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Abstract

Autoregressive language models have achieved remarkable advancements, yet their
potential is often limited by the slow inference speeds associated with sequential
token generation. Blockwise parallel decoding (BPD) was proposed by Stern et
al. [42] as a method to improve inference speed of language models by simultane-
ously predicting multiple future tokens, termed block drafts, which are subsequently
verified by the autoregressive model. This paper advances the understanding and
improvement of block drafts in two ways. First, we analyze token distributions
generated across multiple prediction heads. Second, leveraging these insights,
we propose algorithms to improve BPD inference speed by refining the block
drafts using task-independent n-gram and neural language models as lightweight
rescorers. Experiments demonstrate that by refining block drafts of open-sourced
Vicuna and Medusa LLMs, the mean accepted token length are increased by 5-25%
relative. This results in over a 3x speedup in wall clock time compared to standard
autoregressive decoding in open-source 7B and 13B LLMs.

1 Introduction
The landscape of natural language processing has been profoundly reshaped by recent advances in
autoregressive language models [3, 48, 34, 37, 47]. These models have shown remarkable proficiency
across a range of text generation tasks, including applications like question answering [38] and
summarization [17]. However, a significant obstacle to their wider application is high inference
latency, particularly for extremely deep models with hundreds of billions of parameters [18, 35, 7].
This latency, intrinsic to decoding with autoregressive language models (LMs), imposes considerable
computational burdens and limits real-time deployment.

In response to these challenges, the field has seen a shift towards decoding methods aimed at reducing
the inference latency in large language models (LLMs). One promising development is the concept of
blockwise parallel decoding (BPD) [42, 31, 4]. Unlike autoregressive decoding, which generates one
token at a time, blockwise parallel LMs are outfitted with a set of prediction heads that propose and
verify a draft, a block of subsequent tokens, in parallel. While BPD offers one solution to accelerated
text generation, it also poses a challenge in ensuring that the proposed drafts are fluent and natural.

BPD inference speed depends both on the time it takes to generate a block draft and verification of
the draft’s agreement with the original LM’s output (referred to as base LM from here on) (Figure 1a).
Unlike standard autoregressive LMs that generate tokens sequentially — ensuring consistency with
all preceding tokens (e.g., ‘Messi’ following ‘Lionel’) — BPD employs a non-autoregressive drafting
strategy. Here, blockwise parallel LMs simultaneously predict multiple token drafts (e.g., ‘Lionel’
and ‘Ronaldo’), each position produced independently. The primary challenge in BPD drafting is
ensuring that these concurrently-generated tokens are consistent with each other. An effective block
drafter should prefer coherent sequences, such as ‘Lionel Messi’ over less coherent combinations like
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Figure 1: (a) Illustration of two tokens that are decoded by autoregressive decoding vs. two tokens
drafted by BPD. (b) Outputs from our proposed algorithms, where the top-k token-level predictions
are refined using local neural or global n-gram rescoring, which selects the pmost probable sequences
by dynamic programming, for batched verification.

‘Lionel Ronaldo’, which would be improbable under a reasonable LM. The focus of this paper is on
improving the quality of block drafts without altering the underlying model parameters.

2 Our contributions
This paper first investigates properties of the drafts from blockwise parallel LMs across seven tasks.
These analyses are based on modest, 1.5 billion (B) parameter LMs. Given our observations, we
propose lattice rescoring algorithms to produce higher quality block drafts. Finally, we apply these
lattice rescoring algorithms to improve the drafts from large (7B/13B parameter) open-source LLMs,
reducing mean per-token latency relative to both standard BPD and Medusa decoding across tasks.

2.1 Observations on block drafts

Consecutive repetitions All heads within a block make predictions independently in a blockwise
parallel LM. Unsurprisingly, we observe that this leads to block drafts with significant token repetition
across heads. Consecutive repetition is pervasive across tasks, ranging from 20% to 75% of all
neighboring draft tokens, depending on the task (Section 5.1).

Confidence of different heads We analyze the distribution of probabilities within each block head.
Our empirical analysis reveals an interesting property of BPD: the block drafter tends to be more
confident with initial tokens, and becomes progressively less confident for subsequent tokens. We
find that the confidence of block heads correlates strongly with the quality of the block drafter
(Section 5.2).

Oracle top-k block efficiency In the standard BPD algorithm (Algorithm 1), the most likely token
at each head is generated as the draft. As mentioned above, this is prone to two issues: (1) this
sequence might contain unnatural, consecutive repetitions and (2) the model might not be confident
of the prediction at some of the heads. We use block efficiency, the average number of draft tokens
accepted during decoding, to measure the quality of a given drafter [28, 46]. We ask whether the block
efficiency can be improved by considering the top-k most likely tokens at each head. To measure
the potential benefit of considering top-k tokens, we define the block efficiency of the oracle path
through this top-k lattice, oracle top-k block efficiency, and show that there is significant headroom
for improvement across tasks (Section 5.3).

2.2 New block draft algorithms with lightweight rescoring

Based on these observations, we propose two algorithms to leverage the top-k predictions at each head
and improve average latency for open-source LLMs (Figure 1b). We show that these algorithms can
also reduce the average latency in Medusa decoding [4], a recent popular extension of BPD (Section 7).
Neither of these algorithms requires changes to the underlying blockwise parallel LMs.

Local rescoring via neural LMs Given the top-k predictions at each head, we refine the block draft
by using a small neural, autoregressive LM to greedily rescore these local predictions (Section 6.1).
While the block prediction scores are produced independent of each other, neural rescoring should
favor sequences that are fluent, encouraging coherence between the predictions at each head.

Global rescoring via n-gram LMs with multi-drafts If the blockwise parallel LM has h heads
and we consider the top-k tokens from each head, then there are kh candidate drafts of length h that
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Algorithm 1: Blockwise parallel decoding (BPD)

input Blockwise parallel LMMh
θ , initial prompt sequence x̄ and target sequence length T .

1: Initialize t← 1
2: while t < T do
3: /* Stage 1: Predict */
4: zit ←Mh

θ,i(·|x̄, y≤t),∀i ≤ h.
5: ŷt+1, ŷt+2, . . . , ŷt+h ← arg maxy∈V z

1
t [y], arg maxy∈V z

2
t [y], . . . , arg maxy∈V z

h
t [y]

6: /* Stage 2: Verify */
7: for j ← 0, . . . , h in parallel do
8: ẑt+j ←Mθ(·|x̄, y≤t, ŷt+1, ŷt+2, · · · , ŷt+j)
9: end for

10: /* Stage 3: Accept */
11: n← max{n : ŷt+j = arg maxy∈V ẑt+j−1[y], 1 ≤ j ≤ n}
12: t← t+ n+ 1, yt+j ← ŷt+j ,∀ 1 ≤ j ≤ n and yt+n+1 = arg maxy∈V ẑt+n[y]
13: end while

can be formed. We propose to use an n-gram model to efficiently rescore all paths, via dynamic
programming, and generate the p most probable rescored paths as a batch of draft candidates. These
p drafts can then be verified in parallel by the blockwise parallel LM (Section 6.2).

There are two critical distinctions between the proposed algorithms: the amount of context/expressive
power available to each class of rescoring model, and fundamental limitations of decoding with each
class. While neural rescoring models are potentially more expressive and can leverage unbounded
context, n-gram LMs can be used to efficiently find the globally most likely rescored drafts from the
exponentially-sized set of possible draft candidates. Detailed algorithms are given in Section 6.1.

