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ABSTRACT

Biological fluid simulation is a critical tool for comprehending the intricate and
complex fluid dynamics that occur within bio logical systems. Recently, data-
driven techniques have emerged as a promising avenue to enhance the accuracy
and efficiency of biological fluid simulations. However, the community encounters
two challenges. (1) Existing biological datasets only capture static snapshots,
lacking the ability to capture dynamic biological processes. (2) These datasets
are limited in scale due to the demanding experimental conditions. To address
these challenges, this paper introduces four comprehensive large-scale datasets:
Tension, Wets, CellDivision and Jellyfish, containing a wealth of biological dynam-
ics and pushing the boundary of data-driven methods. These datasets have been
meticulously designed to encompass a wide array of biological fluid dynamics
scenarios. By incorporating physical modeling techniques such as phase-field
method, these datasets provide a standardized evaluation framework for data-driven
approaches. They empower researchers to objectively assess and compare different
methodologies, fostering advancements in the field of biological fluid simulation.
Furthermore, the availability of these benchmark datasets facilitates reproducibility
and enhances the comparability of results across studies, promoting knowledge
sharing and collaboration within the research community. Researchers can build
upon existing models, leading to cumulative progress in the development of ac-
curate and efficient data-driven models for simulating complex fluid dynamics
within biological systems. We offer benchmark code and CellDJBench dataset link
through the following link: https://anonymous.4open.science/r/ CellDJBench.

1 INTRODUCTION

Biological fluid simulation (Liu, 2005; Marques et al., 2011) plays a crucial role in various scientific
and engineering domains, enabling the investigation of complex fluid dynamics (Tian et al., 2014)
within biological systems. The accurate modeling of fluid behavior is essential for understanding
phenomena such as blood flow in cardiovascular studies, the motion of swimming organisms, and the
transport of nutrients within biological tissues. Traditional approaches (Kucera et al., 2024; Peng
et al., 1999) to fluid simulation, have been widely used but often struggle to capture the intricate and
complex dynamics exhibited by biological fluids. In recent years, data-driven approaches (Chen et al.,
2016a; Weng & Zhu, 2021), leveraging machine learning (O’shea & Nash, 2015) and deep learning
techniques (Ho et al., 2020), have shown great promise in enhancing the accuracy and efficiency of
biological fluid simulations.

However, the adoption of data-driven techniques like FNO (Li et al., 2020) and SFNO (Bonev et al.,
2023) in biological fluid simulation is hindered by several challenges. Importantly, the lack of
standardized large-scale datasets (Hassan et al., 2023) poses a significant obstacle to evaluating and
comparing different methodologies. Existing datasets are often limited in scope (Ahlmann-Eltze &
Huber, 2023; Yang et al., 2022), failing to capture the diverse range of biological fluid dynamics or
encompassing challenging scenarios. This limitation inhibits the objective assessment of various
approaches and hampers the reproducibility and comparability of research findings. Developing
models that can effectively handle the diverse physical properties, boundary conditions, and dynamic
behavior of biological fluids remains an active area of research.
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Although researchers have explored a lot on constructing biological datasets, there are some chal-
lenges that existing biological datasets cannot solve. (1) Existing biological datasets only capture
biological snapshots, which cannot capture biological dynamics. (2) Current datasets rely on rigorous
experimental conditions, such as specific temperature settings, making them challenging to acquire
and limited in scale. Some experiments, like scRNA-seq on cell, are destructive, thereby hinder-
ing observations of cell trajectories. In contrast, living-image (in video format) data demonstrates
exceptional congruence with physical modeling techniques such as phase-field methods. These
models harness the quantitative intricacy inherent in live-imaging data to establish computational
representations of cellular behavior, providing a robust framework for theoretical investigation and
hypothesis validation. Thus, to solve these challenges, we aim to construct large-scale biological
living-image datasets like single-cell dynamic datasets via phase-field methods that are beneficial for
capturing biological dynamics and further providing a valuable resource to the research community.

In this paper, we create and release four large-scale biological datasets: two cell evolving datasets
(i.e., Tension and Wets), one cell division dataset (CellDivision) and one Jellyfish dataset. These
datasets are specifically designed to capture a wide range of biological fluid dynamics scenarios,
encompassing tension-driven flows, wetting phenomena, cell divisions, and the intricate motion of
jellyfish-like organisms. Each dataset is meticulously curated, incorporating variations in physical
parameters, such as adhesion, tension, and flow rates, to simulate the complexity and heterogeneity
of real-world biological systems.

Meanwhile, we also provide standardized evaluation benchmarks for data-driven biological fluid
simulation, enabling researchers to benchmark their models against challenging and diverse sce-
narios. By establishing a common ground for comparison, these datasets facilitate the objective
assessment and comparison of different data-driven methodologies, fostering the advancement of
the field. Furthermore, the availability of these benchmark datasets promotes reproducibility and
comparability of results across studies, highlighting the strengths and limitations of each approach
in capturing the intricate dynamics of biological fluids. Researchers can build upon and improve
existing models (Schindler & Kutzelnigg, 1983; Ronneberger et al., 2015), enabling cumulative
progress in biological fluid simulation. In summary, our contributions are provided as follows:

• New Perspective. We are the first to investigate fluid dynamics modeling in biological systems
at both the dynamic single-cell level and the jellyfish level. Unlike previous single-cell research
focusing on a single snapshot, we simulate data across different time points, pioneering future
research such as cell division simulation.

• Large-scale Biological Datasets. We collect around 1.3 TB of raw data using a new biological tech-
nique, resulting in four large-scale fluid dynamics datasets including Tension, Wets, CellDivision
and Jellyfish. Our datasets have been made publicly available.

• Extensive Benchmarks. We make the first attempt to adopt 11 data-driven approaches for our new
dynamics modeling problem, validating the potential applications of machine learning in single-cell
biological systems. Our benchmark helps researchers evaluate their data-driven approaches to
advance the field.

2 CELLDJBENCH: PRELIMINARY AND PROBLEM SETUP

In this section, we aim to provide preliminary information on the phase-field model and Lily-Pad
simulator, which are shown in Figure 1. Then we provide the problem definition.

2.1 MOTIVATION TO CONSTRUCT BIOLOGICAL DYNAMIC DATA

Unraveling the intricacies of cellular and multicellular dynamics is paramount in current biological
research. Two primary approaches have emerged for this purpose, each offering distinct strengths
and limitations. Single-cell RNA sequencing (scRNA-seq) (Kolodziejczyk et al., 2015; Hwang et al.,
2018) represents a powerful snapshot method, providing a population-level view of cellular states
through gene expression analysis. However, scRNA-seq relies on cell destruction, hindering direct
observation of individual cell trajectories. To address this limitation, researchers have developed
single-cell trajectory inference techniques (Saelens et al., 2019; Cannoodt et al., 2016). While
valuable for identifying population trends, these methods are inherently inferential, relying on
complex algorithms susceptible to user bias and data quality. Live-imaging, in contrast, offers a
compelling alternative. By directly visualizing individual cells over time, live-imaging captures the
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Figure 1: CellDJBench: It comprises four key components including construction in Section 2,
CellDJBench datasets in Section 3, CellDJBench benchmarks in Section 4 and other potential uses
in Section 3. Each section provides comprehensive and detailed descriptions of the respective
component, ensuring a thorough understanding of each aspect.

dynamic choreography of cellular behavior with unparalleled fidelity. This approach transcends
the limitations of scRNA-seq by enabling continuous monitoring of the same cell, revealing its
unique response to stimuli and its progression through developmental pathways. Furthermore, live-
imaging data exhibits remarkable compatibility with physical modeling techniques like phase-field
methods. These models leverage the quantitative richness of live-imaging data to construct in silico
representations of cellular behavior, offering a powerful framework for theoretical exploration and
hypothesis testing.

2.2 HOW TO OBTAIN BIOLOGICAL DYNAMIC DATA?

Phase Field Model: The phase-field model, whose main idea and formulation are shown in (Alert &
Trepat, 2020), which is a method that accounts for diffuse interfaces, has demonstrated its ability to
reconstruct the embryonic morphologies of C. Elegans in previous studies (Jiang et al., 2019; Kuang
et al., 2023; 2022). In this particular model, each cell is represented by a scalar order parameter
ϕi(r), where ϕi ranges from 0 (indicating the cell is outside) to 1 (indicating the cell is inside). The
variable i denotes the cell identity, and r ∈ R3 represents the three-dimensional spatial variable. The
behavior of the cell is governed by various factors, including volume constriction, surface tension,
repulsion from the eggshell, as well as repulsion and attraction from neighboring cells (Jiang et al.,
2019; Kuang et al., 2023). The eggshell itself is simplified as an ellipsoid, with its three axes aligned
parallel to the x (anterior-posterior, A-P), y (left-right, L-R), and z (dorsal-ventral, D-V) axes of the
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rectangular coordinate system. To mimic the lateral compression observed during in vivo imaging,
the regions |y| > wmax are truncated (Cao et al., 2020). The phase-field function describing the

eggshell is expressed as ϕe =
1+tanh(

d(x,y,z)√
2ϵ

)

2 . The boundary width of the eggshell is controlled
by the parameter ϵ =

√
2

20 . The distance of a point (x, y, z) in space to the eggshell is denoted as
d(x, y, z) and shown as follows:

d(x, y, z) = min


√√√√x2 +

L2
x/A−P

L2
y/L−R

y2 −
L2
x/A−P

L2
z/D−V

z2 − LA−P , |y| − wmax

 (1)

The dimensions of the ellipsoid are determined as Lx/A−P = 27.7846µm, Ly/L−P = 14.7022µm,
and Lz/D−V = 18.3778µm, representing the lengths of its semimajor axes. The maximum width of
the ellipsoid is denoted as wmax = 10.1188µm. These values are derived from experimental data.
Additionally, the terms ϕe = 1 and ϕe = 0 correspond to the external and internal regions of the
eggshell, respectively. To maintain a constant cell volume over time, the relative error between the
simulated and experimental volumes is restricted, which is expressed as Fvolume = M[

∫
Ω
ϕidr

Vi(t)
− 1]n.

