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ABSTRACT

Differentially private synthetic data provide a powerful mechanism to enable
data analysis while protecting sensitive information about individuals. However,
when the data lie in a high-dimensional space, the accuracy of the synthetic data
suffers from the curse of dimensionality. In this paper, we propose a differentially
private algorithm to generate low-dimensional synthetic data efficiently from a
high-dimensional dataset with a utility guarantee with respect to the Wasserstein
distance. A key step of our algorithm is a private principal component analysis
(PCA) procedure with a near-optimal accuracy bound that circumvents the curse of
dimensionality. Unlike the standard perturbation analysis, our analysis of private
PCA works without assuming the spectral gap for the covariance matrix.

1 INTRODUCTION

As data sharing is increasingly locking horns with data privacy concerns, privacy-preserving data
analysis is becoming a challenging task with far-reaching impact. Differential privacy (DP) has
emerged as the gold standard for implementing privacy in various applications (Dwork & Roth, 2014).
For instance, DP has been adopted by several technology companies (Dwork et al., 2019) and has also
been used in connection with the release of Census 2020 data (Abowd et al., 2022). The motivation
behind the concept of differential privacy is the desire to protect an individual’s data while publishing
aggregate information about the database, as formalized in the following definition:

Definition 1.1 (Differential Privacy (Dwork & Roth, 2014)). A randomized algorithm M is ε-
differentially private if for any neighboring datasets D and D′ and any measurable subset S ⊆
range(M), we have

P
{
M(D) ∈ S

}
≤ eε P

{
M(D′) ∈ S

}
,

where the probability is with respect to the randomness of M.

However, utility guarantees for DP are usually provided only for a fixed, predefined set of queries.
Hence, it has been frequently recommended that differential privacy may be combined with synthetic
data to achieve more flexibility in private data sharing (Hardt et al., 2012; Bellovin et al., 2019).
Synthetic datasets are generated from existing datasets and maintain the statistical properties of the
original dataset. Ideally, synthetic data contain no protected information; hence, the datasets can be
shared freely among investigators in academia or industry, without security and privacy concerns.

Yet, computationally efficient construction of accurate differentially private synthetic data is chal-
lenging. Most research on private synthetic data has been concerned with counting queries, range
queries, or k-dimensional marginals, see e.g. (Hardt et al., 2012; Ullman & Vadhan, 2011; Blum
et al., 2013; Vietri et al., 2022; Dwork et al., 2015; Thaler et al., 2012; Boedihardjo et al., 2022c).
Notable exceptions are (Wang et al., 2016; Boedihardjo et al., 2022b; Donhauser et al., 2023).
Specifically, (Boedihardjo et al., 2022b) provides utility guarantees with respect to the 1-Wasserstein
distance. Invoking the Kantorovich-Rubinstein duality theorem, the 1-Wasserstein distance accuracy
bound ensures that all Lipschitz statistics are preserved uniformly. Given that numerous machine
learning algorithms are Lipschitz (von Luxburg & Bousquet, 2004; Kovalev, 2022; Bubeck & Sellke,
2021; Meunier et al., 2022), this provides data analysts with a vastly increased toolbox of machine
learning methods for which one can expect similar outcomes for the original and synthetic data.
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For instance, for the special case of datasets living on the d-dimensional Boolean hypercube [0, 1]d

equipped with the Hamming distance, the results in (Boedihardjo et al., 2022b) show that there exists
an ε-DP algorithm with an expected utility loss that scales like(

log(εn)
3
2 /(εn)

)1/d
, (1.1)

where n is the size of the dataset. While (He et al., 2023) succeeded in removing the logarithmic
factor in (1.1), it can be shown that the rate in (1.1) is otherwise tight. Consequently, the utility
guarantees in (Boedihardjo et al., 2022b; He et al., 2023) are only useful when d, the dimension of
the data, is small (or if n is exponentially larger than d). In other words, we are facing the curse of
dimensionality. The curse of dimensionality extends beyond challenges associated with Wasserstein
distance utility guarantees. Even with a weaker accuracy requirement, the hardness result from
Uhlman and Vadhan (Ullman & Vadhan, 2011) shows that n = poly(d) is necessary for generating
DP-synthetic data in polynomial time while maintaining approximate covariance.

In (Donhauser et al., 2023), the authors succeeded in constructing DP synthetic data with utility
bounds where d in (1.1) is replaced by (d′ + 1), assuming that the dataset lies in a certain d′-
dimensional subspace. However, the optimization step in their algorithm exhibits exponential time
complexity in d, see (Donhauser et al., 2023, Section 4.1).

This paper presents a computationally efficient algorithm that does not rely on any assumptions about
the true data. We demonstrate that our approach enhances the utility bound from d to d′ in (1.1) when
the dataset is in a d′-dimensional affine subspace. Specifically, we derive a DP algorithm to generate
low-dimensional synthetic data from a high-dimensional dataset with a utility guarantee with respect
to the 1-Wasserstein distance that captures the intrinsic dimension of the data.

Our approach revolves around a private principal component analysis (PCA) procedure with a
near-optimal accuracy bound that circumvents the curse of dimensionality. Different from classical
perturbation analysis (Chaudhuri et al., 2013; Dwork et al., 2014) that utilizes the Davis-Kahan
theorem (Davis & Kahan, 1970) in the literature, our accuracy analysis of private PCA works without
assuming the spectral gap for the covariance matrix.

Notation In this paper, we work with data in the Euclidean space Rd. For convenience, the data
matrix X = [X1, . . . , Xn] ∈ Rd×n also indicates the dataset (X1, . . . , Xn). We use A to denote a
matrix and v,X as vectors. ∥ · ∥F is the Frobenius norm and ∥ · ∥ is the operator norm of a matrix,
respectively. Two sequences an, bn satisfies an ≲ bn if an ≤ Cbn for an absolute constant C > 0.

Organization of the paper The rest of the paper is arranged as follows. In the remainder of
Section 1, we present our algorithm with an informal theorem for privacy and accuracy guarantees in
Section 1.1, followed by a discussion. A comparison to the state of the art is given in Section 1.2.
Next, we consider the Algorithm 1 step by step. Section 2 discusses private PCA and noisy projection.
In Section 3, we modify synthetic data algorithms from (He et al., 2023) to the specific cases on the
lower dimensional spaces. The precise privacy and accuracy guarantee of Algorithm 1 is summarized
in Section 4. We provide additional useful lemmas and definitions in Section A. Section B contains
more details about the low-dimensional synthetic data step in Algorithm 1. Proofs are contained in
Section C. Finally, since the case d′ = 1 is not covered in Theorem 1.2, we discuss additional results
under stronger assumptions in Section D.

1.1 MAIN RESULTS

In this paper, we use Definition 1.1 on data matrix X ∈ Rd×n. We say two data matrices X,X′ are
neighboring datasets if X and X′ differ on only one column. We follow the setting and notation in
(He et al., 2023) as follows. let (Ω, ρ) be a metric space. Consider a dataset X = [X1, . . . , Xn] ∈ Ωn.
We aim to construct a computationally efficient differentially private randomized algorithm that
outputs synthetic data Y = [Y1, . . . , Yn] ∈ Ωm such that the two empirical measures

µX =
1

n

n∑
i=1

δXi
and µY =

1

m

m∑
i=1

δYi

are close to each other. Here δXi
denotes the Dirac measure centered on Xi. We measure the utility

of the output by EW1(µX, µY), where the expectation is taken over the randomness of the algorithm.
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We assume that each vector in the original dataset X is inside [0, 1]d; our goal is to generate a
differentially private synthetic dataset Y in [0, 1]d, where each vector is close to a linear subspace of
dimension d′, and the empirical measure of Y is close to X under the 1-Wasserstein distance. We
introduce Algorithm 1 as a computationally efficient algorithm for this task. It can be summarized in
the following four steps:

1. Construct a private covariance matrix M̂. The private covariance is constructed by adding a
Laplacian random matrix to a centered covariance matrix M defined as

M =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T, where X =
1

n

n∑
i=1

Xi. (1.2)

This step is presented in Algorithm 2.

