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Training Large Language Models (LLMs) is memory-intensive due to the large num-
ber of parameters and associated optimization states. GaLore [1], a recent method,
reduces memory usage by projecting weight gradients into a low-rank subspace
without compromising performance. However, GaLore relies on time-consuming
Singular Value Decomposition (SVD) operations to identify the subspace, and the
frequent subspace updates lead to significant training time overhead. Moreover,
GaLore offers minimal improvements in accuracy and efficiency compared to LoRA
in more accessible fine-tuning scenarios. To address these limitations, we introduce
Q-GaLore, a novel approach that substantially reduces memory usage by combin-
ing quantization and low-rank projection, surpassing the benefits of GaLore. Our
method is based on two key observations: (i) the gradient subspace exhibits diverse
properties, with some layers converging early in training while others are subject to
frequent changes; (ii) the projection matrices are highly resilient to low-bit quantiza-
tion. Leveraging these insights, Q-GaLore adaptively updates the gradient subspace
based on its convergence statistics, achieving comparable performance while sig-
nificantly reducing the number of SVD operations. We maintain the projection
matrices in INT4 format for aggressive memory conservation and preserve weights
in INT8 format, incorporating stochastic rounding to capture accumulated gradient
information. This approach enables a high-precision training trajectory using only
low-precision weights. We demonstrate that Q-GaLore achieves highly competitive
pre-training and fine-tuning performance with exceptional memory efficiency. At
pre-training, Q-GaLore facilitates training a LLaMA-7B model from scratch on a
single NVIDIA RTX 4060 Ti with only 16 GB memory, showcasing its exceptional
memory efficiency and practicality. At fine-tuning, it reduces memory consumption
by up to 50% compared to LoRA and GaLore, while consistently outperforming
QLoRA (by up to 5.19 on MMLU) at the same memory cost. Codes are available
at https://github.com/VITA-Group/Q-GaLore.

1. Introduction
Since the 2020s, Large Language Models (LLMs) have demonstrated remarkable performance
in various disciplines [2–7]. However, the immense scale of LLMs, often comprising billions of
parameters, presents a formidable challenge for most research groups in terms of training and full
fine-tuning. For example, Meta’s LLaMAmodels were developed with 2048 A100-80GB GPUs for
approximately a period of 5 months [8]. Even without any considerations for product efficiency, fine-
tuning a LLaMA 7B model with 16-bit precision necessitates at least 56 GB memory for maintaining
the model weight, Adam optimizer states and weight gradient, which is prohibitively expensive.

Numerous research efforts have been dedicated to alleviating the substantial costs associated with
training LLMs. These endeavors encompass a range of techniques, including small-scale LLM
designing [9, 10], efficient scaling optima [11], training methodologies incorporating sparsity [12–
14], sparse model training approaches [15, 16], and low-rank training strategies [1, 17]. Among
these, GaLore [1] has emerged as a notable contender, enabling the full-parameter training of LLMs
through low-rank gradient updates achieved via Singular Value Decomposition (SVD). Leveraging
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its low-rank characteristics, GaLore offers a significant reduction—up to 63.3%—in total training
memory requirements, facilitating the training of a 7B model with a mere 24GB of memory.

Although GaLore offers substantial memory savings, its 24GB memory requirement still surpasses
the available resources in many customer devices. For instance, popular laptop GPUs like the RTX
4060 Ti are equipped with up to 16GB of memory. And the price of 24GB RTX 4090 is three times
than 16GB RTX 4060 Ti. This limitation raises the question of how we can further reduce the memory
footprint of low-rank LLM training to make it accessible to a wider range of hardware configurations.
Also, GaLore requires regular updates to the gradient subspace through computationally expensive
SVD operations (e.g., every 200 iterations) to approximate the training trajectory of full-rank training.
The computational complexity of SVD operations is roughly on the magnitude of O(mn2), where m
and n are the dimensions of the matrix. As a result, it takes ∼ 10minutes for the LLaMA-7B model
to update the subspace, leading to significant training latency.
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Figure 1: Comparison of data types and training flows of different
methods. We by default use 8-bits Adam [18] as the inner optimizer. The
gradient in GaLore and Q-GaLore is not persistent during training.