The volume constriction strength is denoted by M = 8. The designed volume at a specific time point
t is represented by Vi(t). The unit vector n is perpendicular to the cell boundary, directing inward
toward the cell. A repulsive force acts between the cells and the eggshell, restricting their interaction.
This repulsive force ensures that phase fields of cells and eggshells do not overlap, following:

Frepulsion =

gϕi

N∑
j ̸=i

ϕ2
j + geϕiϕ

2
e

 ∇ϕi

|∇ϕi|2
. (2)

And g = 1.6 and ge = 16 are the repulsive force between cells and the eggshell. Additionally, two
additional significant mechanical forces are incorporated to characterize cellular and multicellular
mechanics. The attractive forces between two cells are described as Fadhesion =

∑N
j ̸=i αi,j∇ϕj . The

adhesion strength between cell i and j is represented by αi,j . The gradient operator is denoted by
∇. The cell’s stiffness is characterized by its surface tension, which influences the cell to adopt a
spherical shape with reduced surface area and minimal deformation.

Ftension = −γi [△ϕi − cW ′(ϕi)]
∇ϕi

|∇ϕi|2
(3)

The surface tension of cell i is given by γi. The boundary width of the cell is controlled by the
parameter c = 1. The function W (ϕi) transforms ϕi to a binary form, taking values of 0 and 1.
Specifically, W ′(ϕi) = 2ϕi(ϕi − 1)(2ϕi − 1). The Laplacian operator is denoted by △.

Lily-Pad Simulator: This is a powerful tool for simulating the complex fluid-structure interactions
(Weymouth, 2015). Its primary aim is to make CFD more accessible by employing straightforward,
high-speed methods that provide instant visual feedback to users. To truly fulfill this objective, Lily-
Pad operates as a genuine CFD solver by solving the full two-dimensional Navier-Stokes equations
and applying precise body boundary conditions. It simplifies many of the complexities commonly
associated with CFD through the use of the Boundary Data Immersion Method (BDIM) (Weymouth
& Yue, 2010). This technique immerses solid bodies into the fluid domain, streamlining the setup and
execution of simulations. Despite its simplicity, BDIM offers high accuracy, possesses beneficial
analytical properties, and has undergone extensive validation.

2.3 DATA-DRIVEN BIOLOGICAL SIMULATION PROBLEM SETUP

In this section, we aim to provide the problem definition of the data-driven biological dataset
simulation. Input: biological features X = {x1, x2, ..., xn} , xi ∈ RT×D×D which are built upon
biological datasets, namely cell evolving datasets and the jellyfish dataset. Output: the task is to
learn a simulation function f : xi → yi that aims to simulate xi and obtain the simulated yi via
optimizing data-driven methods. And the process is defined via the following equation:

f̂ = argmin
f

n∑
1

T∑
t=1

L(yi, xi) (4)
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Table 1: Overview of Jellyfish and Cell Datasets
Datasets Dimension Type-Physics Channels Resolution Times steps Size Videos Images

Tension 3D Cell evolving 1 256 × 256 20 ~500G 60,000 1,200,000
Wets 3D Cell evolving 1 256 × 256 20 ~500G 60,000 1,200,000

CellDivision 4D Cell evolving 1 60 × 120 × 80 7-20 ~320G 300 4,000
Jellyfish 3D Jellyfish-Robot 3 256 × 256 20 ~10G 500 10,000

Summary - - - - - ~1.3T 120,800 2,414,000

where T represents the number of time steps and D is the dimension. L represents the loss function
and denotes the Mean Squared Error (MSE) loss in this paper. And n is the number of samples in
each biological dataset.

3 CELLDJBENCH DATASETS CONSTRUCTION

In this section, we aim to present visualizations of the CellDJBench datasets, as depicted in Figure 1.
Firstly, we highlight the rationale behind constructing biological datasets. Subsequently, we provide
comprehensive explanations of the Tension, Wets, CellDivision and Jellyfish dataset constructions,
along with their respective specifications and extensions. We also provide statistics of CellDJBench
datasets in Table 1.

3.1 TENSION CONSTRUCTION

The purpose of the dataset is to examine the evolution of the system’s shape under specific grid
and domain conditions, achieved by adjusting parameters like tension parameters. A significant
aspect of the simulation revolves around calculating the changes in the variable ϕ at each time step
through the solution of a partial differential equation. As the simulation progresses, the values of ϕ
are systematically updated across the entire two-dimensional spatial grid. A detailed construction
process is shown in Appendix A.3.

The Tension dataset, focusing on cell evolving in a 3D environment, plays a crucial role in advancing
our understanding of cellular biology. Cell evolving is a fundamental process in living organisms,
and studying its dynamics and mechanisms has numerous applications in various fields, including
medicine, genetics, and developmental biology. This dataset provides a valuable resource for
researchers and scientists to explore the intricate details of cell evolving. With a resolution of
256x256 pixels and 20 time steps, it captures the progression of cell evolution, allowing for the
analysis of morphological changes, cellular behavior, and the influence of external factors. The
Tension dataset includes 2,500 videos and 50,000 images, offering a rich source of visual information.
Researchers can use this dataset to develop and evaluate algorithms, models, and techniques for cell
evolving analysis, identification of abnormal cell behavior, and understanding cellular processes. The
availability of this dataset empowers the scientific community to make significant advancements in
cellular biology, contributing to advancements in medicine, genetics, and various other disciplines.

Specifications. In contrast to existing single-cell datasets like (Ahlmann-Eltze & Huber, 2023), our
dataset offers a unique perspective by capturing the dynamic characteristics of cell evolution through
the measurement of tension changes in the tension dataset. This is achieved by analyzing single-cell
living-images, allowing us to observe the relationship between cell shape and tension fluctuations.
Additionally, we record the trajectory changes of individual cells, which holds significant potential
for advancing research in areas such as single-cell trajectory classification and clustering.

Moreover, our tension dataset is distinguished by its large-scale nature, providing a robust foundation
for future investigations utilizing large language models or other foundational models. This extensive
dataset opens up possibilities for novel research inquiries and empowers the scientific community to
explore new avenues in the study of cellular dynamics and behavior.

Extensions. The utilization of our tension dataset extends beyond its immediate application in
capturing tension changes. It can also be leveraged for other single-cell tasks, such as single-cell
trajectory prediction and single-cell trajectory clustering. Furthermore, our tension dataset stands
out due to its high-resolution nature, with each snapshot providing a resolution of 256× 256. This
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high-resolution attribute introduces potential advantages for tasks that require detailed and precise
analysis, opening up possibilities for exploring high-resolution applications in the future.

3.2 WETS CONSTRUCTION

The Wetting dataset aims to explore the changes in morphology of a system under various conditions,
including grid and domain configurations, tension, adhesion, and different physical parameters. This
dataset is generated through simulations that involve systematic modifications of key parameters to
observe and analyze the wetting behavior that emerges as a result. By providing a comprehensive
collection of simulated data, the Wetting dataset enables researchers to investigate the intricacies of
wetting phenomena and gain insights into the underlying mechanisms governing wetting behavior in
different scenarios. For a comprehensive understanding of the construction process, please refer to
Appendix A.3, where a detailed description of the step-by-step construction process is provided.

Specifications. Our wets dataset offers a distinct perspective by capturing the dynamic characteristics
of cell evolution through the assessment of wetting behavior. By analyzing single-cell living-images,
we are able to delve into the intricate relationship between cell shape and wetting behavior, specifically
by observing changes in adhesion. In addition to documenting trajectory changes of individual cells,
this dataset holds substantial potential for advancing research in areas like single-cell trajectory
prediction and clustering.

Furthermore, our wets dataset stands out due to its extensive scale, serving as a robust foundation for
future investigations that employ large language models or other foundational models. The breadth
and depth of this dataset unlock opportunities for novel research inquiries, empowering the scientific
community to explore fresh avenues in the study of cellular dynamics and wetting behavior.