2. Find a d′-dimensional subspace V̂d′ by taking the top d′ eigenvectors of M̂. Then, project
the data onto a linear subspace. The new data obtained in this way are inside a d′-dimensional
ball. This step is summarized in Algorithm 3.

3. Generate a private measure in the d′ dimensional ball centered at the origin by adapting
methods in (He et al., 2023), where synthetic data generation algorithms were analyzed for
data in the hypercube. This is summarized in Algorithms 4 and 5.

4. Add a private mean vector to shift the dataset back to a private affine subspace. Given the
transformations in earlier steps, some synthetic data points might lie outside the hypercube.
We then metrically project them back to the domain of the hypercube. Finally, we output the
resulting dataset Y. This is summarized in the last two parts of Algorithm 1.

The next informal theorem states the privacy and accuracy guarantees of Algorithm 1. Section 4 gives
more detailed and precise statements.
Theorem 1.2. Let Ω = [0, 1]d equipped with ℓ∞ metric and X = [X1, . . . , Xn] ∈ Ωn be a
dataset. For any 2 ≤ d′ ≤ d, Algorithm 1 outputs an ε-differentially private synthetic dataset
Y = [Y1, . . . , Ym] ∈ Ωm for some m ≥ 1 in polynomial time such that

EW1(µX, µY) ≲d

√∑
i>d′

σi(M) + (εn)−1/d′
, (1.3)

where ≲d means the right hand side of (1.3) hides factors that are polynomial in d, and σi(M) is the
i-th eigenvalue value of M in (1.2).

Note that m, the size of the synthetic dataset Y, is not necessarily equal to n since the low-dimensional
synthetic data subroutine in Algorithm 1 creates noisy counts. See Section 3 for more details.

Optimality The accuracy rate in (1.3) is optimal up to a poly(d) factor when X lies in an affine
d′-dimensional subspace. The second term matches the lower bound in (Boedihardjo et al., 2022b,
Corollary 9.3) for generating d′-dimensional synthetic data in [0, 1]d

′
. The first term is the error from

the best rank-d′ approximation of M. It remains an open question if the first term is necessary for
methods that are not PCA-based. A more detailed discussion can be found below Theorem 4.2.

Improved accuracy if X is low-dimensional When the original dataset X lies in an affine d′-
dimensional subspace, it implies σi(M) = 0 for i > d′ and EW1(µX, µY) ≲d (εn)−1/d′

. This is an
improvement from the accuracy rate O((εn)−1/d) for unstructured data in [0, 1]d in (Boedihardjo
et al., 2022b; He et al., 2023), which overcomes the curse of high dimensionality.

Y is a low-dimensional representation of X The synthetic dataset Y is close to a d′-dimensional
subspace under the 1-Wasserstein distance, as shown in Proposition 3.2.

Adaptive and private choices of d′ One can choose the value of d′ adaptively and privately based
on singular values of M̂ in Algorithm 2 such that σd′+1(M̂) is relatively small compared to σd′(M̂).
A near-optimal d′ is chosen by balancing the two error terms to find the best trade-off in (1.3). More
detailed discussion on its privacy and accuracy can be found in Appendix E
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Algorithm 1 Low-dimensional Synthetic Data

Input: True data matrix X = [X1, . . . , Xn], Xi ∈ [0, 1]d, privacy parameter ε.
Private covariance matrix Apply Algorithm 2 to X with privacy parameter ε/3 to obtain a

private covariance matrix M̂.
Private linear projection Choose a target dimension d′. Apply Algorithm 3 with privacy param-

eter ε/3 to project X onto a private d′-dimensional linear subspace. Save the private mean
Xpriv.

Low-dimensional synthetic data Use subroutine in Section 3 to generate ε/3-DP synthetic data
X′ of size m depending on d′ = 2 or d′ ≥ 3.

Adding the private mean vector Shift the data back by X ′′
i = Xi +Xpriv.

Metric projection Define f : R → [0, 1] such that

f(x) =


0 if x < 0;

x if x ∈ [0, 1];

1 if x > 1.

Then, for v ∈ Rd, we define f(v) to be the result of applying f to each coordinate of v.
Output: Synthetic data Y = [f(X ′′

1 ), . . . , f(X
′′
m)].

Running time The private linear projection step in Algorithm 1 has a running time O(d2n) using
the truncated SVD (Li et al., 2019). The low-dimensional synthetic data subroutine has a running
time polynomial in n for d′ ≥ 3 and linear in n when d′ = 2 (He et al., 2023). Therefore, the
overall running time for Algorithm 1 is linear in n, polynomial in d when d′ = 2 and is poly(n, d)
when d′ ≥ 3. Although sub-optimal in the dependence on d′ for accuracy bounds, one can also run
Algorithm 1 in linear time by choosing PMM (Algorithm 4) in the subroutine for all d′ ≥ 2.

1.2 COMPARISON TO PREVIOUS RESULTS

Private synthetic data Most existing work considered generating DP-synthetic datasets while
minimizing the utility loss for specific queries, including counting queries Blum et al. (2013); Hardt
et al. (2012); Dwork et al. (2009), k-way marginal queries Ullman & Vadhan (2011); Dwork et al.
(2015), histogram release Abowd et al. (2019). For a finite collection of predefined linear queries
Q, Hardt et al. (2012) provided an algorithm with running time linear in |Q| and utility loss grows
logarithmically in |Q|. The sample complexity can be reduced if the queries are sparse (Dwork et al.,
2015; Blum et al., 2013; Donhauser et al., 2023).

Beyond finite collections of queries, Wang et al. (2016) considered utility bound for differentiable
queries, and recent works (Boedihardjo et al., 2022b; He et al., 2023) studied Lipschitz queries with
utility bound in Wasserstein distance. Donhauser et al. (2023) considered sparse Lipschitz queries
with an improved accuracy rate. Balog et al. (2018); Harder et al. (2021); Kreacic et al. (2023); Yang
et al. (2023) measure the utility of DP synthetic data by the maximum mean discrepancy (MMD)
between empirical distributions of the original and synthetic datasets. This metric is different from
our chosen utility bound in Wasserstein distance. Crucially, MMD does not provide any guarantees
for Lipschitz downstream tasks.

Our work provides an improved accuracy rate for low-dimensional synthetic data generation. Com-
pared to (Donhauser et al., 2023), our algorithm is computationally efficient and has a better accuracy
rate. Besides (Donhauser et al., 2023), we are unaware of any work on low-dimensional synthetic data
generation from high-dimensional datasets. Our experiments in Section 5 also show the importance
of exploring the low-dimensional structure for private synthetic data generation.

While methods from Boedihardjo et al. (2022b); He et al. (2023) can be directly applied if the
low-dimensional subspace is known, the subspace would be non-private and could reveal sensitive
information about the original data. The crux of our paper is that we do not assume the low-
dimensional subspace is known, and our DP synthetic data algorithm protects its privacy.
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Private PCA Private PCA is a commonly used technique for differentially private dimension
reduction of the original dataset. This is achieved by introducing noise to the covariance matrix
(Mangoubi & Vishnoi, 2022; Chaudhuri et al., 2013; Imtiaz & Sarwate, 2016; Dwork et al., 2014;
Jiang et al., 2016; 2013; Zhou et al., 2009). Instead of independent noise, the method of exponential
mechanism is also extensively explored (Kapralov & Talwar, 2013; Chaudhuri et al., 2013; Jiang
et al., 2016). Another approach, known as streaming PCA (Oja, 1982; Jain et al., 2016), can also be
performed privately (Hardt & Price, 2014; Liu et al., 2022a).