To address these challenges, we
delved into the training dynam-
ics of the gradient subspace of
GaLore and discovered two in-
triguing phenomena: (i) The gra-
dient subspace of GaLore demon-
strates different behaviors across
different layers, in which some
layers demonstrates "early bird"
properties and converge within
the initial training stage while
some layers have a stable sub-
space within a specific window
during training and some other
layers consistently keeps chang-
ing. (ii) The projection matri-
ces of GaLore exhibit excellent
quantization-friendliness prop-
erty, which can be seamlessly
quantized to 4-bits without sacri-
ficing training quality.

Inspired by these observations, we propose Q-GaLore, a novel approach that enables the training of
large language models with low-precision weights and low-rank gradients. Q-GaLore introduces
two modules to reduce memory overhead and training latency:

(i) Low precision training with low-rank gradients: We manage to quantize the entire model (not
only the optimizer state as in GaLore [1]) to 8-bits and the projection matrix to 4-bits, as shown
in Figure 1. By utilizing low-precision weights and projection matrices, our approach achieves a
reduction of approximately 28.57% inmemory requirements for gradient low-rank trainingwhere the
weight represent the primary component of memory usage post low-rank projection. Additionally, to
maintain training stability and approximate the trajectory of high-precision training, we implement
Stochastic Rounding (SR) [19] that provides an unbiased estimation of the gradient trajectory and
mitigates gradient information loss, thus enhance the training stability and overall performance.

(ii) Lazy layer-wise subspace exploration: We monitor the convergence levels of the gradient
subspace in different layers and adaptively decrease the frequency of SVD operations for the layers
whose low-rank subspace does not change significantly over time. This approach reduces the training
time associated with SVD, saving over 32 hours for training a 7B model.

We demonstrate the efficacy of Q-GaLore in both pre-training and fine-tuning scenarios. For pre-
training, Q-GaLore’s efficiency allows us to reduce the memory requirements of full-rank training
and GaLore by 61% and 30%, respectively, across various model sizes from 60M to 7B. Notably,
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Q-GaLore demonstrates the feasibility of training LLaMA-7B on a single NVIDIA RTX 4060 Ti with
only 16GB of memory while significantly reducing memory costs when using data parallism for large
batch training. For fine-tuning, Q-GaLore matches the performance of SOTA low-rank approaches
including LoRA [20], QLoRA [21] and GaLore [1]. It reduces memory consumption by up to 50%
than LoRA/GaLore, while consistently outperforming QLoRA [21] at the same memory cost.

2. Related Work

2.1. Low-Rank Adaptation and Training

Optimizing Large LanguageModels (LLMs) requires a substantialmemory footprint to accommodate
weights, activations, gradients, and optimization states. Low-Rank Adaptation (LoRA) [20] is a
notable technique that introduces low-rank weight adapters for each layer, reducing the memory
footprint by only optimizing the adapters, which can later be merged back into the original model.
Subsequent enhancements to LoRA, such as quantization [21], multi-task learning support [22],
and various architectural improvements [23–28, 28–30], have all focused on fine-tuning scenarios.
Despite the efficiency of low-rank adaptation, its suboptimal performance compared to full parameter
optimization [31] has motivated the development of other memory-efficient optimization methods.
For instance, [32, 33] reduce memory overhead through fused backward operations, eliminating the
need to store all weight gradients. Sparse optimization techniques, such as BAdam [34] and LISA
[35], partition parameters into blocks or sample layers based on importance to minimize memory
costs while maintaining performance comparable to full parameter fine-tuning.

Early efforts to adapt LoRA for pre-training, such as ReLoRA [36], still require full-rank learning
in the initial stages, resulting in high memory overhead. Recently, GaLore [1] leverages the low-
rank properties of gradients [28] to enable full-parameter learning while significantly reducing
memory usage during optimization. This approach allows GaLore to achieve better performance
than common low-rank adaptation methods such as LoRA, while still being memory-efficient.

2.2. Low Precision Training

Low-precision training aims to improve training efficiency by storing data in low-precision formats
and leveraging low-precision General Matrix Multiplication (GEMM) operations. This is distinct
from post-training quantization, which primarily enhances the inference efficiency of pre-trained
models. A significant challenge in low-precision training is potential instability during the training
process. SWALP [37] addresses this issue using stochastic weight averaging [38], but it requires
maintaining averaged weights, leading to high memory overhead in large foundational models.
Other methods handle instability by scaling gradients [39] or second-order optimizer statistics [40].