Extensions. Wets dataset goes beyond its initial objective of capturing dynamic wetting behavior, as
it can be effectively utilized for various other single-cell tasks, such as single-cell trajectory inference
and single-cell trajectory metabolomics. Furthermore, the high-resolution nature of our wets dataset,
with each snapshot offering a resolution of 256 × 256, presents significant advantages for tasks
that require detailed and precise analysis. This high-resolution attribute opens up possibilities for
exploring applications that rely on meticulous examination and examination of cellular dynamics.

3.3 CELLDIVISION CONSTRUCTION

Our CellDivision dataset was created utilizing MATLAB software, employing numerical simulations
to model cell growth and division processes during Natural condition. The study revolves around the
generation of stochastic cell characteristics, with the progression of cell life cycles simulated within a
three-dimensional space using the Finite Difference Method (FDM). Various aspects of cell dynamics
such as division events, mechanical properties, trajectory paths, and velocity estimations are modeled.
The simulations are executed on a 3D grid with a spatial resolution of dx = 0.5 in the spatial domain,
while the temporal evolution is captured with a time step of dt = 1. The grid size and time step
configuration are optimized to ensure precise representation of subtle cellular movements and state
transitions. Each simulation iteration yields randomized values for cell division axes, volumes, and
lifespans. Parameters σ = 0 and c = 2 regulate the mechanical characteristics of the simulated cells,
enabling the investigation of cell behaviors under diverse environmental conditions.

The CellDivision dataset encompasses detailed cell attributes, time-series records, and trajectory
paths. Converting this data into CSV format facilitates further analysis and modeling procedures.
This dataset offers high-resolution temporal data sequences and spatial distribution details, which are
invaluable for in-depth exploration of cellular dynamics and related phenomena.

Specifications. Our CellDivision dataset offers an unprecedented opportunity to advance our under-
standing of cell division dynamics under natural conditions. To be specific, it incorporates crucial
biological details, including complete cell lineages (e.g., AB, E, MS, P), precisely determined cell
fates (e.g., Muscle, Intestine), and the environmental conditions (e.g., Natural) influencing devel-
opment. Researchers can now explore the intricate, dynamic trajectories of individual cells as they
evolve, providing insights into the complex interplay of factors governing cell division. The high-
resolution nature of the data, achieved through sophisticated numerical simulation, mirrors the detail
achievable in state-of-the-art experimental techniques. This remarkable similarity to experimentally
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derived datasets makes it an ideal tool for validating new analytical methods, testing hypotheses about
cell division mechanisms, and developing predictive models of cell behaviors.

Extensions. This dataset’s potential extends beyond its immediate application. Future expansions
could incorporate additional cell types, variations in environmental parameters (e.g., nutrient levels,
signaling molecule concentrations), and the introduction of cell-cell interactions. Integrating gene ex-
pression data would provide a multi-omics perspective, linking genotype to phenotype. Furthermore,
exploring different simulation parameters (σ and c) could uncover novel insights into the mechanical
regulation of cell division. These extensions would create a powerful, versatile resource for the
broader biological research community.

3.4 JELLYFISH CONSTRUCTION

Using the Lily-Pad simulator (Weymouth, 2015), we generate training and testing datasets. A
128 × 128 grid represents the 2D flow field, extending infinitely. The jellyfish’s head is fixed at
(25.6, 64), while its symmetric wings are ellipses with 20 boundary points. Wing shape maintains a
fixed 0.15 ratio between shorter and longer axes. The control signal, denoted as w, determines wing
opening angle. Trajectories follow a periodic cosine curve with a period of T ′ = 200, starting with
the widest angle. Simulated trajectories consist of 600 steps, stored as a sequence of 20 discrete steps
from T ′ = 200 to 3T ′ = 600. The datasets include PDE states, opening angles, boundary points, and
image-like representations of boundaries. The Jellyfish dataset captures dynamic jellyfish locomotion
in a 3D environment using a Jellyfish-Robot. It comprises 500 videos and 10,000 images, providing
a comprehensive resource for studying aquatic organism locomotion and driving advancements in
biomimetics, robotics, and marine biology. Further details can be found in Appendix A.3.

Specifications. Our Jellyfish dataset provides a unique perspective on the dynamic characteristics
of the relationship between jellyfish-robot angle and water pressure. By analyzing living-images of
jellyfish-robot angle change trends, we gain valuable insights into this intricate relationship. Moreover,
this dataset not only captures trajectory changes of individual jellyfish but also holds significant
potential for advancing research in underwater robot design and control. Additionally, our dataset
stands out in terms of its extensive scale, allowing researchers to leverage large language models or
other foundational models. The comprehensiveness and depth of this dataset open up new avenues
for innovative research inquiries, empowering the scientific community to explore novel aspects of
jellyfish-robot dynamics.

Extensions. The Jellyfish dataset continues to make a significant impact on the scientific community.
It offers valuable insights applicable to various domains, including the design and control of under-
water autonomous vehicles (AUVs), commonly known as underwater robots. The dataset’s extensive
scope and high-resolution attributes have the potential to enhance the applications of the Jellyfish
dataset within the community.

4 CELLDJBENCH BENCHMARKS

In this section, our goal is to provide detailed descriptions of benchmark methods applied to the
CellDJBench datasets, which are also illustrated in Figure 1. First, we offer concise explanations
of the benchmark methods employed. Subsequently, we present the results obtained from applying
these benchmark methods, along with a thorough analysis and interpretation of those results.

Benchmark Methods: In this section, we introduce baselines for simulating evolving cells: FNO (Li
et al., 2020), SFNO (Bonev et al., 2023), TFNO, UNet (Ronneberger et al., 2015), and DDPM (Ho
et al., 2020). FNO utilizes Fourier space for resolution-invariant global convolutions but has high
memory requirements. SFNO uses spherical harmonics for handling spherical data with optimized
memory usage. TFNO is a variant of FNO that adopts Tucker factorization of the weights. UNet is
renowned for precise object localization and segmentation, achieving exceptional performance in
various applications. DDPM gradually transforms noise-corrupted data to the original distribution
through iterative diffusion, with training involving sampling and loss function computation. ConvL-
STM (Shi et al., 2015) proposes the prediction of future precipitation patterns as a task of forecasting
spatiotemporal sequences. ViT (Dosovitskiy et al., 2020) proposes the dependence on CNNs is
not essential and transformer applied directly to sequences of image patches can achieve excellent
performance in classifying image. MLP-Mixer (Tolstikhin et al., 2021) is solely built upon multi-layer
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Table 2: Comparison of benchmarks in terms of MSE and Relative L2 norm on two datasets.
Time Step Metrics FNO SFNO TFNO UNet DDPM

Tension

TS = 1 MSE 0.0019 ± 0.0002 0.0033 ± 0.0001 0.0142 ± 0.0002 0.0418 ± 0.0001 0.0008 ± 0.0020
L2 0.2653 ± 0.0001 0.1413 ± 0.0001 0.2613 ± 0.0002 0.3102 ± 0.0300 0.0760 ± 0.0070

TS = 3 MSE 0.0141 ± 0.0002 0.0030 ± 0.0002 0.0039 ± 0.0002 0.0501 ± 0.0300 0.0018 ± 0.0030
L2 0.2938 ± 0.0001 0.1312 ± 0.0001 0.1530 ± 0.0002 0.3312 ± 0.0030 0.1114 ± 0.0050

TS = 5 MSE 0.0084 ± 0.0002 0.0026 ± 0.0002 0.0032 ± 0.0001 0.0515 ± 0.0003 0.0027 ± 0.0008
L2 0.2356 ± 0.0003 0.1192 ± 0.0002 0.1335 ± 0.0001 0.3516 ± 0.0200 0.1375 ± 0.0200

TS = 7 MSE 0.0078 ± 0.0001 0.0019 ± 0.0002 0.0024 ± 0.0001 0.0549 ± 0.0002 0.0034 ± 0.0007
L2 0.2243 ± 0.0002 0.0936 ± 0.0002 0.1038 ± 0.0002 0.3619 ± 0.0010 0.1557 ± 0.0200

TS = 9 MSE 0.0049 ± 0.0002 0.0020 ± 0.0001 0.0031 ± 0.0001 0.0575 ± 0.0003 0.0043 ± 0.0007
L2 0.1915 ± 0.0002 0.1006 ± 0.0002 0.1167 ± 0.0001 0.3412 ± 0.0001 0.1708 ± 0.0400

Wet

TS = 1 MSE 0.0784 ± 0.0002 0.0795 ± 0.0001 0.0957 ± 0.0001 0.0392 ± 0.0004 0.0171 ± 0.0060
L2 0.3720 ± 0.0001 0.4015 ± 0.0002 0.4383 ± 0.0002 0.5047 ± 0.0040 0.3051 ± 0.0400

TS = 3 MSE 0.0704 ± 0.0002 0.0743 ± 0.0002 0.0817 ± 0.0001 0.0411 ± 0.0002 0.0227 ± 0.0050
L2 0.3052 ± 0.0001 0.3127 ± 0.0001 0.3417 ± 0.0002 0.5232 ± 0.0030 0.3234 ± 0.0400

