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Abstract

Efficient deployment of small language models (SLMs) is essential for numerous
real-world applications with stringent latency constraints.While previous work
on SLM design has primarily focused on reducing the number of parameters
to achieve parameter-optimal SLMs, parameter efficiency does not necessarily
translate into proportional real-device speed-ups. This work aims to identify the
key determinants of SLMs’ real-device latency and offer generalizable principles
and methodologies for SLM design and training when real-device latency is the
primary consideration. Specifically, we identify two central architectural factors:
depth–width ratios and operator choices. The former is crucial for small-batch-
size latency, while the latter affects both latency and large-batch-size throughput.
In light of this, we first study latency-optimal depth–width ratios, with the key
finding that although deep–thin models generally achieve better accuracy under
the same parameter budget, they may not lie on the accuracy–latency trade-off
frontier. Next, we explore emerging efficient attention alternatives to evaluate their
potential as candidate building operators. Using the identified promising operators,
we construct an evolutionary search framework to automatically discover latency-
optimal combinations of these operators within hybrid SLMs, thereby advancing
the accuracy–latency frontier. In addition to architectural improvements, we further
enhance SLM training using a weight normalization technique that enables more
effective weight updates and improves final convergence. This technique can serve
as a generalizable component for future SLMs. Combining these methods, we
introduce a new family of hybrid SLMs, called Nemotron-Flash, which significantly
advances the accuracy–efficiency frontier of state-of-the-art SLMs, e.g., achieving
over +5.5% average accuracy, 1.3×/1.9× lower latency, and 18.7×/45.6× higher
throughput compared to Qwen3-1.7B/0.6B, respectively.
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1 Introduction

Recent advances in large language models (LLMs) have driven remarkable breakthroughs across
a wide range of applications and industries. Despite their impressive capabilities, the substantial
computational demands and high latency of LLMs present significant barriers to practical deployment,
particularly in latency-sensitive scenarios or on resource-constrained hardware. This challenge has
intensified the demand for small language models (SLMs).

Most existing SLM designs prioritize parameter reduction to achieve efficiency; however, parameter-
efficient models do not necessarily yield proportional latency reductions, especially on hardware AI
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Figure 1: Visualizing (a) the accuracy–latency trade-off and (b) the accuracy-throughput trade-off
of our Nemotron-Flash and SOTA SLMs, where the average accuracy is computed across 16 tasks
spanning commonsense reasoning, math, coding, and recall tasks. Latency is measured on an
NVIDIA H100 GPU for decoding 8k tokens with a batch size of 1 using CUDA Graph. Decoding
throughput is measured with a 32k-token input length using the maximum batch size that does not
cause out-of-memory (OOM) errors for each model. The marker size represents the model depth.

accelerators like GPUs and TPUs. Additionally, current SLM development processes rely heavily on
empirical trial-and-error rather than systematic and principled methodologies. For instance, deep-
thin architectures —such as those employed in MobileLLM [1] and SmolLM [2] —often result in
suboptimal accuracy-latency trade-offs. Furthermore, with the rapid advent of efficient attention
operators [3, 4], the potential synergies of combining these operators in hybrid models have not been
thoroughly explored [5, 6, 7, 8], leading to manual, heuristic-driven architecture decisions that are
increasingly costly and less scalable.

To address these gaps, this paper introduces generalizable principles and automated methodologies for
latency-optimal SLM design and training. We perform a comprehensive study of both architectural
choices and training strategies to understand their impact on efficiency and accuracy. Based on these
insights, we propose a series of techniques for constructing latency-optimal SLMs and analyze their
general applicability and effectiveness. These advancements are integrated into a new family of
SLMs, which we refer to as Nemotron-Flash.

Specifically, our architectural exploration focuses on two key factors: depth–width ratios and operator
selection, where the former is crucial for small-batch-size latency and the latter affects both latency
and large-batch-size throughput. Through extensive training and profiling, we show that (1) deep-thin
models, while parameter-efficient, yield suboptimal latency–accuracy trade-offs, and (2) the optimal
depth–width ratio scales with the target latency constraints. Guided by this general principle, we
also extend existing scaling laws [9] to relate model loss to both depth and width. This allows the
sweet-spot depth–width ratio to be determined by profiling a range of configurations and selecting
the one that meets the latency constraint while minimizing loss, as predicted by the scaling law.

Further, we comprehensively evaluate emerging attention operators for their accuracy-latency trade-
offs and potential as SLM building blocks. With these findings, we introduce an evolutionary search
framework that efficiently identifies optimal combinations of hybrid attention operators. Our search
strategy exploits the early stabilization of performance rankings among LM architectures, using short
training runs as reliable proxies for final performance, thereby enabling fast and reliable search.

In addition to architectural modifications, based on observations of structural patterns in the weight
matrices of trained LMs, we further enhance SLM training by constraining weight norms to increase
the effective learning rate. This consistently improves final convergence and downstream accuracy
across model families. We also employ learnable meta tokens [7] for cache initialization.

By combining these architectural and training innovations, we develop the Nemotron-Flash model
family, which significantly advances the accuracy–latency trade-offs for SLMs. As shown in Fig. 1,
Nemotron-Flash markedly pushes forward the accuracy–efficiency frontier compared to state-of-the-
art (SOTA) SLMs. For example, with all models accelerated using TensorRT-LLM’s AutoDeploy
kernels [10] and CUDA Graph, Nemotron-Flash-3B achieves +2.0%/+5.5% higher average accuracy,
1.7×/1.3× lower latency, and 6.4×/18.7× higher throughput compared to Qwen2.5-3B/Qwen3-1.7B,
respectively. Similarly, Nemotron-Flash-1B achieves +5.5% higher average accuracy, 1.9× lower
latency, and 45.6× higher throughput than Qwen3-0.6B.

2



(a) (b)

Figure 2: The accuracy–parameter/latency trade-offs when varying depth and width. While deeper
models generally achieve a better accuracy–parameter trade-off, they may not perform as well in the
accuracy–latency trade-off and there exists an optimal depth-width ratio for a latency budget.

2 Towards Latency-Optimal SLM Design and Training
To deliver latency-optimal SLMs, both architecture design and training are critical to achieving the
best accuracy-latency trade-off. This work explores both aspects. For SLM design, real-device
latency is primarily determined by two key factors: the model’s depth and width, and the choice of
operators, which are studied in Sec.2.1 and Sec.2.2, respectively. For SLM training, we introduce two
optimization techniques in Sec.2.3 and Sec.2.4. Finally, we integrate these components to construct a
new model family, Nemotron-Flash, in Sec.3, and benchmark against SOTA SLMs in Sec.3.1.

2.1 SLM Design: Depth-Width Ratios
Previous SLMs [1, 11] find that deep-thin models generally achieve better task accuracy than wide-
shallow ones under the same parameter budget. However, when targeting real-device latency, this
may not hold, as partially noted by [11]. Our key question is: Do deeper or wider models better
optimize the accuracy-latency trade-off? To answer this, we provide a systematic exploration to
understand the impact of depth and width on the accuracy-latency trade-off.