While various low-precision training methods have been explored for smaller-scale convolutional
networks [41–46], they are generally not applicable to training large-scale transformers, as large
tensors are less suitable for quantization [47]. Some approaches to low-precision training at a larger
scale still require maintaining high-precision latent weights during training, significantly increasing
memory consumption for large language models [48, 49]. This study aims to improve the end-to-end
memory efficiency of training large-scale foundational model at scale.

3. Methodology

We first introduce the data type and quantization basics in Section 3.1. Section 3.2 demonstrates
the adaptive convergence properties of the gradient subspace, which facilitates efficient training. In
Section 3.3, we demonstrate the high tolerance of the projection matrix to quantization. Section 3.4
then discusses stochastic rounding for approximating high-precision training trajectories. The overall
pipeline of Q-GaLore is depicted in Figure 4.
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3.1. Preliminaries on Quantization

Generally, quantization methods are categorized into Post-Training Quantization (PTQ), where
quantization is applied to pretrained models without further training; and Quantization-Aware
Training (QAT), which incorporates quantization throughout the training process. QAT aims to
either generate more quantizable models for faster inference or expedite the training process through
low-precision operations. To preserve performance, these methods retain high-precision parameters
throughout the training process and apply quantization to transfer the parameters into low-precision
data formats during each forward and backward pass. Maintaining high precision parameters
occupis massive memory and results in even larger memory requirements than vanilla high precision
training. In this work, we focus on improving the memory efficiency of training large language
models and do not maintain the high-precision parameters.

In Q-GaLore, the model weights are retrained in INT8 while activations and gradients are computed
in BFloat16. Although FP8 [50] offers greater expressiveness than INT8, it is supported on limited
devices, e.g., the NVIDIA Hopper series GPUs, which are costly and not widely available. Thus, we
employ the more general INT8 formats. The pseudocode is presented in the appendix A. To convert
data format, we utilize block-wise uniform quantization [51]:

Wq = Quantn(W, s, z) = clamp(⌊W
s
⌉+ z,−2n−1, 2n−1 − 1)

where W and Wq represents the original and quantized tensors, respectively. s is the scaling factor
and z is the zero point. Both s and z are calculated within each block of the tensors. n is the
quantization bits. We default to use block size of 256 in all implementations.
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Figure 2: Cosine similarity between the adjacent projection matrices captured every 250 training iterations.

3.2. Layerwise Convergence Behaviors of Gradient Subspace

GaLore relies on a fixed interval to recompute the gradient space and projection matrices blindly,
assuming that the training dynamics of all the layers in LLMs remain the same. One direct implication
remains the frequent computation of computationally expensive SVD. Inspired by previous work
about training dynamics of gradient subspace [52], we’re curious: How does the gradient subspace
dynamics varies during the pre-training of LLMs? We investigated the cosine similarity across the
projection matrices obtained at regular interval during the pre-training of LLaMa-130M as shown in
Figure 2. Our observations are as follows: (i) certain layers exhibit an “early bird” phenomenon,
whereby their gradient subspace saturates early during pre-training and remains stable throughout
(Top Right, with cosine similarity close to 1); (ii) in some layers, the gradient subspace saturates
within a specific window during pre-training (Top Middle); (iii) for others, the gradient subspace
consistently keeps changing towards the end of training (Top Left).

This observation provides a unique opportunity to monitor the gradient subspace behavior during
pre-training and dynamically update the frequency of SVD for each layer if we observe saturation.
More specifically, starting with an SVD interval of t for a layer l, we monitor the cosine similarity of
projection matrices in the previous k intervals. If the cosine similarity across the k intervals remains
greater than a threshold (e.g.,≥ 40%), we update the interval from (t → 2× t) to reduce the compute.
This adaptive lazy update can closely mimic the performance of the original GaLore with over
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60% reduction in computationally expensive SVD calls. Further ablation studies about the trade-off
between SVD calls and performance are presented in Section 4.4.

3.3. High Quantization Tolerance of Projection Matrix

Q-GaLoreGaLore

Quantization on Projection Matrices

Figure 3: Pre-training performance on the LLaMA-130M
models. The projection matrices are quantized with differ-
ent bits.