TS = 5 MSE 0.0871 ± 0.0002 0.0819 ± 0.0002 0.0883 ± 0.0001 0.0425 ± 0.0020 0.0228 ± 0.0030
L2 0.3887 ± 0.0001 0.3936 ± 0.0001 0.3585 ± 0.0001 0.5432 ± 0.0030 0.3418 ± 0.0300

TS = 7 MSE 0.0846 ± 0.0002 0.0867 ± 0.0002 0.0945 ± 0.0001 0.0431 ± 0.0003 0.0231 ± 0.0020
L2 0.4039 ± 0.0001 0.3956 ± 0.0001 0.3788 ± 0.0001 0.5532 ± 0.0020 0.3516 ± 0.0300

TS = 9 MSE 0.0860 ± 0.0002 0.0916 ± 0.0002 0.1072 ± 0.0001 0.0437 ± 0.0030 0.0232 ± 0.0030
L2 0.4034 ± 0.0001 0.4014 ± 0.0001 0.4141 ± 0.0001 0.6012 ± 0.0020 0.3777 ± 0.0200

Table 3: Comparison of benchmarks in terms of MSE and Relative L2 norm on Jellyfish (Fluid).
Time Step Metrics FNO SFNO TFNO UNet DDPM

TS = 1 MSE 0.0319 ± 0.0002 0.0241 ± 0.0003 0.0228 ± 0.0002 0.6342 ± 0.0002 0.6970 ± 0.0020
L2 0.3127 ± 0.0002 0.2733 ± 0.0001 0.2646 ± 0.0001 0.9487 ± 0.0002 0.9520 ± 0.0030

TS = 3 MSE 0.0524 ± 0.0001 0.0418 ± 0.0003 0.0421 ± 0.0001 0.6364 ± 0.0003 0.7021 ± 0.0030
L2 0.3991 ± 0.0002 0.3579 ± 0.0001 0.3549 ± 0.0001 0.9501 ± 0.0001 0.9601 ± 0.0020

TS = 5 MSE 0.0793 ± 0.0002 0.0692 ± 0.0001 0.0718 ± 0.0002 0.6395 ± 0.0002 0.7073 ± 0.0010
L2 0.4859 ± 0.0001 0.4548 ± 0.0001 0.4496 ± 0.0001 0.9557 ± 0.0001 0.9612 ± 0.0010

TS = 7 MSE 0.1004 ± 0.0002 0.0911 ± 0.0003 0.0997 ± 0.0002 0.6460 ± 0.0001 0.7145 ± 0.0020
L2 0.5416 ± 0.0002 0.5277 ± 0.0001 0.5435 ± 0.0001 0.9536 ± 0.0001 0.9634 ± 0.0010

TS = 9 MSE 0.1253 ± 0.0001 0.1273 ± 0.0001 0.1164 ± 0.0002 0.6660 ± 0.0002 0.7167 ± 0.0020
L2 0.6044 ± 0.0002 0.6142 ± 0.0001 0.5918 ± 0.0001 0.9574 ± 0.0002 0.9679 ± 0.0002

perceptrons (MLPs). MLP-Mixer comprises two distinct layer types: one applies MLPs individually
to image patches, while the other applies MLPs across multiple patches. DDOs-FNO (Lim et al.,
2023) proposes a robust mathematical framework specifically designed for training diffusion models
in function space. DDOs-SFNO (Lim et al., 2023) is inspired by the combination of DDPM and
FNO, it is combination of DDPM and SFNO. DDOs-TFNO (Lim et al., 2023) is a hybrid approach
that draws inspiration from both DDPM and TFNO. Detailed illustrations of benchmark methods and
setups are shown in Appendix A.4.

Results: Overall Comparison of Benchmark Methods. Tables 2 and 3 present a comparative
analysis of single-cell trajectory simulation performance across three distinct datasets: Tension, Wets,
and Jellyfish. Three distinct classes of models were evaluated: autoregressive models (FNO, SFNO,
TFNO, and UNet) and a generative model (DDPM). The results, quantified using Mean Squared
Error (MSE) and Relative L2 norm, reveal a complex interplay between model architecture and
dataset characteristics. While the autoregressive models demonstrate varying degrees of success
across the datasets, a clear, consistent superiority over the generative model (DDPM) is not evident.
Interestingly, a closer examination suggests that autoregressive models frequently exhibit superior
simulation performance as measured by both MSE and Relative L2 norm.

Visualization of DDPM. Within our research, we offer visualizations using DDPM to present the
ground truth, simulation results, and error analysis in Figure 2. The initial subfigure in the first
column portrays the actual cell scenario, serving as the reference or truth. Moving to the second
column, the subfigures showcase the cells generated through the employment of DDPM. Finally, in
the third column, we observe the error figures, which highlight the disparities between the ground
truth and the simulated results obtained using DDPM. Due to page limits, additional experimental
results for six benchmark methods (ConvLSTM, ViT, MLP-Mixer, DDOs-FNO, DDOs-SFNO and
DDOs-TFNO) can be found in Appendix A.5.

Figure 3 presents visualizations generated using DDPM applied to the CellDivision dataset. These
visualizations demonstrate that DDPM effectively captures the complex dynamics of cell division
within this dataset, generating simulated cell division patterns that closely resemble the observed
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(e) Ground truth (sample 41) (f) DDPM (sample 41) (g) Error (sample 41)

Figure 2: In our research, we provide visualizations using DDPM to examine the ground truth,
simulation results, and error analysis on Tension and Jellyfish (Fluid) dataset. The first column’s
initial subfigure represents the ground truth like genuine boundary of a jelly-like robot. Moving to
the second column, the subfigures display the simulated results via DDPM like the pressure fields.
Finally, in the third column, we observe the error figures that emphasize the differences between the
ground truth and the simulated results obtained with DDPM.
biological processes. The high fidelity of the DDPM-generated simulations suggests its potential as a
valuable tool for modeling and understanding cell division mechanisms.

5 RELATED WORK

Comparison with Existing Biological Dynamics Datasets. With the rapid advancement of AI
in scientific research, comprehensive biological datasets are becoming increasingly important, as
evidenced by recent works such as (Dannenfelser et al., 2024; Pan et al., 2003; Gilpin et al., 2020;
Kucera et al., 2024). However, current biological datasets face several limitations and are unable to
fully meet the rapidly evolving demands of AI in the biological domain. For instance, Dannenfelser et
al. (Dannenfelser et al., 2024) have introduced FlaMBé (Flow annotations for Multiverse Biological
entities), a comprehensive compilation of meticulously curated datasets that encompass a diverse
range of tasks aimed at capturing procedural knowledge found in biomedical texts. This dataset is
driven by the realization that academic papers, particularly the methodologies sections, serve as a
significant but disorganized source of procedural knowledge. However, FlaMBé is limited by its
small scale and lack of cellular-level data, and it fails to capture diverse cell lineages and fates under
varying developmental conditions. Additionally, Kucera et al. (Kucera et al., 2024) have proposed
a Python software package that simplifies the creation of datasets and the evaluation of models for
deep learning on protein structures. But it does not cover biological dynamics in terms of cells.

Motivated by the limitations above, our work aims to provide benchmark datasets that Tension, Wets
and CellDivision , which focus on cell evolution in terms of cell lineages, cell fates and developing
conditions. In addition, Jellyfish dataset covers the jellyfish moving process in terms of water pressure.
These datasets incorporate the evolving trends of time in both the jellyfish robot’s angle and the
time-evolving data-driven biological simulation. Thus, our contribution not only provides three
large-scale biological datasets but also establishes benchmarks for simulating these datasets within
the realm of cell evolution.

9
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Predicted

Ground Truth

4 6 7 83 5 91 2

Input

Figure 3: In our research, we provide visualizations using DDPM to examine the ground truth,
simulation results for the CellDivision Dataset. The model uses a five-time-step cell evolution process
as input to predict the subsequent four time steps of a cell’s (Cell ABpr) lifecycle.

6 POTENTIAL APPLICATIONS

Blood Flow in Cardiovascular Studies: The Tension and Wets dataset, and our datasets more
broadly, offer a valuable in silico model for investigating the intricate hemodynamics of blood flow
within the cardiovascular system. The dataset’s high fidelity allows for the simulation of complex
fluid dynamics, including the effects of non-Newtonian fluid properties and vessel geometry. This
capability enables the development and validation of AI-driven predictive models capable of assessing
the impact of various pathophysiological factors, such as atherosclerotic plaque formation, valvular
dysfunction, or stenosis, on blood flow patterns and shear stress distributions. Such models have the
potential to significantly advance the design and optimization of medical interventions, including
the planning of surgical procedures or the development of novel therapeutic strategies. Furthermore,
the simulated data can be used to assess the efficacy of existing and novel treatments by providing
a controlled environment for evaluating their impact on hemodynamic parameters. This approach
offers a powerful complement to in vivo and in vitro studies, potentially reducing the reliance on
animal models and accelerating the translation of research findings into clinical applications.

The Motion of Swimming Organisms: The Jellyfish dataset offers a rich resource for studying
the complex fluid-structure interactions driving jellyfish locomotion. Analyzing this dataset reveals
details of their propulsive mechanisms, including morphology, contractions, and fluid dynamics. This
understanding informs bio-inspired robotics, improving underwater vehicle design. Furthermore, it
enhances ecological modeling and our knowledge of marine life biophysics, impacting biomimetic
material development for improved hydrodynamic properties.

