass the verification process.
Comparing the number of drafted tokens, we can
see that TSD produces an order of magnitude more
tokens than SSD. Hence, while TSD also has a high
acceptance rate, this advantage is negated by the
excessive number of tokens generated.

Additionally, we assess what proportion of to-
kens, which passed verification during the specu-
lative decoding process, contained nodes from the
merged subtrees, and find that approximately 30%
of the drafting stages include such tokens. This
indicates that, while the token graph is significantly
smaller in node count compared to the token tree,
we have successfully preserved the decoding in-
formation by recognizing and grafting nodes from
different branches.

6.3 Ablation Study

Treewidth £ Treewidth £ refers to the maximum
number of child nodes that each node within the
token tree (or graph) can possess. As depicted in
Figure 5(a), as the treewidth increases, the model
is more likely to accept longer sequences in the
verification stage due to the more diverse set of
candidate hypotheses, thereby significantly enhanc-
ing the acceptance rate. However, the total number
of nodes in the token tree increases exponentially
as the increase of k as we have discussed in Sec-
tion 4. When setting k to 4, the token tree contains
more than 20000 tokens which leads to a heavy
computation budget. In contrast, the token graph
prevents the uncontrolled swell of node count that
could impede computational efficiency by merg-
ing repeating sub-trees. This optimization allows
the GSD to achieve a much higher acceptance rate
while free from a rapid increase in nodes and a
corresponding deceleration in inference with the
increase of k.

(a) Treewidth k

%]
g
¥20k —— tree
£o.80 — IS graph
o - kel
o & 15k
20.75 ©
2 S0k
$0.70 g
< 3 sk ~
0.65 5 —
B 2 3 i 2 94 2 3 4
(c) Threshold for Prgl}sakbility Pruning 6,0
o g % \ —— tree
= 0.9 - = \\ graph
o B 10kt
o &£ A\
g © \
© 0.8 o \
) 5 5k
o] —— tree o]
< Q
0.7 graph | € ~ |
=] 0 ey
=2

0.1 02 03 04 05 01 02 03 04 05

5 (b) Threshold for Redundant Node 1

0.8 §5k
[
=1 S
£ 0.80 Bk
g §3k —— tree
3 o raph
0.78 = 2k gep
1o} —
< 81k
0.76 £
1 2 3 s =09 2 3 4
0.82 (d) Threshold for Sibling Pruning 6.,
. c
§5k \ —— tree
(0] o
% 0.80 Fak graph
o 3
S0.78 § 3k
i) a
20.76f— 5 2k \\
ot o @
1k
<0.74 .\ 'g \‘
20
03 04 05 06 < 03 04 05 06

Figure 5: A series of ablation studies to investigate the hyperparameter configuration of treewidth, redundant
threshold, and two pruning techniques. All other hyperparameters adhere to the configuration described in section 6.1

Threshold for Redundant Node 7 As men-
tioned in Section 5.2, when two different hypothe-
ses emanating from different branches share a com-
mon token sequence of length 7, they are identified
as repetition and subsequently merged as a single
branch. Thus, the larger the 7, the more radical the
node merging becomes. As shown in Figure 5(b),
as the increase of 7, the method becomes more
conservative in fusing repeated branches, retaining
more nodes in the token graph. Besides, the accep-
tance rate is inversely correlated with the redundant
threshold. This implies that more aggressive node
fusion leads to a more diverse set of candidate hy-
potheses. At first glance, this might seem paradox-
ical, since one would expect that aggressive node
fusion, which reduces the number of nodes in the
token graph, would decrease the diversity of hy-
potheses by merging similar sequences. However,
when the merging happens, the two nodes that are
merged as one then share a common child subtree
in later drafting steps. By merging, the newly gen-
erated tokens within the subtree are simultaneously
added to two different branches, while these to-
kens might not be generated by both independent
branches if not merged. Thus, the node merging ef-
fectively introduces a greater variety of hypotheses
by allowing for increased sharing of information
between different parts of the token graph, which
might otherwise remain isolated, leading to less
efficient search space coverage.

