
Fixed-Point RNNs:
Interpolating from Diagonal to Dense

Sajad Movahedi∗1,2, Felix Sarnthein∗1,2, Nicola Muça Cirone3, Antonio Orvieto1,2
1ELLIS Institute Tuebingen, 2Max Planck Institute for Intelligent Systems,

3Department of Mathematics, Imperial College London
{sajad.movahedi, felix.sarnthein}@tue.ellis.eu

Abstract

Linear recurrent neural networks (RNNs) and state-space models (SSMs) such
as Mamba have become promising alternatives to softmax-attention as sequence
mixing layers in Transformer architectures. Current models, however, do not exhibit
the full state-tracking expressivity of RNNs because they rely on channel-wise (i.e.
diagonal) sequence mixing. In this paper, we investigate parameterizations of a
large class of dense linear RNNs as fixed-points of parallelizable diagonal linear
RNNs. The resulting models can naturally trade expressivity for efficiency at a
fixed number of parameters and achieve state-of-the-art results on the state-tracking
benchmarks A5 and S5, while matching performance on copying and other tasks.

1 Introduction

0 10 20 30 40 50

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Transform
er

LSTM

FP-Mamba-H (r = 1)
FP-Mamba-H (r = 2)
FP-Mamba-H (r = 4)

Max Iters - max 2 4 8 16

Figure 1: Sequence length generalization at train-
ing length 16 (pink) for state-tracking on A5,
with Transformer (brown) and LSTM (purple) as
lower/upper bounds. Our Fixed-Point RNN (FP-
Mamba-H) is trained at different maximum number
of fixed-point iterations ℓmax: between 2 (green)
and 16 (blue). Increasing the number of fixed-
point iterations allows the linear RNN to interpo-
late from diagonal to dense in a few iterations.

State-space models (SSMs) and other new effi-
cient recurrent token mixers are becoming a pop-
ular alternative to softmax attention in language
modeling (Gu & Dao, 2024) as well as in other
applications such as vision (Liu et al., 2024) and
DNA processing (Nguyen et al., 2024). Inspired
by linear input-controlled filtering, these mod-
els can be expressed as carefully parametrized
linear recurrent neural networks (RNNs) with
input-dependent, diagonal state transition:

ht = diag(at)ht−1 +Btxt (1)

Compared to classical RNNs such as LSTMs
(Hochreiter & Schmidhuber, 1997), in Eq. (1)
the relation between the previous hidden state
ht−1 and the current ht is linear and its coeffi-
cient at does not depend on the hidden states.
These choices allow SSMs such as Mamba (Gu
& Dao, 2024) to be computed through efficient
parallel methods during training. Furthermore,
they are easier to optimize than classical RNNs,
thanks to stable and efficient reparametrizations available for diagonal transitions (Orvieto et al.,
2023; Zucchet & Orvieto, 2024) – techniques that are significantly more difficult to apply effectively
in the classical setting (Arjovsky et al., 2016; Helfrich et al., 2018). At test time, they are faster than
classical Transformers on long sequences due to their recurrent nature.

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Though modern linear RNNs have shown promise in practice, recent theoretical studies suggest that
using dense, input-dependent transition matrices (i.e. replacing diag(at) with a dense At) could
present an opportunity to improve expressivity and unlock performance on challenging tasks. In
particular, Cirone et al. (2024b) prove that dense selective SSMs are endowed with the theoretical
expressivity of classical non-linear RNNs such as LSTMs. As shown by Merrill et al. (2024)
and Sarrof et al. (2024), such gained expressivity proves to be particularly useful in state-tracking
applications where models are expected to maintain and extrapolate a complex state of the world.
Since state-tracking is naturally expressed by non-linear RNNs but provably unavailable to channel-
wise sequence mixers such as SSMs or Transformers, Merrill & Sabharwal (2023) speculate on
a fundamental tradeoff between parallelism and expressivity. This discussion sparked interest in
non-diagonal recurrences and parallelizable architectures capable of state-tracking (Grazzi et al.,
2024; Terzic et al., 2025; Schöne et al., 2025; Peng et al., 2025; Siems et al., 2025).

When designing new architectures involving dense selective yet linear state transitions of the form
ht = Atht−1 +Btxt, two fundamental concerns arise:

1. What should the parametric form for At, as a function of the input be? How can we guarantee this
parametrization induces a stable recurrence, like in standard2 SSMs?

2. How does a parametrization balance between expressivity and parallelism? Which assumptions
on the structure of At enable efficient computation, and how do they interact with expressivity?

Perhaps the first approach tackling the above questions was DeltaNet (Schlag et al., 2021a; Yang
et al., 2024b) with a block-diagonal and orthogonal therefore, stable state transition structure, where
each block is parametrized by a Householder matrix. The parallelizable algorithm, was then extended
to include negative eigenvalues (Grazzi et al., 2024), gates (Yang et al., 2025), and most recently
products of Householders (Siems et al., 2025). Such choices, leading to increased expressivity as
exemplified by their state-tracking and length generalization capabilities, are motivated mainly by
hardware considerations: Householder-based mixing can be implemented efficiently on GPUs as
linear attention via WY-representations and the UT transform (Yang et al., 2024b).

0 10 20 30

Num Params (M)

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

(a) A5

0 50 100

Num Params (M)

(b) Copying

FP-Mamba-H
Mamba-1
Mamba-2
GatedDeltaNet
LSTM

Figure 2: (a) State-tracking on A5 at sequence
length 16, and (b) character accuracy of copying
at 2× sequence length generalization, trained on
lengths ∈ [5, 50]. Our single layer FP-Mamba-H
with mixer reflections r ∈ {1, 2, 4} is compared to
baselines of increasing depth ∈ {1, 2, 4, 6, 8}. FP-
Mamba-H is the only model capable of solving
both the state-tracking and the copy task.

While the works above offer exciting practi-
cal strategies for boosting capabilities at a rel-
atively low additional computational cost, they
fall short in exploring the sea of intriguing op-
tions for dense transitions and hence, in thor-
oughly answering questions (1) and (2) above.

Unfortunately, this is not an easy task: although
linear recurrences are theoretically paralleliz-
able across sequence length (Martin & Cundy,
2018), parallelizing dense RNNs efficiently is
not trivial due to increased memory I/O. These
thoughts inspired us to change our viewpoint:
instead of designing an algorithm which adds a
fraction of non-diagonal processing to a model,
here, we look for a strategy to navigate the par-
allelism tradeoff towards a truly dense object.

Motivated by the idea of designing a paralleliz-
able general-purpose method to implement new
dense RNN variations, in this paper we devise a new adaptive computation strategy which allows to
interpolate between fast recurrent diagonal RNNs and dense recurrences with arbitrary preselected
structure. Instead of parametrizing the dense RNN layer as an explicit function h = Fθ(x), we build
on the literature of equilibrium/implicit models (Bai et al., 2019; Ghaoui et al., 2021) to parametrize
it implicitly as a solution h∗ to a fixed-point equation h = fθ(x,h) involving only a diagonal RNN.
As described in Fig. 3a, we solve for h∗ using a fixed-point iteration of diagonal RNN evaluations fθ .

2Standard SSMs are diagonal and operate in polar coordinates, parametrizing directly the gap between
eigenvalues and the stability threshold (Orvieto et al., 2023). This technique allows to increasing granularity
near the identity, and to effectively normalize the forward pass (cf.

√
1− |γ|2 term in Griffin (De et al., 2024)).

2

A fundamental question some readers might rightfully ask, is the following: “what is the advantage
of iterating a single layer in depth compared to depth-stacking multiple SSM, e.g. Mamba layers?”
We claim one advantage comes from having access to the limiting dense object. As showcased by
Fig. 2, this allows to adaptively provide the required expressivity for a fixed set of parameters without
any a priori choice on the network size.

Summary. In this work, we propose a recipe to design a general class of dense linear RNNs as
fixed points of corresponding diagonal linear RNNs. Our contributions are:

1. We develop the framework of Fixed-Point RNNs to adaptively trade parallelism for expres-
sivity using the number of fixed-point iterations (Fig. 1).

2. We achieve a stable parametrization of a dense RNN via a carefully designed diagonal RNN.
3. The framework allows for easy integration of both non-linear hidden state dependence

and linear attention based matrix-valued formulations. This way, our FP-Mamba unites
previously isolated capabilities of recurrent computation and memory (Fig. 2).

2 Background

Since their introduction (Rumelhart et al., 1986; Elman, 1990), RNNs have significantly contributed
to the evolution of machine learning methods for sequential data (Hochreiter & Schmidhuber, 1997;
Jaeger, 2001). But despite their theoretical promise of Turing-completeness (Siegelmann & Sontag,
1992), recurrent models fell out of fashion due to two significant challenges: they are inherently
sequential, and notoriously difficult to train (Hochreiter et al., 2001; Pascanu et al., 2013). The recent
advancements of linear RNNs (Gu & Dao, 2024) suggest a way forward to combine the scalability of
Transformers (Vaswani et al., 2017) with the expressivity of classical RNNs (Cirone et al., 2024b).
The key challenge here is the stable and efficient parametrization of a linear RNN layer with a
time-varying recurrent transition matrix. In this paper we are exploring first steps towards this goal.

Dense Selective RNN. Traditionally, RNNs are parametrized as either time-invariant, non-linear,
or element-wise system. To the best of our knowledge, a time-variant, dense, and linear RNN
parametrization has been of mild interest at best. To understand why, consider the general form

Fθ : x 7→ h, ht = Atht−1 +Btxt, (2)

where At ∈ Rd×d corresponds to the time-varying state transition matrix, Bt ∈ Rd×d is the input
transformation matrix, ht ∈ Rd denotes the hidden state, and xt ∈ Rd is the input for t < T steps.
For a given sequence of At, the complexity of a forward pass is O(Td2) in memory and O(T)
sequential steps. Although such a linear RNN could also be computed in O(log T) sequential steps
using a parallel scan algorithm (Martin & Cundy, 2018), this would require materializing matrix-
matrix multiplications at cost O(d3). An issue in both scenarios, however, is the parametrization
of At as time-varying, i.e. input- or even hidden state-dependent matrices. In general, this requires
a map M : d 7→ d2 with potentially d × d2 parameters, and O(Td3) time complexity. While
structured dense matrix representations for At could potentially present a remedy, they come with
additional challenges: (1) In order to guarantee expressivity, the At cannot be co-diagonalizable such
as for example Toeplitz matrices (Cirone et al., 2024b). (2) In order to guarantee stability of the
dynamical system, the spectral radius ρ(At) needs to be less than, but still close to 1 for long-range
interactions (Orvieto et al., 2023). (3) The matrix structure needs to be closed under multiplications
to enable parallel scans without having to materialize dense representations at O(Td2) memory cost.

Related Works. Improving the trainability of classical non-linear RNNs has a long history. For
example, Arjovsky et al. (2016) and Helfrich et al. (2018) investigate parameterizations to stabilize
their spectral radius with structured matrix representations, while Lim et al. (2024) and Gonzalez et al.
(2024) propose iterative methods to parallelize their computation. In this work, however, we focus on
stabilizing and parallelizing a time-variant, dense, linear RNN. Improving the limited expressivity of
existing diagonal linear RNNs is the focus of a few recent works, e.g. by Grazzi et al. (2024) and Siems
et al. (2025). In contrast, we investigate a wide class of structured parameterizations for dense RNNs
where the additional cost is adaptively chosen depending on the task. In concurrent work, Schöne et al.
(2025) propose an iterative method similar to ours, but as opposed to our carefully designed implicit
dense RNN layer, they focus on scaling implicit causal models of existing multi-layer architectures
on language. For a more extensive literature review, we refer the reader to App. A.

3

(a) Framework

10 20 30 40 50

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

H - r = 4 - (xt)
H - r = 4 - (xt + h 1

t 1)
K - (xt)
K - (xt + h 1

t 1)

(b) State Tracking on A5

10 20 30 40 50

Sequence Length

10

20

30

40

50

60

N
um

 It
er

s

*

H - r = 4 - (xt)
H - r = 4 - (xt + h 1

t 1)
K - (xt)
K - (xt + h 1

t 1)

(c) Number of Iterations ℓ∗

Figure 3: (a) An overview of the proposed Fixed-Point RNN framework in Sec. 3. A diagonal RNN fθ
consisting of a sequence mixer Λt and a channel mixer Qt is iterated until convergence towards the
hidden states of an implicitly dense RNN Fθ . (b) FP-RNN variants with channel mixer introduced in
Sec. 3.3 and 3.4 solve the state-tracking task A5 up to various sequence lengths. (c) FP-RNNs adapt
their computation time to the difficulty of the task by varying the number of fixed-point iterations ℓ∗ .