3 Preliminaries
Autoregressive decoding LetMθ be an autoregressive LM parameterized by θ. The objective is
to generate an output sequence y≤T = (y1, . . . , yT ) conditioned on an input sequence x̄. zt =

Mθ(·|x̄, y≤t) is a vector of logits, zt ∈ R|V|, where V is the vocabulary over tokens. Let zt[y]
denote the logit of symbol y. These logits define a conditional probability distribution at each time
step pθ(y|x̄, y≤t) = ezt[y]∑

y′∈V e
zt[y

′] , which by the chain rule yields pθ(y≤T |x̄) =
∏T
t=1 pθ(yt|x̄, y<t).

Sequences are generated autoregressively, either through ancestral sampling from some form of the
conditional next token distribution [19], or by a beam search through the space of possible sequences
to return a probable sequence. For simplicity, in this paper we focus on greedy decoding, where at
each step the next token is predicted as yt+1 = arg maxy∈V pθ(y|x̄, y≤t). The goal of BPD is to
predict the same tokens as the base model, albeit efficiently.

Blockwise parallel decoding LetMh
θ be a blockwise parallel LM with block size h and let zit =

Mh
θ,i (·|x̄, y≤t) be the vector of logits corresponding to the ith block given context x̄, y≤t. This model

employs h distinct feedforward neural (FFN) layers, each with a single hidden layer, atop the base
LM’s final hidden layer. The output of each FFN is followed by a softmax layer over the vocabulary
to predict each of the h subsequent tokens in the block. In our initial analyses, the parameters of the
FFNs are learned jointly with the base LM during training, and the weights of all softmax layers
are tied to the input embedding table. Similar to [42], the first head is the same as the base LM,
i.e., z1t = Mh

θ,1 (·|x̄, y≤t) = Mθ (·|x̄, y≤t) = zt and the hope is that for subsequent heads i ≥ 2,
Mh

θ,i (·|x̄, y≤t) ≈Mθ (·|x̄, y≤t+i−1).

Algorithm 1 describes the BPD greedy decoding procedure. We outline the algorithm below and
refer readers to [42] for additional details.

1. Predict: Mh
θ generates a draft of h token predictions ŷt+1, ŷt+2, . . . , ŷt+h, conditioned on the

prompt, x̄, and existing generated text, y≤t (i.e., ŷt+i = arg maxy∈V z
i
t[y] ∀i ≤ h). Since the

first head is same as the base LM, ŷt+1 is identical to yt+1, the output of the base LM with greedy
decoding.

2. Verify: In order to verify the predicted drafts, the base LM greedily generates next-
token logits {ẑt, . . . , ẑt+h} conditioned on the existing prefix and block draft i.e., ẑt+i =
Mθ(x̄, y≤t, ŷt+1, ŷt+2, . . . , ŷt+i) for i ∈ {0, 1, . . . , h}. Verification amounts to check-
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Table 1: Per-task test performance of each
finetuned model and block efficiency over
language modeling (LM), extractive ques-
tion answering (QA), and both long and
short summarization (L-Sum & S-Sum).

Task Dataset Performance Block
Efficiency

LM LAMBADA [33] 7.88 3.12

QA SQuAD V1 [38] 57.60 2.08

S-SUM CNN/Daily [17] 39.85 1.74
SAMSUM [14] 37.66 1.27

L-SUM
MultiNews [12] 23.08 1.10
XSUM [32] 52.15 1.13
NewsRoom [15] 39.85 1.08

Table 2: Sample outputs from blockwise parallel
LMs finetuned per task. Black indicates standard
decoded output, blue indicates accepted draft tokens,
and brown is the prompt.

LAMBADA

it’s nothing more than a faceless, formless brown blob to me, but I take his
word for the resemblance to our genetic makeup. ... {Skip}...

SQuAD V1

Question: Who was announced as the LEM contractor in November 1962?
context: Wiesner kept up the pressure, even making the disagreement public
... {Skip}...
Answer: Grumman

XSUM

Summarize: ... {Skip}...
Millions of small businesses will benefit from a reduction of business rate
from the Budget Osborne, Chancellor George Osborne has announced.

ing which block draft tokens match the autoregressive greedy decode from the base LM:
(arg maxy∈V ẑt+i[y]) == ŷt+i+1. Note that the verification of all positions can be performed in
parallel under the assumption that the base LM is a decoder-only transformer.

3. Accept: Finally, the length of the longest contiguous prefix n where draft tokens match the
base LM’s greedy decode is identified. Since the first head is the same as the base LM, the first
token ŷt+1 is always accepted. After accepting the tokens, one free token can be obtained as the
conditional probability of the base LM based on accepted tokens have already been calculated.
Thus, the decoded sequence is extended by n+ 1 tokens and we iterate. Typically, not all h tokens
are accepted, with some draft tokens discarded. As the block generation has minimal overhead
compared to the base LM’s forward pass, even modest gains in accepted prefix length justify the
cost of block draft generation.

4 Analysis setup

We train a ≈ 1.5 billion (B) parameter decoder-only transformer LM with 9 heads, and investigate
the drafts produced by this modest blockwise parallel LM.2 The 1.5B model and all auxiliary LMs
were pretrained on (English) C4 [36] with the causal next token prediction objective tokenized with
the GPT3 subword vocabulary [3]. For the 1.5B blockwise parallel LM, all heads were trained
jointly to predict the following h tokens at each iteration. During pretraining, we use batches of 2048
subword sequences, each 512 tokens in length, amounting to ≈ 200B input tokens in total. Model
training/inference was run on TPUv3/TPUv4 [20], and implemented in Jax [2].

We evaluate the potential latency improvement of block drafts by block efficiency [28, 46]. In this
context, block efficiency represents the theoretical speedup compared to standard greedy decoding. It
is defined as the average number of tokens decoded per serial call to the blockwise parallel LM. The
formula for block efficiency is given by B := Total number of decoded tokens

Total number of serial calls toMh
θ

.

In this definition, the total number of decoded tokens is the sum of the number of accepted tokens
across decoding steps, not necessarily all h predicted tokens in each block. Only the tokens that pass
the ‘Verify’ stage and align with the base LM’s predictions are accepted and integrated into the final
sequence. This ensures that generated text is identical to the base LM, while achieving speedup. The
total number of serial calls toMh

θ is the number of times the model processes a block of tokens. A
block efficiency of 1 means that one is achieving no speedup relative to standard decoding.

We investigate the drafts produced by this 1.5B blockwise parallel LM on LAMBADA [33] (language
modeling), SQuAD V1 [38] (extractive QA), along with five summarization tasks: XSUM [32],
MultiNews [12], SAMSum [14], NewsRoom [15] and CNN/DailyMail [17]. For each task other than
language modeling, we finetune the blockwise parallel LM for that task.3

2This model follows the original blockwise parallel LM, with a modification: we use decoder-only models
instead of the T5 encoder-decoder architecture. Other than this, the LM architecture is consistent with that
proposed in Stern et al. [42].

3Details are given in Appendix D.
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Figure 2: (a) Entropy distributions across block draft heads on LAMBADA [33]. The density plots
illustrate the entropy distribution for each head in the model. (b) Correlation between block efficiency
and hmax, the head until which the average entropy in a task increases nearly monotonically.