The adaptive convergence properties suggest
that the projection matrix has a degree of re-
dundancy, indicating that high accuracy is
not essential. This observation inspired us
to further investigate the functionality of the
projection matrix under quantization condi-
tions. We implemented block-wise quantiza-
tion for the projection matrices, maintaining
a uniform block size of 256 across all layers.
During these experiments, we ensured that
the update steps for the projection matrices
remained constant, allowing us to focus ex-
clusively on their quantization characteris-
tics. Figure 3 illustrates the results for the
LLaMA-130M models, demonstrating that
the projection matrices are highly resilient to
quantization, with minimal impact on pre-training quality even when reduced to 4 bits. Based on
these findings, we applied quantization to the projection matrices, restricting them to 4 bits. This
approach further reduces the memory cost of the optimizer states in low-rank training by 25%.

3.4. Approximating High-Precision Training Trajectories by Stochastic Rounding

When using low-rank training methods such as GaLore, the allocation of memory to maintain model
parameters constitutes the majority of the memory overhead. Consequently, we opt to maintain the
weights in low precision to enhance memory efficiency during training. The primary challenge of
training with low-precision parameters is the significant reduction of gradient information. During
each optimization step, the full precision gradientmust be quantized to a low precisionweight update.
However, if the gradient magnitude is not large enough, it will be mitigated via the round-to-nearest
scheme. Conventional Quantization-Aware Training (QAT) retains full precision parameters to
accumulate small gradient contributions, albeit at the cost of increasedmemory overhead. To address
this issue, we employ Stochastic Rounding (SR) [19, 53, 54], that is formulated as the following:

Wq = FSR(W ) =

{
⌊W ⌋ with probability p = ⌈W ⌉ −W
⌈W ⌉ with probability p = W − ⌊W ⌋

Under this formulation, the expected value ofWq isE[Wq] = ⌊W ⌋(⌈W ⌉−W )+⌈W ⌉(W −⌊W ⌋) = W ,
allowing the low-precision parameters to implicitly accumulate small gradient information. This
method achieves comparable performance without the substantial memory requirements associated
with maintaining high-precision parameters.

3.5. The Q-GaLore Algorithm

The pipeline of Q-GaLore is illustrated in Figure 4. The left section of the figure depicts the computa-
tion flows, where only the gradients are maintained in high precision to preserve essential training
dynamics information. We employ an 8-bit version of the Adam optimizer [18] as the internal
optimizer. During each training iteration, the full-rank gradient is projected into a low-rank format
and then incorporated into the optimizer states. To project the gradient into the subspace, we obtain
the projection matrix using Singular Value Decomposition (SVD), as described in [1]. The update
frequency of the projection matrix is managed through our adaptive update strategy, and the matrix
is quantized to 4-bits formats to reduce memory overhead.
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Figure 4: Illustration of the training flows for Q-GaLore, where the dotted icon denotes intermediate tensors
that do not consistently occupy memory.

Furthermore, after updating the optimizer states, we project the low-rank optimizer states back to
full rank and update the parameters. As the weights are consistently maintained at low precision, an
additional quantization step is necessary to update the weights. Here, we utilize SR to capture the
minor-gradient nuances and provide an unbiased estimation of the high-precision weights. And
we employ a fused backward operation as described in [1, 32, 33] when gradient accumulation is
disabled. Upon calculating the gradients for a single layer, we promptly update the corresponding
optimizer state and weights, subsequently releasing the memory allocated to the gradients. If
gradient accumulation is required, we then accumulate the gradient in the low-rank format, resulting
around one quarter memory consumption of full gradient accumulation.

4. Experiments

4.1. Implementation Details

Network Architecture. For the pretraining task, we adopt the LLaMA-based architecture with
sizes ranging from 60 million to 1 billion, following the setups from [1, 36]. During downstream
experiments, we select various pre-trained models to evaluate the general effectiveness of Q-GaLore,
including RoBERTa [55] base, LLaMA-3-8B [56], Gemma-7B [57], and Mistral-7B [58].

Pre-Training. We pre-train the LLaMA models on C4 dataset [59]. The C4 dataset is a massive
collection of Common Crawl’s web crawl corpus, meticulously filtered and cleaned to ensure high-
quality language modeling and training. It is widely used for pre-training large language models
due to its diverse and extensive textual content. We train the models on this sufficiently large dataset
without data repetition.

Fine-Tuning. The downstream tasks cover two categories: (i) GLUE benchmarks [60], a series of
widely used tasks for evaluating the downstream performance of natural language understanding;
(ii) MMLU [61] that evaluates the natural language understanding ability of LLMs, covering various
domains, including STEM, social sciences, humanities and others.