Exploration settings. We train a series of Llama models with five depth settings: 6, 12, 18, 24,
and 30 blocks, where each block contains one attention and one feed-forward network (FFN), on
100B tokens from the Smollm-corpus [12]. For each depth setting, we also vary the model width
(i.e. hidden size) to create models with different sizes and latencies. We visualize the resulting
accuracy-parameter and accuracy-latency trade-offs in Fig. 2 (a) and (b), respectively. Accuracy is
averaged over eight commonsense reasoning (CR) tasks, and latency is measured as the decoding
time for a 1k token generation under a batch size of 1 on an NVIDIA A100 GPU.

Observations and analysis. We observe that: ❶ Deeper models generally achieve a better accuracy-
parameter trade-off over a wide depth range, although the benefit gradually saturates; ❷ For the
accuracy-latency trade-off, the advantage of deep-thin models may not hold, and there exists an
optimal depth setting for a given latency budget. For example, when the latency budget is 3 seconds, a
depth of 12 achieves the best accuracy among the evaluated settings; ❸ The optimal depth-width ratio
generally increases with the latency budget. These observations highlight the necessity of deliberate
depth/width selection based on deployment constraints, rather than defaulting to deep-thin models.

Augmented scaling laws for determining sweet-spot depth-width ratios. Although the general
trend in the above analysis holds, detailed curves may shift across devices and generation lengths,
complicating the selection of model depth and width. As such, in addition to the above insights, we
also explore principled methods to identify the sweet-spot depth–width ratio within a model family.

In light of this, we augment existing scaling laws [13, 9] by parameterizing model loss with model
depth and width. Specifically, existing LM scaling laws [13, 9] parameterize language modeling loss
L(P,N) = L0 + C1 · P−α + C2 ·N−γ , with P and N as model size and data size, respectively,
and C1, C2, α, γ as fitting parameters. We decouple the model size P into two factors, model depth
D and width W , and reformulate the scaling law:

L(D,W,N) = L0 + aD−α + bW−β + cN−γ (1)

where the fitting parameters a, b, and c control the contributions from each dimension, and the
exponents α, β, and γ govern the diminishing returns from increasing each respective dimension.
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Figure 4: (a) The validation loss evolution, and (b) the PPL-latency trade-off of different operators.

Since the impact of data size is additive and decoupled from depth and width, we can study the effect
of depth and width on LM loss under a fixed data size, i.e., by neglecting the data size term.

As such, in practice, given a target latency budget and deployment setting, the sweet-spot depth-width
ratio can be obtained by profiling a range of depth-width configurations and selecting the one that
meets the latency constraint while achieving the lowest loss.

PP
L

Figure 3: Fitting the scaling law and vali-
dating on larger depth/width settings.

Fitting and extrapolation. To validate the effective-
ness of this augmented scaling law, we fit it using the
above Llama models with varying depth D and width
W . Specifically, we use perplexity (PPL) as the loss
metric, fit the scaling law on a subset of depth/width set-
tings, and validate it on models with larger width/depth
settings to assess extrapolation. As shown in Fig. 3, we
find that the model extrapolates reasonably well to un-
seen depth/width settings, staying within 5.3% of the
ground-truth PPL, demonstrating that the fitted function
generalizes beyond the observed training configurations.

Lesson learned: SLM depth-width ratios. Deep-thin
models may not be latency-optimal, and the optimal
depth-width ratio generally increases with the target latency budget. Fitting a scaling law with depth
and width provides a more principled approach to identifying the sweet-spot ratios.

2.2 SLM Design: Hybrid Operators

Beyond model depth and width, the operator used in each layer is another critical dimension. We first
train existing LM architectures in a fully controlled setting to identify the most promising operators
on the accuracy-latency frontier. We then develop an evolutionary search pipeline to automatically
and efficiently discover hybrid combinations of these operators for constructing hybrid SLMs.

Exploration settings. We train a series of 500M LMs built using emerging efficient attention
alternatives, including Mamba [14], Mamba2 [15], GLA [16], DeltaNet [17], Gated DeltaNet [18],
RWKV7 [19], and sliding window attention (SWA) with a window size of 512. We use the official
implementation for Mamba/Mamba2, FlashAttention [20] for SWA, and FlashLinearAttention [21]
for all other linear attention variants. All models follow the designs specified in their original papers
(e.g., one FFN after each attention operator, except for Mamba/Mamba2), use the same number of
blocks, and are trained on 100B tokens from the Smollm-corpus. We present the validation loss in
Fig. 4 (a) and the Wikitext PPL-latency trade-off in Fig. 4 (b), measured by decoding 8k tokens with
a batch size of 1 on an NVIDIA A100 GPU with CUDA Graph enabled.

In addition, inspired by recent hybrid LMs [6, 22, 5, 23, 7], which combine attention and
Mamba/Mamba2 within the same model, we also integrate the promising operators identified in
Fig. 4 with Mamba2 or SWA to construct hybrid models in a layer-wise interleaved manner, aiming
to gain insights into which operator combinations are well-matched and complementary, as shown in
Tab. 1. Note that, for fair comparison, we control the number of blocks in the hybrid models to be the
same as in the pure models, based on the insights from Sec. 2.1. More details of the ablation settings
are provided in Appendix A.
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Table 1: Exploration of operator combinations. All
models have 500M parameters and the same depth.

Operator1 Operator2 ↓Wiki PPL ↑ CR Acc (%)
Mamba2 - 24.36 47.72

Attention - 24.44 48.02
Mamba2 23.52 48.07

DeltaNet
- 23.87 47.83

Attn 24.32 47.48
Mamba2 23.37 48.03

Gated DeltaNet
- 23.80 47.96

Attn 24.31 47.80
Mamba2 23.37 48.03

GLA
- 25.16 46.82

Attention 24.60 47.63
Mamba2 24.04 47.99

Observations and analysis. We observe that:
❶ In terms of language modeling, DeltaNet and
Gated DeltaNet generally emerge as promising
candidates, lying on the PPL-latency Pareto fron-
tier; ❷ When integrated into hybrid models with
attention or Mamba2, pairing DeltaNet or Gated
DeltaNet with Mamba2 typically results in lower
PPL and higher accuracy, consistently outper-
forming the corresponding pure models. In con-
trast, improvements from pairing with attention
are less stable. This indicates both the advan-
tages of hybrid models and the importance of se-
lecting complementary operator combinations;
❸ When used in hybrid models, the performance
gap between individual operators may narrow,
likely due to the complementary and diverse memory mechanisms introduced by hybrid layers. For
example, although Gated DeltaNet outperforms DeltaNet in language modeling, their task perfor-
mance becomes comparable when integrated with Mamba2, making DeltaNet the preferable operator
in hybrid models due to its greater efficiency.

Evolutionary search for operator combinations. The emergence of various efficient attention
mechanisms and their complex synergy in hybrid models motivate an automated framework to
identify their efficient and complementary combination in hybrid SLMs. To achieve this, we built an
evolutionary search engine to efficiently navigate a complex combinatorial design space.