3 Fixed-Points as an RNN Layer

In this section, we introduce an implicit parameterization for a family of dense RNNs Fθ(x) which
describes its output by a solution h∗ ∈ RT×d to the fixed-point equation h = fθ(x,h) (Sec. 3.1).
Then, we discuss how to find the solution h∗ using fixed-point iterations (Sec. 3.2) and the algorithmic
implications (Sec. 3.4) of the FP-RNN framework in light of the challenges outlined in Sec. 2. Finally,
we briefly touch on how to train an implicitly dense model Fθ(x) with gradient descent (Sec. 3.5).

3.1 From Explicit to Implicit Parameterization

We start by designing a diagonal RNN fθ(x,h) such that the solution h∗ to its fixed-point equation
h = fθ(x,h) implicitly represents a dense RNN h∗ = Fθ(x). Consider the factorized parametriza-
tion of At similar to the one introduced by Helfrich et al. (2018) for non-linear and time-invariant
RNN:

Fθ : x 7→ h∗, h∗
t = Q−1

t Λth
∗
t−1 +Btxt. (3)

Separating At into a diagonal matrix Λt ∈ Rd×d and a non-diagonal invertible mixing matrix
Qt ∈ Rd×d allows to describe h∗ by only a diagonal transition Λt by reformulating Eq. 3 to

h∗
t = Λth

∗
t−1 +QtBtxt + (I−Qt)h

∗
t . (4)

This means that the states h∗ = Fθ(x) of the dense linear RNN can be implicitly described by the
fixed-point h∗ = fθ(x,h

∗) of a corresponding diagonal linear RNN of the following form:

fθ : (x,h) 7→ h′, h′
t = Λth

′
t−1 +QtBtxt + (I−Qt)ht. (5)

In other words, if we could find the fixed-point h∗ = fθ(x,h
∗) ∈ RT×d for the diagonal RNN

defined in Eq. 5, then h∗ would describe the states of a corresponding dense RNN h∗ = Fθ(x).
Motivated by this insight, in Sec. 3.2 we carefully parametrize the diagonal RNN fθ(x,h) and its
channel mixer Qt such that a computable fixed-point exists.

3.2 The Fixed-Point Iteration

Solving fixed-point equations such as h = fθ(x,h), is perhaps one of the most well-studied problems
in mathematics (Granas et al., 2003). In the context of deep learning, the literature on Neural ODEs
(Chen et al., 2018) and Deep Equilibrium Models (Bai et al., 2019; Ghaoui et al., 2021) investigates
fixed-point methods for implicit parametrizations of neural networks. A straightforward, yet effective
method computes the forward pass by simply rolling out the fixed-point iteration. In the context
of solving h∗ = fθ(x,h

∗), this corresponds to introducing an iteration in depth hℓ = fθ(x,h
ℓ−1).

Denoting ℓ as the current iteration in depth (i.e., over the layer dimension), and t as the current
iteration in time (i.e., over the sequence dimension), the iteration starts at h0

t = 0 and proceeds with

hℓ
t = Λth

ℓ
t−1 +QtBtxt + (I−Qt)h

ℓ−1
t . (6)

Intuitively, this iteration mixes information with interleaved channel mixing (with Qt) and sequence
mixing (with Λt) until convergence towards the hidden states of an implicit dense RNN Fθ (cf. 3a).

4

The difficulty with such an iteration in depth and time is that the recurrent dynamics could explode
without proper stabilization. While the recurrence in time can be stabilized with RNN techniques
(Zucchet & Orvieto, 2024) such as an input gate I−Λt, the recurrence in depth, however, could still
diverge if fθ(x,h) does not have an attracting fixed-point (Granas et al., 2003). In order to design a
diagonal linear RNN fθ(x,h) which is guaranteed to have an attracting fixed-point, we make use of
Banach (1922)’s theorem. In our context, the theorem states that fθ(x,h) converges to a fixed-point
from any initialization h0 if it has a Lipschitz constant < 1 in h. For a fixed-point RNNs with input
gate I−Λ, we present the following theorem:

Theorem 3.1. Let fθ(x,h) be the diagonal linear RNN with input-independent Λ and Q

fθ : (x,h) 7→ h′, h′
t = Λh′

t−1 + (I−Λ) (QBtxt + (I−Q)ht) . (7)

If ||Λ||2< 1 and ||I−Q||2< 1, then fθ(x,h) has a Lipschitz constant < 1 in h. Proof in App. B.1.

Intuitively, Thm. 3.1 states two conditions for stable parametrization of an implicitly dense RNN
Fθ: (1) the recurrence in time needs to be coupled with input normalization and contractive (i.e.
∥Λ∥2< 1). (2) The recurrence in depth acting on h, i.e. (I−Qt), needs to be contractive. Together,
this guarantees that all sequences hℓ up to h∗ throughout the fixed-point iteration do not explode
without any explicit assumptions on the spectral radius on A (Arjovsky et al., 2016).

3.3 Parametrization of Qt and Λt

To satisfy the assumptions required for expressivity in (Cirone et al., 2024b), the implicit transition
matrix At and therefore Λt and Qt need to be input-controlled (i.e. selective), which could be
realized through a linear mapping of the input, i.e. Qt = M(xt) := reshape(WQxt). However, this
presents two challenges: how can stability be guaranteed (c.f. Thm. 3.1) and excessive computational
cost due to the O(d3) parameters of WQ be avoided? A straight-forward solution lies in structured
matrix representations for both the diagonal transition matrix Λt and the channel mixer Qt.

Inspired by Helfrich et al. (2018), we aim for Qt to be approximately norm-preserving and Λt to
control the eigenvalue scale using a parametrization akin to Mamba or Griffin (Gu & Dao, 2024; De
et al., 2024) and normalization (I−Λt). For the channel mixers Qt, we consider the structures:

• Diagonal Plus Low Rank (DPLR): Qt = M(xt) :=
(
I−

∑r
i=1 αit · ūitū

⊤
it

)
, for rank r.

• Householder Reflections (H): Qt = M(xt) :=
∏r

i=1

(
I− αit · ūitū

⊤
it

)
, for r reflections.

• Kronecker (K): Qt = M(xt) := I− (K̄1
t ⊗ K̄2

t), where ⊗ denotes the Kronecker product.

This allows to reduce the size of the input-dependent parameters αit, ūit, and K̄i
t to O(d), and

consequently reduce the size of the linear map WQ to O(d2r) and O(d2). In order to guarantee
stability, the condition ||I−Q||2< 1 can be enforced by scaling αit, ūit, and K̄i

t appropriately. For
more details about the channel mixer variants, please refer to App. C. Fig. 3b, we compare different
channel mixer variants and observe that the Kronecker structure seems to be most appropriate the
state-tracking task A5.

3.4 Algorithmic Implications

Recall from Sec. 2 that an explicitly parametrized dense selective RNN can only be parallelized
under strict assumptions on its structure and runs otherwise in O(T) sequential steps. However, a
parallelizable structure is given by the element-wise, diagonal transition Λt of a diagonal RNN (Martin
& Cundy, 2018). Since such a diagonal RNN is called ℓ∗-times as a subroutine of the fixed-point
iteration in Eq. 6, a fixed-point RNN runs in O(ℓ∗ · log T) sequential steps. This means that the
implicit parametrization –as opposed to explicit or non-linear parametrizations– allows to decouple the
number of sequential steps ℓ∗ from the sequence length T itself, and trade parallelism for expressivity.

This insight suggests an opportunity to introduce a non-linear computation for every sequential
step, like in classical RNNs. Concretely, we investigate channel mixers M(xt + hℓ−1

t−1) which are a
function of both the input xt and the hidden state hℓ−1

t−1 from the previous iteration (in both time and
depth) without degrading parallelizability. In Fig. 3b, we compare channel mixers with and without
hidden state dependence and observe that this indeed improves sequence length generalization.

5

Summarizing the results so far, we arrive at an updated recurrence with hidden state dependence:

hℓ
t = λℓ

t ⊙ hℓ
t−1 + (1− λℓ

t)⊙ (Qℓ
tB

ℓ
txt + (I−Qℓ

t)h
ℓ−1
t), (8)

where we use ⊙ to highlight the parallelizability of the element-wise product. We would like to
note that due to the normalization (I − Λt), the corresponding dense RNN Fθ is not explicitly
representable anymore as discussed in App. B.2. Furthermore, for the time-varying parametrization
in Eq. 8, the convergence guarantees may be weaker and solutions h∗ could be non-unique due to
the hidden state dependence. In practice, we iterate until ||hℓ−hℓ−1||∞

||hℓ||∞ < 0.1 and observe that the
conditions of Thm. 3.1 are strong enough to reach convergence within a finite number of iterations
ℓ∗ as evidenced by Fig. 3c. Interestingly, the model navigates the parallelism tradeoff (Merrill &
Sabharwal, 2023) and adaptively increases its sequential computation for harder tasks.

3.5 Optimizing Fixed-Point RNNs

One advantage of converging to a fixed-point as opposed to general layer looping lies in model
training. Since the gradient with respect to h0 is not needed, implicit differentiation can be used
to avoid storing and backpropagating through the computational graph of the fixed-point iteration,
as discussed by Liao et al. (2018), Bai et al. (2019), and in App. B.3. In practice, truncated
backpropagation of the last k iterations suffices to approximate the gradient through the full iteration
J∗
x ≈ Jx(h

ℓ∗−k) · . . . · Jx(h
ℓ∗). For Fixed-Point RNNs we observe that computing the gradient

only at the fixed-point (k = 0), is enough to stabilize training. This means that compared to a single
diagonal RNN layer, Fixed-Point RNNs incur no memory overhead and only sequential overhead in
the forward pass but not in the backward pass.

We hypothesize that this is possible because fθ(x,h) is a mostly linear object as opposed to multi-
layer implicit models such as (Schöne et al., 2025). Furthermore, we observe that hidden state
dependence M(xt + hℓ−1

t−1) particularly helps with gradient-based optimization. We credit this to the
symmetry between the gradients w.r.t. x and h, and formalize this in the following theorem:

Theorem 3.2. Let fθ(x,h) have Lipschitz constant < 1 and fixed-point h∗. If the Jacobians
∂fθ
∂x (x,h) and ∂fθ

∂h (x,h) are equal, then the gradient ∇θL(fθ(x,h),y) of the loss L(·,y) for a
target y at the fixed point h = h∗ is a descent direction of L(Fθ(x),y). Proof in App. B.4.

4 Fixed-Point Mamba

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

(a) A5 - FP-Mamba (b) A5 - Baselines

0 20 40

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

(c) S5 - FP-Mamba

Mixer Qt
H - r = 1
H - r = 2
H - r = 4
DPLR - r = 1
DPLR - r = 2
DPLR - r = 4
K

0 20 40

Sequence Length

(d) S5 - Baselines

Mamba
Mamba-2
GatedDeltaNet
DeltaProduct
LSTM

Figure 4: Length generalization on A5 (a, c) and S5 (b,
d) beyond the train sequence length 16 (pink line). We
compare a 1-layer FP-Mamba with mixer variants Qt

to baselines with 2 layers.

In the previous section we introduced the
FP-RNN framework on a small RNN with
vector hidden state. Now, we extend it to
modern matrix state RNNs in Sec. 4.1 and
parametrize a dense variant of Mamba (Gu &
Dao, 2024) in Sec. 4.2. A detailed descrip-
tion of the architecture is available in App. C.2.
We compare the architecture to the baselines
Mamba (Gu & Dao, 2024), Mamba-2 (Dao &
Gu, 2024), Gated DeltaNet (Yang et al., 2025),
and LSTM (Hochreiter & Schmidhuber, 1997)
on the copy task introduced by Jelassi et al.
(2024) in Sec. 4.3 and state-tracking introduced
by Merrill & Sabharwal (2023) in Sec. 4.4. In
order to keep the number of layers at the same
order of magnitude, we use two layers for the
diagonal linear RNN baselines and one layer for
FP-Mamba and LSTM. Finally, we discuss the
required number of fixed-point iterations in the
context of state-tracking and language modeling
in Sec. 4.5.