The private PCA typically yields a private d′-dimensional subspace V̂d′ that approximates the top
d′-dimensional subspace Vd′ produced by the standard PCA. The accuracy of private PCA is usually
measured by the distance between V̂d′ and Vd′ (Dwork et al., 2014; Hardt & Roth, 2013; Mangoubi
& Vishnoi, 2022; Liu et al., 2022a; Singhal & Steinke, 2021). To prove a utility guarantee, a common
tool is the Davis-Kahan Theorem (Bhatia, 2013; Yu et al., 2015), which assumes that the covariance
matrix has a spectral gap (Chaudhuri et al., 2013; Dwork et al., 2014; Hardt & Price, 2014; Jiang
et al., 2016; Liu et al., 2022a). Alternatively, using the projection error to evaluate accuracy is
independent of the spectral gap (Kapralov & Talwar, 2013; Liu et al., 2022b; Arora et al., 2018). In
our implementation of private PCA, we don’t treat V̂d′ as our terminal output. Instead, we project
X onto V̂d′ . Our approach directly bound the Wasserstein distance between the projected dataset
and X. This method circumvents the subspace perturbation analysis, resulting in an accuracy bound
independent of the spectral gap, as outlined in Lemma 2.2.

Singhal & Steinke (2021) considered a related task that takes a true dataset close to a low-dimensional
linear subspace and outputs a private linear subspace. To the best of our knowledge, none of the
previous work on private PCA considered low-dimensional DP synthetic data generation.

Centered covariance matrix A common choice of the covariance matrix for PCA is 1
nXXT

(Chaudhuri et al., 2011; Dwork et al., 2014; Singhal & Steinke, 2021), which is different from the
centered one defined in (1.2). The rank of X is the dimension of the linear subspace that the data lie
in rather than that of the affine subspace. If X lies in a d′-dimensional affine space (not necessarily
passing through the origin), centering the data shifts the affine hyperplane spanned X to pass through
the origin. Consequently, the centered covariance matrix will have rank d′, whereas the rank of X
is d′ + 1. By reducing the dimension of the linear subspace by 1, the centering step enhances the
accuracy rate from (εn)−1/(d′+1) to (εn)−1/d′

. Yet, this process introduces the added challenge of
protecting the privacy of mean vectors, as detailed in the third step in Algorithm 1 and Algorithm 3.

Private covariance estimation Private covariance estimation (Dong et al., 2022; Mangoubi &
Vishnoi, 2022) is closely linked to the private covariance matrix and the private linear projection
components of our Algorithm 1. Instead of adding i.i.d. noise, (Kapralov & Talwar, 2013; Amin
et al., 2019) improved the dependence on d in the estimation error by sampling top eigenvectors with
the exponential mechanism. However, it requires d′ as an input parameter (in our approach, it can be
chosen privately) and a lower bound on σd′(M). The dependence on d is a critical aspect in private
mean estimation (Kamath et al., 2019; Liu et al., 2021), and it is an open question to determine the
optimal dependence on d for low-dimensional synthetic data generation.

2 PRIVATE LINEAR PROJECTION

2.1 PRIVATE CENTERED COVARIANCE MATRIX

We start with the first step: finding a d′ dimensional private linear affine subspace and projecting X
onto it. Consider the d×n data matrix X = [X1, . . . , Xn], where X1, . . . , Xn ∈ Rd. The rank of the
covariance matrix 1

nXXT measures the dimension of the linear subspace spanned by X1, . . . , Xn.
If we subtract the mean vector and consider the centered covariance matrix M in (1.2), then the rank
of M indicates the dimension of the affine linear subspace that X lives in.

To guarantee the privacy of M, we add a symmetric Laplacian random matrix A to M to create a
private Hermitian matrix M̂ from Algorithm 2. The variance of entries in A is chosen such that the
following privacy guarantee holds:
Theorem 2.1. Algorithm 2 is ε-differentially private.
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Algorithm 2 Private Covariance Matrix

Input: Matrix X = [X1, . . . , Xn], privacy parameter ε, and variance parameter σ = 3d2

εn .

Computing the covariance matrix Compute the mean X = 1
n

∑n
i=1 Xi and the centered covari-

ance matrix M.
Generating a Laplacian random matrix Generate i.i.d. independent random variables λij ∼

Lap(σ), i ≤ j. Define a symmetric matrix A such that

Aij = Aji =

{
λij if i < j;

2λii if i = j,

Output: The noisy covariance matrix M̂ = M+A.

2.2 NOISY PROJECTION

The private covariance matrix M̂ induces private subspaces spanned by eigenvectors of M̂. We
then perform a truncated SVD on M̂ to find a private d′-dimensional subspace V̂d′ and project
original data onto V̂d′ . Here, the matrix V̂d′ also indicates the subspace generated by its orthonormal
columns. The full steps are summarized in Algorithm 3.

Algorithm 3 Noisy Projection

Input: True data matrix X = [X1, . . . , Xn], Xi ∈ [0, 1]d, privacy parameters ε, the private
covariance matrix M̂ from Algorithm 2, and a target dimension d′.

Singular value decomposition Compute the top d′ orthonormal eigenvectors v̂1, . . . , v̂d′ of M̂
and denote V̂d′ = [v̂1, . . . , v̂d′ ].

Private centering Compute X = 1
n

∑n
i=1 Xi. Let λ ∈ Rd be a random vector with i.i.d. compo-

nents of Lap(d/(εn)). Shift each Xi to Xi − (X + λ) for i ∈ [n].
Projection Project {Xi − (X + λ)}ni=1 onto the linear subspace spanned by v̂1, . . . , v̂d′ . The

projected data X̂i is given by X̂i =
∑d′

j=1

〈
Xi − (X + λ), v̂j

〉
v̂j .

Output: The data matrix after projection X̂ = [X̂1 . . . X̂n].

Algorithm 3 only guarantees private basis v̂1, . . . , v̂d′ for each X̂i, but the coordinates of X̂i in terms
of v̂1, . . . , v̂d′ are not private. Algorithms 4 and 5 in the next stage will output synthetic data on the
private subspace V̂d′ based on X̂. The privacy analysis combines the two stages based on Lemma
A.2, and we state the results in Section 3.

2.3 ACCURACY GUARANTEE FOR NOISY PROJECTION

The data matrix X̂ corresponds to an empirical measure µX̂ supported on the subspace V̂d. In this
subsection, we characterize the 1-Wasserstein distance between the empirical measure µX̂ and the
empirical measure of the centered dataset X−X1T, where 1 ∈ Rn is the all-1 vector. This problem
can be formulated as the stability of a low-rank projection based on a covariance matrix with additive
noise. We first provide the following useful deterministic lemma.

Lemma 2.2 (Stability of noisy projection). Let X be a d× n matrix and A be a d× d Hermitian
matrix. Let M = 1

nXXT with eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σd. Let M̂ = 1
nXXT +A, V̂d′ be a

d× d′ matrix whose columns are the first d′ orthonormal eigenvectors of M̂, and Y = V̂d′V̂T
d′X.

Let µX and µY be the empirical measures of column vectors of X and Y, respectively. Then

W 2
2 (µX, µY) ≤ 1

n
∥X−Y∥2F ≤

∑
i>d′

σi + 2d′∥A∥. (2.1)
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Inequality (2.1) holds without any spectral gap assumption on M. In the context of sample covariance
matrices for random datasets, a related bound without a spectral gap condition is derived in (Reiss &
Wahl, 2020, Proposition 2.2). Furthermore, Lemma 2.2 bears a conceptual resemblance to (Achlioptas
& McSherry, 2001, Theorem 5), which deals with low-rank matrix approximation under perturbation.
With Lemma 2.2, we derive the following Wasserstein distance bounds between the centered dataset
X−X1T and the dataset X̂.
Theorem 2.3. For input data X and output data X̂ in Algorithm 3, let M be the covariance matrix
defined in (1.2). Then for an absolute constant C > 0,

EW1(µX−X1T , µX̂) ≤
(
EW 2

2 (µX−X1T , µX̂)
)1/2

≤
√

2
∑
i>d′

σi(M) +

√
Cd′d2.5

εn
.

3 SYNTHETIC DATA SUBROUTINES

In the next stage of Algorithm 1, we construct synthetic data on the private subspace V̂d′ . Since the
original data Xi is in [0, 1]d, after Algorithm 3, we have∥∥∥X̂i

∥∥∥
2
=
∥∥∥Xi −X − λ

∥∥∥
2
≤

√
d+
∥∥∥X + λ

∥∥∥
2
=: R

for any fixed λ ∈ Rd. Therefore, the data after projection would lie in a d′-dimensional ball embedded
in Rd with radius R, and the domain for the subroutine is

Ω′ = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R2},

where v̂1, . . . , v̂d′ are the first d′ private principal components in Algorithm 3. Depending on whether
d′ = 2 or d′ ≥ 3, we apply two different algorithms from (He et al., 2023). Since the adaptations are
similar, the case for d′ ≥ 3 is deferred to Appendix B.