Baselines. We consider five baseline methods for comparison: (i) Full: Models are trained with the
original Adam [62] optimizer. Both weights, gradients, and optimization states are maintained with
full rank and full precision (BF16 format). (ii) Low-Rank: The original weights are factorized into
low-rank components: W = UV , and U and V are optimized via Adam [63]. (iii) LoRA: LoRA [20]
introduces low-rank adaptors for training the models,W = W0 + UV , whereW0 is the pretrained
weights, which are frozen during training. We use the initialized weight asW0 during pretraining
and only optimize U and V . And we default to 32 for LoRA alpha and 0.05 for LoRA dropout. (iv)
ReLoRA: ReLoRA [36] enhances the original LoRAmethods for better pre-training. ReLoRA is a stage-
wise LoRA that periodically merges UV into the original W and initializes a new UV for continued
training. (v) QLoRA [21]: we use the same hyperparameters: 32 for QLoRA alpha and 0.05 for QLoRA
dropout. We keep the base models in 8bits for fair comparison. (vi) GaLore [1]: We project the

6



gradient into low-rank format and update the optimizer states. When updating the weight, we project
back the low-rank weight update to full-rank. We follow the original hyperparameters, setting the
subspace frequency in GaLore to 200 and the scale factor α = 0.25. The low-rank dimension is chosen
as a quarter of the original dimension. Note that all baseline methods, except QLoRA, are maintained
in 16-bit precision, while the base models in QLoRA are kept in 8-bit precision for a fair comparison.

4.2. End-to-End Results
4.2.1. Memory-Efficient Pre-training with Q-GaLore

We pre-trained the LLaMA-based models from scratch on the C4 dataset using various memory-
efficient methods. The experiments encompassed different model sizes ranging from 60 million to 1
billion parameters, with results reported in Table 1. In each experiment, we report the perplexity
values obtained on the validation set. As the primary memory savings are derived from compressing
theweight and optimizer states, we provide estimates of thememory overhead associatedwith storing
these components. Detailed discussions on end-to-end memory measurements and throughput
comparisons are provided in Section 4.3. For fair comparison, we used the same low-rank dimensions
for all the memory-efficient approaches, specifically {128, 256, 256, and 512} for {60M, 130M, 350M,
and 1B} models, respectively. And we use 16-bits Adam as the inner optimizer inside GaLore while
Q-GaLore implements 8-bit Adam optimizer.

Incorporating adaptive subspace updating, projection and weight quantization, and stochastic
rounding, our Q-GaLore method maintains comparable pre-training performance (with less than a
0.84 perplexity increase, compared with the original GaLore approach) while significantly reducing
memory overhead. For example, in the experiment of 1 billionmodel size, training with INT8weights
halved the original memory cost for weights and achieved a 29.68% memory saving against the
original GaLore method and a 60.51% memory saving compared to the Full baseline. Compared
to GaLore, the additional memory savings primarily come from two sources: (i) INT8 weights
require only half the memory overhead of BF16 weights, and (ii) INT4 projection matrices reduce
approximately 25% of the memory overhead for optimization states.

Table 1: Comparison results of various memory-efficient algorithms on pre-training tasks. Experiments are
conducted on C4 dataset with LLaMAmodels. For each experiment, we report both the perplexity and estimated
memory. The estimatedmemory only count for theweights and optimizer states which cost themajoritymemory
overhead. We follow the same settings and collect the results of all baseline methods from [1], where the
training tokens are {1.1B, 2.2B, 6.4B, 13.1B} for {60M, 130M, 350M, 1B} models, respectively.

Methods 60M 130M 350M 1B
Perplexity Memory Perplexity Memory Perplexity Memory Perplexity Memory

Full 34.06 0.36G 25.08 0.76G 18.80 2.06G 15.56 7.80G
Low-Rank 78.18 0.26G 45.51 0.54G 37.41 1.08G 142.53 3.57G
LoRA 34.99 0.36G 33.92 0.80G 25.58 1.76G 19.21 6.17G

ReLoRA 37.04 0.36G 29.37 0.80G 29.08 1.76G 18.33 6.17G
GaLore 34.88 0.24G 25.36 0.52G 18.95 1.22G 15.64 4.38G