Pruning Threshold 0,,., 05;;, The probability
pruning technique prunes tokens of low logit
probability and the sibling pruning technique in-

Methods SSD TSD GSD
GSM8k 1.80x 1.81x 2.14x
XSUM 1.58x 1.46x 1.89x

Table 2: Speedup results on non-deterministic specula-
tive decoding on LLaMA-2-70b.

volves pruning sibling nodes that had passed the
probability-based pruning based on the maximum
logit probability. As illustrated in the figure, both
pruning strategies significantly reduce the number
of generated tokens. However, these two prun-
ing strategies have opposite effects on the accep-
tance rate. When the threshold is raised, probability
pruning leads to an increase in the acceptance rate,
while sibling pruning has a diminishing effect. This
indicates that while probability pruning can help in
focusing the speculative decoding process on more
likely hypotheses, sibling pruning might lead to
the removal of potential candidate hypotheses that
could have been valid. The implications of these
findings suggest that a delicate balance must be
struck between pruning enough to maintain compu-
tational efficiency and avoiding overly aggressive
pruning that could eliminate valid hypotheses.

6.4 Non-deterministic Setting

The main experiment is conducted under strict a
speculative decoding setting where the output is
restricted to be identical to the sequence that would
be generated by the vanilla LLM decoding pro-
cess. We also test the performance under a non-

Methods Draft Verification Others
SSD 2249 ms 133.5 ms 45.8 ms
TSD(kk=2) 257.0ms 172.4 ms 46.9 ms
GSD(k=2) 2259ms 170.0 ms 45.5 ms
TSD(k=4) 3239ms 184.4 ms 49.8 ms
GSD(k=4) 209.0ms 178.3 ms 50.2 ms

Table 3: Breakdown of computation of different specu-
lative methods on 50 instances sampled from XSUM.

deterministic setting, where the drafted tokens are
verified in a probabilistic manner, as described in
Section 3. This probabilistic verification allows for
a degree of variation in the output. Implementing
GSD in this setting is a little tricky due to the way
it bypasses the computation for redundant tokens.
Since the logits for these tokens are not explicitly
computed, we adapt by reusing the logits from their
respective merged nodes during the "unmerging"
process of redundant nodes. This adaptation, how-
ever, might introduce a bias in GSD’s predictions
compared to those of SSD and TSD, as the logits
for the "unmerged" tokens are not independently
computed but are inferred from existing nodes.

7 Analysis

7.1 Breakdown of Computation

Table 3 presents a computational analysis compar-
ing different speculative decoding methods. All
methods allocate more time to the drafting stage
than the verification stage. However, both TSD and
GSD require additional time during the verification
stage due to the increased number of drafted to-
kens that need to be verified. Compared to TSD,
the primary improvement offered by GSD lies in
the reduction of time consumed during the draft
stage, which can be attributed to the fewer number
of nodes in the token graph, resulting in a reduced
count of tokens that need to be processed during
each drafting forward pass.

Besides, we find that, in addition to drafting and
verifying, there is a significant portion of compu-
tation that should not be overlooked. We find that
this computation is primarily associated with the
update of the kv-cache of the draft model. Thus,
improving the efficiency of the kv-caching repre-
sents a potential direction for further accelerating
the speculative decoding.

Graph-like Speculative Decoding

[Input] Write a story about life on Mars:

[Output] The Martian Chronicles is a 1950 science
fiction short story collection by Ray Brad bury that
chronicles the exploration and settlement of Mars in
the near future. The stories range from the first
expeditions to the Red Planet to the eventual demise of
the human race. The collection is notable for its use of
science fiction to explore social and political themes,
as well as its vivid and imaginative depiction of life on
Mars. The stories are also notable for their use of
allegory and symbolism, as well as their exploration of
the human condition. The Martian Chronicles is
considered one of the most influential works of science
fiction ever written and has been adapted into a number
of different media, including a television series, a radio
drama, and a comic book. The Martian Chronicles is a
collection of short stories by Ray Brad bury that

chronicles the colonization of Mars by humans.
(. J

Figure 6: A visualization of the generation process of
graph-structured speculative decoding. The black color
represents the token generated by the verification model.
Both red and blue are the accepted tokens. Red tokens
are ordinarily drafted while blue tokens are from the
merged nodes of the token graph.

7.2 Case Study

Figure 6 presents an illustrative example of GSD.
We use distinct colors to highlight the diverse ori-
gins of each token generated during the process.
This case demonstrates how the token graph assists
in maintaining various hypotheses while simulta-
neously decreasing the total number of drafted to-
kens. Notably, approximately 30% of the accepted
drafted tokens are derived from the subtrees associ-
ated with merged nodes, illustrating the efficiency
gains achieved through GSD.

