Under review as a conference paper at ICLR 2024

PROGRAMMABLE SYNTHETIC DATA GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large amounts of tabular data remain underutilized due to privacy, data quality, and
data sharing limitations. While generating synthetic data resembling the original
distribution addresses some of these issues, most applications would benefit from
additional customization on the generated data. However, existing synthetic data
generation approaches are limited to particular constraints, e.g., differential privacy
(DP) or fairness. In this work, we introduce ProgSyn, the first programmable and
flexible synthetic tabular data generation framework. Customization is achieved
via programmatically declared statistical and logical expressions, supporting a
wide range of requirements (e.g., DP or fairness, among others). To ensure high
synthetic data quality in the presence of custom specifications, ProgSyn pre-trains
a generative model on the original dataset and fine-tunes it on a differentiable loss
automatically derived from the provided specifications using novel relaxations.
We conduct an extensive experimental evaluation of ProgSyn over four datasets
and on numerous custom specifications, where we outperform state-of-the-art
specialized approaches on several tasks while being more general. For instance,
at the same fairness level, we achieve 2.3% higher downstream accuracy than the
state-of-the-art in fair synthetic data generation on the Adult dataset.

1 INTRODUCTION

The availability of large datasets has been key to the rapid progress of machine learning. To enable
this progress, datasets often have to be shared between different organizations and potentially passed
on to third parties to train machine learning models. This often presents a roadblock as data owners
are responsible for ensuring they do not perpetuate biases present in the data and do not violate user
privacy by sharing their personal records. Tabular data is especially delicate from this perspective, as
it is abundant in high-stakes applications, such as finance and healthcare (Borisov et al., 2022). An
emerging and promising approach for addressing these issues is synthetic data generation.

Synthetic data The promise of synthetic data is to produce a new dataset statistically resembling
the original while overcoming the above issues. Driven by recent regulations requiring bias mitigation
(e.g., GDPR European Parliament & Council of the European Union (2016) Art. 5a), data accuracy
(GDPR Art. 5d), and privacy (GDPR Art. 5c and 5Se), there has been increased interest in this field.

Prior work has only addressed some of the data sharing concerns: differentially private synthetic
data (e.g., Zhang et al. (2014); Jordon et al. (2019); McKenna et al. (2022)), generating data with
reduced bias (e.g., van Breugel et al. (2021); Rajabi & Garibay (2022)), and combining these two
objectives (Pujol et al., 2022). However, these methods might still generate data violating truthfulness
(e.g., person who is 10 years old and has a doctorate) or containing undesired statistical patterns
(e.g., a pharmaceutical company not sharing even synthetic copies of their clinical trial data, as
the distribution of patient conditions reveals their development focus). Therefore, it remains a key
challenge to enable data owners to generate custom high-utility data as required by their applications.

ProgSyn: Programmable Synthetic Data Generation In this work, we introduce the first synthetic
tabular data generation method allowing for general programmable customization. Figure 1 shows an
overview of ProgSyn, featuring example specifications defined by the data owner, where no person
younger than 25 with a doctorate should be generated and where bias w.r.t sex should be minimized.

ProgSyn supports a wide range of customizations. First, it allows for differentially private training
protecting individuals included in the original dataset. Through logical and implication constraints

Under review as a conference paper at ICLR 2024

1. Pre-training 3. Generate data

i
EPSILON=1.0, DELTA=1E-9; I~~~ ~~~~--------- - Jp < mMin ﬂpm | EI ~ g
{ENFORCE: IMPLICATION: 7 777777% oimTmmmmmmmmmoomroooommmmmoooooos
age < 25 IMPLIES education != Doctorate; | v ! W Privacy
IMINIMIZE: BIAS: | IZ. Fine-tuning with constraintsl Qy Implication 1

DEMOGRAPHIC PARITY (protected=sex, target=salary); | ! . "
R "7 ge <~ miIn Epre + Leonstr. o @ Low bias

Figure 1: An overview of ProgSyn. The data owner writes a program that lists specifications for the
synthetic data. For example, they might want to make sure that the model does not generate people
younger than 25 with a Doctorate degree. Additionally, they might require that the synthetic data
is differentially private and unbiased. To achieve this, ProgSyn pre-trains a differentially private
generative model, and then fine-tunes it to adhere to the given specifications. Finally, the generative
model can be used to sample a synthetic dataset with the desired properties.

it can specify relationships that each data point has to satisfy (as in Figure 1). Through statistical
specifications, it allows users to directly manipulate statistical properties of the synthetic data. Finally,
it provides soft-constraints for encouraging desirable behavior of classifiers trained on the synthetic
data (e.g., low bias). Thus, ProgSyn generalizes prior works supporting only restricted specifications.