6

4.1 Introducing Matrix States

Memory capacity is an important consideration in RNNs. In preliminary experiments, we notice a
clear gap between the performance of a Fixed-Point RNNs and Mamba in terms of copying ability.
We attribute this difference in performance to Mamba’s state-expansion which endows it with matrix
hidden states similar to linear attention, DeltaNet, or mLSTM (Katharopoulos et al., 2020; Schlag
et al., 2021a; Beck et al., 2024). In simple terms, these models use an outer product of an input-
dependent vector bt ∈ Rdstate (i.e. the key) and the input vector xt ∈ Rdinner (i.e. the value) as an input
to a matrix-valued recurrence with hidden state and transition gate Ht,λt ∈ Rdstate×dinner . The hidden
state is then contracted with another input-dependent vector ct ∈ Rdstate (i.e. the query) to get the
output y⊤

t = c⊤t Ht ∈ Rdinner :
Ht = λt ⊙Ht−1 + btx

⊤
t , (9)

This matrix-valued recurrence introduces some challenges to our fixed-point framework. Specifically,
in order to mix all the channels over the entirety of the state elements, the mixer has to be a fourth-order
tensor Qt ∈ Rdstate×dinner×dstate×dinner in

Hℓ
t = λt ⊙Hℓ

t−1 +Qt • btx
⊤
t + (I − Qt) •Hℓ−1

t , (10)
where • denotes the tensor contraction einsum(klij, ij → kl) with fourth-order identity tensor I of
the same shape as Qt. Certainly, computing the fixed-point introduced in Eq. 10 is very challenging
both in terms of computation and memory. As we will confirm in Sec. 4.2, one solution is to pass the
contracted output yt between fixed-point iterations

Hℓ
t = λt ⊙Hℓ

t−1 + bt (Qtxt)
⊤
+ bt

(
(I−Qt)y

ℓ−1
t

)⊤
. (11)

This implicitly factorizes the tensor mixer Qt into separately mixing along dimension dinner which is
used for better expressivity, and dimension dstate which is used for better memory capacity.

4.2 FP-Mamba Iteration

Let us apply the the fixed-point RNN framework to the Mamba parametrization. We represent the
hidden state as Hℓ

t , where t is the token index (i.e., indexing over the sequence dimension), and ℓ is
the fixed-point iteration index (i.e., indexing over the depth dimension). The same notation is used for
other variables to emphasize when they depend on the input and hidden state of the current iteration.
We propose the following iteration to adapt Mamba with notation from App. C.1 to the fixed-point
mechanism for matrix state RNNs in Eq. 11:

Hℓ
t = λt ⊙Hℓ

t−1 + b̄ℓ
t

(
∆tQ

ℓ
txt

)⊤
+ b̄ℓ

t

(
∆t

(
I−Qℓ

t

)
yℓ−1
t

)⊤
,

yℓ
t

⊤
= (c̄ℓt)

⊤Hℓ
t. (12)

L2-normalizing b̄ℓ
t and c̄ℓt allows to limit the Lipschitz constant according to Theorem 3.1. Further-

more, we replace the normalization term (1− λt) with Mamba’s normalization term ∆t. Expanding
yℓ−1
t yields the recurrence on the matrix state

Hℓ
t = λt ⊙Hℓ

t−1 + b̄ℓ
t(∆tQ

ℓ
txt)

⊤ + b̄ℓ
t(c̄

ℓ−1
t)⊤Hℓ−1

t (I−Qℓ
t)

⊤∆t, (13)
where the last term nicely illustrates the two components which mix the channels of the hidden states:
the low-rank matrix b̄ℓ

t(c̄
ℓ−1
t)⊤ mixes over the dimension dstate, while (I − Qℓ

t)
⊤ mixes over the

dimension dinner. This factorization significantly simplifies the fourth-order tensor mixer formulation
introduced in Eq. 10, remains expressive as discussed in App. F, and performs well in practice.

Finally, Eq. 12 can be computed as Mamba with an adjusted input x̃ℓ
t = Qℓ

t

(
xt − yℓ−1

t

)
+ yℓ−1

t ,

Hℓ
t = λt ⊙Hℓ

t−1 + b̄ℓ
t

(
∆tx̃

ℓ
t

)⊤
. (14)

In other words, one fixed-point step consists of a channel mixing using Qt, followed by a sequence
mixing using Mamba. This separation of concerns allows to speed up the parallel recurrence in
time using the Mamba implementation. To find a fixed-point, the two phases are repeated until
∥yℓ−yℓ−1∥∞

∥yℓ∥∞
< 0.1 is satisfied. After these ℓ∗ iterations, required for the model to converge to a

fixed-point, H∗
t and y∗

t present the hidden state and output of the dense matrix-valued RNN Fθ.
Similar to Mamba, we apply a gated linear unit gt ∈ Rdinner to the output, which we observe to provide
a slight improvement in performance when present within the fixed-point loop: ỹℓ

t = gt ⊙ yℓ−1
t .

7

Dependence on yℓ−1
t−1 Test Accuracy

λt Qt bt ct
0.11 ± 0.00

✓ 0.53 ± 0.02
✓ 0.45 ± 0.05

✓ ✓ 0.55 ± 0.05
✓ ✓ 0.81 ± 0.01

✓ ✓ ✓ 0.88 ± 0.01
✓ ✓ ✓ 0.86 ± 0.02

✓ ✓ ✓ ✓ 0.94 ± 0.03

Table 1: Effect of shifted hidden state depen-
dence yℓ−1

t−1 on copying at ×2 length general-
ization. Each column determines which input-
dependent component of the recurrence in Eq. 12
also depends on yℓ−1

t−1 . Performance is unlocked
by including a hidden dependence for bt and ct.

25 50 75 100

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

(a) FP-Mamba

Mixer Qt
H - r = 1
H - r = 2
H - r = 4
DPLR - r = 1
DPLR - r = 2
DPLR - r = 4
K

25 50 75 100

Sequence Length

(b) Baselines

Mamba
Mamba-2
GatedDeltaNet
LSTM

Figure 5: Sequence length generalization on the
copy task. A 1-layer FP-Mamba-H matches a 2-
layer GatedDeltaNet baseline. Note that the me-
dian number of fixed-point iterations at test time
ℓ∗ (gray vertical line) is well below the longest
training sequence length (pink line).

4.3 Shifted Hidden State Dependence yℓ−1
t−1

In preliminary experiments, we observe that even the Fixed-Point RNN with input-dependent pa-
rameters and matrix state akin to Mamba-1 is outperformed by Mamba-2 or DeltaNet (Dao & Gu,
2024; Yang et al., 2024b) on a copy task. Inspired by the short convolution in Mamba, we investigate
the effect of augmenting the input-dependence of parameters λℓ

t , b
ℓ
t , c

ℓ
t , and Qℓ

t at iteration ℓ with a
shifted hidden state dependence. In practice, this means that these are linear functions of xt as well as
the shifted previous iterate in depth yℓ−1

t−1 . We refer the reader to App. C.2 for the exact formulation
of the dependency.

In Tab. 1, we ablate the hidden state dependence for various combinations of λt, bt, ct, and a
Householder Qt. Observe that the dependence of bt and ct is crucial to enable the model to copy. In
App. C.4, we discuss why this dependence of bt and ct could be important for copying. If additionally
λt and Qt depend on yℓ−1

t−1 , the copy task is essentially solvable at ×2 length generalization. We
therefore adopt the hidden state dependence for all components in FP-Mamba.

In Fig. 5, we evaluate length generalization on the copying task. While the best-performing baseline
Gated DeltaNet is specifically designed for associative recall tasks (Yang et al., 2025), both Mamba 1
and 2 struggle with ×2 generalization. FP-Mamba closes this gap and proves the effectiveness of our
proposed modifications for better memory. We would like to highlight that the number of fixed-point
iterations ℓ∗ (gray vertical line) in FP-Mamba is well below the maximum sequence length.

4.4 State-Tracking

200 300 400 500 600 700 800 900

Train Time

0

10

20

30

40

50

M
ax

 T
es

t S
eq

 L
en

 (A
cc

 >
90

%
) r = 4

r = 1

r = 2

r = 1
r = 2

r = 4

FP-Mamba-H
FP-Mamba-H - (4, 1)
Mamba
Mamba2
GatedDeltaNet

Figure 6: Length generalization as a function of train-
ing time on A5. Wall clock time is plotted against the
longest test sequence length with > 90% accuracy for
every model. While baselines of increasing depth can-
not generalize beyond the training sequence length 16
(horizontal pink line), our proposed framework allows to
achieve much higher generalization by scaling training
time through the number of fixed-point iterations ℓ.

In Fig. 4, we evaluate the state-tracking capabili-
ties of FP-Mamba with Kronecker, Householder,
and DPLR channel mixers of r ∈ {1, 2, 4} re-
flections or ranks, respectively. In particular, we
compare our FP-Mamba to the baselines with
regards to their length generalization beyond
the training sequence length 16. As expected,
LSTM solves A5 and S5, while Mamba and
Mamba-2 are not able to learn it even at the
training sequence length. Similar to Fig. 3b,
the Kronecker structure seems to be the most
suitable for the task. But FP-Mamba based
on Householders also improves in terms of se-
quence length generalization presumably due
to its improved memory. A comparison to the
recent DeltaProduct (Siems et al., 2025) on train-
ing sequence length 128 is available in App. E.2.

8

4.5 Required Number of Iterations ℓ∗

20

40

Layer #1
r = 1 r = 2

Layer #2 Layer #3

20

40

Layer #4 Layer #5 Layer #6

20

40

Layer #7 Layer #8 Layer #9

0 250 500 750

20

40

Layer #10

0 250 500 750

Train Iteration

Layer #11

0 250 500 750

Layer #12

N
um

 It
er

s

*

Figure 7: The effective number of fixed-point iterations
for each layer of a FP-Mamba-H throughout language
pretraining on FineWeb (Penedo et al., 2024) at context
length 2048. The corresponding validation perplexities
are available in App. E.1.

A fixed-point iteration in the forward pass in-
evitably introduces sequential overhead to the
computation of a model. While this might
be acceptable for sequential generation at test
time, reduced parallelism can be inhibiting at
training time. In Fig. 1, we therefore eval-
uate FP-Mamba-H on A5 with limited num-
ber of fixed-point iterations at training time
ℓmax ∈ {2, 4, 8, 16}. We observe that the per-
formance decreases once ℓmax is lower than the
training sequence length of 16. In Fig. 6, we con-
firm that the resulting longer training times are
indeed required for good length generalization.
However, as opposed to baselines of increas-
ing depth ∈ {1, 2, 4, 6, 8}, fixed-point iterations
gain from the additional training time. Further-
more, there is room to improve efficiency, as
suggested by a simple randomization scheme
(gray stars) where ℓmax ∼ Γ(4, 1) is sampled from a Gamma distribution with mean 4 for every batch.
But most importantly, the effective number of fixed-point iterations depends on the difficulty of the
task. Indeed, Fig. 7 shows that the model automatically adapts to using less fixed-point iterations
on language pretraining at context length 2048. Similarly, on copying (Fig. 5) and and modular
arithmetic (Fig. 10), we observe that the required number of fixed-point iterations ℓ∗ is well below
the sequence length T . This suggests that the model adapts to O(T) complexity on simpler tasks
when the full state-tracking expressivity is not required.

5 Discussion Forward Backward
Mamba O(T) O(T)
FP-Mamba O ((T + CQt) ·min(ℓ∗, ℓmax)) O(T + CQt)

Table 2: Complexity of FP-Mamba in comparison to Mamba. The
cost of channel mixing with structure Qt is denoted by CQt .

A fixed-point mechanism, such as the
one introduced in this paper, endows
a parallelizable, diagonal linear RNN
with the ability to dynamically increase the sequential computation and describe a dense linear RNN
in the limit. Our results show that such a paradigm can enable both strong state-tracking and memory
capabilities with a constant number of parameters in a combined sequence and channel mixing
layer (Fig. 2). In fact, the fixed-point iteration gradually transforms a diagonal (i.e., channel-wise)
RNN into a dense (i.e., channel-mixing) RNN, thereby allowing to trade parallel computation for
expressivity (Fig. 1) without incurring additional cost during backpropagation (cf. Tab. 2).

For Fixed-Point RNNs to become competitive in practice, it is important to further understand the
trade-offs between parallel and sequential computation. In the worst case, as shown in Tab. 2, FP-
RNNs could behave like traditional, non-linear RNNs with quadratic runtime O(T 2) if the sequential
overhead ℓ∗ is linear in the sequence length T . This, however, is not necessarily a disadvantage since
FP-RNNs adapt ℓ∗ to the difficulty of the task. In this paper, we focus on introducing the framework
for FP-RNNs and leave the improvement of fixed-point convergence rates to future work.

Fixed-Point RNNs present an interesting opportunity to be fused into a single GPU kernel with
reduced memory I/O. This is an inherent advantage from performing repeated computation on the
same operands. Several open problems need to be solved to achieve that: (1) different implementations
such as sequential, parallel, or chunk-wise should converge to the same fixed-points, (2) the memory
footprint of the fixed-point iteration should satisfy current hardware limitations, and (3) alternative
sequence or channel mixer structures could unlock higher efficiency. Future progress on these
problems could enable significant speed-ups in practical implementations of Fixed-Point RNNs.