Q-GaLore 34.88 0.18G 25.53 0.39G 19.79 0.88G 16.25 3.08G

4.2.2. Memory-Efficient Fine-Tuning with Q-GaLore

Pre-training LLMs is a resource-intensive task that is typically only feasible for large companies or
computing centers. In most practical scenarios, memory-efficient fine-tuning of LLMs on specific
downstream tasks is more common. To evaluate the effectiveness of Q-GaLore, we selected a
diverse set of downstream tasks, including eight tasks from the GLUE benchmark and four subtasks
from MMLU, which assess the ability of LLMs to understand natural language. We compared
the performance of Q-GaLore with the baseline Full method and three state-of-the-art low-rank
optimization approaches: LoRA, GaLore and QLoRA. It is important to note that while GaLore utilizes

7



a 16-bit Adam optimizer, Q-GaLore employs an 8-bit Adam optimizer, further reducing memory
requirements without compromising performance.

Table 2: Comparison results of various memory-efficient fine-tuning algorithms on MMLU tasks. Note that
the reported memory stands for the estimated memory overhead for weights and optimizer states. End-to-end
memory measurements are discussed at Section 4.3.

Model Methods Memory STEM Social Sciences Humanities Other Average

LLaMA-3-8B

Full 48 GB 54.27 75.66 59.08 72.80 64.85
LoRA 16 GB 53.00 74.85 58.97 72.34 64.25
GaLore 16 GB 54.40 75.56 58.35 71.19 64.24
QLoRA 8 GB 53.63 73.44 58.59 71.62 63.79

Q-GaLore 8 GB 53.27 75.37 58.57 71.96 64.20

Gemma-7B

Full 51 GB 30.03 37.16 34.08 35.47 34.21
LoRA 17 GB 26.23 34.94 30.88 36.96 32.18
GaLore 17 GB 27.33 36.74 30.82 37.90 33.20
QLoRA 9 GB 24.83 27.54 28.09 33.40 28.49

Q-GaLore 9 GB 27.73 36.80 32.54 37.89 33.68

Mistral-7B

Full 43 GB 52.40 72.95 55.16 69.05 61.67
LoRA 14 GB 52.13 72.46 55.05 68.77 61.41
GaLore 14 GB 51.50 73.02 55.03 69.49 61.55
QLoRA 7 GB 50.00 71.29 55.84 67.66 60.70

Q-GaLore 7 GB 52.23 72.82 55.01 69.30 61.62

Table 3: Comparison results of various memory-efficient fine-tuning algorithms on GLUE tasks, with the
pretrained RoBERTa model (Note that the number of training epochs used in the original LoRA [20] work is
higher than that in GaLore [1]. To ensure consistency, we maintain the same training settings as in [1] and use
its baseline results for comparison). We report the Matthew’s correlation for the CoLA task, Pearson correlation
for STS-B, average (matched and mismatched) accuracy for MNLI, F1 score for MRPC, and accuracy for all
other tasks. The reported memory stands for the estimated memory overhead for weights and optimizer states.
End-to-end memory cost are discussed at Section 4.3.

Methods CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Average Memory
Full 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28 747 MB
LoRA 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94 264 MB
GaLore 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93 257 MB
QLoRA 60.16 89.93 91.87 71.84 93.92 86.57 92.29 91.17 84.72 183 MB

Q-GaLore 61.60 90.23 91.96 79.06 94.38 86.73 92.44 90.91 85.91 176 MB

Tables 2 and 3 lead to consistent observations: (i) Q-GaLore achieves performance comparable
to the full fine-tuning baseline across different models (LLaMA-3-8B, Gemma-7B, Mistral-7B, and
RoBERTa-base), with a minimal performance gap of less than 0.65 compared to Full; (ii) Q-GaLore
demonstrates comparable or even superior performance compared to LoRA, with a improvement of
1.02 performance gain on the MMLU benchmark of Gemma-7B while also requiring less memory;
(iii) Compared with QLoRA, Q-GaLore demonstrates consistent (up to 5.19) gains of performance
across architectures and tasks, at the same memory costs.