Cell Tracking: The CellDivision dataset holds significant potential across diverse biological and
computational research areas. Its high-resolution, biologically realistic simulations facilitate the
development and validation of novel cell division models, allowing researchers to test hypotheses
about the underlying mechanisms. The dataset can be used to train and evaluate machine learning
algorithms for cell segmentation, tracking, and fate prediction, improving the accuracy and efficiency
of image analysis in experimental studies. Furthermore, it enables the investigation of the effects
of genetic mutations or environmental changes on cell division dynamics, providing insights into
disease development and therapeutic interventions. The dataset’s potential extends to the design of
virtual experiments, reducing the need for costly and time-consuming laboratory work while allowing
for controlled exploration of a wider range of conditions. Finally, it can serve as a benchmark for
evaluating the performance of different computational methods in cell biology.

7 CONCLUSION AND LIMITATIONS

This paper addresses the challenges faced by the community in biological fluid simulation. Existing
datasets lack the ability to capture dynamic processes and are limited in scale. To overcome these lim-
itations, we introduce four comprehensive datasets: Tension, Wets, CellDivision and Jellyfish. These
datasets push the boundaries of data-driven methods by encompassing a wide array of biological fluid
dynamics scenarios. We also provide a standardized evaluation framework for data-driven approaches.
The availability of these benchmark datasets enables objective assessment and comparison of method-
ologies, promoting advancements in the field. Additionally, the datasets enhance reproducibility
and comparability of results, fostering collaboration and knowledge sharing. While these datasets
have limitations in representing all phenomena and scalability, they serve as valuable resources
for researchers to develop accurate and efficient models for simulating complex fluid dynamics in
biological systems. Detailed limitations and broader impacts are shown in Appendix A.6.
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A APPENDIX

A.1 RELATED WORK

Diffusion Probabilistic Model. Diffusion Probabilistic Models (DM) Ho et al. (2020) have emerged
as the leading approach in density estimation Kingma et al. (2021) and have also demonstrated superior
sample quality Dhariwal & Nichol (2021). These models leverage the inherent characteristics of
image-like data by employing a UNet as their underlying neural backbone Ronneberger et al. (2015);
Ho et al. (2020); Dhariwal & Nichol (2021). Notably, the use of a reweighted objective Ho et al.
(2020) during training typically leads to the highest synthesis quality. Another research line for image
generation is GAN-based methods Creswell et al. (2018); Chen et al. (2016b). A representative study
of this research line is infoGAN Chen et al. (2016b), which is a type of generative adversarial network
that not only generates realistic samples but also maximizes the mutual information between a select
few latent variables and the generated output. InfoGAN allows for the discovery of meaningful
representations. However, these studies cannot provide explanations for the generated samples.

Denosing Diffusion Probabilistic Model (DDPM) for AI for Science. Denoising diffusion prob-
abilistic models have demonstrated their ability to predict dynamic evolution in a wide range of
domains, including fluid dynamics Cachay et al. (2023), weather forecasting Price et al. (2023), and
molecular dynamics Wu et al. (2022). They have also proven effective in inverse design tasks, facili-
tating the optimization of airfoils Wu et al. (2024) and proteins Watson et al. (2023). Additionally,
diffusion models have shown promise in tackling complex inverse problems Holzschuh et al. (2023).
These examples represent just a fraction of the diverse applications where diffusion models have
been successfully employed. In the field of biology, researchers have utilized denoising diffusion
probabilistic models (DDPM) to model diffusion processes in biological networks, enabling the
analysis of protein-protein interactions and gene regulatory networks Fu et al. (2023); Best & Hummer
(2011); Gao et al. (2023); Xu et al. (2022). In physics, the DDPM has been applied to study particle
diffusion in complex systems, such as the propagation of heat in materials. Furthermore, in the realm
of chemistry, the DDPM has been employed to gain insights into the diffusion of molecules and
reactions in chemical systems. These studies highlight the versatility and effectiveness of the DDPM
in capturing and analyzing diffusion dynamics across various scientific disciplines Xu et al. (2022).
Ongoing research aims to further explore the potential of DDPMs in solving complex problems in the
field of AI for Science. For additional related work on diffusion models, please refer to Appendix A.1.

A.2 PRELIMINARY

Diffusion Probabilistic Models: The Denoising Diffusion Probabilistic Model (DDPM) Ho et al.
(2020) comprises two fundamental processes: the forward process (or diffusion process) and the
reverse process. Let’s begin by describing the forward process. In a diffusion model, the forward
process approximates the posterior distribution q(x1:t|x0), which represents the sequence of latent
variables x1:t given an initial value x0. This approximation is achieved by iteratively applying a
Markov chain that gradually adds Gaussian noise over time.

The forward process is represented as follows:
q(xt|xt−1) = N (xt;µt(xt−1), βtI)

Here, xt denotes the latent variable at time step t, and xt−1 is the variable at the previous time step.
The distribution q(xt|xt−1) is modeled as a Gaussian distribution with mean µt(xt−1) and variance
βtI , where βt is the variance parameter at time step t, and I represents the identity matrix. The
mean µt(xt−1) can depend on the previous latent variable xt−1 and is typically modeled using neural
networks or other parameterized functions.

By sequentially applying the distribution q(xt|xt−1) for each time step, starting from the initial value
x0, we obtain an approximation of the posterior distribution q(x1:t|x0) that captures the temporal
evolution of the latent variables via q(x1:t|x0) :=

∏T
t=1 q(xt|xt−1).

Consider a diffusion model with T time steps. Given an observed data point xt at the final time step,
the goal is to generate a sample from the initial distribution p(x0).

The reverse process in a diffusion model can be formulated as follows: 1. Initialization: Set xt as the
observed data point. 2. Iterative Sampling: Starting from t = T − 1 and moving backwards until
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t = 0, sample xt from the distribution p(xt|xt+1), where p(xt|xt+1) represents the reverse diffusion
process.

The distribution p(xt|xt+1) in the reverse process is typically modeled as a Gaussian distribution,
similar to the forward process. However, the mean and variance parameters are adjusted to account
for the reverse direction. The specific form of p(xt|xt+1) is defined as follows:

pt+1(xt;µt+1(xt+1, t+ 1),Σt+1(xt+1, t+ 1))

By iteratively sampling from the reverse process, we can generate a sequence of latent variables
x0:t that follows the reverse diffusion process. This reverse sequence represents a sample from the
initial distribution p(x0). The reverse process is crucial for training the diffusion model. During
training, the model learns to approximate the reverse process by minimizing the discrepancy between
the generated samples and the observed data points. This training procedure ensures that the model
captures the underlying data distribution and can generate realistic samples.

The optimization objective of the diffusion model is conducted via the following negative log-
likelihood:

E[− log pt+1(x0)] ≤ Ept+1 [− log(pt+1(x0:t)/q(x1:t|x0))]

= Ept+1 [− log pt+1(xt)−
T∑

t=1

log(pt+1(xt−1|xt)/q(xt|xt−1))] = L

Cahn-Hilliard Function: Wetting phenomena and interfacial tension play significant roles in
numerous scientific and engineering fields, ranging from fluid dynamics to materials science. In
recent years, phase-field methods have emerged as powerful computational tools for studying and
simulating wetting processes. These methods employ a phase-field variable, a continuous function
that describes the local composition or wetting state, enabling the realistic modeling of complex
interfacial dynamics. By incorporating the concept of interfacial tension, phase-field models can
capture the intricate interplay between fluids and solid surfaces.One of the key equations used
in phase-field modeling of wetting phenomena is the Cahn-Hilliard equation, which governs the
evolution of the phase-field variable. This equation takes into account the interfacial energy associated
with the fluid-solid interface and the interfacial tension between the two phases. The interfacial
tension term is crucial for accurately simulating the contact angle, adhesion, and spreading behavior.
The Cahn-Hilliard equation provides a mathematical framework to capture the dynamics of phase
separation by considering the free energy of the system. It takes the following general form:

∂ϕ

∂t
= ∇ ·

(
M∇

(
δF

δϕ

))
(5)

where ϕ is the phase-field variable or order parameter representing the local composition. t is time.
M is the mobility coefficient, controlling the rate of diffusion of the phase-field variable. F is the free
energy functional of the system with respect to the phase-field variable ϕ. The free energy functional
F typically consists of two terms: the bulk free energy term and the gradient energy term. The bulk
free energy accounts for the thermodynamic properties of the system, including the interfacial energy
between the two phases and the potential energy associated with phase separation. The gradient
energy term penalizes sharp variations or spatial gradients in the order parameter, promoting smoother
phase transitions.