Table 1 shows that block efficiency varies dramatically across task.4 Language modeling, most
closely matching the pretraining objective, achieves the highest block efficiency followed by the
context-constrained task of extractive question answering. Table 2 sketches how BPD acts on three
examples from each class of tasks.
• LM: BPD excels at generating common multi-word expressions in a single step. For example, (no)

‘thing more than’, and (take) ‘his word for the’ are each drafted and accepted in a single step.

• QA: BPD also attains high block efficiency in extractive QA, where it correctly drafts multi-
token entities copied from the input sequence. In SQuAD V1, it accurately completes the answer
‘Grumman’ from ‘Gru’ by adding ‘mman’, highlighting its ability to process multiple tokens at
once and quickly extend answers.

• SUM: BPD’s effectiveness in SUM tasks varies by dataset. For formulaic summaries like
CNN/DailyMail, it performs well, reflecting its alignment with LM and QA tasks. However,
in narrative-driven datasets like SAMSum and XSUM, where concise summaries are required, the
block efficiency of BPD is little better than standard decoding.

5 Exploration of block drafts
5.1 Consecutive repetition

Table 3: Consecutive token repetition in block
drafts before and after C4-trained 2-gram rescor-
ing of the top-16 lattice. “% Consec" is the per-
centage of consecutive identical draft tokens out
of all pairs of consecutive tokens. “Max run"
is the average maximum repeated subsequence
length in tokens (upper bound of 9, the number
of block draft heads). Higher values correspond
to more egregious repetition in drafts.

Task Dataset % Consec Max run

Vanilla 2-gram Vanilla 2-gram

LM LAMBADA 20.0 10.7 2.2 1.8

QA SQuAD V1 75.5 67.6 6.6 6.1

S-SUM CNN/Daily 46.4 21.9 3.8 2.5
SAMSUM 29.9 20.0 3.1 2.5

L-SUM
MultiNews 33.6 14.7 3.1 2.1

XSUM 24.0 9.4 2.6 1.7
NewsRoom 47.2 32.1 4.1 3.3

We observe that vanilla block drafts are prone to sig-
nificant token repetition. This is due to the fact that
each head’s prediction is independent of the others,
and is a limitation shared with non-autoregressive
generation in general [16]. Table 3 shows the pro-
portion of consecutive tokens in block drafts that
are identical to each other, along with the average
maximum length of repeated sequences in block
drafts across all decode time steps. We compare
these statistics before and after rescoring with a
2-gram LM - a trivial rescorer, but one that can
encourage local consistency between consecutive
draft tokens. Strings of repeated tokens are unnat-
ural, and unlikely to be generated by a strong base
language model. Rescoring the top-k lattice with
even a simple language model eliminates a signif-
icant amount of repetition, reducing the percentage
of consecutive repeated tokens from between 9.9%
to 24.5%, depending on the task.

5.2 Confidence across multiple heads
Intuitively, predicting the identity of the ith future token becomes harder as i increases. To better
understand this phenomenon, we measure the confidence of the predictions by the entropy of the

4The performance metric for LM is perplexity, for QA is exact match, and for the remaining summarization
tasks, the metric is ROUGE-L.
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Figure 3: An example of a top-5 sausage lattice on a NewsRoom example. Edge weights correspond to
logits. Edges at each time step are ordered in descending weight and green, bolded edges correspond
to candidates matching the greedy decode over the next nine tokens: "... desktop computers with new
Intel Corp processors that it ...". The initial node in this graph is state 0 and the final node is 9.

token-level probability distribution for each head. In Figure 2a, we plot the normalized histogram of
entropy of each head on the LAMBADA dataset. From the normalized histogram, it is clear that the
entropy increases as we move from first head to the last head, which agrees with our intuition that
token prediction becomes more difficult as i increases.

However, we observed that the head entropy does not increase monotonically for all tasks as a
function of i. Let H[i] be the average entropy of head i on a particular corpus, and let hmax =
max
k
{k : ∀i < k,H[i] ≤ H[i + 1]}, be the index of the largest head such that the average entropy

of each head increases monotonically to that point. We observed a strong correlation between hmax

and block efficiency (Figure 2b). Heads with lower entropy (indicating more confident predictions)
intuitively contribute more to efficiency. A linear regression confirms this with an R-value of 0.77.
This analysis suggests that the entropies of block heads could be used as a proxy for block efficiency,
and thus inference latency.

5.3 Oracle top-k block efficiency
Question: Who is the best soccer player in the world? Answer:

Lionel Ronaldo is Messi best best best
Christiano Messi Messi the the world in

Michael Riche , who who the world
Accepted Rejected

Figure 4: Illustration of the output through ora-
cle selection. For a given top k tokens of 3, if
we can choose the oracle path successfully, the
block efficiency can be improved from 1 to 5.

Oracle efficiency The concept of oracle block ef-
ficiency serves as a theoretical benchmark, illus-
trating the headroom available from improving the
quality of the block draft. To compute oracle block
efficiency, we consider the top-k most probable
tokens at each head, and form a “sausage” lattice
from these. This data structure is a weighted di-
rected graph, which succinctly represents all pos-
sible drafts (and their score under the blockwise
parallel LM) that could be formed from selecting one of k tokens from each of the h heads (Figure 3).
In the automatic speech recognition and machine translation communities, it is known as a “confusion
network” [26, 41].

Given the top-k lattice at each decoding step, we identify an oracle path that represents the path
through the lattice that maximizes the length of the accepted prefix. This exercise, as shown in
Figure 4, gives us insight into how much headroom exists in improving block drafts.

Potential headroom from oracle selection Oracle drafting is not practical, but rather a reference
point. Analyzing the gap between actual BPD performance and the oracle upper bound (Figure 5)
helps us to understand the limitations of the original block drafts and potential areas for improvement.
Additionally, exploring oracle efficiency as a function of the k in the top-k lattice, demonstrates how
“close” the block draft was to producing a stronger draft.

6 Lattice rescoring with lightweight rescorers
Having explored the properties of block draft predictions, we propose two drafting algorithms to
improve block efficiency through rescoring of the top-k lattice with lightweight auxiliary LMs. This
section presents techniques for rescoring the top-k lattice along with empirical results.

Each of these algorithms is a modification of the block drafted in Stage 1 in Algorithm 1. Instead of
using the most likely token at each head as the prediction, we construct the top-k sausage lattice of
likely drafts from each head, where the set of top-k tokens is denoted as Si for head i. This approach
allows any token within Si to be chosen for position i, yielding a total possible combinations of:
|S1| × |S2| × . . . |Sh| = kh. 5

5The number of combinations can be reduced to kh−1 by using the fact that the first head is the same as the
base LM and hence we can set |S1| = 1.
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(f) XSUM
Figure 5: Oracle block efficiency over the top-k lattice as a function k. Each plot (a-f) represents a
different task, demonstrating the relative improvement in block efficiency of the oracle draft with
respect to the standard block draft as a function of the number of block draft heads used.

In this lattice, any path from the start to final state represents a viable draft. Two algorithms are
proposed to select a small number of h-length drafts from this lattice, which are then passed to the
verification step. The first algorithm employs neural autoregressive transformers (Section 6.1), while
the second utilizes n-gram language models (Section 6.2).