4.3. End-to-End Memory Measurement
We present an end-to-endmemorymeasurement for training a LLaMA-7Bmodel in Figure 5. Starting
from the baseline full parameter trainingwith BF16Adamoptimizer, 8-bits Adamoptimizer halves the
memory overhead of the optimizer states by quantizing them to a lower precision format. Then, 8-bits
GaLore further compresses thememory cost by converting the optimizer states into a low-rank format.
Moreover, 8-bits GaLore employs a fused backward operation that sequentially releases the gradient
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Figure 5: Results of the memory allocation of training a LLaMA-7B model with a single batch size of 256.

memory, rendering the gradient memory cost negligible. Building on this, Q-GaLore incorporates
INT8weights, which halve thememory requirement for weights. Projection quantization then further
reduces the memory allocated to optimizer states. Notably, only Q-GaLore can train a LLaMA-7B
model within the 16 GB memory constraint, demonstrating the potential for optimizing models on
edge devices. Additionally, due to the varying data formats of gradients and weights, the requisite
quantization and dequantization operations incur a throughput overhead of 14.64%, as compared to
the original GaLore. We will improve the implementation for further work. Furthermore, Q-GaLore
can enable large batch training when combined with FSDP, significantly reducing the memory
consumption of weights and optimizer states on each GPU. This allows for training with fewer GPUs,
thereby reducing communication overhead.

4.4. Further Investigation and Ablation Study
In this section, we focus on the ablation studies of Q-GaLore, centering on two key questions: Q1:
How does Stochastic Rounding (SR) benefit the training process? Q2: What is the trade-off between
training performance and SVD counts in Q-GaLore?

A1: Enhanced low-precision training with stochastic rounding. Stochastic rounding provides
an unbiased estimation of accumulated gradient information, which is crucial for low-precision
training. We conducted controlled experiments to pre-train LLMs with and without stochastic
rounding. To ensure a fair comparison, we maintained consistency in other hyperparameters across
the experiments: weights were stored in the INT8 data format, projection matrices were subjected to
4-bit quantization, and the adaptive convergence ratio for the gradient subspace was set at 0.4.

Figure 6: Ablation study of pre-training with Q-GaLore w/ or w/o Stochastic Rounding (SR). Full curve
stands for the perplexity of the final checkpoint that optimized by original Adam optimizer. Each subfigure
includes a smaller inset that represents the zoomed-in results.

Figure 6 illustrates the perplexity on the validation set throughout the training process. At each
training step, gradient information is quantized back to the low-precision format (INT8), resulting
in considerable information loss and suboptimal performance. The perplexity increased by 7.86, 1.98,
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and 2.27 for models with sizes of 60, 160, and 350 million parameters, respectively. Additionally,
we implemented an initial warm-up stage for pre-training for training stability, where the weight
updates are generally smaller. During this stage, significant loss of gradient information occurs due
to the vanilla round-to-nearest scheme, resulting in a perplexity gap ranging from 18.67 to 47.02,
compared with models using stochastic rounding. Meanwhile, Q-GaLore can effectively capture the
gradient information, achieving performance comparable to the Full baseline, with a perplexity gap
of less than 1.

Q-GaLore
GaLore

Performance v.s. SVD counts

Figure 7: Trade-off between performance and SVD
counts for updating gradient subspace. Results are
normalized by SVD counts of original GaLore.

A2: Over 60% SVD operations costs can be saved
for free. We explore the trade-off between the
number of SVD operations used for updating the
gradient subspace and pre-training performance
on the LLaMA-130M model. In this study, we per-
form a grid search for the cosine similarity thresh-
old within the range [0, 1] and report the corre-
sponding SVD counts along with the perplexity.
Figure 7 demonstrates that there is an efficient re-
duction in SVD counts; with only 36.20% of SVD
operations, Q-GaLore (where the cosine similar-
ity threshold equals 0.4) can achieve comparable
performance to the GaLore baseline, resulting in
significant time savings. Specifically, to update the
gradient subspace of a LLaMA-7Bmodel, the SVD
operation requires approximately 10 minutes when measured on a single NVIDIA RTX A6000 GPU;
and this gradient subspace is updated 300 times across 150,000 training iterations. By achieving more
than 60% savings in SVD operations, our method significantly reduces the time cost by over 32 hours.
Moreover, Q-GaLore can further enhance the training throughput by allowing larger batch-size
training. For example, the reduced memory overhead enables us to train a LLaMA-3B model with
a batch size of 32 on two A6000 GPUs, compared to a batch size of 16 supported by GaLore. This
results in a throughput improvement from 14.68 to 15.23 samples/second.