Functional Formulations for Modeling Tension Phenomena via Phase-Field: To accurately
represent the shape of an arbitrary object, we utilize a phase-field variable ϕ, where ϕ = 1 denotes
the interior of the cell and ϕ = 0 denotes the exterior. The transition from ϕ = 1 to ϕ = 0 occurs
gradually within a width defined by the parameter ϵ. The system’s total energy is denoted by H(ϕ),
and the time evolution of ϕ is determined by the following equation ∂ϕ

∂t = − δH(ϕ)
δϕ . This equation

describes the rate of change of ϕ with respect to time. The right-hand side represents the derivative
of the total energy H(ϕ) with respect to ϕ, indicating the force or driving mechanism that governs
the evolution of the phase-field variable ϕ. By minimizing the energy functional H(ϕ), the system
tends to reach an equilibrium state that corresponds to the desired shape of the object. For the tension
dataset, the surface tension is characterized by the tension per unit length multiplied by the total
surface area. To ensure proper normalization, we express it as follows:

Hten(ϕ) = γ

∫
d2r

(
ϵ

2
|∇ϕ|2 + G(ϕ)

ϵ

)
(6)
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Here, γ denotes the coefficient of surface tension, while ϵ represents the characteristic width of the
interface. The term |∇ϕ|2 quantifies the gradient of ϕ in space, while G(ϕ) is a function proportional
to the perimeter of the object and is given by G(ϕ) = 18ϕ2(1 − ϕ)2. The integral in Equation 6
accounts for the total energy associated with surface tension. The time evolution under tension is
described by the following equation, known as the Allen-Cahn equation, which is a reaction-diffusion
equation:

∂ϕ

∂t
= −δHten(ϕ)

δt
= −γ

(
ϵ∇2ϕ+

G′(ϕ)

ϵ

)
(7)

In practice, the term G(ϕ) yields similar results to the |∇ϕ|2 term. Therefore, when explicitly
calculating the total tension, we can use the following simplified form:

H ′
ten(ϕ) = γ

∫
d2r

(
2G(ϕ)

ϵ

)
(8)

Equation 8 provides an alternative expression for the total tension, which considers only the G(ϕ)
term. This formulation allows for efficient computation of the tension without explicitly calculating
the gradient term.

Functional Formulations of Wets via Phase-field: The interaction of an object with a substrate
involves adhesion, which pulls the object towards the substrate, and a repellent force that prevents
the object from penetrating into the substrate. To express the total energy in a physically consistent
manner, we define it as follows:

Hsub(ϕ) = γ

∫
d2r

(
−A

2G(ϕ)G(φ)

ϵ2
+Bϕφ

)
(9)

Here, γ represents the coefficient of adhesion, A is the adhesion strength (with A > 0), and B is
the repellent strength (with B > 0). The field φ corresponds to the substrate. In our simulation, the
substrate is considered a fixed function given by:

φ(r) =
1

2

{
1 + tanh

[
3×

(
y0 − y

ϵ

)]}
(10)

Here, the substrate is positioned at a specific vertical location, y = y0. In our simulation, we set
y0 = −10. The function φ describes the spatial profile of the substrate, with a smooth transition
from high to low values as y increases from the substrate position. During this period, the evolution
function, which includes the tension part, is given by:

∂ϕ

∂t
= −γ(ϵ∇2ϕ+

G′(ϕ)

ϵ
)−A

G′(ϕ)G(φ)

ϵ2
+Bφ (11)

Equation 11 represents the time derivative of ϕ, where the first term on the right-hand side accounts
for the tension contribution, the second term describes the adhesion interaction between the object
and the substrate, and the third term represents the repellent force due to the substrate. This evolution
equation governs the dynamics of the phase-field variable ϕ in the presence of adhesion and substrate
effects.

A.3 DATASETS GENERATION

Tension Datasets Generation: (1) The configuration of the grid and domain: The parameters m
and n determine the quantity of grid points along the x and y axes, respectively. The dimensions
of the domain are specified by Lx and Ly in the x and y directions. Vectors x and y denote the
coordinates of the grid points along the x and y axes, correspondingly. The parameters k and ϵ
regulate the bending and tension within the system. (2) tenvec is a vector that iterates over tension
values for the simulation. Inside the loop for each tension value: γ is the tension parameter. dt,
xi, Mv are time steps, smoothing parameter, and viscosity parameters, respectively. Nmax is the
maximum number of iterations. recordnum determines how often the simulation results are recorded.
xradi, yradi, rradi are parameters defining the initial shape of the system. ϕ0 is the initial condition
of the simulation. (3) Change m,n,Lx, Ly for a finer or coarser grid or a larger/smaller domain.
Modify k, ϵ, and other parameters to explore different physical scenarios. Adjust parameters inside
the tension loop (dt, xi,Mv, etc) for different simulation characteristics. Change the initial shape
parameters (xradi, yradi, rradi) to explore different starting configurations.
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Wets Datasets Generation: (1) The vector tenvec represents tension values used in the simulation,
while adhvec represents adhesion values. For each combination of tension and adhesion values,
denoted by teni and adhj iterating through the indices of tenvec and adhvec respectively, the
following actions take place. The parameter γ is set to the current tension value, and adh is set to the
current adhesion value. The variable rep is calculated as a multiple of tension. At the beginning of
each iteration, the initial shape parameters (xradi, yradi, rradi) and the shape initialization (ϕ0) are
redefined to ensure unique initial conditions for each combination of tension and adhesion values.
The position of the substrate is represented by y0, and the substrate’s initial shape sub0 is initialized
using a hyperbolic tangent function. (2) By altering these parameters, particularly adjusting tension,
adhesion, and other physical factors, you have the ability to generate datasets that depict wetting
in various scenarios. Depending on your requirements, you can experiment with different levels of
tension, adhesion, initial shapes, and simulation parameters to examine how the system’s morphology
evolves under different conditions.

Jellyfish Datasets Generation: To generate our training and testing datasets, we employ the Lily-Pad
simulator Weymouth (2015). The 2D flow field has a resolution of 128× 128, assuming an infinite
extension. For the jellyfish, the fixed coordinates for the head are set as (25.6, 64). The wings
are represented as ellipses with an identical shape, with a fixed ratio of 0.15 between their shorter
and longer axes. Symmetry is maintained across the central horizontal line defined by y = 64. To
delineate the boundaries of the wings, we sample a total of M = 20 points along each wing. In this
2D experiment, the key control signal is the opening angle of the wings, denoted as w. This angle is
defined as the deviation between the longer axis of the upper wing and the horizontal line.

Each trajectory commences with the widest possible opening angle and follows a periodic cosine curve
with a period of T ′ = 200. The trajectories differ in their initial angle (w0), angle amplitude, and
phase ratio (τ ). To determine the initial angle w0, a two-step process is employed. Firstly, a random
mean angle w(m) is sampled from the range of [20◦, 40◦]. Then, a random angle amplitude w(a) is
sampled from the interval [10◦,min(w(m), 60◦ − w(m))]. The resulting initial angle is computed
as w0 = w(m) + w(a), constrained within the range of [10◦, 60◦]. The phase ratio τ is randomly
selected from the range of [0.2, 0.8]. The opening angle wt at step t adheres to a specific pattern:
it decreases from w(m) + w(a) to w(m) − w(a) as t progresses from 0 to τT ′, and then it increases
from w(m) − w(a) to w(m) + w(a) as t advances from τT ′ to T ′. Beyond T ′, wt exhibits periodic
variations. This configuration aligns with previous studies on jellyfish’s propulsive performance
Kang et al. (2023). Each trajectory is simulated for 600 steps, equivalent to 3 periods. Only the
segment of the trajectory from T ′ = 200 to 3T ′ = 600 steps is saved, with a step size of 10. This
decision is made to conserve space, as the simulation from t = 0 to T ′ = 200 is primarily used
for initializing the flow field. Consequently, each trajectory is stored as a sequence consisting of
T̃ = (600− 200)/10 = 40 discrete steps.

In addition to tracking the positions of the wing boundary points and the opening angles w, we
incorporate an image-like representation of the wing boundaries. This representation contains spatial
information that can be efficiently integrated with the PDE states (fluid field) through convolutional
neural networks. The image-like boundary representation seamlessly aligns with the shape of the
PDE states. At each time step, the boundaries of the two wings are combined and transformed into
a tensor with dimensions [3, 64, 64]. This tensor represents the spatial information in a grid-like
format. Each cell in the tensor contains three features: a binary mask indicating whether the cell is
part of a wing boundary (1) or within the fluid (0), and the relative position (∆x,∆y), which denotes
the distance from the cell center to the nearest boundary point. For each trajectory, the following
components are saved: - PDE states u: This captures the fluid field states for each time step and has a
shape of [T̃ , 3, 64, 64]. It includes the velocity components in the x and y directions as well as the
pressure. The resolution is downsampled from 128 × 128 to 64 × 64. - Velocity: [T̃ , 2, 64, 64]. -
Pressure: [T̃ , 1, 64, 64]. - Opening angles w: This stores the opening angle in radians for each step
and has a shape of [T̃ ]. - Boundary points: This records the boundary points for both the upper and
lower wings and has a shape of [T̃ , 2,M, 2]. Each wing consists of M = 20 points, and each point is
represented by its coordinates in the x and y directions. The coordinates are scaled accordingly to fit
within the grid dimensions.
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Figure 4: In our study, we offer visualizations that compare benchmark methods, namely TFNO,
SFNO and ConvLSTM, using the tension dataset. The first row portrays the authentic cell scenario,
which serves as the ground truth. The subsequent rows illustrate the cells generated by the benchmark
methods and the corresponding error bar.
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(d) Ground truth (sample 74) (e) DDOs-FNO (sample 74) (f) Error (sample 74)
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(h) Ground truth (sample 86) (i) DDOs-SFNO (sample 86) (j) Error (sample 86)
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Figure 5: In our study, we present visualizations using DDPM, including the ground truth, simulation
results, and error analysis. The first column subfigure represents the authentic cell scenario, which
serves as the reference. The subfigures in the second column showcase the cells generated by DDPM.
The subfigures in the third column illustrate the error figures, highlighting the differences between
the ground truth and the simulation results obtained through DDPM.
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(h) Ground truth (sample 71) (i) DDPM (sample 71) (j) Error (sample 71)
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Figure 6: Our research includes visualizations utilizing DDPM to analyze the Jellyfish (Fluid)
dataset, specifically focusing on the ground truth, simulation results, and error analysis. In the
first column, the initial subfigure presents the accurate depiction of the boundary for a jelly-like
robot. Transitioning to the second column, the subfigures demonstrate the pressure fields generated
through the implementation of DDPM. Lastly, in the third column, the error figures provide a visual
representation of the disparities between the ground truth and the simulated results obtained using
DDPM.
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A.4 DETAILED ILLUSTRATION AND SETUP OF BENCHMARK METHODS