Short-training PPL as a search proxy. A crucial observation underpinning our method is that the
relative performance rankings of different LM architectures stabilize early during training, which can
also be observed from the validation loss curves in Fig. 4 (a). Using this insight, we demonstrate that
short-training PPL provides a reliable proxy metric to predict final task performance, substantially
reducing training cost for assessing each candidate. We compute the Spearman correlation [24], a
measure of rank correlation that is crucial for architecture ranking in our case, between short-training
PPL and full-training PPL across multiple LM architectures. We find an 88.8% Spearman correlation,
which is sufficient to identify strong architectures within our search space.

Our search space. Based on the identified promising operator candidates and their synergy in hybrid
models, we adopt DeltaNet, Attention, and Mamba2 as candidate operators. We search over a
maximum of three types of building blocks, each assigned to the early, middle, or late stages of
the LM architecture. This three-stage strategy balances operator heterogeneity with architectural
regularity. The search explores the ratios of each operator and the number of FFNs per block type,
and the repetition count of each block type. More details are provided in Appendix C.1.
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Figure 5: Visualizing the search trajectories.

Evolutionary search algorithm. We adopt the ag-
ing evolution search [25] with the following steps:
① Initialization: Seed and short-train an initial
population of architectures, either from known de-
signs or randomly sampled ones; ② Selection: In
each evolutionary cycle, we use tournament se-
lection [26] to identify parent architectures that
are high-performing based on short-training PPL
and meet a predefined target latency budget; ③
Mutation: Selected parents undergo targeted muta-
tions in one of the design factors—operator ratios,
FFN ratios, or block type count; ④ Evaluation and
replacement: Mutated offspring architectures are trained and evaluated using short-training PPL, with
latency accurately estimated from a precomputed look-up table (LUT). The oldest architectures are
replaced with new candidates, effectively balancing exploration and exploitation. A more detailed
description of the algorithm is provided in Appendix C.2.

Search with decoding latency. To evaluate the efficacy of our search framework, we conduct a
search using decoding latency as the efficiency metric (measured by generating 8k tokens with a
batch size of 1 on an NVIDIA A100 GPU). For demonstration purposes, we use a window size of 512
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Table 2: Visualizing architectures searched under different efficiency metrics. m2, a, d, and f denote
Mamba2, attention, DeltaNet, and FFN, respectively. CR accuracy is averaged over eight tasks.

Search
Metric Params (M) ↓ Decoding

Latency (8k)
↓Wiki
PPL

↑ CR
Acc (%) Searched Operator Combinations

Decoding Latency 837 17.71 20.70 51.04 [d, f, m2, f, a, f, m2, f, d, f, m2, f, a, f, m2, f, d, f, m2, f, d, f, m2, f]
Parameters 497 16.94 23.06 49.23 [m2, f, a, f, a, f, d, m2, f, a, f, a, f, d, m2, f, a, f, a, f, d, m2, f, a, f, d, f, f]

for attention, as this length is sufficient for general CR tasks and for the search proxy. We visualize
our search process in Fig. 5, where 10 new architectures are sampled and evaluated in each cycle. Our
search process progressively improves toward better models with lower PPL under the target latency.

The searched architecture is visualized in Tab. 2. Interestingly, we find that the latency-friendly archi-
tecture discovered by the search adopts DeltaNet-FFN-Mamba2-FFN and Attention-FFN-Mamba2-
FFN as basic building blocks, stacking them in an interleaved manner. This finding echoes both
our earlier observations—that DeltaNet and Mamba2 are strong candidates—and prior work that
interleaves attention and state-space models [6, 22, 5, 23, 7].

Table 3: Benchmarking the searched architecture
against baselines scaled to the same latency.

Model Params (M) ↓Wiki PPL ↑ CR Acc (%) ↓ Latency
SWA 616 23.33 48.72 18.01
GLA 862 22.67 48.43 18.19

DeltaNet 852 20.90 50.38 18.18
Gated DeltaNet 672 21.98 49.99 17.91

Mamba2 601 23.14 48.61 17.82
Mamba2 + FFN 889 21.43 50.04 17.73

Searched (Ours) 837 20.70 51.04 17.71

We benchmark against baseline architec-
tures that have the same model depth and
a scaled hidden size to match the decoding
latency of our searched architecture. All
models are trained on 100B tokens from
the Smollm-corpus, and we evaluate them
using Wikitext PPL and CR accuracy, aver-
aged over eight tasks. As shown in Tab. 3,
the searched hybrid architectures outper-
form their pure-model counterparts in both PPL and accuracy. This improvement is attributed to:
(1) efficient operator combinations that allow for larger parameter counts under the same decoding
latency, and (2) the complementary roles played by the hybrid operators.

Search with number of parameters. We also conduct a new round of search using the number of
parameters (500M) as the efficiency metric. We find that: ❶ The searched architecture achieves over
1.21% higher CR accuracy and a reduction of more than 0.74 in PPL compared to all 500M baselines
(detailed results are provided in Appendix C.3); and ❷ as shown in Tab. 2, when comparing the
parameter-efficient architecture with the decoding-efficient one, the former generally includes more at-
tention modules, which are parameter-efficient but decoding-unfriendly, and fewer Mamba2/DeltaNet
modules, and has greater model depth, which is a parameter-efficient design choice according to
Sec. 2.1. This set of experiments validates our search scheme’s efficacy in identifying operator
combinations that align with the target efficiency metric.

Lesson learned: SLM operator combinations. Hybrid models show great promise, but the
synergy among different operators is complex, necessitating the identification and combination of
complementary operators. The relatively stable ranking of architectures in the early training phases
serves as a useful signal for iterating over different designs, and this process can be strategically
accelerated using appropriate search algorithms.

2.3 SLM Training: Weight Normalization
The potential of SLMs can be better realized when they are properly trained. We observe that model
weights trained under a standard scheme exhibit non-smoothness, with large weight magnitudes
along certain dimensions, as shown in the first row of Fig. 6. As suggested by [27, 28], larger
weight magnitudes can lead to smaller relative weight updates under comparable gradient magnitudes,
potentially resulting in ineffective learning during later training stages when the learning rate is low.

Motivated by this and following [28], we constrain weight magnitudes by projecting model weights
onto a unit norm sphere after each training iteration. This normalization step eliminates the radial com-
ponent and emphasizes angular updates, leading to larger relative weight changes under comparable
gradient magnitudes. Specifically, based on the patterns shown in Fig. 6, where weight matrices ap-
plied to hidden features (noted as Case-1) and those whose outputs are added back to hidden features
(noted as Case-2) exhibit horizontal and vertical patterns, respectively, we perform weight normaliza-
tion along the corresponding dimensions. Formally, for each weight matrix W ∈ RCout×Cin , after
each training step, we project it onto a unit norm sphere: Wi,: ← Wi,:

||Wi,:||2 for i = 1, . . . , Cout for

Case-1, and W:,j ← W:,j

||W∗:,j||2 for j = 1, . . . , Cin for Case-2. As shown in the second row of Fig. 6,
our weight normalization results in smoother weight distributions.
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Figure 6: The weight distributions (absolute values) of the layers in the last attention block of 1B
Llama models trained without and with our weight normalization technique.
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Figure 7: Validation loss trajectories of four model families with and without weight normalization.
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Figure 8: Visualizing the gradient norm and L2
norm of DeltaNet model weights during training.