6.1 Local rescoring via neural models

Algorithm 2: Local rescoring via neural models
input Blockwise parallel LMMh

θ , top-k indices
selection function TOP-k(·), rescoring modelMθr ,
interpolation weight α > 0.

1: zit ←Mh
θ,i(·|x̄, y≤t), ∀i ≤ h

2: Si ← TOP-k(zit),∀i ≤ h
3: ŷt+i ← arg maxy∈V z

i
t[y],∀i ≤ h

4: /* Local lattice rescoring */
5: for j ← 2, . . . , h in parallel do
6: rt+j ←Mθr (·|x, y≤t, ŷt+1, . . . , ŷt+j−1)

7: zjt [Sj ]← zjt [Sj ] + α · rt+j [Sj ]
8: zjt [S

c
j ]← −∞

9: end for

A simple approach uses a small neural rescorer
LM, interpolating between the logits of the
rescorer LM and vanilla block draft logits with
an interpolation weight (Algorithm 2). Recall
that zjt is the vector of logits corresponding to
the jth block. Let Sj denote the set of symbols
with top-k values in the logits vector zjt . The
rescored prediction for head j is given by:

zjt [Sj ]← zjt [Sj ] + α · rt+j [Sj ],

where α is the weight placed on the rescorer’s
prediction and rt+j are the corresponding log-
its predicted by the small neural rescoring
model, when conditioned on the sequence y≤t, ŷt+1, . . . , ŷt+2, . . . , ŷt+j−1. We also set logits for
symbols outside set Sj (Scj ) to be negative infinity, which corresponds to zero probability. Note that
we do not rescore the first head as it is the same as the base LM. We then run Algorithm 1, where
instead of using logits directly from the BPD model, we use the rescored logits to generate the draft.
We experiment with decoder-only transformers having 32, 61, and 94 million (M) weight parameters
(Appendix D).

6.2 Global n-gram rescoring
We also evaluate the quality of drafts generated by rescoring with an n-gram LM. Recall that blockwise
parallel LMs can be used to compute a lattice representing kh possible sequences. We rescore all of
these sequences except the first position token with an n-gram model, select the top p most likely
sequences and pass them to the verification stage. When p = 1, we refer to this as n-gram rescoring
and when p > 1, we refer to this as p-best n-gram BPD.

While global rescoring typically yields better results compared to local rescoring, rescoring kh
sequences with a neural LM and selecting the most likely sequence would take time O(kh), which
is computationally prohibitive in most cases. Hence, we take advantage of n-gram LMs, which are
unique in that one can efficiently select the most likely rescored sequence in time poly(k, h), using
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Table 4: Block efficiency of rescoring methods over the top-16 lattice. ‘16-best 0-gram BPD’ indicates
performance of 16-best draft verification over the original lattice without n-gram rescoring. Relative
percent improvement over BPD (Baseline) is indicated in parentheses. Green circles ( ) indicate
improvement over the Baseline, while red circles ( ) denote no improvement.

Task Dataset Baseline Local rescoring Global rescoring Oracle (k=16)BPD neural-61M BPD 4-gram BPD 16-best 0-gram BPD 16-best 4-gram BPD

LM LAMBADA 3.12 3.08 (-1.28%)  3.05 (-2.24%)  3.23 (+3.53%)  3.29 (+5.45%)  3.67

QA SQuAD V1 2.08 2.10 (+0.96%)  2.07 (-0.48%)  2.18 (+4.85%)  2.22 (+6.87%)  2.45

S-SUM CNN/Daily 1.74 1.73 (-0.57%)  1.73 (-0.57%)  1.82 (+4.66%)  1.83 (+5.41%)  2.26
SAMSUM 1.27 1.39 (+9.45%)  1.29 (+1.57%)  1.37 (+7.87%)  1.45 (+14.17%)  1.95

L-SUM
MultiNews 1.10 1.25 (+13.64%)  1.12 (+1.82%)  1.13 (+2.73%)  1.22 (+10.91%)  1.43

XSUM 1.13 1.23 (+8.85%)  1.16 (+2.65%)  1.18 (+4.42%)  1.26 (+11.50%)  1.55
NewsRoom 1.08 1.29 (+19.44%)  1.18 (+9.26%)  1.11 (+2.78%)  1.31 (+21.30%)  1.50
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Figure 6: Block efficiency of p-best n-gram BPD methods as a function of the number of top p
sequences verified in parallel. The block efficiency of the methods is evaluated with the same number
of paths extracted from the top-16 lattice.

dynamic programming. We use the OpenFST library [1] to represent each n-gram LM as a weighted
finite state automaton and apply finite state composition with the top-k lattice followed by extraction
of the p most likely draft sequences. Training details for n-gram LMs are in Appendix D.3.

6.3 Empirical evaluation
Block efficiency Table 4 and Figure 6 demonstrate the impact of lattice rescoring on block efficiency
across various tasks. Autoregressive neural, n-gram LM, and p-best n-gram BPD rescoring all
demonstrate improvements in block efficiency, although gains are task-dependent.

• High initial block efficiency (LAMBADA, CNN/Daily): Both rescoring methods show little to
no improvement, suggesting that vanilla BPD already produces high quality drafts.

• Low initial block efficiency (SQuAD V1, SAMSUM, XSUM, NewsRoom): Both neural and
n-gram augmentatiaons lead to block efficiency gains, particularly with neural LMs achieving the
best performance in some cases.

Table 5: Wins, ties, and losses of 61M neural-
rescored and vanilla drafts. “% Repair” corresponds
to instances where the rescored draft eliminates rep-
etition and “% Regress” corresponds to instances
where the rescored draft introduces repetition.

Dataset Ties
Win Loss

Total % Repair % Regress Total % Repair % Regress

LAMBADA 631.5K 5.8K 27.95 0.05 9.5K 2.01 0.06
SQuAD V1 104.4K 1.6K 12.68 8.13 6.3K 2.53 12.28
CNN/Daily 965.0K 5.9K 23.20 0.67 17.8K 3.19 0.48
SAMSum 12.1K 2.5K 17.91 23.56 0.9K 18.57 16.72
MultiNews 1.45M 294.9K 44.41 7.45 50.2K 22.21 5.37

XSUM 262.0K 36.0K 29.87 0.77 6.8K 4.19 10.99
NewsRoom 251.3K 79.7K 66.23 0.60 6.5K 2.85 7.39

Repairing repetitions In Section 5.1, we
note that vanilla block drafts are prone to
token-level repetition and that rescoring with a
simple language model reduces the incidence
of this. Although rescoring reduces repetition
overall in drafts, is this driving improvements
in block efficiency? To answer this, we com-
pared the drafts generated by greedy rescor-
ing with the 61M parameter neural rescorer
against vanilla drafts. Time step instances
were considered wins/ties/losses based on the
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Figure 7: Block efficiency and speedup ratio relative to the standard autoregressive decoding on
sub-categories of MT-Bench dataset [53] when greedily decoding with Vicuna 13B.

accepted prefix length of the rescored draft vs. vanilla draft. Table 5 displays the win frequency
across tasks along with the percentage of wins/losses attributed to introducing/eliminating repetition.