Detailed Illustrations of Benchmark Methods: In this part, we aim to provide detaield illustrations
on baselines for simulating cell evolving.

FNO Li et al. (2020): The Fourier Neural Operator is a groundbreaking approach that utilizes
Fourier space to learn weights, enabling resolution-invariant global convolutions. This influential
work has been further expanded upon by numerous other neural operators. However, one notable
drawback is the substantial memory requirements. Specifically, each weight matrix in the Fourier
domain consumes O(H2MD) memory, where H represents the hidden size, M denotes the number
of Fourier modes used after truncating high frequencies, and D signifies the problem dimension.

SFNO Bonev et al. (2023): Spherical Fourier Neural Operators utilizes spherical harmonics to
transform data into the frequency domain. This is analogous to the way FNO uses the Fourier
transform for Cartesian grids but is specifically designed for spherical data. This approach allows
for handling data on the entire sphere without the distortions introduced by map projections. While
the traditional FNO faces substantial memory demands, SFNO optimizes memory usage through
spherical harmonics. Despite this, the memory requirement for SFNO is still O(H2M2), where H is
the hidden size and M is the number of retained spherical harmonic modes.

TFNO: Li et al. (2020) We improve the previous FNO model by simply using a Tucker Tensorized
FNO with just a few parameters. This will use a Tucker factorization of the weights. The forward
pass will be efficient by contracting directly the inputs with the factors of the decomposition. The
Fourier layers will have 5% of the parameters of an equivalent, dense FNO.

UNet Ronneberger et al. (2015): The UNet architecture is known for its U-shaped design, which
resembles an encoder-decoder structure. It is particularly effective for tasks that require precise
localization and segmentation of objects within images. UNet has achieved remarkable performance
in various applications, including biomedical image segmentation, satellite image analysis, and more.
The Unet consists of the forward and backward passes. the time complexity is mainly driven by the
size of the input image or volume, denoted as O(N), where N is the number of pixels or voxels. It
is important to note that the specific implementation details and variations of UNet may introduce
additional computational complexities.

DDPM: Ho et al. (2020) It gradually transforms a noise-corrupted data version into the original
distribution through iterative diffusion. Training involves two components: sampling and loss function
computation. Sampling complexity is O(S ∗N), where S is the diffusion steps and N is the step size.
The loss function compares generated samples with the original data, with complexity O(L ∗N),
where L is the number of layers. Overall training complexity is approximately O(S ∗N + L ∗N).
DDPM models complex data distributions using denoising diffusion. Training time complexity is
approximated as O(S ∗N + L ∗N), where S is diffusion steps, L is layers, and N is layer size.

ConvLSTM Shi et al. (2015) postulates the prognostication of forthcoming spatiotemporal precipi-
tation patterns as an endeavor entailing the anticipation of sequential data in spatial and temporal
dimensions.

ViT Dosovitskiy et al. (2020) asserts that the reliance on convolutional neural networks (CNNs) is
dispensable, as the direct application of transformers to sequences of image patches yields exceptional
performance in the classification of visual data.

MLP-Mixer Tolstikhin et al. (2021) is exclusively constructed upon the foundation of multi-layer
perceptrons (MLPs). It encompasses two distinct layer types: one that individually applies MLPs
to image patches, while the other employs MLPs across multiple patches, promoting enhanced
representation learning.

DDOs-FNO Lim et al. (2023) advances a robust mathematical framework meticulously tailored for
the training of diffusion models within the realm of function space.

DDOs-SFNO Lim et al. (2023) derives inspiration from the fusion of DDPM and FNO methodologies,
forging a cohesive amalgamation of their respective strengths.

DDOs-TFNO Lim et al. (2023) adopts a hybrid approach, drawing inspiration from both DDPM and
TFNO methods, thereby capitalizing on their synergistic potential.
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Setups of Benchmark Methods:

Setting of FNO: The modes and width of FNO was set to 12 and 32, providing a suitable level
of complexity for the specific task at hand. The number of channels for the two cell dynamics
datasets and the fluid dataset was determined as [1, 3, 5, 7, 9], taking into consideration the unique
characteristics of each dataset. All three datasets were standardized to an image size of 32×32 pixels.
In order to accelerate convergence, a learning rate of 1× 10−3 was adopted.

Setting of SFNO: The SFNO modes were set to 16, and the hidden channel was configured to 64.
The channel numbers for both cell dynamics datasets and the fluid dataset were set to [1, 3, 5, 7, 9],
reflecting the unique characteristics of each dataset. All three datasets were standardized to an image
size of 32× 32 pixels. To accelerate convergence, we implemented a learning rate of 1× 10−3.

Setting of TFNO: The TFNO modes were set to 16, and the hidden channel was configured to 64.
We employed Tucker factorization with a rank of 0.05. The channel numbers for both cell dynamics
datasets and the fluid dataset were set to [1, 3, 5, 7, 9], reflecting the unique characteristics of each
dataset. All three datasets were standardized to an image size of 32 × 32 pixels. To accelerate
convergence, we implemented a learning rate of 1× 10−3.

Setting of UNet: The hidden size of the UNet convolutional neural network was set to 32, providing
a suitable level of complexity for the specific task at hand. The number of channels for the two cell
dynamics datasets and the fluid dataset was determined as [1, 3, 5, 7, 9], taking into consideration
the unique characteristics of each dataset. All three datasets were standardized to an image size of
32× 32 pixels. In order to accelerate convergence, a learning rate of 1× 10−4 was adopted.

Setting of DDPM: To ensure equity and uniformity in our experimental procedures, the concealed
dimension of the U-Net convolutional neural network was established at 32, furnishing an apt level of
intricacy for the given undertaking. For the Gaussian diffusion process, an extensive 1000 diffusion
steps were executed, facilitating comprehensive exchange of information. The channel size multiplier
of the U-Net neural networks was stipulated as [1, 2, 4, 8], ensuring efficacious extraction of features
across diverse scales. The number of channels for the two cell dynamics datasets and the fluid dataset
were defined as 20, accommodating the distinctive attributes of each dataset. The dimensions of
all three datasets were standardized to an image size of 32× 32 pixels. To expedite convergence, a
learning rate of 8× 10−5 was embraced.

Setting of ConvLSTM: The ConvLSTM model is initialized with input dimension and hidden
dimension are both set to 1, indicating a single-channel input and a single-channel output per hidden
layer. The model is designed to process sequences of length determined by [1, 3, 5, 7, 9], representing
the time dimension parameter. The convolution operation within the LSTM utilizes a kernel size of
3× 3, which allows the model to capture spatial relationships within the data effectively.

Setting of ViT: ViT uses the temporal positional encoding method to handle the sequence length for
positional encoding, applied across combined time steps and patches (with size equals to 4). A linear
layer transforms the patch embeddings back into pixel values, ensuring the reconstruction of the
original image or the generation of future frames in the biological trajectory. The channel numbers
for both cell dynamics datasets and the fluid dataset were set to [1, 3, 5, 7, 9], reflecting the unique
characteristics of each dataset. All three datasets were standardized to an image size of 32×32 pixels.
To accelerate convergence, we implemented a learning rate of 1× 10−3.

Setting of MLP-Mixer: The MLP-Mixer processes input data through two primary stages: channel-
mixing and token-mixing, utilizing a patch size of 4 × 4, hidden dimensions of 32, and 4 layers.
The number of channels for both cell dynamics datasets and the fluid dataset was set to [1, 3, 5, 7, 9],
tailored to the unique characteristics of each dataset. All three datasets were standardized to an image
size of 32× 32 pixels. To enhance convergence, a learning rate of 1× 10−3 was adopted.