Conclusion In this paper, we presented a framework to cast a general class of dense linear RNNs as
fixed-points of corresponding diagonal linear RNNs. Fixed-Point RNNs provide a mechanism to trade
computation complexity for expressivity while uniting the expressivity of recurrent models with the
improved memory of linear attention models. Following encouraging results on toy tasks specifically
designed to assess these capabilities, we hope this paper enables more expressive sequence mixers.

9

Acknowledgments and Disclosure of Funding

We would like to thank Riccardo Grazzi and Julien Siems for the helpful discussions and comments.
Antonio Orvieto, Felix Sarnthein and Sajad Movahedi acknowledge the financial support of the
Hector Foundation. Felix Sarnthein would also like to acknowledge the financial support from the
Max Planck ETH Center for Learning Systems (CLS).

References
Ajroldi, N. plainlm: Language model pretraining in pytorch. https://github.com/
Niccolo-Ajroldi/plainLM, 2024.

Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution recurrent neural networks. In Proceedings
of The 33rd International Conference on Machine Learning, pp. 1120–1128, 2016. URL https:
//arxiv.org/abs/1511.06464.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti, S., Zou, J., Rudra, A., and Ré, C. Simple
linear attention language models balance the recall-throughput tradeoff. In Forty-first International
Conference on Machine Learning, ICML 2024, 2024. URL https://arxiv.org/abs/2402.
18668.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium models. In Advances in Neural Information
Processing Systems, pp. 688–699, 2019. URL https://arxiv.org/abs/1909.01377.

Bai, S., Koltun, V., and Kolter, J. Z. Stabilizing equilibrium models by jacobian regularization. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, pp. 554–565,
2021. URL https://arxiv.org/abs/2106.14342.

Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta mathematicae, 3(1):133–181, 1922.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova, O., Kopp, M., Klambauer, G., Brandstetter,
J., and Hochreiter, S. xlstm: Extended long short-term memory. In Advances in Neural Information
Processing Systems 38, NeurIPS 2024, 2024. URL https://arxiv.org/abs/2405.04517.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, 2018. URL https://arxiv.
org/abs/1806.07366.

Chen, Y., Zeng, Q., Ji, H., and Yang, Y. Skyformer: Remodel self-attention with Gaussian kernel
and Nystrom method. Advances in Neural Information Processing Systems, 2021. URL https:
//arxiv.org/abs/2111.00035.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,
J. Q., Mohiuddin, A., Kaiser, L., et al. Rethinking attention with performers. In International
Conference on Learning Representations, 2020. URL https://arxiv.org/abs/2009.14794.

Cirone, N. M., Hamdan, J., and Salvi, C. Genus expansion for non-linear random matrix ensembles
with applications to neural networks, 2024a. URL https://arxiv.org/abs/2407.08459.

Cirone, N. M., Orvieto, A., Walker, B., Salvi, C., and Lyons, T. Theoretical foundations of deep
selective state-space models. In Advances in Neural Information Processing Systems, volume 37,
pp. 127226–127272, 2024b. URL https://arxiv.org/abs/2402.19047.

Dao, T. and Gu, A. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, ICML
2024, 2024. URL https://arxiv.org/abs/2405.21060.

De, S., Smith, S. L., Fernando, A., Botev, A., Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., Desjardins, G., Doucet, A., Budden, D., Teh, Y. W., Pascanu, R., de Freitas, N., and
Gulcehre, C. Griffin: Mixing gated linear recurrences with local attention for efficient language
models, 2024. URL https://arxiv.org/abs/2402.19427.

10

https://github.com/Niccolo-Ajroldi/plainLM
https://github.com/Niccolo-Ajroldi/plainLM
https://arxiv.org/abs/1511.06464
https://arxiv.org/abs/1511.06464
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/1909.01377
https://arxiv.org/abs/2106.14342
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2111.00035
https://arxiv.org/abs/2111.00035
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2407.08459
https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2402.19427

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, L. Universal transformers. In
7th International Conference on Learning Representations, ICLR 2019, 2019. URL https:
//arxiv.org/abs/1807.03819.

Elman, J. L. Finding structure in time. Cognitive science, 1990.

Geiping, J., McLeish, S., Jain, N., Kirchenbauer, J., Singh, S., Bartoldson, B. R., Kailkhura, B.,
Bhatele, A., and Goldstein, T. Scaling up test-time compute with latent reasoning: A recurrent
depth approach. In ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation Models, 2025.
URL https://arxiv.org/abs/2502.05171.

Ghaoui, L. E., Gu, F., Travacca, B., Askari, A., and Tsai, A. Y. Implicit deep learning. SIAM J. Math.
Data Sci., 3:930–958, 2021. URL https://arxiv.org/abs/1908.06315.

Giannou, A., Rajput, S., Sohn, J., Lee, K., Lee, J. D., and Papailiopoulos, D. Looped transformers
as programmable computers. In International Conference on Machine Learning, ICML 2023, pp.
11398–11442, 2023. URL https://arxiv.org/abs/2301.13196.

Gonzalez, X., Warrington, A., Smith, J. T., and Linderman, S. Towards scalable and stable paral-
lelization of nonlinear RNNs. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://arxiv.org/abs/2407.19115.

Granas, A., Dugundji, J., et al. Fixed point theory, volume 14. 2003.

Graves, A. Adaptive computation time for recurrent neural networks, 2016. URL https://arxiv.
org/abs/1603.08983.

Grazzi, R., Siems, J., Franke, J. K., Zela, A., Hutter, F., and Pontil, M. Unlocking state-tracking in
linear RNNs through negative eigenvalues. In NeurIPS 2024 Workshop on Mathematics of Modern
Machine Learning, 2024. URL https://arxiv.org/abs/2411.12537.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://arxiv.org/abs/2312.00752.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long sequences with structured state spaces.
In The Tenth International Conference on Learning Representations, ICLR 2022, 2022. URL
https://arxiv.org/abs/2111.00396.

Hanson, J. and Raginsky, M. Universal simulation of stable dynamical systems by recurrent neural
nets. In Learning for Dynamics and Control, 2020. URL https://proceedings.mlr.press/
v120/hanson20a.html.

Helfrich, K., Willmott, D., and Ye, Q. Orthogonal recurrent neural networks with scaled Cayley
transform. In Proceedings of the 35th International Conference on Machine Learning, pp. 1969–
1978, 2018. URL https://arxiv.org/abs/1707.09520.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 1997.

Hochreiter, S., Bengio, Y., Frasconi, P., et al. Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies. A Field Guide to Dynamical Recurrent Neural Networks, 2001.

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Jaeger, H. The "echo state" approach to analysing and training recurrent neural networks-with an
erratum note. German National Research Center for Information Technology GMD Technical
Report, 2001.

Jelassi, S., Brandfonbrener, D., Kakade, S. M., and Malach, E. Repeat after me: Transformers are
better than state space models at copying. In Forty-first International Conference on Machine
Learning, ICML 2024, 2024. URL https://arxiv.org/abs/2402.01032.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International Conference on Machine Learning, 2020. URL
https://arxiv.org/abs/2006.16236.

11

https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/1908.06315
https://arxiv.org/abs/2301.13196
https://arxiv.org/abs/2407.19115
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/2411.12537
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://proceedings.mlr.press/v120/hanson20a.html
https://proceedings.mlr.press/v120/hanson20a.html
https://arxiv.org/abs/1707.09520
https://arxiv.org/abs/2402.01032
https://arxiv.org/abs/2006.16236

Korsky, S. A. On the computational power of RNNs. PhD thesis, Massachusetts Institute of
Technology, 2019. URL https://dspace.mit.edu/handle/1721.1/127704.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R., and Zemel, R. Reviving
and improving recurrent back-propagation. In Proceedings of the 35th International Conference
on Machine Learning, pp. 3082–3091, 2018. URL https://arxiv.org/abs/1803.06396.

Lim, Y. H., Zhu, Q., Selfridge, J., and Kasim, M. F. Parallelizing non-linear sequential models over
the sequence length. In The Twelfth International Conference on Learning Representations, ICLR
2024, 2024. URL https://arxiv.org/abs/2309.12252.

Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q., Jiao, J., and Liu, Y. Vmamba: Visual
state space model. In Advances in Neural Information Processing Systems 38, NeurIPS 2024, 2024.
URL https://arxiv.org/abs/2401.10166.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2017. URL https://arxiv.org/abs/1711.05101.

Martin, E. and Cundy, C. Parallelizing linear recurrent neural nets over sequence length. In
6th International Conference on Learning Representations, ICLR 2018, 2018. URL https:
//arxiv.org/abs/1709.04057.

Merrill, W. and Sabharwal, A. The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics, 11:531–545, 2023. URL https:
//arxiv.org/abs/2207.00729.

Merrill, W., Petty, J., and Sabharwal, A. The illusion of state in state-space models. In Forty-first
International Conference on Machine Learning, ICML 2024, 2024. URL https://arxiv.org/
abs/2404.08819.

Miyato, T., Löwe, S., Geiger, A., and Welling, M. Artificial kuramoto oscillatory neurons. In The
Thirteenth International Conference on Learning Representations, 2025. URL https://arxiv.
org/abs/2410.13821.

Nguyen, E., Poli, M., Durrant, M. G., Kang, B., Katrekar, D., Li, D. B., Bartie, L. J., Thomas, A. W.,
King, S. H., Brixi, G., et al. Sequence modeling and design from molecular to genome scale with
Evo. Science, 2024. URL https://www.science.org/doi/10.1126/science.ado9336.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., and De, S. Resurrecting
recurrent neural networks for long sequences. In International Conference on Machine Learning,
2023. URL https://arxiv.org/abs/2303.06349.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty of training recurrent neural networks. In
International Conference on Machine Learning, 2013. URL https://arxiv.org/abs/1211.
5063.

Penedo, G., Kydlíček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V., and Wolf,
T. The fineweb datasets: Decanting the web for the finest text data at scale. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.
URL https://arxiv.org/abs/2406.17557.

Peng, B., Goldstein, D., Anthony, Q., Albalak, A., Alcaide, E., Biderman, S., Cheah, E., Du, X.,
Ferdinan, T., Hou, H., et al. Eagle and Finch: RWKV with matrix-valued states and dynamic
recurrence. In First Conference on Language Modeling, 2024. URL https://arxiv.org/abs/
2404.05892.

Peng, B., Zhang, R., Goldstein, D., Alcaide, E., Du, X., Hou, H., Lin, J., Liu, J., Lu, J., Merrill, W.,
Song, G., Tan, K., Utpala, S., Wilce, N., Wind, J. S., Wu, T., Wuttke, D., and Zhou-Zheng, C.
Rwkv-7 "goose" with expressive dynamic state evolution. In Second Conference on Language
Modeling, 2025. URL https://arxiv.org/abs/2503.14456.

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D., Sun, W., and Zhong, Y. HGRN2: Gated linear
RNNs with state expansion. In First Conference on Language Modeling, 2024. URL https:
//arxiv.org/abs/2404.07904.

12

https://dspace.mit.edu/handle/1721.1/127704
https://arxiv.org/abs/1803.06396
https://arxiv.org/abs/2309.12252
https://arxiv.org/abs/2401.10166
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1709.04057
https://arxiv.org/abs/1709.04057
https://arxiv.org/abs/2207.00729
https://arxiv.org/abs/2207.00729
https://arxiv.org/abs/2404.08819
https://arxiv.org/abs/2404.08819
https://arxiv.org/abs/2410.13821
https://arxiv.org/abs/2410.13821
https://www.science.org/doi/10.1126/science.ado9336
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2503.14456
https://arxiv.org/abs/2404.07904
https://arxiv.org/abs/2404.07904

Rumelhart, D. E., Smolensky, P., McClelland, J. L., and Hinton, G. Sequential thought processes in
pdp models. Parallel Distributed Processing: Explorations in the Microstructures of Cognition,
1986.

Sarrof, Y., Veitsman, Y., and Hahn, M. The expressive capacity of state space models: A formal
language perspective. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://arxiv.org/abs/2405.17394.

Saunshi, N., Dikkala, N., Li, Z., Kumar, S., and Reddi, S. J. Reasoning with latent thoughts: On the
power of looped transformers. In International Conference on Learning Representations (ICLR),
2025. URL https://arxiv.org/abs/2502.17416.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transformers are secretly fast weight programmers. In
International Conference on Machine Learning, 2021a. URL https://arxiv.org/abs/2102.
11174.

Schlag, I., Munkhdalai, T., and Schmidhuber, J. Learning associative inference using fast weight
memory. In International Conference on Learning Representations (ICLR), 2021b. URL https:
//openreview.net/forum?id=TuK6agbdt27.

Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F., Vishkin, U., Goldblum, M., and Goldstein, T.
Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks.
In Advances in Neural Information Processing Systems 34: NeurIPS 2021, pp. 6695–6706, 2021.
URL https://arxiv.org/abs/2106.04537.

Schöne, M., Rahmani, B., Kremer, H., Falck, F., Ballani, H., and Gladrow, J. Implicit language models
are rnns: Balancing parallelization and expressivity. In Forty-second International Conference on
Machine Learning, 2025. URL https://arxiv.org/abs/2502.07827.

Siegelmann, H. T. and Sontag, E. D. On the computational power of neural nets. In Proceedings of
the fifth Annual Workshop on Computational Learning Theory, 1992.

Siems, J., Carstensen, T., Zela, A., Hutter, F., Pontil, M., and Grazzi, R. Deltaproduct: Increasing the
expressivity of deltanet through products of householders. In The Thirty-ninth Annual Conference
on Neural Information Processing Systems, 2025. URL https://arxiv.org/abs/2502.10297.

Smith, J. T., Warrington, A., and Linderman, S. Simplified state space layers for sequence modeling.
In International Conference on Learning Representations, 2023. URL https://arxiv.org/
abs/2208.04933.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., Wang, J., and Wei, F. Retentive network:
A successor to transformer for large language models, 2023. URL https://arxiv.org/abs/
2307.08621.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder, S., and
Metzler, D. Long range arena: A benchmark for efficient transformers. In International Conference
on Learning Representations, 2020. URL https://arxiv.org/abs/2011.04006.

Terzic, A., Hersche, M., Camposampiero, G., Hofmann, T., Sebastian, A., and Rahimi, A. On the
expressiveness and length generalization of selective state space models on regular languages.
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 20876–20884, 2025. URL
https://arxiv.org/abs/2412.19350.

Trockman, A., Harutyunyan, H., Kolter, J. Z., Kumar, S., and Bhojanapalli, S. Mimetic initialization
helps state space models learn to recall. In Workshop on Neural Network Weights as a New Data
Modality, 2024. URL https://arxiv.org/abs/2410.11135.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need. Advances in Neural Information Processing Systems,
2017. URL https://arxiv.org/abs/1706.03762.

Waleffe, R., Byeon, W., Riach, D., Norick, B., Korthikanti, V., Dao, T., Gu, A., Hatamizadeh, A.,
Singh, S., Narayanan, D., et al. An empirical study of Mamba-based language models, 2024. URL
https://arxiv.org/abs/2406.07887.

13

https://arxiv.org/abs/2405.17394
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2102.11174
https://arxiv.org/abs/2102.11174
https://openreview.net/forum?id=TuK6agbdt27
https://openreview.net/forum?id=TuK6agbdt27
https://arxiv.org/abs/2106.04537
https://arxiv.org/abs/2502.07827
https://arxiv.org/abs/2502.10297
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2011.04006
https://arxiv.org/abs/2412.19350
https://arxiv.org/abs/2410.11135
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2406.07887

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. Linformer: Self-attention with linear
complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin, A., and Mikolov, T.
Towards AI-complete question answering: A set of prerequisite toy tasks, 2015. URL https:
//arxiv.org/abs/1502.05698.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. Gated linear attention transformers with
hardware-efficient training. In Forty-first International Conference on Machine Learning, ICML
2024, 2024a. URL https://arxiv.org/abs/2312.06635.

Yang, S., Wang, B., Zhang, Y., Shen, Y., and Kim, Y. Parallelizing linear transformers with the
delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024b. URL https://arxiv.org/abs/2406.06484.

Yang, S., Kautz, J., and Hatamizadeh, A. Gated delta networks: Improving mamba2 with delta
rule. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://arxiv.org/abs/2412.06464.

Zucchet, N. and Orvieto, A. Recurrent neural networks: vanishing and exploding gradients are not
the end of the story. Advances in Neural Information Processing Systems, pp. 139402–139443,
2024. URL https://arxiv.org/abs/2405.21064.

14

https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2412.06464
https://arxiv.org/abs/2405.21064

Appendices

A Background and Literature Review (Sec. 2) 16

B Fixed-Points as an RNN Layer (Sec. 3) 17

B.1 Proof for Theorem 3.1 (Lipschitz constant of fθ(x,h) is < 1) 17

B.2 Effect of normalization factor (I−Λt) on class of matrices At 17

B.3 Implicit Differentiation for Optimizing Fixed-Point RNNs 18

B.4 Proof for Theorem 3.2 (Gradient of fθ(x,h) is a descent direction of Fθ(x)) 18

C Fixed-Point Mamba (Sec. 4) 19

C.1 Mamba: Selective SSMs . 19

C.2 FP-Mamba Parametrization . 19

C.3 Parameterizing the mixers . 19

C.4 Dependence on Ht−1 in theory . 20

D Evaluation 21

D.1 Task Descriptions . 21

D.2 Experimental Details . 21

D.3 Heuristics to reduce the number of fixed-point iterations 22

E Additional Experimental Results 23

E.1 Language Modeling . 23

E.2 Long-Range State-Tracking . 23

E.3 Reasoning on CatbAbI . 24

E.4 Modular Arithmetic Task Results . 25

E.5 Effect of ℓmax on test performance and number of iterations ℓ∗ 26

E.6 Sequential vs Parallel Fixed-Point Iteration . 26

F Low-Rank Expressiveness 27

15

A Background and Literature Review (Sec. 2)

Since their introduction (Rumelhart et al., 1986; Elman, 1990), RNNs have significantly contributed to
the evolution of machine learning methods for sequential data, marked by key innovations such as the
LSTM (Hochreiter & Schmidhuber, 1997) and Echo-State Networks (Jaeger, 2001). However, two
significant challenges lead to the widespread adoption of the Transformer architecture (Vaswani et al.,
2017): first, GPU hardware is optimized for large-scale matrix multiplications. Second, recurrent
models are notoriously difficult to train due to vanishing and exploding gradients (Hochreiter et al.,
2001; Pascanu et al., 2013).
Beyond softmax attention. The quadratic runtime complexity of Transformers motivated research
on the linearization of its attention mechanism (Wang et al., 2020; Chen et al., 2021; Choromanski
et al., 2020) – a technique that inevitably brings the sequence mixing mechanism closer to RNN-
like processing (Katharopoulos et al., 2020; Schlag et al., 2021a). Recently, improvements on the
long-range-arena benchmark (Tay et al., 2020) with state-space models (Gu et al., 2022; Smith et al.,
2023) sparked a renewed interest in recurrent models (Gu & Dao, 2024; Sun et al., 2023; De et al.,
2024; Qin et al., 2024; Peng et al., 2024; Yang et al., 2024a). New efficient token mixing strategies
such as Mamba (Gu & Dao, 2024) showcase impressive results in language modeling (Waleffe et al.,
2024) while offering linear runtime complexity. These models are fundamentally diagonal linear
RNNs, which enables parallel algorithms such as parallel scans (Martin & Cundy, 2018) and fast
linear attention based implementations (Yang et al., 2024b; Dao & Gu, 2024).
Expressivity of Diagonal vs. Dense RNNs. It was recently pointed out by Cirone et al. (2024b) that
the diagonality in the hidden-to-hidden state transition inevitably causes expressivity issues, showcas-
ing a stark distinction with classic dense nonlinear RNNs, known to be Turing-complete (Siegelmann
& Sontag, 1992; Korsky, 2019) and fully expressive in a dynamical systems sense (Hanson & Ragin-
sky, 2020). Merrill et al. (2024) pointed at a similar issue with diagonality using tools from circuit
complexity: in contrast to e.g. LSTMs, diagonal linear RNNs can not express state-tracking algo-
rithms. This issue sparked interest in designing fast non-diagonal recurrent mechanisms and, more
generally, in providing architectures capable of solving state-tracking problems. The first example of
such an architecture is DeltaNet (Yang et al., 2024b) employing a parallelizable Housholder reflection
as a state transition matrix. Endowing this matrix with negative eigenvalues improves tracking in
SSMs (Grazzi et al., 2024). In concurrent work, Siems et al. (2025) show that adding more reflections
improves state-tracking.
Toy tasks. Several works propose toy tasks to identify specific shortcomings of modern archi-
tectures. Specifically, Beck et al. (2024) use the Chomsky hierarchy to organize formal language
tasks, of which a modular arithmetic task remains unsolved. With similar motivations, Merrill &
Sabharwal (2023) introduce a set of word-problems for assessing state-tracking capabilities, among
which the A5 and S5 tasks remain unsolved by Transformers and SSMs. Motivated by Transformers
outperforming RNNs in memory capabilities, Jelassi et al. (2024) introduce a copying task as a
fundamental benchmark for memory. We focus on these tasks to evaluate our Fixed-Point RNN
framework.
Recurrence in Depth. Machine learning models that reduce an intrinsic energy through iterations
have been an object of interest for decades (Hopfield, 1982; Miyato et al., 2025). For example, recur-
rence in depth can increase the expressivity of Transformers (Dehghani et al., 2019; Schwarzschild
et al., 2021; Giannou et al., 2023; Geiping et al., 2025) and is sometimes also understood as adaptive
compute time (Graves, 2016). Under certain assumptions, iterated blocks can converge to an equilib-
rium point where they implicitly describe an expressive function (Bai et al., 2019; Ghaoui et al., 2021).
Recently, this technique has been used to approximate non-linear RNNs with a fixed-point iteration
of parallelizable linear RNNs (Lim et al., 2024; Gonzalez et al., 2024). In concurrent work to ours,
Schöne et al. (2025) apply an iteration in depth to Mamba-2 and Llama blocks to increase expressivity
and show promising results of their implicit language models. In contrast, we derive an explicit
fixed-point iteration towards a dense linear RNN with a theoretically motivated parameterization, and
focus on theoretical toy tasks.

16

B Fixed-Points as an RNN Layer (Sec. 3)

B.1 Proof for Theorem 3.1 (Lipschitz constant of fθ(x,h) is < 1)

Theorem 3.1. Let fθ(x,h) be the diagonal linear RNN with input-independent Λ and Q

fθ : (x,h) 7→ h′, h′
t = Λh′

t−1 + (I−Λ) (QBtxt + (I−Q)ht) . (7)

If ||Λ||2< 1 and ||I−Q||2< 1, then fθ(x,h) has a Lipschitz constant < 1 in h. Proof in App. B.1.

We start the proof with the unrolled form of the linear RNN

fθ(x,h)t =

t∑
τ=0

Λt−τ (I−Λ) (QBτxτ + (I−Q)hτ) .

Note that in order to prove the theorem, we need to show that

∥fθ(x,h)t − fθ(x,h
′)t∥2 < ∥h− h′∥2 ,

where h and h′ are two arbitrary hidden states. From the unrolled form, this is equivalent to∥∥∥∥∥
t∑

τ=0

Λt−τ (I−Λ) (I−Q) (hτ − h′
τ)

∥∥∥∥∥
2

< ∥h− h′∥2 . (15)

From the Cauchy-Schwarz inequality, we can upper-bound the LHS of Eq. 15 as∥∥∥∥∥
t∑

τ=0

Λt−τ (I−Λ) (I−Q) (hτ − h′
τ)

∥∥∥∥∥
2

≤

∥∥∥∥∥
t∑

τ=0

Λt−τ

∥∥∥∥∥
2

· ∥I−Λ∥2 · ∥I−Q∥2 ·
∥∥h≤t − h′

≤t

∥∥
2
,

where h≤t corresponds to the concatenation of the hidden states hτ for τ ≤ t. Now to prove
this product is < ∥h− h′∥2, consider the terms individually. Since

∥∥h≤t − h′
≤t

∥∥
2
≤ ∥h− h′∥2,

the remaining terms need to be < 1. Assuming Λ is contractive, we use the Neumann series∑t
τ=0 Λ

t−τ ≤ (I−Λ)−1 and get∥∥∥∥∥
t∑

τ=0

Λt−τ

∥∥∥∥∥
2

· ∥I−Λ∥2 ≤ 1.

Finally, it remains to show that
∥I−Q∥2 < 1.

This condition can be satisfied if I−Q is contractive. This completes our proof.

B.2 Effect of normalization factor (I−Λt) on class of matrices At

For the sake of exposition, the introduction of the implicit parametrization in Sec. 3.1 did not consider
input normalization (I − Λt). However, as discussed in Sec. 3.2 this is a crucial component to
stabilize the recurrence in time. To derive the representable dense matrices At in the presence of the
normalization factor (I−Λt), let us start by assuming a fixed-point was found according to Thm. 3.2:

h∗
t = Λth

∗
t−1 + (I−Λt)(QtBtxt + (I−Qt)h

∗
t

= Λth
∗
t−1 + (I−Λt)QtBtxt + (I−Λt)(I−Qt)h

∗
t .