Our key insight is that one can preserve high utility by pre-training a generative model (gy in Figure 1)
on the original dataset and then fine-tune it to fit custom specifications. ProgSyn automatically
converts the non-differentiable specifications into a relaxed differentiable loss which is then minimized
together with the pre-training objective, biasing the model towards the desired custom distribution.

Example: Statistical Manipulations We demonstrate Original

on a practical example how statistical manipulations al- W ProgSyn

lowed by ProgSyn enable an organization to share their

synthesized data without compromising proprietary infor-

mation. Recall that a drug company may need to obfuscate

the distribution of patient conditions before even sharing

synthetic data, as they need to avoid revealing the focus of II||I|_||I|I|II|I|I||!|_|||I||II_|||I|'||I|||.|||||

their research. We instantiate this example on the Health Patient Condition Distribution
Heritage dataset, containing patient data. As shown in Fig- Fjgure 2: ProgSyn obfuscating the dis-
ure 2, specifying ProgSyn to increase the feature’s entropy, tribution using statistical manipulations
it obfuscates the details of patient conditions, making it

difficult to accurately determine the exact prevalence of the most common conditions. Meanwhile, it
retains high quality in the synthetic data only losing 1% downstream accuracy w.r.t. the original data.

In our experimental evaluation, we demonstrate that ProgSyn produces synthetic data according
to a number of custom specifications unsupported by prior work, while achieving high utility.
Furthermore, on specifications supported by prior work we either outperform them or at least match
their performance. For instance, we improve the state-of-the-art in fair synthetic data generation on
the Adult (Dua & Graff, 2017) dataset by achieving a 2.3% higher downstream accuracy and a 2x
lower demographic parity distance of 0.01. Additionally, we demonstrate that ProgSyn is able to
stack several diverse specifications at the same time, while maintaining high data quality.

Main contributions Our key contributions are:

1. The first framework for programmable synthetic tabular data generation, supporting a wide
range of customizations on the generated data.

2. Novel relaxations allowing for fine-tuning a generative model via differentiable regularizers
derived from the specifications, while retaining high synthetic data quality.

3. An implementation of the framework in a system called ProgSyn, together with an extensive
evaluation demonstrating its strong competitiveness and versatility.

Under review as a conference paper at ICLR 2024

2 BACKGROUND

Tabular Data Tabular data is one of the most common data formats, extensively used in high-stakes
contexts, e.g., in healthcare, finance, and social sciences (Borisov et al., 2022). We assume that
the data at hand only contains discrete columns, i.e., we discretize any continuous columns before
proceeding. Let the number of columns be K, then we denote the domain of each resulting discrete
feature as D; for i € [K]. We one-hot encode the columns, turning each d; € D; into a binary vector
of length |D;|, with a single non-zero entry marking the position of the encoded discrete category.
The resulting set of one-hot encoded rows is denoted as X', where each encoded data point xz € X is
of length ¢ :== Zfil |D;| and contains exactly K non-zero entries. Further, a full table of NV rows is
denoted as X € XN, with X; denoting the i-th data point. In the rest of this text, we will also refer to
X as a sample of size N, as well as simply a dataset, and will use row and data point interchangeably
to refer to a single x € X. Also, unless stated otherwise, we will denote a synthetic sample as X.
Finally, let § == {s1,..., sm} C [K] := {1,..., K}, then we write X[Ds,,..., D, | meaning
only the (column-space) subset of X that corresponds to the original columns D, ,...,D; .

Marginals Let S = {D,,}7, be a subset of m columns, then the m-way marginal over S on a
sample X counts the occurrences of each feature combination from the product space XZ D;, over
all rows in X. We denote the unnormalized marginal as (S, X '), and denote the normalized marginal
as [i(S, X) :== % (S, X). Marginals are an important statistic in tabular data, as they effectively
capture the approximate distributional characteristics of the features in the sample, facilitating the
calculation of a wide range of statistics, e.g., correlations and conditional relationships between the
involved features. Additionally, due to the one-hot encoding in X, we can differentiably calculate

marginals using the Kronecker product, e.g., : u(S, X) = Zivzl Xi[Ds,) ® -+ ® X[Ds,, |-

Differential Privacy The gold standard for providing privacy guarantees for data dependent
algorithms is differential privacy (DP) (Dwork, 2006), where the privacy of individual contained
in a dataset is ensured by limiting the impact a single data point can have on the outcome of the
algorithm. This is usually achieved by injecting carefully engineered noise in the process, which in
turn negatively affects the accuracy of the procedure. The privacy level is quantified by €, with lower
levels of e corresponding to higher privacy, and as such, higher noise and lower accuracy.