3.1 d′ = 2: PRIVATE MEASURE MECHANISM (PMM)

Algorithm 4 is adapted from the Private Measure Mechanism (PMM) in (He et al., 2023, Algorithm 4).
PMM starts with a binary hierarchical partition of a compact domain Ω of r levels, and it adds
inhomogeneous with variance σj noise to the number of data points in the j-th level of all subregions.
It then ensures the counts in all regions are nonnegative and the counts of two subregions at level j
add up to the count of a bigger region at level j− 1. Finally, it releases synthetic data according to the
noisy counts in each subregion at level r. More details about PMM can be found in Appendix B.1.

Since we need a suitable binary partition for the high-dimensional ball Ω′, to reduce to the case
studied in (He et al., 2023), we enlarge Ω′ to a hypercube [−R,R]d

′
inside the linear subspace V̂d′ .

The privacy and accuracy guarantees are proved in the next proposition.

Algorithm 4 PMM Subroutine

Input: dataset X̂ = (X̂1, . . . , X̂n) in the region

Ω′ = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R}.

Binary partition Let r = ⌈log2(εn)⌉ and σj = ε−1 · 2 1
2 (1−

1
d′ )(r−j). Enlarge the region Ω′ into

ΩPMM = {a1v̂1 + · · ·+ ad′ v̂d′ | ai ∈ [−R,R],∀i ∈ [d′]}.

Build a binary partition {Ωθ}θ∈{0,1}≤r on ΩPMM.

Noisy count For any θ, count the number of data in the region Ωθ denoted by nθ =
∣∣∣X̂ ∩ Ωθ

∣∣∣,
and let n′

θ = (nθ + λθ)+, where λθ are independent integer Laplacian random variables with
λ ∼ LapZ(σ|θ|), and |θ| is the length of the vector θ.

Consistency Enforce consistency of {n′
θ}θ∈{0,1}≤r

Output: Synthetic data X′ randomly sampled from {Ωθ}θ∈{0,1}r .
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Proposition 3.1. The subroutine Algorithm 4 is ε-differentially private. For any d′ ≥ 2, with the
input as the projected data X̂ and the range Ω′ with radius R, Algorithm 4 has an accuracy bound

EW1(µX̂, µX′) ≤ CR(εn)−1/d′
,

where the expectation is taken with respect to the randomness of the synthetic data subroutine,
conditioned on R.

3.2 ADDING A PRIVATE MEAN VECTOR AND METRIC PROJECTION

Since we shift the data by its private mean before projection, we need to add another private
mean vector back, which shifts the dataset X̂ to a new private affine subspace close to the original
dataset X. The output data vectors in X′′ (defined in Algorithm 1) are not necessarily inside
[0, 1]d. The subsequent metric projection enforces all synthetic data inside [0, 1]d. Importantly, this
post-processing step does not have privacy costs.

After metric projection, dataset Y from the output of Algorithm 1 is close to an affine subspace, as
shown in the next proposition. Notably, (3.1) shows that the metric projection step does not cause the
largest accuracy loss among all subroutines.

Proposition 3.2 (Y is close to an affine subspace). The function f : Rd → [0, 1]d is the metric
projection to [0, 1]d with respect to ∥ · ∥∞, and the accuracy error for the metric projection step in
Algorithm 1 is dominated by the error of the previous steps:

W1(µY, µX′′) ≤ W1(µX, µX′′), (3.1)

where the dataset X′′ defined in Algorithm 1 is in a d′-dimensional affine subspace. And we have

EW1(µY, µX′′) ≲d

√∑
i>d′

σi(M) + (εn)−1/d′
.

4 PRIVACY AND ACCURACY OF ALGORITHM 1

In this section, we summarize the privacy and accuracy guarantees of Algorithm 1. The privacy
guarantee is proved by analyzing three parts of our algorithms: private mean, private linear subspace,
and private data on an affine subspace.

Theorem 4.1 (Privacy). Algorithm 1 is ε-differentially private.

The next theorem combines errors from linear projection, synthetic data subroutine using PMM or
PSMM, and the post-processing error from mean shift and metric projection.

Theorem 4.2 (Accuracy). For any given 2 ≤ d′ ≤ d and n > 1/ε, the output data Y from
Algorithm 1 with the input data X satisfies

EW1(µX, µY) ≲

√∑
i>d′

σi(M) +

√
d′d2.5

εn
+

√
d

d′
(εn)−1/d′

, (4.1)

where M denotes the covariance matrix in (1.2).

There are three terms on the right-hand side of (4.1). The first term is the error from the rank-d′
approximation of the covariance matrix M. The second term is the accuracy loss for private PCA
after the perturbation from a random Laplacian matrix. The optimality of this error term remains an
open question. The third term is the accuracy loss when generating synthetic data in a d′-dimensional
subspace. Notably, the factor

√
d/d′ is both requisite and optimal. This can be seen by the fact

that a d′-dimensional section of the cube can be
√

d/d′ times larger than the low-dimensional cube
[0, 1]d

′
(e.g., if it is positioned diagonally). Complementarily, (Boedihardjo et al., 2022b) showed the

optimality of the factor (εn)−1/d′
for generating d′-dimensional synthetic data in [0, 1]d

′
. Therefore,

the third term in (4.1) is necessary and optimal.

8



Under review as a conference paper at ICLR 2024

5 SIMULATION

In this section, we showcase the empirical results obtained from our Algorithm 1, which produces DP
synthetic data based on the Optical Recognition of Handwritten Digits (Alpaydin & Kaynak, 1998).
This dataset consists of 5620 images of digits with 8× 8 pixels, represented as vectors in [0, 1]64. We
split the dataset into 3823 training data and 1797 testing data. The top one in Figure 1 is a random
sample of the images in the training set.

Since the labels of the hand-written digits are {0, . . . , 9}, we split the database into ten classes
according to their labels and apply Algorithm 1 separately with privacy parameter ε. The synthetic
images generated in this way have the correct labels automatically. The bottom one in Figure 1
are synthetic images generated by Algorithm 1 with d′ = 4 and ε = 4. We then combine the
synthetic digit images from 10 classes as the synthetic training set for the SVM algorithm. It is worth
mentioning that the algorithm still gives ε-differential privacy because each image is used only once.

To evaluate the utility of the synthetic dataset, in Figure 2, we apply the trained SVM classifier to
the test dataset from Alpaydin & Kaynak (1998) and compare the testing accuracy of applying the
PMM from He et al. (2023) on [0, 1]64 directly and applying Algorithm 1 with a target dimension
d′. From Figure 2, the low-dimensional algorithm significantly improves the result for ε > 1. When
ε ≤ 1, direct PMM attains better accuracy. This is because when εn is too small, (εn)−1/d′

did not
substantially reduce the error, so the advantage of low dimension has not been realized.

Figure 1: Original images (above) and
synthetic images with 70% accuracy (be-
low).

Figure 2: Testing accuracy for the SVM classifier
trained on the synthetic datasets generated by Al-
gorithm 1 with different d′ and ε.

6 CONCLUSION

In this paper, we provide a DP algorithm to generate synthetic data, which closely approximates the
true data in the hypercube [0, 1]d under 1-Wasserstein distance. Moreover, when the true data lies
in a d′-dimensional affine subspace, we improve the accuracy guarantees in (He et al., 2023) and
circumvents the curse of dimensionality by generating a synthetic dataset close to the affine subspace.

It remains open to determine the optimal dependence on d in the accuracy bound in Theorem 4.2
and whether the third term in (4.1) is needed. Our analysis of private PCA works without using the
classical Davis-Kahan inequality that requires a spectral gap on the dataset. However, to approximate
a dataset close to a line (d′ = 1), additional assumptions are needed in our analysis to achieve the
near-optimal accuracy rate, see Appendix D. It is an interesting problem to achieve an optimal rate
without the dependence on σ1(M) when d′ = 1.