Note that in the tasks where rescoring improves block efficiency the most, NewsRoom and MultiNews,
a high percentage of those repaired instances are driven by fixing erroneously repeated tokens. In fact,
for MultiNews, 66.23% of block drafts are improved through repetition repair. We also evaluated
the performance of rescoring with in-domain trained rescoring LMs, but found that they tended to
perform no better than C4-trained LMs (Appendix E).

7 Lattice rescoring on open-source blockwise parallel LLMs
Medusa decoding [4] extends BPD by verifying a set of plausible candidates in parallel. Verification
is performed efficiently through a tree-attention mechanism, requiring only a single forward pass.
Other aspects not explicitly mentioned remain the same as described in Algorithm 1. While Medusa
employs tree-attention during decoding to efficiently verify a subset of likely drafts, our approach
focuses on rescoring these draft candidates, making them potentially complementary techniques.
We explore this synergy by integrating neural rescoring method into Medusa decoding. In this
section, we apply rescoring to large open-source LLMs, using Vicuna 7B-v1.3 and Vicuna 13B-v1.3
as base models. We report both block efficiency and speedup ratio achieved relative to standard
autoregressive decoding using the SpecBench benchmark [49]. To ensure rigorous verification, we
expand our experiments to include a wider range of datasets. We use existing pretrained Medusa
heads as the block drafter6. Although these base LMs were not trained jointly with the block drafter,
this corresponds to the Medusa-1 configuration, which has been shown to result in comparable
speedups to jointly trained Medusa models [4]. For lattice neural rescoring, we set k to be the full
vocabulary size, using 5 heads with the next-word-prediction LM head as one of the heads, following
Algorithm 2. All timings were evaluated on a single NVIDIA A100 80GB GPU with batch size 1.

Figure 7 demonstrates the block efficiency and speedup ratio on MT-Bench [53], comparing greedy
BPD and Medusa with and without local rescoring for Vicuna 13B models by setting the interpolation
weight α to 1.0. The same analysis on Vicuna 7B is described in the Figure 9, which is detailed in
Appendix G. A key observation is that even after increasing model size from 7B to 13B, a relatively
small neural model (68M) can effectively serve as the rescoring drafter, showcasing the robustness
of our approach. The rescoring model used in these experiments is a decoder-only LM trained on
the C4 and ShareGPT datasets7. Furthermore, we observe consistent performance improvements
across both the original BPD and its extension, Medusa, further validating the efficacy of our local
rescoring method. While the speedup gains might not always directly correlate with the increase
in block efficiency, we consistently observe performance improvements across all categories. This
difference suggests that block efficiency does not always translate into equivalent speedup, likely due
to system-level factors. However, there remains potential for further acceleration through additional
system-level optimizations.

Table 6 further presents speedup ratios across diverse datasets for Vicuna 7B and 13B models, respec-
tively. We evaluate not only under greedy decoding (Temperature=0.0) but also under temperature
sampling (Temperature=0.7, 1.0), employing typical acceptance for verification [4]. Both BPD and
Medusa, enhanced with our local rescoring, consistently yield speedup improvements across all

6https://huggingface.co/FasterDecoding/medusa-vicuna-7b-v1.3
7https://huggingface.co/double7/vicuna-68m
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Table 6: Speedup ratio relative to the standard autoregressive decoding for Vicuna models (7B and
13B) on various datasets: MT-bench [53], S-Sum (CNN/Daily), QA [27], GSM8K [8], and RAG [21].

Model Method Temperature=0.0 Temperature=0.7 Temperature=1.0

MT-bench S-Sum QA GSM8K RAG MT-bench S-Sum QA GSM8K RAG MT-bench S-Sum QA GSM8K RAG

BPD 1.780 1.509 1.489 1.696 1.409 1.781 1.523 1.512 1.790 1.496 1.858 1.528 1.613 1.890 1.525
Vicuna + Local rescoring 1.843  1.534  1.555  1.780  1.501  1.903  1.561  1.666  1.842  1.544  1.998  1.579  1.656  1.954  1.622  

7B Medusa [4] 2.430 2.002 2.045 2.317 1.833 2.425 2.094 2.121 2.563 1.998 2.511 2.096 2.334 2.650 2.010
+ Local rescoring 2.482  2.076  2.114  2.357  2.000  2.597  2.228  2.279  2.630  2.139  2.657  2.281  2.386  2.655  2.173  
BPD 1.745 1.530 1.488 1.794 1.483 1.881 1.555 1.559 1.875 1.558 2.043 1.684 1.675 2.078 1.664

Vicuna + Local rescoring 1.819  1.522  1.519  1.819  1.501  1.990  1.643  1.761  1.998  1.679  2.188  1.731  1.805  2.206  1.779  
13B Medusa [4] 2.383 2.000 1.986 2.507 1.945 2.559 2.080 2.272 2.700 2.069 2.844 2.278 2.501 2.942 2.256

+ Local rescoring 2.467  2.136  2.154  2.519  2.068  2.738  2.211  2.368  2.700  2.293  2.981  2.392  2.574  3.010  2.447  

Table 7: Speedup ratio of efficient LLM inference methods during greedy decoding.

Method Vicuna 7B Vicuna 13B

MT-Bench S-Sum QA GSM8K RAG MT-Bench S-Sum QA GSM8K RAG

Sps [5] 1.432 1.394 1.417 1.364 1.568 1.417 1.424 1.362 1.448 1.606
Lookahead [13] 1.818 1.645 1.503 1.865 1.475 1.118 1.007 1.011 1.324 0.963
PLD [39] 1.676 2.707 1.162 1.605 1.909 1.528 2.384 1.050 1.646 1.876

BPD 1.780 1.509 1.489 1.696 1.409 1.745 1.530 1.488 1.794 1.483
+ Local rescoring 1.922  1.534  1.555  1.780  1.501  1.819  1.522  1.519  1.819  1.501  
Medusa 2.430 2.002 2.045 2.317 1.833 2.383 2.000 1.986 2.507 1.945
+ Local rescoring 2.482  2.076  2.114  2.357  2.000  2.467  2.136  2.154  2.519  2.068  

settings. Green circles ( ) indicate further improvements from local rescoring, while red circles ( )
denote no improvement. Notably, even with larger models, our method delivers consistent gains
in latency. Table 7 compares the speedup ratio of various efficient LLM inference methods. While
other methods offer speedup in certain scenarios, their performance is inconsistent across task and
decoding setting. Overall, we find that local neural rescoring consistently provides additional speedup
over both BPD and Medusa decoding.

n-gram rescoring While C4 n-gram lattice rescoring yielded 1-best candidates with improved block
efficiency for many tasks, the gains were not as stark as locally rescoring with the Vicuna-68m
model (Figure 8). The discrepancy is partly due to domain mismatch, since the C4 data used to
train the n-gram rescorer differs from the data used to train the base Vicuna LLMs. Unsurprisingly,
we fail to see a large improvement in block efficiency for specialized tasks such as math reasoning
(GSM8K), but significant gains for tasks where generic English grammaticality is important (QA and
summarization). The neural rescorer may also benefit from access to increased context.
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Figure 8: Block efficiency for greedy BPD with n-gram top-10 lattice rescoring. An interpolation
weight of 0.2 was placed on the n-gram LM before interpolating with blockwise parallel logits.