Evaluation across models. We apply weight
normalization to different models and visual-
ize the validation loss curves in Fig. 7, along
with the average element-wise gradient norm
and L2 norm of the weight matrices in Fig. 8.
We can observe that ❶ although in the early
training stage, the baseline w/o weight normal-
ization has steeper convergence due to uncon-
strained weights updates (with radical weight
updates), the convergence speed will gradually
diminish. With weight normalization, the con-
vergence speed is more constant and the convergence will surpass the baseline in later training stages,
leading to consistent better final convergence across model families; ❷ Weight normalization leads to
much reduced L2 norm of model weights while slightly increasing the gradient norm compared to
the baseline, ensuring larger relative weight changes, which is particularly helpful in late training
stages. We observe consistent patterns in other models, provided in Appendix D.2.

Table 4: Evaluating weight normalization across
1B models trained on 100B tokens from [12].

Model Setting ↓Wikitext PPL ↑ CR Acc (%)

Llama 1B w/o wnorm 18.67 53.81
w/ wnorm 18.03 54.85

DeltaNet 1B w/o wnorm 18.86 53.46
w/ wnorm 18.19 54.39

Mamba2 1B w/o wnorm 18.44 53.30
w/ wnorm 17.88 54.71

We also report the corresponding improvements
in language modeling and CR accuracy in Tab. 4.
We observe that weight normalization consis-
tently improves CR accuracy by +1.20% and
reduces PPL by 0.66 on average across model
families, indicating its general effectiveness as
an add-on component.

Connections with nGPT. Our weight normal-
ization technique can be viewed as a simplified
and efficient variant of nGPT [28], which enforces all computations in LMs to operate on a unit
sphere by introducing multiple activation normalization layers in addition to weight normalization.
We find that: ❶ Weight normalization, along with the resulting more effective weight updates, is key
to improved convergence. When applied alone, weight normalization achieves final task performance
comparable to the full nGPT solution, as demonstrated in Appendix D.1; ❷ More importantly, the
additional activation normalization layers in nGPT introduce significant training overhead—i.e.,
increasing SLM training time by more than 20%—which reduces the number of training tokens
given a fixed training duration. Thus, our contribution lies in identifying the primary contributing
component and delivering a more efficient alternative.
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2.4 SLM Training: Meta Tokens
Table 5: Evaluating meta tokens on two linear
attention models with 48 operators and on our
searched model with 24 operators in Tab. 2.

Model Meta Token ↓Wikitext PPL ↑ CR Acc (%)

Mamba2-48L-1B w/o 19.04 51.71
w/ 18.98 52.33

DeltaNet-48L-1B w/o 19.60 52.12
w/ 19.47 52.46

Searched-24L-830M w/o 20.61 50.74
w/ 20.49 51.13

Previous work [7] has shown that prepending
a set of learnable tokens to regular tokens can
alleviate attention sinks [29], which are caused
by the force-to-attend phenomenon on seman-
tically unimportant tokens. We find that these
meta tokens can also benefit non-softmax linear
attention mechanisms, as they serve as learned
cache initialization when reformulating linear
attention in a recurrent format during decoding.
As shown in Tab. 5, prepending 256 meta tokens can consistently improve both language modeling
and reasoning accuracy (+0.45% on average) with negligible overhead.

3 Nemotron-Flash: The New Model Family

Combining all the above architectural improvements and training techniques, we develop and train a
new hybrid SLM family called Nemotron-Flash with two different model sizes.

Model configuration. We adopt the decoding-friendly model structure searched in Sec. 2.2, which
interleaves DeltaNet-FFN-Mamba2-FFN (Block-1) and Attention-FFN-Mamba2-FFN (Block-2) as
basic building blocks. We build two models Nemotron-Flash-1B/3B with 0.96B/2.7B parameters,
respectively, with depth and width configured based on the scaling laws in Sec. 2.1. Specifically,
Nemotron-Flash-1B has the same configuration as in Tab. 2, where the larger parameter count comes
from a new tokenizer mentioned below. It has a hidden size of 2048 and contains 12 blocks, each with
one token-mixing module and one FFN, or 24 operators if counting DeltaNet, Mamba2, Attention,
and FFN as separate operators. Nemotron-Flash-3B has a hidden size of 3072 and contains 36
operators, with two additional Block-1 and one additional Block-2.

Tokenizer. Different from previous parameter-efficient SLMs [1] that adopt a tokenizer with a
small vocabulary size to save parameters, we adopt a tokenizer with a larger vocabulary size [30].
We find that the latency overhead of the enlarged embedding layer/LM head is small, while the
more coarse-grained token representations reduce the token count when encoding the same sentence,
resulting in more significant latency reduction. Detailed analysis is in Appendix E.

Training settings. Both models are trained using the Adam optimizer (without weight decay, due
to the use of weight normalization) and a cosine learning rate schedule with an initial learning rate
of 1e-3. We first train the models on Zyda2 [31], then switch to higher-quality datasets, including
commonsense reasoning datasets (Climb-Mix [32] and Smollm-corpus [12]), a proprietary high-
quality dataset with high proportions of math and code, and MegaMath [33]. Both models are trained
for 4.5T tokens using 256 NVIDIA H100 GPUs, with a batch size of 2M tokens and a context length
of 4096, except for the final 25B tokens, where we extend the context length to 29000.

Deployment settings for latency measurement. To fairly benchmark against baseline models
dominated by full attention layers, we adopt TensorRT-LLM’s AutoDeploy kernels [10] with efficient
KV cache management for full attention and use CUDA Graph for further acceleration. For other
operators, we use the official implementation of Mamba2 [15] and FlashLinearAttention [21] for
linear attention layers such as DeltaNet, and we always wrap the entire model in a CUDA Graph.

Baselines and tasks. We benchmark against SOTA SLMs, including Qwen3 [34], Qwen2.5 [35],
Llama3.2 [36], SmolLM2 [2], h2o-Danube [37], and AMD-OLMo [38] series. Accuracy is evaluated
using lm-evaluation-harness [39] across 16 tasks including MMLU, commonsense reasoning (PIQA,
ARCC, ARCE, Hellaswag, Winogrande, OBQA), math (GSM8k, MathQA), coding (HumanEval,
HumanEval-Plus, MBPP, MBPP-Plus), and recall (FDA, SWDE, Squad). We use 5-shot evaluation
for GSM8K and MMLU, 3-shot for MBPP and MBPP-Plus, and 0-shot for all remaining tasks. We
report the average accuracy on each domain in Tab. 6 and provide task-wise accuracy in Appendix B.