Our Algorithm 1 only outputs synthetic data with a low-dimensional linear structure, and its analysis
heavily relies on linear algebra tools. For original datasets from a d′-dimensional linear subspace,
we improve the accuracy rate from (εn)−1/(d′+1) in (Donhauser et al., 2023) to (εn)−1/d′

. It is
also interesting to provide algorithms with optimal accuracy rates for datasets from general low-
dimensional manifolds beyond the linear setting.
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A USEFUL DEFINITIONS AND LEMMAS

Differentially private algorithms have a useful property that their sequential composition is also
differentially private (Dwork & Roth, 2014, Theorem 3.16).

Lemma A.1 (Theorem 3.16 in (Dwork & Roth, 2014)). Suppose Mi is εi-differentially private for
i = 1, . . . ,m, then the sequential composition x 7→ (M1(x), . . . ,Mm(x)) is

∑m
i=1 εi-differentially

private.

Moreover, the following result about adaptive composition indicates that algorithms in a sequential
composition may use the outputs in the previous steps:

Lemma A.2 (Theorem 1 in (Dwork et al., 2006)). Suppose a randomized algorithm M1(x) : Ω
n →

R1 is ε1-differentially private, and M2(x, y) : Ωn × R1 → R2 is ε2-differentially private with
respect to the first component for any fixed y. Then the sequential composition

x 7→ (M1(x),M2(x,M1(x)))

is (ε1 + ε2)-differentially private.

The formal definition of p-Wasserstein distance is given as follows:

Definition A.3 (p-Wasserstein distance). Consider a metric space (Ω, ρ). The p-Wasserstein distance
(see e.g., (Villani, 2009) for more details) between two probability measures µ, ν is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

ρ(x, y)pdγ(x, y)

)1/p

,

where Γ(µ, ν) is the set of all couplings of µ and ν.

When p = 1, the Kantorovich-Rubinstein duality (see, e.g., (Villani, 2009)) gives an equivalent
representation of the 1-Wasserstein distance:

W1(µ, ν) = sup
Lip(f)≤1

(∫
fdµ−

∫
fdν

)
,

where the supremum is taken over the set of all 1-Lipschitz functions on Ω.

B MORE DETAILS ABOUT THE LOW-DIMENSIONAL SYNTHETIC DATA
SUBROUTINES IN ALGORITHM 1

In this section, we include more details about the low-dimensional synthetic data subroutines in
Algorithm 1. We first include two definitions used in He et al. (2023) below.

Definition B.1 (Integer Laplacian distribution, Inusah & Kozubowski (2006)). An integer (or discrete)
Laplacian distribution with parameter σ is a discrete distribution on Z with probability density
function

f(z) =
1− pσ
1 + pσ

exp
(
−|z| /σ

)
, z ∈ Z,

where pσ = exp(−1/σ). Thus a random variable Z ∼ LapZ(σ) is mean-zero and sub-exponential
with variance Var(Z) ≤ 2σ2

Definition B.2 (Binary hierarchical partition, He et al. (2023)). A binary hierarchical partition of a
set Ω of depth r is a family of subsets Ωθ indexed by θ ∈ {0, 1}≤r, where

{0, 1}≤k = {0, 1}0 ⊔ {0, 1}1 ⊔ · · · ⊔ {0, 1}k, k = 0, 1, 2 . . . ,

and such that Ωθ is partitioned into Ωθ0 and Ωθ1 for every θ ∈ {0, 1}≤r−1. By convention, the cube
{0, 1}0 corresponds to ∅ and we write Ω∅ = Ω.
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B.1 PMM FOR d′ = 2

A more detailed description of Algorithm 4 is as follows. For the region Ω′, an ℓ2-ball of radius
R, we first enlarge it into a hypercube ΩPMM of edge length 2R defined in Algorithm 4 inside the
subspace V̂d′ .

Next, for the hypercube ΩPMM, we obtain a binary hierarchical partition {Ωθ}θ∈{0,1}≤r for r =
⌈log2(εn)⌉ by doing equal divisions of the hypercube recursively for r rounds. Each round after the
division, we count the data points in every new subregion Ωθ and add integer Laplacian noise to it.

Finally, a consistency step ensures the output is a well-defined probability measure. Here, the counts
are considered to be consistent if they are non-negative and the counts of two smaller subregions at
level j can add up to the counts of the larger regions containing them at level j − 1 for all j ∈ [r].

B.2 PSMM FOR d′ ≥ 3

The Private Signed Measure Mechanism (PSMM) introduced in He et al. (2023) generates a synthetic
dataset Y in a compact domain Ω whose empirical measure µY is close to the empirical measure µX

of the original dataset X under the 1-Wasserstein distance.

PSMM runs in polynomial time, and the main steps are as follows. We first partition the domain Ω
into m disjoint subregions Ω1, . . . ,Ωm and count the number of data points in each subregion. Then,
we perturb the counts in each subregion with i.i.d. integer Laplacian noise. Based on the noisy counts,
one can approximate µX with a signed measure ν supported on m points. Then, we find the closest
probability measure ν̂ to the signed measure ν under the bounded Lipschitz distance by solving a
linear programming problem.

We provide the main steps of PSMM in Algorithm 5. Details about the linear programming in the
synthetic probability measure step can be found in (He et al., 2023). We apply PSMM from (He
et al., 2023) when the metric space is an ℓ2-ball of radius R inside V̂d′ and the following privacy and
accuracy guarantees hold:
Proposition B.3. The subroutine Algorithm 5 is ε-differentially private. And when d′ ≥ 3, with the
input as the projected data X̂ and the range Ω′ with radius R the algorithm has an accuracy bound

EW1(µX̂, µX′) ≲
R√
d′
(εn)−1/d′

,

where the expectation is conditioned on R.

Algorithm 5 PSMM Subroutine

Input: dataset X̂ = (X̂1, . . . , X̂n) in the region

Ω′ = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R2}.

Integer lattice Let δ =
√
d/d′(εn)−1/d′

. Find the lattice over the region:

L = {a1v̂1 + · · ·+ ad′ v̂d′ | a21 + · · ·+ a2d′ ≤ R2, a1, . . . , ad′ ∈ δZ}.

Counting For any v = a1v̂1 + · · ·+ ad′ v̂d′ ∈ L, count the number

nv =
∣∣∣X̂ ∩ {b1v̂1 + · · ·+ bd′ v̂d′ | bi ∈ [ai, ai + δ)}

∣∣∣ .
Adding noise Define a synthetic signed measure ν such that

ν({v}) = (nv + λv)/n,

where λv ∼ LapZ(1/ε), v ∈ L are i.i.d. random variables.
Synthetic probability measure Use linear programming and find the closest probability measure

to ν.
Output: Synthetic data corresponding to the probability measure.
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Remark B.4 (PMM vs PSMM for d′ ≥ 2). For general d′ ≥ 2, PMM can still be applied, and the
accuracy bound becomes EW1(µX̂, µX′) ≤ CR(εn)−1/d′

. Compared to (1.3), as EλR = Θ(
√
d),

this accuracy bound is weaker by a factor of
√
d′. However, as shown in (He et al., 2023), PMM

has a running time linear in n and d, which is more computationally efficient than PSMM given in
Algorithm 5 with running time polynomial in n, d.