Rearranging the terms allows to move h∗
t to the other side

(I− (I−Λt)(I−Qt))h
∗
t = Λth

∗
t−1 + (I−Λt)QtBtxt.

Moving (I− (I−Λt)(I−Qt)) back to other side yields

At = (I− (I−Λt)(I−Qt))
−1Λt

=
(
Λ−1

t (I− (I−Λt)(I−Qt))
)−1

=
(
Λ−1

t − (Λ−1
t − I)(I−Qt)

)−1

=
(
I+ (Λ−1

t − I)Qt

)−1

17

Following the standard assumptions that 0 ⪯ Λt,Qt ⪯ I, the matrix (I+ (Λ−1
t − I)Qt) is full rank

and ⪰ I. Therefore its inverse At exists and is contractive. The expressivity of At is only limited
if Λt ≈ I. This however would also be problematic for diagonal SSM and therefore the Mamba
initialization is bias towards Λt ≺ I. Thus, the normalization does not pose a significant problem for
the expressivity of At in practice.

B.3 Implicit Differentiation for Optimizing Fixed-Point RNNs

One advantage of converging to a fixed-point over general layer looping lies in model training. Since
the gradient with respect to h0 is not needed, implicit differentiation can be used to avoid storing
and backpropagating through the computational graph of the fixed-point iteration, as discussed
by Liao et al. (2018), Bai et al. (2019). To see this, consider the Jacobian across ℓ iterations
Jℓ
x =

∂fθ
∂x (x,hℓ−1). Since hℓ−1 depends on x as well, we can recursively express Jℓ

x in terms of
Jℓ−1
x and the Jacobians of a single iteration Jx(h) =

∂fθ
∂x (x,h) and Jh =

∂fθ
∂h (x,h) by applying

the chain rule

Jℓ
x = Jx(h

ℓ−1) + Jhℓ−1 · Jℓ−1
x . (16)

Instead of unrolling, we can implicitly differentiate h∗ = fθ(x,h
∗) w.r.t. x, which yields J∗

x =
Jx(h

∗) + Jh∗ · J∗
x. Given the conditions on the Lipschitz constant of fθ(x,h) in h, we can assume

Jhℓ to be contractive and therefore (I− Jhℓ) to be positive definite and invertible. This allows to
reformulate as

J∗
x = (I− Jh∗)−1 · Jx(h

∗). (17)

The case for J∗
θ works analogously. This means that the gradient w.r.t. the input x and parameters θ

can be computed at the fixed-point with the cost of solving (I−Jh∗)−1. Bai et al. (2021) and Schöne
et al. (2025) approximate this inverse using the first terms of the Neumann series, which leads to a
truncated backpropagation formulation or phantom gradients, incurring sequential overhead. For
iteration with hidden state dependence, we can avoid this inversion altogether with Thm. 3.2:

Theorem 3.2. Let fθ(x,h) have Lipschitz constant < 1 and fixed-point h∗. If the Jacobians
∂fθ
∂x (x,h) and ∂fθ

∂h (x,h) are equal, then the gradient ∇θL(fθ(x,h),y) of the loss L(·,y) for a
target y at the fixed point h = h∗ is a descent direction of L(Fθ(x),y). Proof in App. B.4.

In simple terms, Thm. 3.2 shows that parameterizing fθ(x,h) such that Jx(h) = Jh guarantees
optimization progress even if the gradient is computed only at the fixed-point. In practice, we observe
that adhering to this condition in the form of hidden state dependence speeds-up the convergence of
the model during training.

B.4 Proof for Theorem 3.2 (Gradient of fθ(x,h) is a descent direction of Fθ(x))

We start the proof by setting δ := ∂L
∂f and Jx := Jx(h

∗). Then, we can write the backward

propagation as ∂L
∂x = (J∗

x)
⊤
δ. In order to prove that the gradient computed at the fixed-point is a

descent direction, we need to show that J⊤
x δ is in the direction of (J∗

x)
⊤
δ, or in other words, we

have δ⊤J∗
xJ

⊤
x δ ≥ 0. This is equivalent to showing that the symmetric part of the matrix J∗

xJ
⊤
x is

positive semi-definite.

Now note that from Eq. 17 we have: J∗
xJ

⊤
x = (I− Jh)

−1
JxJ

⊤
x . From our assumption Jx = Jh :=

J, we need to show that the symmetric part of the matrix (I− J)
−1

JJ⊤ is positive semi-definite.
Note that (I− J)−1 and J commute by application of the Neumann series

(I− J)
−1

J =

∞∑
i=1

Ji = J

∞∑
i=0

Ji = J (I− J)
−1

,

which yields (I− J)
−1

JJ⊤ = J (I− J)
−1

J⊤. Going back to the definition of positive semi-
definiteness, we need to show that δ⊤J (I− J)

−1
J⊤δ > 0 for all δ. Setting ω = J⊤δ, this is

equivalent to having ω⊤ (I− J)
−1

ω. Note that from our assumption for the Lipschitz constant of the
function, we have ∥J∥2 < 1, which means (I− J) and (I− J)

−1 have strictly positive eigenvalues.
This completes our proof.

18

C Fixed-Point Mamba (Sec. 4)

C.1 Mamba: Selective SSMs

Mamba is a multi-layer network, with an embedding size of dmodel. A Mamba block is a matrix
state diagonal linear RNN which first expands a sequence of embeddings by a factor of e to size
dinner = e × dmodel, and then computes an element-wise recurrence on the matrix hidden states
Ht ∈ Rdstate×dinner as

Ht = λt ⊙Ht−1 + bt (∆txt)
⊤
, (18)

where λt ∈ Rdstate×dinner is an input-dependent state transition vector, bt ∈ Rdstate an input transi-
tion vector, xt ∈ Rdinner the input, and ∆t ∈ Rdinner×dinner a diagonal matrix which acts an input
normalization term. The matrices are parameterized as:

λt = exp (−λlog∆t) , λlog = exp (ω) ,

∆t = diag (softplus (W∆xt + b∆)) , bt = Wbxt,

with ω ∈ Rdstate×dinner , W∆ ∈ Rdinner×dinner , Wb ∈ Rdstate×dinner , and b∆ ∈ Rdinner . The output of a
Mamba block yt ∈ Rdinner is a contraction of the matrix hidden state with ct ∈ Rdstate

y⊤
t = c⊤t Ht, ct = Wcxt,

for Wc ∈ Rdstate×dinner . Note that Mamba proposes a skip connection of yt+D⊙xt, where D ∈ Rdinner

is an input-independent vector. Finally, the model output is usually scaled by a gated linear unit
(GLU) as ỹt = gt ⊙ yt, where gt = SiLU (Wgxt) is a non-linear function of the input.

C.2 FP-Mamba Parametrization

In our design of FP-Mamba, we aim to minimize our interventions in the underlying architecture
in order to showcase the adaptability of our proposed framework. Consequently, we do not modify
the careful parameterization of λ and the weight-tied normalization factor ∆t proposed in the
original Mamba formulation, and instead rely on layer normalization to limit the Lipschitz constant
of the Mamba function. Specifically, in the FP-Mamba model we redefine bt and ct as bℓ

t =

Wy
by

ℓ−1
t−1 + Wx

bxt and ct = Wy
cy

ℓ−1
t−1 + Wx

cxt. The remaining components, namely the state
transition matrix λt and the GLU component are parameterized identically to Mamba.

The normalization is applied to the output of the model yt after each iteration. While in theory
projecting the output onto the unit sphere does not guarantee a Lipschitz constant < 1 , we observe
that in practice, this helps with stabilizing the forward and backward pass of the fixed-point RNN
framework. We attribute this observation to the fact that achieving a > 1 Lipschitz constant requires
the output of the RNN to become its additive inverse after an iteration, which rarely happens in
practice.

C.3 Parameterizing the mixers

We parameterize the channel mixer variants as follows:

• Diagonal Plus Low Rank: we define uℓ
it = SiLU

(
Wx

ui
xt +Wy

ui
yℓ−1
t−1

)
and αit =

σ
((

wx
αi

)⊤
xt + (wy

αi
)⊤yℓ−1

t−1 + bαi

)
, where SiLU(.) and σ(.) are the SiLU and the sig-

moid functions, respectively.
• Householder Reflections: we define similar to the diagonal plus low-rank variant.

• Kronecker: we define Dℓ,n
t = diag

(
σ
(
Wx

Dnxt +Wy
Dny

ℓ−1
t−1 + bDn

))
and Kn

t =

mat
(
SiLU

(
Wx

Knxt +Wy
Kny

ℓ−1
t−1 + bKn

))
for n = 1, 2, where diag(.) is the operator

transforming a vector into a diagonal matrix, and mat(.) is the operator transforming a size
d vector into a

√
d×

√
d matrix.

For the diagonal plus low rank and the Householder reflections mixers, we L2 normalize the vectors
uit to achieve the unit vector formulation. Note that this does not guarantee a contractive diagonal
plus low rank structure, which is why the first variant of the channel mixers are excluded form our

19

FP-RNN experiments. For the Kronecker variant, we define the matrices Kn
t as symmetric and

positive semi-definite using the Cholesky decompositon structure, and normalize them by their largest
eigenvalues. The largest eigenvalue is found using the power iterations method, which we found to
be much more efficient for small-scale matrices compared to the functions in the PyTorch framework
provided for this purpose.

In all of these parameterization, computing a matrix vector product for each fixed-point iteration can
be performed in subquadratic time. Specifically, for the DPLR and the Householder formulation, the
computation can be performed in linear time in state-size, while in the kronecker product variant, it
can be performed in

√
d×

√
d for d state-size.

C.4 Dependence on Ht−1 in theory

We hypothesize that the dependence of the matrices λt, bt, ct, and Qt may provide a mechanism for
the model to retain and manipulate positional information over the sequence. Jelassi et al. (2024)
and Trockman et al. (2024) show that position embeddings could play a crucial role in copy tasks by
acting similar to hashing keys in a hashing table. We extend their mechanistic approach to understand
why two-layers of linear attention could need Hℓ−1

t−1 to generate appropriate position embeddings for
the hashing mechanism.

Specifically consider y⊤
t = c⊤t Ht with Ht = Ht−1 + btx

⊤
t , assuming that a linear RNN with

matrix-state can express linear attention by setting λt ≈ 1 ∀t. Upon receiving an input sequence
{x1,x2, . . . ,xδ} of length δ followed by a delimiter element xs, the model is expected to copy
the input sequence autoregressively, i.e. to start producing {x1,x2, . . . ,xδ} at output positions
δ + 1 to 2δ. Following Arora et al. (2024), the second layer could use position embeddings as
hashing keys to detect and copy each token. More concretely, if the first layer receives a sequence
{x1,x2, . . . ,xδ,xs,x1,x2, . . . ,xδ−1} of size 2δ and augments it with shifted position embeddings
{pi}δi=1 to produce the hidden sequence {x1+p1,x2+p2, . . . ,xδ+pδ,xs+p1,x1+p2, . . . ,xδ−1+
pδ}, then a second layer can act as a linear transformer and produce the sequence {x1,x2, . . . ,xδ}
at output positions δ + 1 to 2δ. In the following, we focus on the conditions for the first layer to
produce the shifted position embeddings.

We start by assuming that the first layer has a skip-connection y⊤
t = c⊤t Ht + x⊤

t . In this case, the
model can augment the inputs with positional embeddings {pi}δi=1 if it is able to produce shifted
encodings pt−δ = pt for δ < t using p⊤

t = c⊤t Ht. This condition can be unrolled as

p⊤
t−δ = c⊤t−δHt−δ

!
= c⊤t Ht−δ + c⊤t

t∑
τ=t−δ+1

bτx
⊤
τ = p⊤

t ∀δ < t.

and is satisfied if the equations

c⊤t−δHt−δ
!
= c⊤t Ht−δ and c⊤t

t−1∑
τ=t−δ+1

bτx
⊤
τ

!
= −c⊤t btx

⊤
t

hold. Such conditions could only be true if bt and ct are a function of the previous hidden state
Ht−1 because they need to be able to retain information about {xi}t−1

i=t−δ+1. While not an explicit
mechanism for copying, this derivation provides insight into why a dependency on Ht−1 could be
helpful.

20

D Evaluation

D.1 Task Descriptions

In this section, we provide task descriptions for the tasks used in the main text.