3.1 Benchmark with SOTA Base SLMs

As shown in Tab. 6, our Nemotron-Flash family achieves the lowest decoding latency and the best
accuracy among models of comparable size. For example, Nemotron-Flash-1B delivers 5.5% higher
accuracy than Qwen3-0.6B with 1.9× latency reduction and 46× higher throughput. Similarly,
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Table 6: We benchmark our Nemotron-Flash-1B/3B against SOTA SLMs across 16 tasks, including
MMLU, commonsense reasoning (CR), math, coding, and recall tasks. Latency is measured on an
NVIDIA H100 GPU for decoding 8k tokens with a batch size of 1 using CUDA Graph. Throughput
(Thr.) is measured with a 32k-token input length using the maximum batch size w/o OOM. Nemotron-
Flash-3B-TP is a throughput-optimized variant configured with the 1FA+2SWA setting in Sec. 3.3.

Model Param. Depth BS=1
Latency (s)

Max BS
Thr. (tok/s)

MMLU
(%)

CR
(%)

Math
(%)

Coding
(%)

Recall
(%)

Avg.
(%)

AMD-OLMo-1B 1B 16 24.66 142 27.11 51.21 12.66 7.35 60.32 35.63
Llama-3.2-1B 1.2B 16 21.44 932 31.06 50.82 17.24 24.15 65.41 41.45
Qwen2.5-0.5B 0.5B 24 22.81 2382 47.61 47.52 32.66 32.06 65.41 45.16
Qwen3-0.6B 0.6B 28 27.55 160 52.44 48.91 36.88 24.32 62.92 44.11

Nemotron-Flash-1B 0.96B 12 14.45 7289 44.63 54.46 34.86 37.91 67.11 49.63

H2O-Danube3-4B 4B 24 45.92 178 53.76 60.79 34.73 11.65 58.45 44.37
SmolLM2-1.7B 1.7B 24 31.11 151 50.21 58.61 32.88 21.11 62.42 46.21
Llama-3.2-3B 3B 28 45.47 173 56.30 58.11 30.07 34.80 70.01 50.89
Qwen2.5-1.5B 1.5B 28 34.50 687 60.68 56.29 48.14 42.95 69.32 54.65
Qwen3-1.7B 1.7B 28 36.20 157 62.46 57.21 53.71 43.76 66.42 55.47
Qwen2.5-3B 3B 36 49.40 459 65.56 58.88 53.83 49.46 73.03 58.96

Nemotron-Flash-3B 2.7B 18 28.71 2939 61.19 61.02 57.62 53.33 73.25 60.98
Nemotron-Flash-3B-TP 2.7B 18 27.95 4657 61.19 60.94 57.88 52.40 73.77 60.84

Nemotron-Flash-3B achieves +2.0%/+5.5% higher average accuracy, 1.7×/1.3× latency reduction,
and 6.4×/18.7× higher throughput than Qwen2.5-3B/Qwen3-1.7B, respectively. In addition, with
further optimization of the attention configuration, Nemotron-Flash-3B-TP achieves 10.1× and 29.7×
higher throughput compared to Qwen2.5-3B and Qwen3-1.7B, respectively.

It is worth noting that (1) in addition to achieving the most competitive latency and throughput,
Nemotron-Flash-3B attains the highest accuracy in commonsense reasoning, math, coding, and
recall tasks among models larger than 1.5B parameters; and (2) although Nemotron-Flash-1B and
Nemotron-Flash-3B contain only 2 and 3 full-attention layers, respectively, both achieve the most
competitive recall accuracy, suggesting that maintaining full KV cache across all layers is unnecessary,
which is consistent with observations from existing hybrid LMs [30, 40].

3.2 Benchmark with SOTA Instruct SLMs
We instruction-tune the Nemotron-Flash-3B model using a two-stage supervised fine-tuning (SFT)
strategy on two proprietary datasets. The learning rates for the first and second stages are set to 8e-6
and 5e-6, respectively. Each stage is trained for one epoch using a cosine learning rate scheduler and
a global batch size of 384. To accelerate training, we adopt the efficient packing strategy from prior
work [41, 42, 43], with a block size of 29,000 tokens.

We benchmark Nemotron-Flash-3B-Instruct against Qwen2.5-1.5B and Qwen3-1.7B across MMLU
(5-shot), GPQA (0-shot), GSM8K (5-shot), and IFEval. As shown in Table 7, Nemotron-Flash-
3B-Instruct demonstrates strong reasoning and instruction-following capabilities, achieving the
best average accuracy and efficiency, e.g., over +4.7% average accuracy and 4.3×/18.7× higher
throughput compared to Qwen2.5-1.5B and Qwen3-1.7B, respectively. Despite having over 1.6×
more parameters, which contribute to enhanced intelligence, Nemotron-Flash maintains superior
real-device efficiency, owing to its architectural improvements.

Table 7: Benchmarking Nemotron-Flash-3B-Instruct with SOTA Instruct SLMs.

Instruct Model Param. Lat. (s) Thr. (tok/sec) MMLU GPQA GSM8K IFEval Avg
SmolLM2-1.7B 1.7B 31.11 151 49.11 29.24 47.68 55.06 45.27
Qwen2.5-1.5B 1.5B 34.50 687 59.73 30.13 56.03 46.78 48.17
Qwen3-1.7B 1.7B 36.20 157 60.18 28.34 64.88 31.29 46.17

Nemotron-Flash-3B 2.7B 28.71 2939 60.34 29.54 69.45 52.03 52.84

3.3 Ablation Study on Attention Configuration

Full attention (FA) operators are essential for long-context retrieval; however, they also become the
primary bottleneck for large-batch-size long-context throughput. To better understand this trade-off,
we conduct an ablation study on the attention configurations of Nemotron-Flash-3B. Starting from the
pretrained Nemotron-Flash-3B base model with three FA layers, we perform continuous pretraining
with a 29k context length for 25B tokens under three configurations: (1) three FA layers, (2) two FA
layers plus one SWA layer with an 8k window size, and (3) one FA layer and two SWA layers.
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Figure 9: Visualizing the NIAH scores of different attention configurations on Ruler [44].

Table 8: Comparing Nemotron-Flash-3B variants with
different attention configurations. Decoding throughput
is measured with a 32k-token input length using the
maximum batch size without OOM.

Setting BS=1
Lat (s)

Max BS
Thr. (tok/s) MMLU CR Math Coding Recall Avg

3FA 28.71 2939 61.19 61.02 57.62 53.33 73.25 60.98
2FA+1SWA 28.06 3737 61.02 60.93 58.56 51.82 73.37 60.69
1FA+2SWA 27.95 4657 61.19 60.94 57.88 52.40 73.77 60.84

We report the accuracy on both general
benchmarks and three needle-in-a-haystack
(NIAH) tasks from Ruler [44] in Tab. 8 and
Fig. 9, respectively. The results show that
(1) replacing more FA layers with SWA
substantially improves throughput, e.g., the
1FA+2SWA configuration achieves 1.6×
higher throughput than the 3FA setting; (2)
general benchmark accuracy, including recall performance, remains largely unaffected when more
SWA layers with 8k window size are used; and (3) NIAH performance, however, drops significantly
at longer context lengths when the number of FA layers is reduced to one, highlighting the importance
of FA operators for long-context capability. Therefore, we recommend maintaining at least two full
attention layers even in SLMs.