C PROOFS

C.1 PROOF OF THEOREM 2.1

Proof. Before applying the definition of differential privacy, we compute the entries of M explicitly.
One can easily check that

M =
1

n

n∑
k=1

XkX
T
k − 1

n(n− 1)

∑
k ̸=ℓ

XkX
T
ℓ . (C.1)

Now, if there are neighboring datasets X and X′, suppose Xk = (X
(1)
k , . . . , X

(d)
k )T is a column

vector in X and X ′
k = (X ′

k
(1)

, . . . , X ′
k
(d)

)T is a column vector in X′, and all other column vectors
are the same. Let M and M′ be the covariance matrix of X and X′, respectively. Then we consider
the density function ratio for the output of Algorithm 2 with input X and X′:

denA(M̂−M)

denA(M̂−M′)
=
∏
i<j

denλij
((M̂−M)ij)

denλij
((M̂−M′)ij)

∏
i=j

den2λij
((M̂−M)ij)

den2λij
((M̂−M′)ij)

=
∏
i<j

exp
(
− |(M̂−M)ij |

σ

)
exp

(
− |(M̂−M′)ij |

σ

) ∏
i

exp
(
− |(M̂−M)ii|

2σ

)
exp

(
− |(M̂−M′)ii|

2σ

)
≤ exp

∑
i<j

∣∣∣Mij −M′
ij

∣∣∣ /σ +
∑
i

∣∣Mii −M′
ii

∣∣ /(2σ)


= exp

 1

2σ

∑
i,j

∣∣∣Mij −M′
ij

∣∣∣
 .

As the datasets differs on only one data Xk, consider all entry containing Xk in (C.1), we have∣∣∣Mij −M′
ij

∣∣∣ ≤ 1

n

∣∣∣X(i)
k X

(j)
k −X ′

k
(i)
X ′

k
(j)
∣∣∣+ 1

n(n− 1)

∑
ℓ ̸=k

∣∣∣X(i)
k −X ′

k
(i)
∣∣∣Xℓ

(j)

+
1

n(n− 1)

∑
ℓ ̸=k

Xℓ
(i)
∣∣∣X(j)

k −X ′
k
(j)
∣∣∣

≤ 2

n
+

2

n(n− 1)
· 2(n− 1) =

6

n
.

Therefore, substituting the result in the probability ratio implies

denA(M̂−M)

denA(M̂−M′)
≤ exp

(
1

2σ
· d2 · 6

n

)
= exp

(
3d2

σn

)
,

and when σ = 3d2

εn , Algorithm 2 is ε-differentially private.

C.2 PROOF OF LEMMA 2.2

Proof. Let v̂1, . . . , v̂d be a set of orthonormal eigenvectors for M̂ with the corresponding eigenvalues
σ̂1, . . . , σ̂d. Define four matrices whose column vectors are eigenvectors:

V = [v1, . . . , vd], V̂ = [v̂1, . . . , v̂d],

Vd′ = [v1, . . . , vd′ ], V̂d′ = [v̂1, . . . , v̂d′ ].
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By orthogonality, the following identities hold:
d∑

i=1

∥vTi X∥22 =

d∑
i=1

∥v̂Ti X∥22 = ∥X∥2F .∑
i>d′

∥vTi X∥22 = ∥X−Vd′VT
d′X∥2F .∑

i>d′

∥v̂Ti X∥22 = ∥X− V̂d′V̂T
d′X∥2F .

Separating the top d′ eigenvectors from the rest, we obtain∑
i≤d′

∥vTi X∥22 + ∥X−Vd′VT
d′X∥2F =

∑
i≤d′

∥v̂Ti X∥22 + ∥X− V̂d′V̂T
d′X∥2F .

Therefore

∥X− V̂d′V̂T
d′X∥2F =

∑
i≤d′

∥vTi X∥22 −
∑
i≤d′

∥v̂Ti X∥22 + ∥X−Vd′VT
d′X∥2F

= n
∑
i≤d′

σi − n
∑
i≤d′

v̂Ti Mv̂i + n
∑
i>d′

σi

= n
∑
i≤d′

σi − n
∑
i≤d′

v̂Ti (M̂−A)v̂i + n
∑
i>d′

σi

= n
∑
i≤d′

(σi − σ̂i) + n tr(AV̂d′V̂T
d′) + n

∑
i>d′

σi. (C.2)

By Weyl’s inequality, for i ≤ d′,

|σi − σ̂i| ≤ ∥A∥. (C.3)

By von Neumann’s trace inequality,

tr(AV̂d′V̂T
d′) ≤

d′∑
i=1

σi(A). (C.4)

From (C.2), (C.3), and (C.4),

1

n
∥X− V̂d′V̂T

d′X∥2F ≤
∑
i>d′

σi + d′∥A∥+
d′∑
i=1

σi(A) ≤
∑
i>d′

σi + 2d′∥A∥.

Let Yi be the i-th column of Y. We have

W 2
2 (µX, µY) ≤ 1

n

n∑
i=1

∥Xi − Yi∥22 =
1

n
∥X−Y∥2F .

Therefore (2.1) holds.

C.3 PROOF OF THEOREM 2.3

Proof. For the true covariance matrix M, consider its SVD

M =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T =

d∑
j=1

σjvjv
T
j , (C.5)

where σ1 ≥ σ2 ≥ · · · ≥ σd are the singular values and v1 . . . vd are corresponding orthonormal
eigenvectors. Moreover, define two d× d′ matrices

Vd′ = [v1, . . . , vd′ ], V̂d′ = [v̂1, . . . , v̂d′ ].
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Then the matrix V̂d′V̂T
d′ is a projection onto the subspace spanned by the principal components

v̂1, . . . , v̂d′ .

In Algorithm 3, for any data Xi we first shift it to Xi−X−λ and then project it to V̂d′V̂T
d′(Xi−X−λ).

Therefore∥∥∥Xi −X − V̂d′V̂T
d′(Xi −X − λ)

∥∥∥
∞

≤
∥∥∥Xi −X − V̂d′V̂T

d′(Xi −X)
∥∥∥
∞

+
∥∥∥V̂d′V̂T

d′λ
∥∥∥
∞

≤
∥∥∥Xi −X − V̂d′V̂T

d′(Xi −X)
∥∥∥
2
+∥λ∥2 .

Let Zi denote Xi −X and Z = [Z1, . . . , Zn]. Then

1

n
ZZT =

n− 1

n
M.

With Lemma 2.2, by definition of the Wasserstein distance, we have

W 2
2 (µX−X1T , µX̂) =

1

n

n∑
i=1

∥∥∥Xi −X − V̂d′V̂T
d′(Xi −X − λ)

∥∥∥2
∞

≤ 2

n

n∑
i=1

∥∥∥Xi −X − V̂d′V̂T
d′(Xi −X)

∥∥∥2
2
+ 2∥λ∥22

=
2

n
∥Z− V̂d′V̂T

d′Z∥2F + 2∥λ∥22

≤ 2

n∑
i=d′

σi(M) + 4d′∥A∥+ 2∥λ∥22 . (C.6)

Since λ = (λ1, . . . , λd) is a Laplacian random vector with i.i.d. Lap(1/(εn)) entries,

E∥λ∥22 =

d∑
j=1

E
∣∣λj

∣∣2 =
2d

ε2n2
. (C.7)

Furthermore, in Algorithm 2, A is a symmetric random matrix with independent Laplacian random
variables on and above its diagonal. Thus, we have the tail bound for its norm (Dai et al., 2022,
Theorem 1.1)

P
{
∥A∥ ≥ σ(C

√
d+ t)

}
≤ C0 exp(−C1 min(t2/4, t/2)). (C.8)

And we can further compute the expectation bound for∥A∥ from (C.8) with the choice of σ = 3d2

εn ,

E∥A∥ ≤ Cσ
√
d+

∫ ∞

0

C0 exp
(
− C1 min

( t2

4σ2
,
t

2σ

))
dt ≲

d2.5

εn
.

Combining the two bounds above and (C.6), as the 1-Wasserstein distance is bounded by the 2-
Wasserstein distance and inequality

√
x+ y ≤

√
x+

√
y holds for all x, y ≥ 0,

EW1(µX−X1T , µX̂) ≤
(
EW 2

2 (µX−X1T , µX̂)
)1/2

≤
√
2
∑
i>d′

σi(M) +
√
4d′E∥A∥+

√
2E∥λ∥22

≤
√
2
∑
i>d′

σi(M) +

√
Cd′d2.5

εn
.
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C.4 PROOF OF PROPOSITION 3.1

Proof. The privacy guarantee follows from (He et al., 2023, Theorem 1.1). For accuracy, note that the
region Ω′ is a subregion of a d′-dimensional ball. Algorithm 4 enlarges the region to a d′-dimensional
hypercube with side length 2R. By re-scaling the size of the hypercube and applying (He et al., 2023,
Corollary 4.4), we obtain the accuracy bound.