8 Conclusion

This paper presents a comprehensive analysis of BPD, highlighting its predictive dynamics and
proposing methods to refine the generation of block drafts. Our study offers insights into BPD’s
behavior, particularly the tendency for drafts to contain consecutive repetitions and its heads to
exhibit varying confidence levels in predictions. Two algorithms are proposed for generating higher
quality drafts: one for local rescoring with small neural models (i.e., neural BPD) and another for
global rescoring with an n-gram LM and generating multiple drafts (i.e., p-best n-gram BPD). These
algorithms leverage the strengths of both blockwise parallel LMs and small rescoring models to
reduce average decoding latency, pushing the boundaries of efficient text generation with BPD. We
show that BPD lattice rescoring even complements Medusa decoding, a recent extension of BPD,
demonstrating further latency reduction for open-source LLMs. We believe this work points to the
value in incorporating smaller LMs in improving LLM decoding speed.
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A Broader impact

Our work on BPD for language models has potential applications in latency-sensitive scenarios.
Furthermore, this work suggests that LLMs may benefit from the incorporation of faster, lightweight
language models, either to reduce latency or potentially to improve the quality of generated text.

B Limitation and future work

B.1 Limitation

Our current drafting heads closely follow the original design of BPD but leave room for architectural
improvements. The structure of the block drafter is essential for optimizing gains from rescoring,
and advanced training methods may enable the model to understand the block context effectively,
bringing better alignment into the target prediction.

B.2 Future work

Our work proposes to augment a small model to improve the quality of the drafts. Possible future
directions include (a) combining our lattice rescoring method with alternative sampling strategies (b)
scaling the blockwise parallel LM for compatibility with larger-scale LLMs (c) improving training
methods for drafting heads (d) using the sequential entropy ordering of heads (Figure 2b) as a
possible halting condition during block draft head training, or to inform how a rescoring LM should
be interpolated with the block lattice weights.

C Related work

C.1 Efficient transformer inference

Works on improving transformer efficiency encompass both optimization of an existing set of model
weights, or a fundamental change to the model architecture. Examples of the former include tech-
niques such as quantization [50, 51, 10] and model pruning [44, 30]. In parallel, neural architecture
search has played a crucial role in identifying network structures that balance performance with
efficiency [25, 54]. Relatedly, Elbayad et al. [11] propose early-exiting at intermediate layers for
faster inference, while Schuster et al. [40] explore confidence thresholding for balancing speed and
accuracy. These methods offer insights into optimizing decoding under resource constraints.

One important line of work has focused on modifying the decoding method in LMs. The adoption
of non-autoregressive (parallel) decoding strategies [42, 16] marks a pivotal shift in this domain,
addressing inference latency by simultaneously generating multiple tokens. Subsequent innovations
have sought to refine this approach by incorporating additional context [6], iterative refinement [23],
and tree-based attention mechanism [4]. However, these refinements often require complex training
or additional inference data.

C.2 Efficient autoregressive decoding

There are several recent works that improve the speed of LLM decoding, including pioneering
works like BPD and speculative decoding. Speculative decoding leverages a smaller ‘draft’ model
to anticipate the outputs of a larger target model, improving average decode latency without loss in
generation quality [28, 5, 23, 45, 52]. The draft model is typically trained on the same corpus as
the LLM, thus autoregressively generates similar drafts as the target model with reduced latency.
Speculative decoding is most successful when a long sequence of speculated tokens are accepted by
the target LM during verification, avoiding multiple serial calls to the target LM to generate the same
sequence.

On the surface, contrastive decoding algorithms share some similarities with our proposed draft
rescoring approach, insofar as a weaker model is used to modify the predictions of the target LM
[29, 24]. However, in this work, we refine block drafts solely to improve latency. Like speculative
decoding, our proposals have no effect on the quality of the target LM’s generated text.
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D Experiment details

D.1 Training objective for blockwise parallel LMs

We minimized the following loss function to train blockwise parallel LMs:

LBPD =

H∑
h=1

λhLh,

where H is the number of heads, λh is a non-negative scalar that weights the loss from head h, and
Lh denotes the loss for each individual head:

Lh = −
∑

x1...i,yi+h

log p(yi+h|x1...i),

where x1...i is the token sequence up to position i, yi+h is the ground truth token at position i+ h,
and p(yi+h|x1...i) is the probability of observing token yi+h given the sequence x1...i under the
blockwise parallel LM. We trained all models in this work with λh = 1. We leave tuning these
hyperparameters, improving the block efficiency and quality of the blockwise parallel LM, as future
work.

D.2 Neural model details

Table 8: Architecture hyperparameters for each of the transformer-based neural language models.
Type Model # Layers Embedding Dim Hidden Dim

Blockwise Parallel Decoder 1.5B 18 1,536 12,288

Autoregressive Decoder
32M 2 384 1,536
61M 12 384 1,536
94M 6 768 3,072

Each neural rescoring LM is a decoder-only transformer with learned absolute positional embeddings
and twelve self-attention heads at each layer. The key architecture hyperparameters are given in
Table 8. Aside from scale, the only difference between the blockwise parallel LM and neural rescoring
models is the addition of the feedforward neural networks and eight additional block prediction heads.
Note that the number of parameters for each of these models also includes the embedding table.

Each model was pretrained on the English C4 corpus for 200K iterations with a batch size of
220 ≈ 1M tokens per batch. Dropout was not applied. For the blockwise parallel LM, all heads were
trained jointly. The pretraining for the blockwise parallel LMs took about 47 hours on 128 TPUv3
units.

For downstream tasks, models were finetuned for a maximum 100K iterations with a batch size of
two examples with maximum sequence length of 2048. Maximum learning rate was fixed to 10−4

for all runs, with a cosine learning rate schedule. Checkpoints were selected based on heldout set
model performance. Interpolation weight for all rescoring models was tuned for block efficiency on
100 randomly selected examples from the evaluation set for each task, and performance was reported
on the remainder of the evaluation set.

D.3 n-gram details

All n-gram LMs in this work are Katz backoff n-gram LMs [22] fit on the train split of the GPT3
subword-tokenized English C4 corpus with n-gram order ∈ {2, 4}. We apply entropy pruning [43] to
reduce model size to a maximum of 100 million n-grams per model, and ensure that each trigram is
observed at least twice and each 4-gram is observed at least four times. Preprocessing of the text is
identical to that used to train neural LMs.
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D.4 Datasets

• LAMBADA (LAnguage Modeling Broadened to Account for Discourse Aspects): A
collection of narrative passages designed to test the understanding of long-range dependen-
cies in language models, where the task involves predicting the last word of a passage based
on the full context [33].

• SQuAD V1 (Stanford Question Answering Dataset): A reading comprehension dataset
that features questions based on Wikipedia articles, with answers located within the text
[38].

• CNN/DailyMail: This dataset includes news articles paired with human-written summaries,
mainly used to evaluate the summarization capabilities of language models, particularly in
abstractive summarization [17].

• SAMSum (Semi-Automatic Machine Summarization): Focuses on abstractive summa-
rization using news articles and machine-generated summaries, testing models’ abilities to
refine and improve existing summaries [14].

• MultiNews: Comprises news articles from diverse sources for abstractive summarization
tasks, evaluating models on handling different writing styles and topics [12].

• XSUM: Contains scientific documents and summaries, challenging language models to
process complex scientific information and language [32].