State Tracking The task of tracking state in the alternating group on five elements (A5) is one
of the tasks introduced in (Merrill et al., 2024) to show that linear RNNs and SSMs cannot solve
state-tracking problems. A5 is the simplest subset of S5, the word problem involving tracking the
permutation of five elements. In these tasks, a model is presented with an initial state and a sequence
of permutations. As the output, the model is expected to predict the state that results from applying
the permutations to the initial state. Solving these task with an RNN requires either a dense transition
matrix or the presence of non-linearity in the recurrence. It is therefore a good proxy to verify the
state-tracking ability of FP-Mamba. In order to investigate the out-of-distribution generalization
ability of the model, we train the model with a smaller train sequence length and evaluate for larger
(more than ×3) sequence lengths.

Copying We use the copy task (Jelassi et al., 2024) in order to assess the memory capabilities of
FP-Mamba. In this task, the model is presented with a fixed-size sequence of elements, and expected
to copy a subsequence of it after receiving a special token signaling the start of the copying process.
In order to investigate the out-of-distribution generalization ability of the model, we train the models
with sequence length < 50, and assess the ×2 length generalization following Jelassi et al. (2024)
and Trockman et al. (2024).

D.2 Experimental Details

In this section, we will provide our experiment setup for the state tracking, copying, and mod
arithmetic tasks. The code is available at github.com/dr-faustus/fp-rnn.

State tracking. We train all models for 5 epochs, with a batch size of 512, 3 different random
seeds, learning rate set to 0.0001, weight decay set to 0.01, gradient clipping 1.0, and the AdamW
optimizer (Loshchilov & Hutter, 2017). For the train data, we sample 16M datapoints from all the
possible permutations for a sequence length of 16, and split the data with a ratio of 4 to 1 for train
and validation samples. For the test data, we sample 500k sequences of length 50. We use the
implementation and the hyperparameters provided by Merrill et al. (2024) both for data generation
and train/test. We train the model for sequence length 16 on the train sample, and evaluate for
sequence lengths 2 through 50 on the test sample. Consequently, each epoch of training consists of
25428 iterations, making the total number of iterations during training to be around 1.25M. Note that
the likelihood of overlap between the train and test samples is negligible since exhaustive generation
of samples in S5 and A5 at sequence length k would amount to 60k and 30k, respectively.

Copying. We train all models for 10000 iterations, batch size 128, 3 different random seeds,
learning rate 0.00001, weight decay 0.1, gradient clipping 1.0, the AdamW optimizer, and with linear
learning rate decay after a 300 iterations warmup. The data is sampled randomly at the start of the
training/evaluation. We use a vocab size of 29, a context length of 256, and train the model for copy
sequence length in the range 5 to 50, and evaluate for the range 5 to 100. we use the implementation
and the hyperparameters provided by Jelassi et al. (2024).

Mod arithmetic. Our models are trained for 100000 iterations, batch size 256, learning rate 0.001,
weight decay 0.1, and no gradient clipping. The learning rate is decayed using a cosine scheduling
by a factor of 0.001 after 10000 iterations of warmup. The data is randomly sampled at the start of
training/evaluation. We use a vocab size of 12, with context length 256, and train data sequence length
in the range 3 to 40, and the test/evaluation data in the range 40 to 256. We use the implementation
and the hyperparameters provided by Beck et al. (2024) and Grazzi et al. (2024), which are the same
hyperparameters used for training and evaluating the baselines.

Language Modeling. For the language modeling task, we use the implmentation provided
by Ajroldi (2024). We use a batchsize of 16 × 4 × 4 = 256, training on 4 A100-80GB GPUs
with 4 accumulation steps, which is the batchsize used in the 2.5B setting in (Gu & Dao, 2024). The

21

https://github.com/dr-faustus/fp-rnn

learning rate is optimized for the Mamba model (0.004) and train all models with this learning rate,
with cosine warmup with 0.1 steps. We use the AdamW optimizer with weight decay set to 0.1 and
β1, β2 set to 0.9, 0.95.

Training Time on A5. In order to compare the proposed model to the baselines in terms of
computation time, we train all of the baselines and our proposed model using the same hardware
(A100-80GB gpus) on the A5 task. We present the results in Fig. 6. Our Fixed-Point Mamba is
trained at different maximum number of fixed-point iterations: between 2 (green) and 16 (blue), or
sampled from the Gamma distribution Γ(4, 1) with mean 4 (gray).

catbAbI In this experiment, we use the setting provided by Schlag et al. (2021b). We optimize the
learning rates on Mamba, and use the same learning rate to train FP-Mamba, which we found to be
5× 10−4. We use a batch size of 256, along with short convolutions, and 1, 2, or 4 layers. We set the
maximum number of iterations ℓmax to 100.

D.3 Heuristics to reduce the number of fixed-point iterations

Given the importance of scalability in current machine learning research, an implicit network needs
to be as efficiently designed and implemented as possible. While our theoretical framework improves
upon the memory and computational requirements on the backward pass, the forward, and especially
finding the fixed-point through fixed-point iterations needs further consideration. In our preliminary
experiments, we discover two heuristics that can help with improving this aspect significantly.

The first heuristic is relaxing our definition of convergence to the fixed-point during training. We
observe that the number of iterations required to find the fixed-point for the sequences in the model
usually has a power-law distribution, with certain outliers in each batch elongating the convergence
time. In our experiments, we notice very little difference in the performance of the converged model
when we exclude these sequences from our stopping criterion. Consequently, during training, we
continue the fixed-point iterations procedure until a certain percentage of the datapoints in the batch
(usually set to 75%) satisfy our criteria for convergence.

The second heuristic involves using a momentum-like update rule to accelerate the convergence of
fixed-point iterations for certain sequences. Specifically, we observe that by setting the fixed-point
update rule to hℓ+1 = δ · fθ(x,hℓ) + (1 − δ) · hℓ for some δ ∈ [0, 1], we can accelerate the
convergence for certain sequences that are particularly slow to converge. Since this update rule can
result in a biased approximation of the fixed-point, we implement a patience-based system that starts
with δ = 1, and reduces the value of δ exponentially when the residues fail to improve.

22

E Additional Experimental Results

E.1 Language Modeling

0 100 200 300 400 500 600 700 800

Train Iteration

25

30

35

40

45

50

Va
lid

 P
er

pl
ex

ity
Mamba
FP-Mamba-H (r = 1)
FP-Mamba-H (r = 2)
FP-Mamba-K

Figure 8: The validation perplexity of the Mamba model vs. FP-Mamba-K and FP-Mamba-H with r ∈ {1, 2}
reflections. Note that all of the hyperparameters of the models are identical for fair comparison.

In order to confirm the utility of the fixed-point framework in non-state-tracking settings, we per-
formed an experiment on language modeling. Specifically, we compare the performance of a Mamba
with an FP-Mamba, with the same hidden size (768) and number of layers (12). The settings are
selected according to the 2.5B setup introduced in Gu & Dao (2024). We use a train subsample of
the FineWeb dataset (Penedo et al., 2024) with 2B tokens, and a validation subsample with 200K
tokens. We use a context length of 2048 for our experiment. For the FP-Mamba model, we use the
Householder mixer with 1 and 2 reflections. We report the validation perplexity in Fig. 8.

As we can observe, the fixed-point framework does introduce a significant improvement to the
performance of the model on perplexity. However, we note that this improvement cannot be only
attributed to the multi-layer hypothesis of implicit models (Giannou et al., 2023), as increasing the
number of Householder reflections does seem to be improving the perplexity further. Furthermore, we
point out the practicality of the setup, as we can observe in Fig. 7 that in the absence of a state-tracking
problem, the number of fixed-point iterations seems to be independent of the sequence length, and
instead hover in the < 10 range. Finally, fixed-point iterations are not required in the backward bass
and therefore only increase training time moderately.

E.2 Long-Range State-Tracking

In this section, we investigate the ability of our proposed method in doing state tracking on longer
sequences. Specifically, we will use the A5 and S5 datasets and train on sequence length 128, while
evaluating for sequence lengths in the range [2, 512]. We also implement the proposed Fixed-Point
framework on Mamba2 (Dao & Gu, 2024), and we compared our method to DeltaProduct (Siems
et al., 2025). In Fig. 9, we plot the test accuracy for these one-layer models.

Comparing our results to DeltaProduct, we can see that the non-linearity introduced by the Fixed-
Point dynamics allow for a slight improvement in the performance of the Householder products as
the mixer components. Furthermore, we observe that the best performing mixer variant is still the
Kroneckers model, which can successfully learn the state-tracking problem in all runs. Moreover, the
FP-Mamba2 model demonsterates a better length generalization ability compared to FP-Mamba1,
which we attribute to the improved underlying architecture used in the model. As shown in (Dao &
Gu, 2024), Mamba2 has better recall capabilities, which can help with length generalization.

23

0 200 400

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
H - r = 1
H - r = 2
H - r = 4
K

(a) State Tracking on A5 - FP-Mamba

0 200 400

Sequence Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

H - r = 1
H - r = 2
H - r = 4
K

(b) State Tracking on S5 - FP-Mamba

0 200 400

Sequence Length

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

H - r = 1
H - r = 2
H - r = 4
K

(c) State Tracking on A5 - FP-Mamba2

0 200 400

Sequence Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

H - r = 1
H - r = 2
H - r = 4
K

(d) State Tracking on S5 - FP-Mamba2

0 200 400

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

r = 1
r = 2
r = 4

(e) State Tracking on A5 - DeltaProduct

0 200 400

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

r = 1
r = 2
r = 4

(f) State Tracking on S5 - DeltaProduct

Figure 9: The state-tracking experiment for train sequence length 128 and evaluation sequence length [2, 512].
We omit the results of DPLR mixer due to poor performance. The figure presents (a, b) the results for FP-Mamba
with Householder (H) and Kronecker (K) mixer, (c, d) the results for FP-Mamba2 with Householder (H) and
Kronecker (K) mixer, and (e, f) the DeltaProduct method (Siems et al., 2025) for Householder mixers.

E.3 Reasoning on CatbAbI

In order to investigate the state-tracking ability of the fixed-point framework in a natural language
setting, we perform experiments on the catbAbI dataset (Schlag et al., 2021b). catbAbI (concatenated-
bAbI) is a reprocessing of the bAbI QA benchmark (Weston et al., 2015), where individual bAbI
stories are stitched into one long, continuous sequence, so models must keep track of state across
story boundaries. The task tries to stress-test the long-range state tracking and associative inference
capabilities of sequence models beyond short, isolated contexts. Each sample in this dataset is a
short story. At the end of each story, the model needs to choose a single word that is the answer to
the question corresponding to the story. The responses include yes/no responses and the names of
characters or locations in the story. We present the results in Table 3.

In order to observe and compare the effect of more complex mixers with the number of layers, we use
1, 2, and 4 layers along with the Kronecker and Householder mixer with r ∈ {1, 2, 3} reflections. Our
investigation shows that increasing the number of layers seems to be reaching the point of diminishing
returns very fast, while the fixed-point framework improves the performance. This observation seems
to be in line with the findings of Saunshi et al. (2025), where the looped architecture seems to be
providing a very helpful inductive bias for solving reasoning tasks. Comparing the performance
of mixers, we observe that the Kronecker mixer under-performs compared to the Householder

24

Layers Mamba FP-Mamba-K FP-Mamba-H FP-Mamba-H FP-Mamba-H
(r = 1) (r = 2) (r = 3)

1 Layer 78.28% 79.93% 81.32% 81.60% 80.79%
2 Layers 87.08% 84.16% 89.08% 87.47% 89.55%
4 Layers 86.51% — — — —

Table 3: Test accuracy of the Mamba model vs. the FP-Mamba model for the Kronecker (K) and the Householder
(H) channel mixers with r ∈ {1, 2, 3} on the catbAbI dataset. We increase the number of layers to show the
effect of having more layers on all models. The task benefits from the fixed-point dynamic, but increasing the
number of layers seems to be suffering from diminishing returns.

mixer, which we believe is in line with our observation in App. E.1, where the Kronecker mixer
underperforms on tasks involving natural languages.

E.4 Modular Arithmetic Task Results

Following Grazzi et al. (2024), we also evaluate FP-Mamba on the remaining unsolved task of the
Chomsky Hierarchy of language problems introduced by Beck et al. (2024). Specifically, we focus
on the mod arithmetic task with brackets. Following the setup of Grazzi et al. (2024), we train on
sequence lengths 3 to 40 and report scaled accuracies on test sequences of lengths 40 to 256. For
FP-Mamba, we use a 2-layer model with r = 4 reflections, i.e. the best performing model in the A5

experiment.

In Tab. 4, we observe that a 2-layer FP-Mamba-H outperforms the baselines reported in (Grazzi
et al., 2024) with a comparable number of parameters. In Fig. 10, we plot the validation accuracy
as a function of the number of fixed-point iterations. We observe that the accuracy plateaus at 20
iterations, which is significantly less than the shortest and longest sequence in the validation set.
Therefore, the number of iterations required by FP-Mamba-H to reach its fixed point clearly does not
scale with the sequence length in this task.