C.5 PROOF OF THEOREM 4.1

Proof. We can decompose Algorithm 1 into the following steps:

1. M1(X) = M̂ is to compute the private covariance matrix with Algorithm 2.

2. M2(X) = X + λ is to compute the private sample mean.

3. M3(X, y,Σ) for fixed y and Σ, is to project the shifted data {Xi − y}ni=1 to the first d′
principal components of Σ and apply a certain differentially private subroutine (we choose
y and Σ as the output of M2 and M1, respectively). This step outputs synthetic data
X′ = (X ′

1, . . . , X
′
m) on a linear subspace.

4. M4(X,X′) is to shift the dataset to {X ′
i +Xpriv}mi=1.

5. Metric projection.

It suffices to show that the data before metric projection has already been differentially private. We
will need to apply Lemma A.2 several times.

With respect to the input X while fixing other input variables, we know that M1,M2,M3,M4 are
all ε/4-differentially private. Therefore, by using Lemma A.2 iteratively, the composition algorithm

M4(X,M3(X,M2(X),M1(X)))

satisfies ε-differential privacy. Hence Algorithm 1 is ε-differentially private.

C.6 PROOF OF THEOREM 4.2

Proof. Similar to privacy analysis, we will decompose the algorithm into several steps. Suppose that

1. X− (X + λ)1T denotes the shifted data {Xi −X − λ}ni=1;

2. X̂ is the data after projection to the private linear subspace;

3. X′ is the output of the synthetic data subroutine in Section 3;

4. X′′ = X′ + (X + λ′)1T denotes the data shifted back;

5. M(X) is the data after metric projection, which is the output of the whole algorithm.

For the metric projection step, by Proposition 3.2, we have that

W1(µX, µM(X)) ≤ W1(µX, µX′′) +W1(µX′′ , µM(X))

≤ 2W1(µX, µX′′). (C.9)

Moreover, applying the triangle inequality of Wasserstein distance to the other steps of the algorithm,
we have

W1(µX, µX′′) = W1(µX−X1T , µX′+λ′1T)

≤ W1(µX−X1T , µX̂) +W1(µX̂, µX′) +W1(µX′ , µX′+λ′)

≤ W1(µX−X1T , µX̂) +W1(µX̂, µX′) +
∥∥λ′∥∥

∞ . (C.10)
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Note that W1(µX−X1T , µX̂) is the projection error we bound in Theorem 2.3, and W1(µX̂, µX′) is
treated in the accuracy analysis of subroutines in Section 3. Moreover, we have

EW1(µX̂, µX′) = EREX′W1(µX̂, µX′)

≤ ER
CR√
d′
(εn)−1/d′

≤
C(2

√
d+ E∥λ∥2)√

d′
(εn)−1/d′

≲

√
d

d′
(εn)−1/d′

.

Here in the last step we use E∥λ∥2 ≤ C
√
d

εn in (C.7). Since λ′ is a sub-exponential random vector, the
following bound also holds for some absolute constant C > 0:

E
∥∥λ′∥∥

∞ ≤ C log d

εn
. (C.11)

Hence

EW1(µX, µM(X))

≤ 2EW1(µX, µX′+(X+λ′)1T)

≤ 2EW1(µX−X1T , µX̂) + 2EW1(µX̂, µX′) + 2E
∥∥λ′∥∥

∞

≤ 2

√
2
∑
i>d′

σi(M) + 2

√
Cd′d2.5

εn
+ 2C

√
d

d′
(εn)−1/d′

+
2C log d

εn
(C.12)

≲

√∑
i>d′

σi(M) +

√
d

d′
(εn)−1/d′

+

√
d′d2.5

εn
,

where the first inequality is from (C.9), the second inequality is from (C.10), and the third inequality
is due to Theorem 2.3, Proposition 3.1, and Proposition B.3.

C.7 PROOF OF PROPOSITION 3.2

Proof. For the function f defined in Algorithm 1, we know f(x) is the closest real number to x in
the region [0, 1] for any x ∈ R. Furthermore, if v ∈ Rd is a vector, then f(v) is the closest vector to
v in [0, 1]d with respect to ∥ · ∥∞. Thus f : Rd → [0, 1]d is indeed a metric projection to [0, 1]d.

We first assume that the synthetic data X′′ also has size n. Then for any column vector X ′′
i , we know

that Yi = f(X ′′
i ) is its closest vector in [0, 1]d under the ℓ∞ metric. For the data X1, X2, . . . , Xn,

suppose that the solution to the optimal transportation problem for W1(µX, µX′′) is to match Xτ(i)

with X ′′
i , where τ is a permutation on [n]. Then

W1(µY, µX′′) ≤ 1

n

n∑
i=1

∥∥Yi −X ′′
i

∥∥
∞ ≤ 1

n

n∑
i=1

∥∥∥Xτ(i) −X ′′
i

∥∥∥
∞

= W1(µX, µX′′).

In general, if the synthetic dataset has m data points and m ̸= n, we can split the points and regard
both the true dataset and synthetic dataset as of size mn, then it’s easy to check that the inequality
still holds.

The expectation bound follows from (C.10) and (C.12).

C.8 PROOF OF PROPOSITION B.3

Proof. The proposition is a direct corollary to the result in (He et al., 2023). The size of the scaled
integer lattice δZ in the unit d-dimensional ball of radius R is bounded by ( C

δR )d for an absolute
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constant C > 0 (see, for example, (Feige & Ofek, 2005, Claim 2.9) and (Boedihardjo et al., 2022a,
Proposition 3.7)). Then, the number of subregions in Algorithm 5 is bounded by

|L| ≤
(

R√
d′

· C
δ

)d′

.

By (He et al., 2023, Theorem 3.6), we have

EW1(µX̂, µX′) ≤ δ +
2

εn

(
R√
d′

· C
δ

)d′

· 1

d′

((
R√
d′

· C
δ

)d′ )− 1
d′

.

Taking δ = CR√
d′ (εn)

− 1
d′ concludes the proof.

D NEAR-OPTIMAL ACCURACY BOUND WITH ADDITIONAL ASSUMPTIONS
WHEN d′ = 1

Our Theorem 4.2 is not applicable to the case d′ = 1 because the projection error in Theorem 2.3
only has bound O((εn)−

1
2 ), which does not match with the optimal synthetic data accuracy bound

in (Boedihardjo et al., 2022b; He et al., 2023). We are able to improve the accuracy bound with an
additional dependence on σ1(M) as follows:
Theorem D.1. When d′ = 1, consider Algorithm 1 with input data X, output data Y, and the
subroutine PMM in Algorithm 4. Let M be the covariance matrix defines as (1.2). Assume σ1(M) >
0, then

EW1(µX, µY) ≲

√∑
i>1

σi(M) +
d3√

σ1(M)εn
+

√
d log2(εn)

εn
.

We start with the following lemma based on the Davis-Kahan theorem (Yu et al., 2015).
Lemma D.2. Let X be a d× n matrix and A be an d× d Hermitian matrix. Let M = 1

nXXT, with
the SVD

M =

d∑
j=1

σjvjv
T
j ,

where σ1 ≥ σ2 ≥ · · · ≥ σd are the singular values of M and v1, . . . , vd are corresponding
orthonormal eigenvectors. Let M̂ = 1

nXXT +A with orthonormal eigenvectors v̂1, . . . , v̂d, where
v̂1 corresponds to the top singular value of M̂. When there exists a spectral gap σ1 − σ2 = δ > 0,
we have

1

n
∥X− v̂1v̂

T
1X∥2F ≤ 2

∑
i>d′

σi +
8d′2

nδ2
∥A∥2∥X∥2F .