4 Related Work
Small language models. The large model size and computational demands of LLMs [45, 46, 47,
48, 49, 50, 51, 52] hinder their efficient deployment on resource-constrained platforms. This has
motivated the development of SLMs, such as MobileLLM [1], MiniCPM [9], PanGu-π Pro [11],
and TinyLlama [53]. These works aim to deliver parameter-efficient SLMs within a given parameter
budget. However, parameter efficiency alone often does not translate into proportional latency
reductions on real devices. Our work targets real-device efficiency and aims to provide insights and
methodologies for developing latency-optimal SLMs.

Efficient attention alternatives. To address the quadratic computation and linearly increasing mem-
ory of attention modules, efficient attention alternatives with sub-quadratic complexity in sequence
length have been proposed [54, 55, 14, 15, 16, 4, 17, 18]. Notable examples include RWKV [54],
RetNet [55], Mamba [14], Mamba2 [15], GLA [16], DeltaNet [17], Gated DeltaNet [18], and Jet-
Block [56], each featuring different memory update rules. However, despite their potential, linear
attention mechanisms have been found to exhibit limited recall capabilities [6] and to underperform
standard attention mechanisms on in-context learning tasks [57].

Hybrid language models. To combine the efficiency of linear attention with the recall capabili-
ties of quadratic attention, hybrid models that incorporate both types of operators have emerged.
Specifically, [57, 6, 5, 22, 23] sequentially stack Mamba and attention layers in hybrid models and
show enhanced commonsense reasoning and long-context capabilities. [7] proposes a hybrid-head
structure that stacks attention and Mamba in parallel. However, existing hybrid models still rely
on manual operator combinations, requiring tedious trial-and-error processes. Our work aims to
automate operator combination in hybrid models, enabling more scalable hybrid model development.

5 Conclusion
This work systematically explores key architectural and training factors essential for developing
latency-optimal SLMs. By analyzing optimal depth-width ratios, strategically combining efficient
attention operators through an evolutionary search framework, and enhancing training with weight
normalization and meta tokens, we establish a comprehensive framework that significantly improves
both real-device latency and accuracy, and deliver the Nemotron-Flash model family that advances
the SOTA accuracy-latency frontier. Beyond the framework, we hope the actionable insights and
guidelines we provide will shed light on future research and development of low-latency / high-
throughput SLMs tailored to diverse, latency-sensitive real-world applications.
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A Detailed Experimental Settings

Depth-width scaling in Sec. 2.1. We train a series of Llama models with five depth settings: 6,
12, 18, 24, and 30 blocks, where each block contains one attention and one FFN. For each depth
setting, we further vary the model width, i.e., hidden size, to create different models, ensuring that
the resulting models across different depths have relatively comparable parameter ranges. We train
each model on 100B tokens from the Smollm-corpus [12] using the AdamW optimizer and a cosine
learning rate schedule with an initial learning rate of 5e-4.

Architecture explorations in Sec. 2.2. For vanilla Mamba and Mamba2 models, we do not insert
FFNs, following their original papers. For all other pure models we explored, we add one FFN after
each token mixing operator. For hybrid models, we adopt the building block of Operator1-Operator2-
FFN. For example, when building a hybrid model with DeltaNet and Mamba2, we use the building
block DeltaNet-Mamba2-FFN. All models have 500M parameters and consist of 24 operators, where
each token mixing operator and each FFN is counted as one operator. We train each model on 100B
tokens from the Smollm-corpus [12] using the AdamW optimizer and a cosine learning rate schedule
with an initial learning rate of 5e-4. The same training settings are used for training the searched
architectures, as well as for the meta token experiments in Sec. 2.4.

Weight normalization experiments in Sec. 2.3. For all models with and without weight normaliza-
tion, we train them on 100B tokens from the Smollm-corpus [12] using the AdamW optimizer and
a cosine learning rate schedule with an initial learning rate of 1e-3. This learning rate is the tuned
learning rate that achieves the best convergence for models without weight normalization. We then
apply weight normalization on top of this setting to demonstrate that our method can further boost
task performance beyond the best baseline.
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Table 9: We benchmark our Nemotron-Flash-1B/3B against SOTA SLMs across 16 tasks, including
MMLU, commonsense reasoning (CR), math, coding, and recall tasks. Latency is measured on an
NVIDIA H100 GPU for decoding 8k tokens with a batch size of 1 using CUDA Graph. Throughput
is measured with a 32k-token input length using the maximum batch size w/o OOM.

Model MMLU Commonsense Reasoning Math Coding Recall Overall AvgPIQA ARCC ARCE Hellaswag Winogrande OBQA Avg GSM8k MathQA Avg HumanEval HumanEval-Plus MBPP MBPP-Plus Avg FDA SWDE Squad Avg
AMD-OLMo-1B 27.11 74.92 31.66 65.95 47.29 61.64 25.80 51.21 1.36 23.95 12.66 5.49 6.10 5.40 12.43 7.35 70.15 77.05 33.75 60.32 35.63

Llama-3.2-1B 31.06 74.37 31.06 65.45 47.71 59.91 26.40 50.82 5.31 29.18 17.24 17.07 14.02 26.60 38.89 24.15 74.14 84.25 37.84 65.41 41.45
Qwen2.5-0.5B 47.61 70.29 29.44 64.44 40.69 55.49 24.80 47.52 36.47 28.84 32.66 28.05 25.61 29.60 44.97 32.06 68.69 79.39 48.16 65.41 45.16
Qwen3-0.6B 52.44 69.69 33.36 65.65 41.06 58.88 24.80 48.91 42.84 30.92 36.88 19.51 17.07 22.60 38.10 24.32 64.88 80.29 43.60 62.92 44.11

Nemotron-Flash-1B 44.63 75.41 41.47 74.83 45.80 59.67 29.60 54.46 32.52 37.19 34.86 32.93 29.27 35.20 54.23 37.91 77.59 77.23 46.51 67.11 49.63

H2O-Danube3-4B 53.76 79.60 46.67 77.19 58.78 68.51 34.00 60.79 41.62 27.84 34.73 1.83 1.83 17.00 25.93 11.65 33.48 89.20 52.68 58.45 44.37
SmolLM2-1.7B 50.21 77.20 44.45 77.74 53.38 66.06 32.80 58.61 31.31 34.44 32.88 0.61 0.61 35.60 47.62 21.11 59.07 82.18 46.01 62.42 46.21
Llama-3.2-3B 56.30 76.44 42.49 74.37 55.31 69.06 31.00 58.11 25.40 34.74 30.07 26.22 23.78 36.80 52.38 34.80 78.49 89.38 42.16 70.01 50.89
Qwen2.5-1.5B 60.68 75.79 41.38 75.72 50.20 63.06 31.60 56.29 61.87 34.41 48.14 36.59 31.10 44.60 59.52 42.95 71.14 86.14 50.67 69.32 54.65
Qwen3-1.7B 62.46 75.89 41.64 73.23 49.39 63.93 39.20 57.21 69.60 37.82 53.71 39.63 36.59 43.00 55.82 43.76 65.43 85.33 48.49 66.42 55.47
Qwen2.5-3B 65.56 78.40 44.80 77.31 54.87 68.51 29.40 58.88 70.43 37.22 53.83 37.20 31.71 56.20 72.75 49.46 72.78 90.37 55.93 73.03 58.96

Nemotron-Flash-3B 61.19 79.65 50.17 80.72 53.79 67.01 34.80 61.02 66.34 48.91 57.62 48.17 43.29 52.00 69.84 53.33 81.85 85.42 52.48 73.25 60.98

Tasks for computing average commonsense reasoning (CR) accuracy. Unless otherwise specified,
in the above exploration experiments, we adopt eight tasks to compute the average CR accuracy:
Lambda, PIQA, ARC-Easy, ARC-Challenge, Hellaswag, Winogrande, TruthfulQA, and SIQA, all
from the lm-evaluation-harness [39].