Model Accuracy
2L Transformer 0.025
2L mLSTM 0.034
2L sLSTM 0.173
2L Mamba 0.136
2L DeltaNet 0.200
2L GatedDeltaProduct 0.342
2L FP-Mamba (r = 4) 0.384

Table 4: The accuracy of various models on modu-
lar arithmetic with brackets. We adopt the reported
numbers in (Grazzi et al., 2024) evaluating base-
lines the extended [−1, 1] eigenvalue range. Scores
are commonly used scaled accuracies between 1.0
and 0.0 (random guessing). Highlighted is the best
performance in each category.

0 200 400

Max FP Iterations

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Va
lid

at
io

n
Ac

cu
ra

cy

Figure 10: Number of fixed-point iterations on
the modular arithmetic task at test time. We report
the validation accuracy after convergence for the
number of fixed-point iterations caped at various
values ranging from 2 to 512. The pink dashed
line denotes the maximum sequence length during
validation.

25

E.5 Effect of ℓmax on test performance and number of iterations ℓ∗

10 20 30 40 50

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 A

cc
ur

ac
y

Max Iters 2 6 8 10 12 14 16

(a) Effect of ℓmax

10 20 30 40 50

Sequence Length

10

20

30

40

50

60

N
um

 It
er

s

*

Max Iters 2 6 8 10 12 14 16

(b) Number of Iterations ℓ∗

Figure 11: The effect of ℓmax on the performance of the model ((a)), and on the number of iterations ℓ∗ ((b))
on the A5 task. The vertical line denotes the train sequence length. All of the experiments are performed on
FP-Mamba1 with a Householder mixer with r = 1 reflections. Results are averaged across 4 runs.

In Fig. 11 we present the effect of the maximum number of iterations ℓmax during training on the
accuracy and the number of iterations ℓ∗ during inference. As we observe, the general trend is that
increasing ℓmax improves the performance of the model. We attribute this observation to how well the
model learns the task, as following Thm. 3.2, a condition for the gradients being a descent direction
is for them to be computed at or close to the fixed-point. Consequently, we can see that when trained
with a smaller number of iterations (small ℓmax), the model fails to fully utilize the fixed-point by
adapting ℓ∗ to the difficulty of the task.

E.6 Sequential vs Parallel Fixed-Point Iteration

An important detail about the fixed-point framework proposed in this paper is that it is not convex.
Therefore, the fixed-point is not necessarily unique, which can be problematic in autoregressive
applications because there are no guarantee that the parallel fixed-point during training will be the
same as the sequential fixed-point used during inference (Schöne et al., 2025). In order to investigate
this issue, we trained an FP-Mamba-H model on the A5 task and compared the fixed-point computed
sequentially and in parallel. We report the results in Fig. 12. We observe that the fixed-points are
extremely similar, providing the possiblity of computing the fixed-point sequentially during inference.

0 10 20 30 40
Sequence Length

0.00

0.02

0.04

0.06

0.08

0.10

h
* s

h
* p

h
* s

Test
Train
FP Thr.

Figure 12: The difference between the fixed-point computed sequentially (i.e., computing the fixed-point for
each token separately) and the fixed-point computed in parallel (i.e., computed through Eq. 12) on the A5 task
trained on sequence length 16 to convergence. The x-axis denotes the test sequence length, and the y-axis the
normalized difference. The dashed gray line denotes the threshold for stopping the fixed-point iterations.

26

F Low-Rank Expressiveness

In this section, we prove that SSMs with low-rank structure can be maximally expressive under weak
assumptions on the growth of the rank with hidden dimension. To do this we first place ourselves
in the general setting of (Cirone et al., 2024b), accordingly we consider models given by controlled
differential equations of type3:

dYs =

dω∑
i=1

AiYsdωi
s, Y0 ∈ RdY (19)

Following the notation and methodology of Cirone et al. (2024b)[B.4]), this can be written in terms
of the Signature as

Y((Ai)i, Y0, ω)t := Yt =
∑

I∈Wdω

(AIY0) S
I(ω)[0,t] (20)

where Wdω
is the set of words in the alphabet [[dω]] := {1, . . . , dω} (i.e. Wdω

=
⋃

n≥0[[dω]]
n) and

for a given word I = i1 . . . in with SI(ω)[0,t] we refer to the Ith component of the signature tensor
S(ω)[0,t] i.e.

SI(ω)[0,t] =

∫
· · ·

∫
︸ ︷︷ ︸
u1<···<un

ui∈[0,t]

dωi1
u1

· · · dωin
un

.

It follows directly from Eq. 20 that any linear readout of Yt can be represented as a series in signature
terms. As a result, these systems are fundamentally restricted to learning functions that closely
approximate these convergent series.

Maximal expressivity is attained when any finite linear combination of signature terms can be
approximated by a linear readout on Yt via suitable configurations of the matrices Ai.

Definition F.1. Fix a set of paths X ⊆ C1−var([0, 1];Rd). We say that a sequence (AN ,YN)N∈N,
where YN ⊆ RN and AN ⊆ RN×N , achieves maximal expressivity for X whenever for any positive
tolerance ϵ > 0 and any finite linear combination coefficients α ∈ T (Rd) there exist a choice
of parameters v, (Ai), Y0 in some RN ,AN ,YN in the sequence such that v⊤Y((Ai), Y0, ω)· is
uniformly close to ⟨α, S(ω)[0,·]⟩ up to an error of ϵ i.e.

∀ϵ > 0, ∀α ∈ T (Rd), ∃N ≥ 0, ∃(v, (Ai), Y0) ∈ RN ×Ad
N × YN s.t.

sup
(ω,t)∈X×[0,1]

|⟨α, S(ω)[0,t]⟩ − v⊤Y((Ai), Y0, ω)t|< ϵ

If we are given a sequence of probabilities PN on Ad
N × YN such that ∀ϵ > 0, ∀α ∈ T (Rd) it holds

that

lim
N→∞

PN

{
∃v ∈ RN s.t. sup

(ω,t)∈X×[0,1]

|⟨α, S(ω)[0,t]⟩ − v⊤Y((Ai), Y0, ω)t|< ϵ

}
= 1 (21)

then we say that (AN ,YN ,PN)N∈N achieves maximal probabilistic expressivity for X .

As discussed in the main body of this work in (Cirone et al., 2024b) the authors prove that
(RN×N ,RN ,PN), where PN is a Gaussian measure corresponding to the classical Glorot initializa-
tion scheme in deep learning, achieves maximal probabilistic expressivity for compact sets.

Albeit expressiveness is thus maximally attained the resulting matrices Ai are almost-surely dense,
hence the models are not efficiently implementable. As the next result suggests, a possible alternative
is given by low-rank matrices:

Proposition F.2. The sequence of triplets (RN×N ,RN ,PN) where PN is such that

3For simplicity we have omitted the dξ term, as the results and proof change minimally in form but not in
spirit.

27

• the initial value has independent standard Gaussian entries [Y0]α
iid∼ N (0, 1),

• the weight matrices are distributed as Ai iid∼ 1√
NrN

WM⊤ with W and M independent

N × rN matrices having entries [W]α,β , [M]α,β
iid∼ N (0, 1),

• the rank parameter rN satisfies rN → ∞ as N → ∞

achieves maximal probabilistic expressivity for compact sets.

Proof. Following (Cirone et al., 2024b)[B.3.5] we only need to prove a bound of type∥∥∥∥ 1

N
⟨AIY0, AJY0⟩RN − δI,J

∥∥∥∥
L2(PN)

≤ (κ(|I|+|J |))! ! o(1) (22)

as in the full-rank Gaussian case.

We will place ourselves in the graphical setting of (Cirone et al., 2024a) and leverage the fact that (c.f.
(Cirone et al., 2024a)[7.1]) their results and techniques naturally hold for rectangular matrices.

In our setting 1
N ⟨AIY0, AJY0⟩RN corresponds to a product graph GI,J corresponding to a ladder

having 2|I|+2|J | edges as shown in Fig. 13. We can then use (Cirone et al., 2024a)[Prop. 2] to
compute the square of the L2 norm in equation Eq. 22, the only difference from the dense case is that
half of the vertices (excluding the "middle" one) correspond to a space of dimension rN while the
rest to the standard N .

Since rN → ∞ and given the scaling N−1(NrN)
− |I|+|J|

2 , the admissible pairings of GI,J not of
order o(1) are only the leading ones. These correspond to product graphs with |I|+|J|

2 rN -dimensional
vertices and |I|+|J|

2 +1N -dimensional vertices. By the same reasoning as in the full-rank case, these
are found to be just the identity pairings.

Moreover, all pairings of GI,J ⊔GI,J that do not result in an identity pairing in at least one of the
two copies are O(1

N∧rN
) (instead of O(1

N)). This follows as in the full-rank case.

Since the total number of admissible pairings of GI,J ⊔ GI,J is (4(|I|+|J |))! !, we conclude that
equation 22 holds with κ = 4 and o(1) := O(1√

N∧rN
).

Figure 13: The product graph GI,J for I = i1i2i3 and J = j1.

Remark F.3. Following (Cirone et al., 2024a)[6.1] it’s possible to prove that the W and M can be
taken as having iid entries from a centred, symmetric but heavy tailed distribution given finiteness of
even moments. This distributional choice comes useful in controlling the eigenvalues of A = WM⊤.
Remark F.4. While the proof crucially uses the assumption rN → ∞ as N → ∞, at the same time
we have not provided an argument against rN not diverging. In Fig. 14 we present a counterexample,
showing that if rN does not diverge then the asymptotics differ from the dense ones, in particular
some symmetries are "lost", impossible to recover due to unavoidable noise.

28

Figure 14: Admissible pairing different from the "identity" paring, but still leading to maximal
asymptotic scaling in the bounded rN case. Here, I = 12 ̸= 1112 = J , and we have highlighted
in blue the vertices corresponding to the bounded dimension rN . Recall that edges without arrows
correspond to the matrix I (matrix of ones), and that two edges corresponding to matrices A and B
which share direction and terminal vertices can be merged into the edge A⊙B.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the paper we make claims about the proposed method increasing the
expressivity of the model, for which we provide experimental and theoretical justification.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss the limitations in the discussion section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

30

Justification: Yes, we provide the set of assumptions in the description of the theories, and
the correct proof in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide the experimental setups in the paper. A full experimental
setup description can be found in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

31

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of the datasets used in our paper are open access. We intend to provide the
code for our paper after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all of the details are available in the appendix, and the corresponding
papers are cited.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of the experiments either provide error bars, or the setting is specifically
mentioned in the text and justified using cited material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we provide the details of the hardware used in the experiments in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe our work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As our paper is mostly concerned with expressivity of RNNs and theoretical
and empirical justifications for it, we believe this issue does not apply to our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

33

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As our paper is mostly concerned with expressivity of RNNs and theoretical
and empirical justifications for it, we believe this issue does not apply to our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite the papers providing or proposing the datasets and models used in
our experiments in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

34

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowd sourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crow sourcing or working with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

35

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Fixed-Points as an RNN Layer
	From Explicit to Implicit Parameterization
	The Fixed-Point Iteration
	Parametrization of Q_t and _t
	Algorithmic Implications
	Optimizing Fixed-Point RNNs

	Fixed-Point Mamba
	Introducing Matrix States
	FP-Mamba Iteration
	Shifted Hidden State Dependence y_t-1^-1
	State-Tracking
	Required Number of Iterations ^*

	Discussion
	 Appendices
	Background and Literature Review (Sec. 2)
	Fixed-Points as an RNN Layer (Sec. 3)
	Proof for Theorem 3.1 (Lipschitz constant of f_(x, h) is <1)
	Effect of normalization factor (I-_t) on class of matrices A_t
	Implicit Differentiation for Optimizing Fixed-Point RNNs
	Proof for Theorem 3.2 (Gradient of f_(x, h) is a descent direction of F_(x))

	Fixed-Point Mamba (Sec. 4)
	Mamba: Selective SSMs
	FP-Mamba Parametrization
	Parameterizing the mixers
	Dependence on H_t-1 in theory

	Evaluation
	Task Descriptions
	Experimental Details
	Heuristics to reduce the number of fixed-point iterations

	Additional Experimental Results
	Language Modeling
	Long-Range State-Tracking
	Reasoning on CatbAbI
	Modular Arithmetic Task Results
	Effect of _max on test performance and number of iterations ^*
	Sequential vs Parallel Fixed-Point Iteration

	Low-Rank Expressiveness