Proof. We have that
1

n
∥X− v̂1v̂

T
1X∥2F =

1

n
∥X− v1v

T
1X+ v1v

T
1X− v̂1v̂

T
1X∥2F

≤ 2

n

(
∥X− v1v

T
1X∥2F + ∥v1vT1X− v̂1v̂

T
1X∥2F

)
= 2

∑
i>d′

σi +
2

n

∥∥∥∥(v1vT1 − v̂1v̂
T
1

)
X

∥∥∥∥2
F

≤ 2
∑
i>d′

σi +
2

n

∥∥∥v1vT1 − v̂1v̂
T
1

∥∥∥2∥X∥2F . (D.1)

To bound the operator norm distance between the two projections, we will need the Davis-Kahan
Theorem in the perturbation theory. For the angle Θ(v1, v̂1) between the vectors v1 and v̂1, applying
(Yu et al., 2015, Corollary 1), we have∥∥∥v1vT1 − v̂1v̂

T
1

∥∥∥ = sinΘ(v1, v̂1) ≤
2∥M− M̂∥
σ1 − σ2

≤ 2∥A∥
δ

.
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Therefore, when the spectral gap exists (δ > 0),

1

n
∥X− v̂1v̂

T
1X∥2F ≤ 2

∑
i>d′

σi +
8

nδ2
∥A∥2∥X∥2F .

Compared to Lemma 2.2, with the extra spectral gap assumption, the dependence on A in the upper
bound changes from ∥A∥ to ∥A∥2. A similar phenomenon, called global and local bounds, was
observed in (Reiss & Wahl, 2020, Proposition 2.2). With Lemma D.2, we are able to improve the
accuracy rate for the noisy projection step as follows.

Theorem D.3. When d′ = 1, assume that σ1(M) =∥M∥ > 0. For the output X̂ in Algorithm 3, we
have

EW1(µX−X1T , µX̂) ≤
(
EW 2

2 (µX−X1T , µX̂)
)1/2

≲

√∑
i>1

σi +
d3

√
σ1εn

,

where σ1 ≥ · · · ≥ σd ≥ 0 are singular values of M.

Proof. Similar to the proof of Theorem 2.3, we can define Zi = Xi −X and deduce that

1

n
ZZT =

n− 1

n
M,

1

n
∥Z∥2F =

n− 1

n
tr(M),

and
W 2

2 (µX−X1T , µX̂) =
2

n
∥Z− v̂1v̂

T
1Z∥2F + 2∥λ∥22 .

By the inequality
√
x+ y ≤

√
x+

√
y for x, y ≥ 0,

EW1(µX−X1T , µX̂) ≤ E
[
2

n
∥Z− v̂1v̂

T
1Z∥2F

]1/2
+

√
2E∥λ∥2 .

Let δ = σ1 − σ2. Next, we will discuss two cases for the value of δ.

Case 1: When δ = σ1 − σ2 ≤ 1
2σ1, we have σ1 ≤ 2σ2 and

tr(M) = σ1 + · · ·+ σd ≤ 3
∑
i>1

σi.

As any projection map has spectral norm 1, we have
∥∥v1vT1 − v̂1v̂

T
1

∥∥ ≤ 2. Applying (D.1), we have

1

n
∥Z− v̂1v̂

T
1Z∥2F ≤ 2

∑
i>1

σi +
2

n

∥∥∥v1vT1 − v̂1v̂
T
1

∥∥∥2∥Z∥2F
≤ 2

∑
i>1

σi +
8

n
∥Z∥2F

≤ 2
∑
i>1

σi + 8 tr(M)

≤ 26
∑
i>1

σi.

Hence

EW1(µX−X1T , µX̂) ≲

√∑
i>1

σi + E∥λ∥2 ≲

√∑
i>1

σi +

√
d

εn
. (D.2)

Case 2: When δ ≥ 1
2σ1, we have

tr(M) ≤ dσ1 ≤ 4dδ2

σ1
.
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For any fixed δ, by Lemma D.2,
1

n
∥Z− v̂1v̂

T
1Z∥2F ≤ 2

∑
i>1

σi +
8

nδ2
∥A∥2∥Z∥2F

≤ 2
∑
i>1

σi +
8

δ2
∥A∥2 tr(M)

≤ 2
∑
i>1

σi +
32d

σ1
∥A∥2 .

So we have the Wasserstein distance bound

EW1(µX−X1T , µX̂) ≤
√

2
∑
i>1

σi +

√
32d

σ1
E∥A∥+

√
2E∥λ∥2

≤
√

2
∑
i>1

σi +

√
32d

σ1

d2.5

εn
+

√
2d

εn

≤
√

2
∑
i>1

σi +
Cd3

√
σ1εn

. (D.3)

From (C.5),
σ1 = ∥M∥ ≤ ∥M∥F ≤ n

n− 1
d ≤ 2d.

Combining the two cases (D.2) and (D.3), we deduce the result.

Proof of Theorem D.1. Following the steps in the proof of Theorem 2.3, we obtain

EW1(µX, µM(X)) ≤ 2EW1(µX, µX′+(X+λ′)1T)

≤ 2EW1(µX−X1T , µX̂) + 2EW1(µX̂, µX′) + 2E
∥∥λ′∥∥

∞

≲

√∑
i>1

σi +
d′d3

√
σ1εn

+

√
d log2(εn)

εn
+

2C log d

εn

≲

√∑
i>1

σi +
d′d3

√
σ1εn

+

√
d log2(εn)

εn
,

where for the second inequality, we apply the bound from (He et al., 2023, Theorem 1.1) for the
second term, and we use (C.11) for the third term.

E CHOICE OF d′

With the error bound displayed in (4.1), we can balance different error terms to choose a d′ to attain
better accuracy. Meanwhile, it is crucial to ensure that the procedure is still differentially private.
Recall M̂ from Algorithm 2. We can choose that

d′ := argmin
2≤k≤d

(√∑
i>k

σi(M̂) +

√
d

k
(εn)−1/k +

√
kd2.5

εn

)
. (E.1)

Firstly, as this definition for d′ only depends on the singular values of the private covariance matrix
M̂ and is independent of the true data, we know the output d′ is ε-differentially private from the
privacy guarantee of M̂ shown Theorem 2.1.

Moreover, for the accuracy, we have∣∣∣∣∣∣
∑
i>d′

σi(M̂)−
∑
i>d′

σi(M)

∣∣∣∣∣∣ ≤ (d− d′)∥A∥ ,

23



Under review as a conference paper at ICLR 2024

and hence √∑
i>d′

σi(M) ≤
√∑

i>d′

σi(M̂) +
√
(d− d′)∥A∥ (E.2)

where A is the Laplacian random matrix defined in Algorithm 2 and with high probability we know
∥A∥ is bounded by d2.5/(εn). Thus such a choice of d′ is reasonable.

Finally, after computing the singular values of M̂, we can compute the choice of d′ efficiently within
linear time O(d). Therefore (E.1) is a practical method to find a near-optimal hyper-parameter d′.

Note that the actual W1 accuracy bound in Theorem 4.2 includes some hidden constants for each
term. Also, the inequality (E.2) is far from tight. These are all possible factors may influence the
behaviour of our chosen d′. Therefore, although such a choice of d′ will maintain a low accuracy
error bound in principle, we can use it as a reference and find another d′ close to it with a relatively
large singular value (of M̂) gap in practice.

F OTHER EXPERIMENTS

One of the most essential advantages of synthetic data is the flexibility. Unlike other differentially
private algorithms that work for some specific usages, differential private synthetic data allows a
wide range of down-streaming statistical tasks while keeping the privacy guarantee. On the dataset of
handwritten digits in Section 5, besides the experiment of SVM accuracy, we also includes the errors
between the original data and the synthetic data for the mean value and the covariance.

Figure 3: Error of the mean value, in ℓ2-norm. Figure 4: Error of the covariance matrix, in
Frobenius norm.

Again, similar to the result in Section 5, the low-dimensional algorithm includes some unnecessary
error in the projection step when εn is small. When εn is large, the projection to a low dimension
avoids the curse of high dimensionality and attains better accuracy. Therefore, a potential way to
enhance the behavior of the low-dimensional algorithm is to enlarge the dataset. Although applying
direct PMM would also benefit from it, but the low-dimensional algorithm achieves a better error
rate.
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