• NewsRoom: A dataset of news articles aimed at assessing the factual accuracy and informa-
tion extraction capabilities of models in generating summaries [15].

All datasets were tokenized using the 50,257 GPT3 subword vocabulary [3].

Templates We used the following prompts during model finetuning and inference.

• SQuAD: "question: [question] context: [context]"
• CNN/DailyMail: "summarize: [text]"
• SAMSum: "Here is a dialogue: [text]\nWrite a short summary!"
• MultiNews: "Write a summary based on this article: [text]"
• XSUM: "Summarize: [text]"
• NewsRoom: "Please write a short summary for the following article: [title] [text]"

E Rescoring with in-domain language models

Table 9: Block efficiency from rescoring with in-domain trained rescoring models for 2-gram and
61M parameter neural rescorer.

Dataset 2-gram neural-61M

C4 In-domain C4 In-domain

SQuAD V1 2.09 2.04 2.10 2.06
CNN/Daily 1.73 1.73 1.73 1.72
SAMSUM 1.31 1.22 1.39 1.24
MultiNews 1.13 1.14 1.25 1.16
XSUM 1.17 1.18 1.23 1.14
NewsRoom 1.20 1.22 1.29 1.11

We found that in-domain rescorers performed no better than rescorers only trained on C4. We suspect
this is due to a lack of sufficient finetuning data and that the main benefit of rescoring comes from
discouraging unnatural artifacts such as repetition from the original BPD draft. Table 9 shows block
efficiency after rescoring using in-domain models for all tasks besides language modeling.

Neural rescorers were finetuned from C4-pretrained checkpoints. n-gram models were trained
from scratch, and unseen vocabulary was added as unigram arcs with trivial weight (negative log
probability of 1000.0). This was done to ensure that all paths through the lattice were assigned
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non-zero probability by the n-gram model. We also tried interpolating the in-domain n-gram model
with a unigram model trained on C4, and observed similar performance as simply adding unseen
unigrams.

F Interpolation weights tuned per task

We tuned the interpolation weight, α for the 94M parameter neural and 4-gram LM rescorers, and
then used this weight to rescore with all other models of that same class. 100 examples from each
task’s heldout set were set aside for tuning, to maximize block efficiency. The remainder of examples
were used for evaluation. We swept over α ∈ {0.1, 0.5, 0.75, 0.9, 1.0, 1.1, 1.5, 2.0, 5.0, 10.0}.
Note that for tasks where lattice rescoring was unhelpful, the interpolation weight, α is tuned to place
much higher weight on the block draft logits (Table 10). This is a signal that the rescorer does not
provide additional information over the original block draft heads.

Table 10: Tuned interpolation weight per task for neural and n-gram rescoring.
Dataset Neural n-gram

LAMBADA 0.1 0.1
SQuAD V1 1.0 0.75
SAMSum 5.0 1.5
CNN/Daily 0.1 0.1
MultiNews 5.0 2.0
XSUM 1.5 1.1
NewsRoom 5.0 2.0

G Local rescoring impact on block efficiency

Table 11 reveals the impact of different rescoring methods on the block efficiency of the block lattice,
offering insights into their effectiveness across diverse tasks and models, supporting the investigations
in Section 6.1.

• Limited improvement for high baselines: For tasks with already high initial block effi-
ciency (LAMBADA, CNN/DailyMail), rescoring offers minimal or even negative changes
in block efficiency compared to the baseline BPD system. This suggests that for tasks where
standard BPD already achieves significant speed improvements, there is limited room for
further gains through rescoring.

• Efficacy for poor baselines: In tasks with lower initial block efficiency (SQuAD V1,
XSUM, NewsRoom), rescoring using both n-gram and neural language models results in
increased block efficiency. Notably, neural rescoring with larger models (61M and 94M
parameters) achieves the highest efficiency gains in these tasks, reaching up to 19.44%
improvement in NewsRoom. These results highlight the potential of rescoring to refine
predictions and enhance efficiency for models exhibiting calibration issues.

• Task-specific effectiveness: The level of improvement from rescoring varies across different
summarization tasks (MultiNews, XSUM, NewsRoom). While all show positive responses,
NewsRoom exhibits the largest gains, suggesting that the effectiveness of rescoring is
task-dependent.

• Comparison with oracle efficiency: The ‘Oracle’ columns present the upper bound achiev-
able if only the most likely token at each step is chosen with perfect hindsight (k=2 and
k=16). While significant gaps remain between current results and the oracle, the observed
improvements from rescoring demonstrate progress towards closing this efficiency gap.

Overall, these findings suggest that local rescoring methods can be a valuable tool for enhancing BPD
efficiency, particularly for models with less calibrated predictions. Further exploration of advanced
rescoring strategies, especially in conjunction with larger neural language models, holds promise for
achieving even closer-to-oracle efficiency levels.
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Table 11: Block efficiency after rescoring of the block lattice. Green circles ( ) indicate improvement
over the Baseline (BPD), with the percentage changes in block efficiency shown in brackets relative
to the Baseline. Red circles ( ) denote no improvement.

Task Dataset Baseline Global rescoring Local rescoring Oracle (k=2) Oracle (k=16)BPD 2-gram BPD 3-gram BPD 4-gram BPD neural-32M BPD neural-61M BPD neural-94M BPD

LM LAMBADA 3.12 3.06 (-1.92%)  3.05 (-2.24%)  3.05 (-2.24%)  3.08 (-1.28%)  3.10 (-0.64%)  3.05 (-2.24%)  3.22 3.67

QA SQuAD V1 2.08 2.09 (+0.48%)  2.08 (0.00%)  2.07 (-0.48%)  2.10 (+0.96%)  2.10 (+0.96%)  2.07 (-0.48%)  2.16 2.45

S-SUM CNN/Daily 1.74 1.73 (-0.57%)  1.73 (-0.57%)  1.73 (-0.57%)  1.73 (-0.57%)  1.73 (-0.57%)  1.73 (-0.57%)  1.84 2.26
SAMSum 1.27 1.31 (+3.15%)  1.31 (+3.15%)  1.29 (+1.57%)  1.33 (+4.72%)  1.39 (+9.45%)  1.21 (-4.72%)  1.23 1.95

L-SUM
MultiNews 1.10 1.13 (+2.73%)  1.13 (+2.73%)  1.12 (+1.82%)  1.25 (+13.64%)  1.25 (+13.64%)  1.20 (+9.09%)  1.13 1.43

XSUM 1.13 1.17 (+3.54%)  1.17 (+3.54%)  1.16 (+2.65%)  1.18 (+4.42%)  1.23 (+8.85%)  1.17 (+3.54%)  1.17 1.55
NewsRoom 1.08 1.20 (+11.11%)  1.18 (+9.26%)  1.18 (+9.26%)  1.29 (+19.44%)  1.29 (+19.44%)  1.17 (+8.33%)  1.15 1.50
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Figure 9: Block efficiency and speedup ratio relative to the standard autoregressive decoding on
sub-categories of MT-Bench dataset [53] when greedily decoding with Vicuna 7B.

For the evaluation of inference time on open-sourced Vicuan 7B model, we provide Figure 9 for the
block efficiency and speedup ratio on MT-Bench dataset which is parallel to Figure 7 in Section 7.

H Ablation on the number of heads in the blockwise parallel LM

Table 12 summarizes the block efficiency for different head configurations across various language
tasks with the same settings discussed in Figure 1.