B More Benchmark Results of Nemotron-Flash

As a complement to the domain-averaged accuracies reported in Sec. 3.1 and Tab. 6, we present the
detailed per-task accuracies within each domain in Tab. 9.

C Evolutionary Search: More Details and Experiments

C.1 Detailed Search Space

Search template. We divide the entire architecture into three stages, with each stage repeating one
type of building block. This three-stage strategy balances operator heterogeneity with architectural
regularity. We search for both the number of blocks in each stage and the structure of each building
block, including the involved operators, their ratios, and the ratio of FFNs.

Operators and their ratios. Based on the exploration of pure and hybrid models in Sec. 2.2, we
include attention, Mamba2, and DeltaNet in our search space, considering both operator efficiency
and their complementary roles. To ensure regularity and avoid overly complex blocks, we allow at
most two types of operators (excluding FFNs) in each building block type. We support different
ratios between two hybrid operators: 0:1 (i.e., only one operator), 1:1, 1:2, and 1:3.

FFN ratios. We allow for 0, 1, or 2 FFNs after each token mixing operator in each building block.

Number of building blocks. We allow flexible configurations of the number of building blocks in
each stage, as long as the total number of operators does not exceed a predefined limit (i.e., 30). If the
total exceeds this limit, we reduce the number of building blocks in the last stage to meet the depth
constraint.

After determining all the above design factors for a new architecture, we select a hidden size from
[1024, 1280, 1536, 1792, 2048, 2304, 2560], choosing the largest size that satisfies the target latency.
This strategy allows us to use the short-training PPL solely to rank the searched architectures.

C.2 Our Evolutionary Search Algorithm

As a complement to the search algorithm described in Sec. 2.2, we present our adopted aging
evolutionary search in Alg. 1, which iteratively refines a population of hybrid language model
architectures by selectively sampling and mutating architectures over multiple cycles.

Search process. After initializing a population of architectures from a set of seeded and randomly
initialized architectures, a set of candidate architectures (we use 10) is sampled, mutated, and
evaluated concurrently in each cycle. Mutations are performed by altering one of the searchable
factors: (1) changing one operator in a building block type, (2) varying the hybrid operator ratio
in a building block type, (3) adjusting the FFN ratio in a building block type, or (4) modifying the
number of building blocks across stages. The sampled architectures are evaluated using short-training
perplexity as an efficient proxy for final performance, and latency is quickly estimated using a pre-
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Algorithm 1: Aging Evolutionary Search for Hybrid Operator Combinations
Input: LUT for latency, population size P , sample size S, number of cycles C, target latency

budget Ltarget

Output: Best-performing architecture
1 Initialize population P ← Seeded architectures;
2 Short-train each architecture in P and compute their proxy PPL and latency;
3 for cycle← 1 to C do
4 for each architecture in current cycle in parallel do
5 Sample subset S ⊆ P randomly, with |S| = S;
6 Select the parent p← argminx∈S PPL(x) s.t. latency(x) ≤ Ltarget;
7 Create offspring c by mutating one factor of p (operator ratios, FFN ratios, or block type

counts), adjusting to maintain depth constraint;
8 Evaluate c by short-training to obtain proxy PPL and querying LUT for latency;
9 Remove oldest architecture from P;

10 Add offspring c to population P;

11 return architecture in P with lowest proxy PPL satisfying latency constraint Ltarget;

measured lookup table (LUT). This parallel, proxy-driven strategy effectively balances the exploration
of novel designs and the exploitation of known strong performers, facilitating rapid convergence to
high-quality architectures.

Short training settings. We train each model on 10B tokens from the Smollm-corpus [12] using the
AdamW optimizer and a cosine learning rate schedule with an initial learning rate of 5e-4. Training
and evaluating a sampled architecture takes approximately 2 hours using 32 NVIDIA A100 GPUs.

C.3 Search with Parameter Efficiency as the Objective

As a complement to the searched architecture optimized for parameter efficiency, presented in Sec. 2.2
and Tab. 3, we provide a benchmark against other baseline architectures, all with 500M parameters,
in terms of Wikitext PPL and CR accuracy averaged over eight tasks. All models are trained on 100B
tokens from the Smollm-corpus [12] using the AdamW optimizer and a cosine learning rate schedule
with an initial learning rate of 5e-4. As shown in Tab. 10, the searched architecture achieves over
1.21% higher CR accuracy and a reduction of more than 0.74 in PPL compared to all 500M baselines.

Table 10: Benchmarking our searched architecture, optimized for parameter efficiency, against
baseline architectures. All models have 500M parameters. CR accuracy is averaged over eight tasks.

Metric Attention GLA DeltaNet Gated DeltaNet RWKV Mamba Mamba2 Searched (Ours)
Wiki PPL 24.44 25.16 23.87 23.80 25.47 24.55 24.36 23.06

CR Acc (%) 48.02 46.82 47.83 47.96 46.46 47.32 47.72 49.23

C.4 Configurations of Our Final Nemotron-Flash Models

We provide the detailed configurations of our final Nemotron-Flash models in Tab. 11.

Table 11: Architectural details of our Nemotron-Flash models. M2, A, D, and F denote Mamba2,
attention, DeltaNet, and FFN, respectively. For attention layers, we use group-query attention with a
group size of 4, with the specific number of heads detailed in the table.

Model Hidden Size FFN Dim Attn/KV Heads #Meta Tokens #Operators Operators
Nemotron-Flash-1B 2048 6144 16/4 256 24 [D, F, M2, F, A, F, M2, F, D, F, M2, F, A, F, M2, F, D, F, M2, F, D, F, M2, F]
Nemotron-Flash-3B 3072 9216 24/6 256 36 [D, F, M2, F, A, F, M2, F, D, F, M2, F, A, F, M2, F, D, F, M2, F, A, F, M2, F, D, F, M2, F, D, F, M2, F, D, F, M2, F]

16



Table 12: Comparing the achieved task accuracy and training speed using vanilla models, weight
normalization, nGPT without weight normalization, and full nGPT.