Setting of DDOs-FNO/DDOs-SFNO/DDOs-TFNO: The hidden size of the FNO neural network in
DDOs was set to 32, providing an appropriate level of complexity for the specific task at hand. To
enable thorough information exchange, a substantial number of 1000 diffusion steps were performed
for the Gaussian diffusion process. The number of channels for the two cell dynamics datasets
and the fluid dataset was determined as 20, taking into account the unique characteristics of each
dataset. All three datasets were standardized to an image size of 32× 32 pixels. In order to accelerate
convergence, a learning rate of 8× 10−5 was adopted.
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A.5 RESULTS OF BENCHMARK METHODS

We have presented the results of our experiments in Table 4 and Table 5. Upon careful examination
of the tables, it becomes evident that ConvLSTM outperforms other models, primarily due to its
inherent capability to capture long sequences effectively. Additionally, our observations reveal that
DDOs-FNO, DDOs-SFNO, and DDOs-TFNO do not exhibit satisfactory performance across the
three datasets. This can be attributed to the inherent challenges faced by these models in terms of
convergence when applied to biological datasets.

Table 4: Comparison of benchmarks in terms of MSE and Relative L2 norm on two datasets.
Time Step Metrics ConvLSTM ViT MLP-Mixer DDOs-FNO DDOs-SFNO DDOs-TFNO

Tension

TS = 1 MSE 0.0165 ± 0.0003 0.0869 ± 0.0002 0.0342 ± 0.0001 0.1288 ± 0.0010 0.1012 ± 0.0020 0.1622 ± 0.0020
L2 0.2982 ± 0.0002 0.7431 ± 0.0001 0.4065 ± 0.0002 0.7218 ± 0.0020 0.6022 ± 0.0030 0.6407 ± 0.0010

TS = 3 MSE 0.0212 ± 0.0002 0.0842 ± 0.0002 0.0497 ± 0.0002 0.1295 ± 0.0030 0.1124 ± 0.0010 0.1734 ± 0.0040
L2 0.3564 ± 0.0001 0.7289 ± 0.0001 0.4760 ± 0.0002 0.7418 ± 0.0030 0.6228 ± 0.0010 0.6538 ± 0.0010

TS = 5 MSE 0.0805 ± 0.0001 0.0839 ± 0.0003 0.0519 ± 0.0001 0.1306 ± 0.0020 0.1206 ± 0.0020 0.1801 ± 0.0030
L2 0.6086 ± 0.0003 0.7319 ± 0.0001 0.5369 ± 0.0001 0.7512 ± 0.0030 0.6322 ± 0.0030 0.6622 ± 0.0010

TS = 7 MSE 0.0858 ± 0.0002 0.0849 ± 0.0003 0.1562 ± 0.0003 0.1311 ± 0.0020 0.1278 ± 0.0030 0.1846 ± 0.0020
L2 0.6455 ± 0.0003 0.8217 ± 0.0002 0.7913 ± 0.0002 0.7715 ± 0.0010 0.6401 ± 0.0030 0.6703 ± 0.0030

TS = 9 MSE 0.0860 ± 0.0002 0.0884 ± 0.0002 0.1006 ± 0.0001 0.1387 ± 0.0020 0.1304 ± 0.0020 0.1887 ± 0.0020
L2 0.6688 ± 0.0003 0.7738 ± 0.0002 0.7754 ± 0.0002 0.7815 ± 0.0020 0.6517 ± 0.0010 0.6806 ± 0.0010

Wet

TS = 1 MSE 0.0798 ± 0.0002 0.1354 ± 0.0001 0.1282 ± 0.0002 0.1477 ± 0.0030 0.1319 ± 0.0030 0.1192 ± 0.0030
L2 0.3612 ± 0.0001 0.6897 ± 0.0002 0.6019 ± 0.0002 0.6209 ± 0.0040 0.6028 ± 0.0030 0.6011 ± 0.0020

TS = 3 MSE 0.0843 ± 0.0002 0.1512 ± 0.0002 0.1267 ± 0.0001 0.1501 ± 0.0020 0.1489 ± 0.0010 0.1243 ± 0.0020
L2 0.3861 ± 0.0001 0.6958 ± 0.0001 0.5989 ± 0.0002 0.6235 ± 0.0030 0.6172 ± 0.0010 0.6224 ± 0.0030

TS = 5 MSE 0.0899 ± 0.0002 0.1743 ± 0.0002 0.1325 ± 0.0001 0.1566 ± 0.0020 0.1512 ± 0.0010 0.1304 ± 0.0010
L2 0.3872 ± 0.0001 0.7341 ± 0.0001 0.6057 ± 0.0001 0.6308 ± 0.0030 0.6172 ± 0.0010 0.6406 ± 0.0030

TS = 7 MSE 0.0965 ± 0.0002 0.1765 ± 0.0002 0.1369 ± 0.0001 0.1602 ± 0.0020 0.1599 ± 0.0030 0.1368 ± 0.0020
L2 0.3946 ± 0.0002 0.7355 ± 0.0001 0.6129 ± 0.0001 0.6405 ± 0.0020 0.6509 ± 0.0030 0.6594 ± 0.0020

TS = 9 MSE 0.0992 ± 0.0002 0.1862 ± 0.0002 0.1653 ± 0.0001 0.1624 ± 0.0030 0.1665 ± 0.0020 0.1403 ± 0.0030
L2 0.3970 ± 0.0002 0.7543 ± 0.0001 0.6408 ± 0.0001 0.6532 ± 0.0020 0.6673 ± 0.0030 0.6622 ± 0.0010

Table 5: Comparison of benchmarks in terms of MSE and Relative L2 norm on Jellyfish (Fluid).
Time Step Metrics ConvLSTM ViT MLP-Mixer DDOs-FNO DDOs-SFNO DDOs-TFNO

TS = 1 MSE 0.0569 ± 0.0002 0.2440 ± 0.0003 0.1841 ± 0.0001 0.5012 ± 0.0020 0.5019 ± 0.0020 0.5563 ± 0.0010
L2 0.4719 ± 0.0002 0.8754 ± 0.0001 0.8065 ± 0.0003 0.9019 ± 0.0020 0.9314 ± 0.0020 0.9209 ± 0.0040

TS = 3 MSE 0.0989 ± 0.0001 0.2608 ± 0.0003 0.1908 ± 0.0001 0.5218 ± 0.0030 0.5367 ± 0.0020 0.5678 ± 0.0020
L2 0.5953 ± 0.0002 0.9027 ± 0.0001 0.7217 ± 0.0001 0.9215 ± 0.0010 0.9461 ± 0.0010 0.9287 ± 0.0030

TS = 5 MSE 0.1428 ± 0.0002 0.2773 ± 0.0001 0.2548 ± 0.0002 0.5517 ± 0.0030 0.5466 ± 0.0010 0.5466 ± 0.0030
L2 0.6991 ± 0.0001 0.9247 ± 0.0002 0.7897 ± 0.0001 0.9484 ± 0.0030 0.9566 ± 0.0010 0.9309 ± 0.0010

TS = 7 MSE 0.1784 ± 0.0002 0.2887 ± 0.0003 0.2756 ± 0.0002 0.5674 ± 0.0010 0.5581 ± 0.0010 0.5522± 0.0030
L2 0.7792 ± 0.0002 0.9373 ± 0.0001 0.8124 ± 0.0001 0.9518 ± 0.0010 0.9617 ± 0.0010 0.9455 ± 0.0010

TS = 9 MSE 0.2496 ± 0.0001 0.2965 ± 0.0001 0.2843 ± 0.0002 0.5718 ± 0.0020 0.5718 ± 0.0020 0.5609 ± 0.0030
L2 0.8843 ± 0.0002 0.9513 ± 0.0001 0.8249 ± 0.0001 0.9645 ± 0.0030 0.9634 ± 0.0030 0.9534 ± 0.0030

A.6 BROADER IMPACTS AND LIMITATIONS

Broader Impact: The introduction of comprehensive large-scale datasets, namely Tension, Wets,
CellDivision and Jellyfish, has significant implications for the field of biological fluid simulation.
These datasets address the challenges faced by the community, including the lack of dynamic biologi-
cal process capture and limited scale of existing datasets. By providing a standardized evaluation
framework and incorporating physical modeling techniques, the datasets empower researchers to
objectively assess and compare data-driven methodologies. This fosters advancements in the field and
promotes the development of accurate and efficient models for simulating complex fluid dynamics
within biological systems. The availability of benchmark datasets also enhances reproducibility and
comparability of results across studies, facilitating knowledge sharing and collaboration within the
research community.

Limitations: While the introduced datasets offer valuable resources for data-driven biological fluid
simulation, they may have some limitations. First, the datasets are designed based on specific
biological scenarios and may not encompass the full range of biological fluid dynamics. Researchers
should be cautious when extrapolating findings to other systems. Second, the datasets rely on physical
modeling techniques such as the phase-field method, which may introduce certain simplifications and
assumptions that could impact the accuracy and applicability of the results. It is important to consider
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the limitations and assumptions of the underlying models when interpreting the data. Finally, the
scale and complexity of the datasets may pose computational and resource challenges for researchers
with limited access to high-performance computing infrastructure.
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