• General trend: Both performance and block efficiency tend to increase with the number of
heads, up to a point. This suggests that using more heads allows the model to capture richer
contextual information and make more accurate predictions.

• Efficiency trade-off: While increasing heads generally improves block efficiency, it also
increases the memory for verification stages. Therefore, the optimal number of heads
depends on the balance between desired block efficiency and available resources.

Table 12: Test performance per task. Test performance of each finetuned model and block efficiency
are shown as a function of heads (h ∈ 3, 6, 9). Tasks inclue Language Modeling (LM), extractive
Question Answering (QA), and both Long and Short Summarization (L-Sum & S-Sum). The metric
for LM is perplexity, for QA is exact match, and for all the remaining (summarization) tasks, the
metric is ROUGE-L.

Task Dataset Performance # of Heads (h)
3 6 9

LM LAMBADA 7.88 1.79 2.84 3.12

QA SQuAD V1 57.60 1.53 2.03 2.08

S-SUM CNN/Daily 39.85 1.60 1.71 1.74
SAMSUM 37.66 1.18 1.25 1.27

L-SUM
MultiNews 23.08 1.08 1.08 1.10
XSUM 52.15 1.11 1.12 1.13
NewsRoom 39.85 1.07 1.08 1.08
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I Practical efficiency of rescoring block drafts

To enhance our understanding of block rescoring within the realm of contemporary deep learning
hardware environments, we present an in-depth examination focused on TPU/GPU utilization and
the overhead incurred by n-gram rescoring. This analysis is divided into two parts: (1) an analysis of
block rescoring through the lens of TPU/GPU utilization, and (2) empirical benchmarks of n-gram
lattice rescoring. The major takeaways are as follows.

Memory bandwidth (HBM ⇔ SRAM) A critical factor in the performance of deep learning
applications is the efficient management of memory bandwidth between High Bandwidth Memory
(HBM) and Static Random Access Memory (SRAM) [9]. Increasing the block efficiency via the
block lattice rescoring reduces the average per token parameter and key-value cache I/O that needs to
be communicated from HBM to SRAM.

Overhead in n-gram rescoring n-gram rescoring is actually quite efficient. For the size of
lattices we consider in this work, moving the lattice from HBM to DRAM, performing n-best n-gram
rescoring, and moving the n-best paths back to HBM requires no more than 2 ms per lattice.

I.1 Hardware utilization

We compare our approach against traditional Autoregressive LMs across several metrics (Table 13).

Table 13: Comparative analysis of per decoded token efficiency metrics across block rescoring meth-
ods and the standard autoregressive LM (batch size=1). This table shows the average block efficiency,
parameter I/O, key-value (KV) cache I/O at varying sequence lengths, and FLOPS—evaluated on a
per-token basis with batch size 1.

Component Autoregressive Base BPD 4-gram BPD Neural-61M BPD 16-best 0-gram BPD 16-best 4-gram BPD

Avg. Block Efficiency 1.000 1.646 1.657 1.724 1.717 1.797
Parameter I/O (GB) 3.000 1.823 1.811 1.811 1.747 1.669
KV Cache I/O (GB) - Seq_len 128 0.113 0.074 0.073 0.076 0.140 0.134
KV Cache I/O (GB) - Seq_len 512 0.453 0.280 0.278 0.290 0.338 0.323
KV Cache I/O (GB) - Seq_len 1024 0.906 0.555 0.552 0.574 0.602 0.575
KV Cache I/O (GB) - Seq_len 2048 1.812 1.106 1.098 1.144 1.129 1.079
FLOPS (T) 0.931 0.57 0.567 0.635 0.621 0.593

Memory bandwidth and compute efficiency The block rescoring variants achieve significant
reductions in Parameter I/O and KV Cache I/O compared to autoregressive decoding, suggesting BPD
methods’ ability to reducing inference times by mitigating the primary latency bottleneck—memory
bandwidth.

Comparative latency impact A consistent decrease in memory bandwidth utilization across block-
wise parallel LMs, including those leveraging LM rescoring and parallel processing strategies,
illustrates our approach’s contribution to accelerating inference speed. This underscores the practi-
cality and applicability of our enhancements in promoting more efficient language model inference
within state-of-the-art computational frameworks.

I.2 Overhead of n-gram rescoring

While the majority of computational efforts in block rescoring are dedicated to TPU/GPU utiliza-
tion, the implementation of n-gram rescoring introduces additional overheads. These are primarily
attributed to CPU computations and the data transfer between the CPU and HBM. This section
provides a comprehensive examination of these overheads, drawing on benchmarks from rescoring
experiments with a 4-gram C4 LM.

Benchmarks for 4-gram C4 LM rescoring We conducted benchmarks on rescoring lattices with
a 4-gram C4 LM of ≈100M n-grams. The average latency observed across 10 runs for different
numbers of the shortest paths is summarized in Table 14.

Notably, rescoring with a large 4-gram LM averages less than 2 milliseconds for extracting up to 16
globally-best paths, despite the lattice containing approximately 4.29 billion possible paths. In our
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Table 14: Average latency for N-best rescoring an 8-time step lattice with 16 arcs per time step. N,
the number of shortest paths, is varied from 1 to 16.

# Shortest Paths N-best Rescoring Latency (ms)

1 1.630
2 1.751
4 1.878
8 1.871

16 1.983

initial experiments, increasing the size of the n-gram LM had little effect on n-best rescoring latency,
indicating that improvements to rescoring LM quality will incur little additional latency, provided
that the rescoring LM fits within DRAM.

Latency is predominantly influenced by lattice size, particularly the number of top-k tokens per time
step and the number of time steps, as depicted in Table 15.

Table 15: 1-best rescoring latency by the 4-gram C4 LM for varying lattice sizes.
Number of time steps Top-k per time step 1-best rescoring latency (ms)

4 2 1.038
4 4 1.050
4 8 1.130
4 16 1.237

8 2 1.061
8 4 1.144
8 8 1.234
8 16 1.630

16 2 1.102
16 4 1.206
16 8 1.558
16 16 2.174

The benchmarks highlight the fact that the additional overhead introduced by n-gram rescoring,
though present, should not significantly impact overall latency.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are provided in Section 1 and Section 2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are described in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

22



Justification: The paper does not include theoretical results.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Appendix D describes the experimental details of both the blockwise parallel LMs used in
this paper and proposed rescoring methods.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We have not provided open access to the source code used in our experiments.
However, we have detailed the data access, architecture, and training processes in the
supplemental material to enable replication of our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix D provides clear experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our paper does not report error bars or statistical tests, as it focuses on qualita-
tive evaluations and proof-of-concept demonstrations. We provide detailed descriptions of
our experiments to support the claims and emphasize practical observations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are detailed in Section 4 and Section 6.1, including TPU
types (TPUv3/TPUv4), training time, batch sizes and use of JAX.
Guidelines
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects and primarily presents no direct
ethical concerns. The datasets with CC-BY 4.0 are used for evaluation. We discuss potential
societal impact in Appendix A.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impacts of our research in Appendix A.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe our models do not present more risk than the public models we
compared them to, as they show similar effectiveness but at a lower cost of operation.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets having CC-BY 4.0 license are used for training and evaluation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper presents no potential risks for IRB approvals or equivalent for
research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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