Model Setting Wiki PPL CR Acc (%) Training Time (sec.) / Iter

LLaMA 1B

vanilla 18.67 53.81 0.43
wnorm 18.03 54.85 0.46

nGPT w/o wnorm 19.38 51.83 0.56
nGPT 17.45 54.73 0.59

Hybrid 1B

vanilla 17.96 54.36 0.78
wnorm 17.50 55.74 0.81

nGPT w/o wnorm 18.96 52.44 1.01
nGPT 17.25 55.33 1.04

D Weight Normalization: More Analysis and Experiments

D.1 Compare Weight Normalization with nGPT

As discussed in Sec. 2.3, our weight normalization technique can be viewed as a simplified and
efficient variant of nGPT [28], which enforces all computations in LMs to operate on a unit sphere by
introducing multiple activation normalization layers in addition to weight normalization. To analyze
the performance breakdown achieved by nGPT, we evaluate our weight normalization, nGPT without
weight normalization (i.e., activation normalization only), and full nGPT on two models: a Llama 1B
model and a 1B hybrid model with each building block structured as Attention-Mamba-FFN.

As shown in Tab. 12, we observe that: (1) Using only our weight normalization achieves strong task
performance, with higher CR accuracy than nGPT and slightly worse language modeling PPL; (2)
Weight normalization is essential to nGPT, as removing it leads to a notable drop in accuracy; (3) The
additional activation normalization layers in nGPT introduce over 30% training overhead, reducing
the number of training tokens under a fixed training budget. Thus, our weight normalization offers a
more efficient alternative to nGPT while maintaining comparable task performance.

D.2 Gradient Norm Evolution of More Models

As a complement to Sec. 2.3, we further visualize the gradient norm evolution during training with
and without weight normalization for four models in Fig. 10. We observe that weight normalization
results in a slightly increased gradient norm, leading to larger relative weight updates, considering
the smaller weight norm. This effect is particularly beneficial in the later stages of training and leads
to consistent final accuracy improvements across model families.

1e5 1e5 1e5 1e5

Figure 10: The gradient norm evolution during training w/ and w/o weight normalization.

E The Choice of Tokenizers

Previous parameter-efficient SLMs [1] adopt a tokenizer with a small vocabulary size, such as
Llama2 [47], to reduce the number of parameters. In contrast, we use a tokenizer with a larger
vocabulary size, i.e., Mistral-NeMo-Minitron [30]. The rationale is that a larger vocabulary often
results in more concise token representations and fewer tokens when encoding the same sentence.
For example, the phrase by the way” can be tokenized into a single by-the-way” token.
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Table 13: Tokens per sample on AG News / Wiki-
text datasets using LLaMA2 [47] and Mistral-NeMo-
Minitron [30] tokenizers.

Dataset LLaMA2 Mistral-NeMo-Minitron
AG News 63.64 55.08 (-13.5%)
Wikitext 116.86 106.00 (-9.3%)

As shown in Tab. 13, when averaging the
number of tokens per sample over two
datasets, the Mistral-NeMo-Minitron tok-
enizer achieves a 9.3% and 13.5% reduc-
tion in token count. At the same time, the
decoding latency for generating 8k tokens
using models with embedding dimensions
corresponding to the two tokenizers shows
only a 5.8% latency gap (38.93 seconds vs. 41.31 seconds). This suggests that overall efficiency could
be higher when using tokenizers with larger vocabularies. Furthermore, given that larger vocabulary
sizes often improve task performance, we adopt the Mistral-NeMo-Minitron tokenizer [30] over
smaller alternatives.

F Deployment Flow

Existing deployment frameworks such as TensorRT-LLM [58] and vLLM [59] support Attention
and Mamba2, while linear attention variants like DeltaNet are only supported by FlashLinearAtten-
tion [21]. Hybrid LMs involve diverse operators and require a deployment flow that can efficiently
accelerate each operator type. To this end, we integrate TensorRT-LLM’s AutoDeploy kernels [10]
with efficient KV cache management for full Attention, the official implementation of Mamba2 [15],
and DeltaNet via FlashLinearAttention [21] to deploy our Nemotron-Flash. The entire model is
wrapped with CUDA Graph to mitigate kernel launch overhead, which is critical for edge applications
with a batch size of 1.

To demonstrate the effectiveness of our deployment flow, we benchmark the decoding speed of a
Llama model (12 blocks, hidden size of 1536, 550M parameters) using PyTorch, vLLM, TensorRT-
LLM, and our deployment flow. As shown in Tab. 14, our deployment flow outperforms vLLM in
decoding speed at longer sequence lengths and achieves a latency gap within 15% of TensorRT-LLM
for full-attention models. This gap could be further reduced with improved full-attention kernel
optimization on top of [10]. Additionally, our deployment supports linear attention variants, which
are not supported by vLLM or TensorRT-LLM. This set of comparisons validates the effectiveness of
our deployment flow.

Table 14: Decoding latency (sec.) at various decoding lengths for a 550M Llama model across
different deployment flows. The batch size is set to 1, as our target is edge applications.

Deployment Flow 6 64 256 512 1024 2048 4096 8192 16384 32768
PyTorch 0.16 0.96 3.64 7.07 14.28 28.89 56.92 113.93 222.78 457.72
vLLM 0.02 0.14 0.55 1.09 2.16 4.31 8.66 17.82 67.23 169.74

TensorRT-LLM 0.17 0.30 0.64 1.00 1.81 3.42 6.72 13.65 28.41 60.41

Ours 0.01 0.14 0.54 1.08 2.17 4.36 8.72 17.54 35.29 71.65

G Limitations and Future Work

In our architecture search for SLMs, we primarily use language modeling as the search proxy, which
may not fully capture other capabilities such as long-context understanding. Additionally, our search
focuses on macro-architecture, leaving room to explore more fine-grained design factors. We plan to
extend our search framework to optimize for these aspects in future work.

H Societal Impact

Our work aims to develop latency-optimal SLMs that lower the barrier to LM deployment and
facilitate ubiquitous edge intelligence. A potential negative societal impact is that the broader use of
LMs may increase the risk of misuse, emphasizing the need for more advanced and efficient safety
enhancement techniques.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As highlighted in the abstract and introduction, this paper targets latency-
optimal SLMs and achieves this through the proposed architectural and training strategies.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our method in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the model configurations and training settings in Sec. 3 and
elaborated further in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We used open data for model training and provided the corresponding refer-
ences. Model configurations and training settings are detailed in Sec. 3 and further elaborated
in Appendix A.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Model configurations and training settings are detailed in Sec. 3 and further
elaborated in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We performed relatively large-scale training (≥ 100B tokens) so that the task
performance is relatively stable across runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The training resources are detailed in Sec. 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and followed this guideline.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed in Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We used publicly available open datasets focused on factual knowledge,
commonsense reasoning, math, and coding, so we did not apply additional safeguards to
further enhance safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used open data for model training and have provided the corresponding
references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not release any new assets at the time of submission but will provide
thorough documentation when the models from this paper are released in the future.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments or research involving human subjects were
conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing experiments or research involving human subjects were
conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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