8 Conclusion

In this paper, we introduce graph-structured specu-
lative decoding (GSD), a novel decoding strategy
that utilizes a token graph to concurrently record a
multitude of sequence hypotheses within a single
draft stage. We propose a redundant node merging
technique and two pruning strategies to constrain
the size of the token graph without unduly compro-
mising the diversity of hypotheses. Our extensive
experiments demonstrate that GSD significantly in-
creases the acceptance rate of drafted tokens while
not introducing much computation, achieving a no-
ticeable acceleration in speed compared to previous
speculative decoding methods.

Limitations

We discuss the limitations of our work as follows:
(1) While our investigation has highlighted an inter-
esting phenomenon of hypotheses generated from
the same context contexts, we have not thoroughly
examined the underlying mechanism that gives rise
to this phenomenon. A deeper exploration into why
these hypotheses exhibit such close semantic ties
could unveil further insights that may benefit future
research and applications. (2) We mainly focus on
the acceleration of extremely large LLMs, with less
attention being paid to smaller-scale models. How-
ever, it is worth noting that our proposed methods
are versatile and could be easily adapted to enhance
the efficiency of models across various scales.

References

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, and Tri Dao. 2023. Medusa: Simple frame-
work for accelerating llm generation with multi-
ple decoding heads. https://github.com/
FasterDecoding/Medusa.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023. Accelerating large language
model decoding with speculative sampling. CoRR,
abs/2302.01318.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323-10337. PMLR.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. CoRR, abs/1211.3711.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.

TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163—
4174, Online. Association for Computational Lin-
guistics.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19274-19286.
PMLR.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained
language models: From model compression to im-
proving generalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6524—-6538, Online. Association
for Computational Linguistics.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023a. LLM-QAT: data-free quantization
aware training for large language models. CoRR,
abs/2305.17888.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023b. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
LLM serving with speculative inference and token
tree verification. CoRR, abs/2305.09781.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797-1807. Association
for Computational Linguistics.

OpenAl. 2022. Openai chatgpt.

Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh,
and Qun Liu. 2021. Alp-kd: Attention-based layer
projection for knowledge distillation. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13657-13665.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2302.01318
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1211.3711
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.48550/ARXIV.2305.17888
https://doi.org/10.48550/ARXIV.2305.17888
https://doi.org/10.48550/ARXIV.2305.17888
https://doi.org/10.48550/ARXIV.2305.09781
https://doi.org/10.48550/ARXIV.2305.09781
https://doi.org/10.48550/ARXIV.2305.09781
https://doi.org/10.48550/ARXIV.2305.09781
https://doi.org/10.48550/ARXIV.2305.09781
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://doi.org/10.18653/V1/D18-1206
https://openai.com/blog/chatgpt/
https://ojs.aaai.org/index.php/AAAI/article/view/17610
https://ojs.aaai.org/index.php/AAAI/article/view/17610
https://ojs.aaai.org/index.php/AAAI/article/view/17610
https://openreview.net/forum?id=1u1I_xmPJLx
https://openreview.net/forum?id=1u1I_xmPJLx

of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Benjamin Spector and Christopher Ré. 2023. Accelerat-
ing LLM inference with staged speculative decoding.
CoRR, abs/2308.04623.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurlPS
2018, December 3-8, 2018, Montréal, Canada, pages
10107-10116.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2022.
Compression of generative pre-trained language mod-
els via quantization. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4821—
4836, Dublin, Ireland. Association for Computational
Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998-6008.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-

10

attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140-2151, Online. Association for Computa-
tional Linguistics.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,

Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,

Gang Chen, and Sharad Mehrotra. 2023. Draft & ver-
ify: Lossless large language model acceleration via
self-speculative decoding. CoRR, abs/2309.08168.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,

Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-Frangois Kagy, and Rishabh Agarwal.
2023. Distillspec: Improving speculative decoding
via knowledge distillation. CoRR, abs/2310.08461.

https://openreview.net/forum?id=1u1I_xmPJLx
https://doi.org/10.48550/ARXIV.2308.04623
https://doi.org/10.48550/ARXIV.2308.04623
https://doi.org/10.48550/ARXIV.2308.04623
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.331
https://doi.org/10.18653/v1/2022.acl-long.331
https://doi.org/10.18653/v1/2022.acl-long.331
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2309.08168
https://doi.org/10.48550/ARXIV.2310.08461
https://doi.org/10.48550/ARXIV.2310.08461
https://doi.org/10.48550/ARXIV.2310.08461