5. Conclusion

To overcome these challenges and further enhance memory-efficient training, we propose Q-GaLore,
a method that reduces memory usage through quantization and low-rank projection. Our approach
is motivated by two key observations during gradient low-rank training: (1) the gradient subspace
exhibits diverse properties, with some layers converging at the very early training stages while
others are subject to frequent changes; (2) the projection matrices demonstrate high quantization-
friendliness and function effectively under 4-bit quantization. Building on these, Q-GaLore enables
low-precision training (INT8 for the entire model and INT4 for the projection matrix) with low-
rank gradients and significantly fewer SVD operations. Our experiment results demonstrate that
Q-GaLore achieves competitive performance on both pre-training and fine-tuning tasks.
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A. More Implementation Details
The pseudo-code of the forward and backward process in PyTorch style are illustrated in the follow-
ing:
class INT8Linear(torch.autograd.Function):

@staticmethod
def forward(ctx , x, INT8_W):

ctx.save_for_backward(x, INT8_W)
W = (INT8_W.to(x.dtype) - INT8_W.zeros) * INT8_W.scales
return x @ W.t() + bias

@staticmethod
def backward(ctx , grad_output):

x, INT8_W = ctx.saved_tensors
W = (INT8_W.to(x.dtype) - INT8_W.zeros) * INT8_W.scales
grad_input = grad_output @ W
grad_W = grad_output.t() @ x
return grad_input , grad_W

B. More Experiment Results
Stochastic rounding is an effective strategy to mitigate ineffective weight updates caused by quan-
tization. However, the low-rank gradient projection introduces additional noise into the gradient,
potentially leading to greater bias in the rounded gradient compared to full-precision training. To
investigate this, we conducted simulation experiments where the full-rank gradient is retained
throughout the training process, serving as a calibration for the rounding direction, while the actual
weight updates are performed using the low-rank gradient. Experiments were conducted on the
LLaMA-130Mmodel with a pre-training task on the C4 dataset, achieving a perplexity of 25.28 on the
validation set, with no significant improvement over the original Q-GaLore method, which achieved
a perplexity of 25.53. These results suggest that low-rank gradient projection does not diminish the
effectiveness of stochastic rounding.

C. Experiment Hyperparameters
Details of pre-training on C4 We follow the same setups in GaLore and training the LLaMA with
a total batch-size of 512. And the whole training steps are {10000, 20000, 60000, 100000} for {60M,
130M, 350M, 1B} models, respectively. For each experiment, we use a warm-up learning rate strategy
in the initial one-tenth training phase and cosine annealing decay in the following. The default
base update interval is set to 200 iterations, using the lazy subspace update approach with a cosine
similarity threshold of 0.4. The rank of gradient is set as {128, 256, 256, 1024} for {60M, 130M, 350M,
1B} models, respectively.

Details of fine-tuning on GLUE We fine-tune the pre-trained RoBERTa-based model for 30 epochs
on each task from the GLUE benchmark. The learning rate is set to 1× 10−5 for all tasks, except for
MRPC and CoLA, where a learning rate of 3× 10−5 is used. The batch size is set to 32 for CoLA and
16 for all other tasks. And the rank of gradient is fixed at 8.

Details of fine-tuning on MMLU For each experiment, we fine-tune the model for 3 epochs with
a batch size of 8. And the learning rate is set to {1 × 10−5, 5 × 10−5, 3 × 10−5} for {Mistral-7B,
LLaMA-3-8B, Gemma-7B}, respectively. We use the cosine annealing scheduler for learning rate
decay where the initial one-tenth training steps is used as warm-up. The rank of gradient is kept as 8.

D. Gradient Subspace of Different Layers
We evaluate the gradient subspace across different layers in Figure 8. We observe that, generally, the
q and k projections exhibit more diverse gradient subspaces. This is because q and k are responsible
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Figure 8: The average cosine similarity of gradient subspace projection on LLaMA-130M, the cosine similarity
is calculated across two adjacent projection matrix, and being averaged across the training process.

for generating attention patterns, which heavily depend on different tokens, thereby demonstrating
significant diversity. In contrast, the down projection shows the most consistent subspace. Addition-
ally, middle layers tend to have more consistent gradient subspaces compared to the initial and final
layers. This behavior might related to the oversmoothing issue in Transformers, where middle layers
are not well-optimized are casuing the token representations become oversmoothing.
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