Fair Classification As machine learning systems may propagate biases from their training
data (Corbett-Davies et al., 2017; Buolamwini & Gebru, 2018), there is an increased in-
terest to mitigate this effect (Dwork et al., 2012; Benaich & Hogarth, 2021; Chiu et al.,
2021). The demographic parity distance is a fairness measure quantifiyng the difference in
expected outcomes based on an individual’s protected group membership Dy: mp_(f, X) =
maxg,, d,ep,xD, |Ee~nx[f(2)|Ds = di] — Exox[f(x)|Ds = d;]|, where f is a classifier.

Synthetic Data The goal of synthetlc data generation is to train a generative model gy on the real

data X to produce synthetic samples X that are statistically as close as possible to X. Ultimately, X
should have high enough quality to replace X in data analysis and machine learning tasks.

3 RELATED WORK

Synthetic Tabular Data: Nominal Approaches Unconstrained, or nominal synthetic tabular data
generation exhibits a long line of work, where the most prominent approaches are collected in the
Synthetic Data Vault (SDV) (Patki et al., 2016), including the deep learning based methods of TVAE
and CTGAN Xu et al. (2018). Although recent works (Liu et al., 2023; Kotelnikov et al., 2022;
Borisov et al., 2023) improved over the models in SDV, they lack an extensive support for, privacy,
fairness, or other customizations. Our work is the first general approach in this direction.

Differentially Private Synthetic Data As nominal synthetic data does not provide sufficient privacy
protection (Stadler et al., 2022), differentially private (DP) synthetic data is of increasing interest.
A recent survey (Tao et al., 2021) established that generative adversarial networks (GAN) (e.g.,
PATE-GAN (Jordon et al., 2019) and DP-CGAN (Torkzadehmahani et al., 2019)) are outperformed

Under review as a conference paper at ICLR 2024

by marginal-based graphical models operating on a fixed set of measurements (e.g., PrivBayes (Zhang
et al., 2014), and MST (McKenna et al., 2022)). Recently, algorithms that iteratively make new
measurements of target marginals have shown strong improvements (e.g., RAP (Aydore et al., 2021),
GEM (Liu et al., 2021), and AIM (McKenna et al., 2021)); but still lack extensive customizability.

Fair Synthetic Tabular Data Reducing bias of synthetic data is an important concern, especially
under DP, where the effecs of bias are exacerbated (Ganev et al., 2022). Most works in this area make
use of GANs with bias-penalized loss functions to encourage fairness (Xu et al., 2019b;a; Abroshan
et al., 2022; Rajabi & Garibay, 2022), or pre-processing the dataset to remove bias before training
a generative model Chaudhari et al. (2022). In a different approach, DECAF (van Breugel et al.,
2021) trains a causally-aware GAN, and removes undesired causal relationships at generation time
reducing bias. Finally, PreFair (Pujol et al., 2022) extends the graphical model based DP algorithm of
McKenna et al. (2021), reducing bias by prohibiting undesired connections in the underlying graph.

Synthetic Tabular Data with Logical Constraints Although it is important for to allow for
enforcing logical relationships in the synthetic data, only few works have considered this issue.
AIM (McKenna et al., 2022) allows a restricted set of constraints by manually zeroing out certain
entries in the marginals. As we find in Section 5, this approach can severely impact the quality of the
generated data. Kamino (Ge et al., 2020) is a DP synthetic tabular data generation method focused on
facilitating logical relationships between pairs of generated data points. As ProgSyn operates under
the usual assumption of i.i.d. data, the constraints supported by Kamino do not extend to our setting.

Constraints in Continuous Models There has been a long line of work focusing on encoding
domain-knowledge or other information in the form of logical constraints that would aid the machine
learning model in its performance. Some prominent works achieve this by modifying the loss function
or its computation at training time (Manhaeve et al., 2018; Fischer et al., 2019; Nandwani et al.,
2019; Rajaby Faghihi et al., 2021; Yang et al., 2022; Li et al., 2023), or by modifying the model
and/or its inference procedure (Hu et al., 2016; Hoernle et al., 2022; Ahmed et al., 2022; Badreddine
et al., 2022). The main distinguishing factors with our work are: (i) these approaches improve
the trained models by injecting additional knowledge, while ProgSyn’s aim is freely customizable
synthetic data generation; and (ii) most such approaches only support customizations that are limited
to first order logic on individual data points, while ProgSyn also supports statistical and downstream
customizations on the generated dataset. Further, note that ProgSyn’s contribution is not another
general language for differentiable logic, but one specific to synthetic data generation.

4 PROGSYN: PROGRAMMABLE SYNTHETIC DATA GENERATOR

To fully utilize tabular data, it is often necessary to create a customized synthetic version, beyond a
nominal synthetic copy. Consider protecting individual privacy using differential privacy, supporting
logical constraints to preserve or inject structure, allowing to directly influence statistical relationships,
and facilitating classifiers trained on the synthetic data with desirable properties, e.g., low bias in
addition to high accuracy. While prior work considered small disjunct subsets of such customizations,
ProgSyn is the first method that allows for joint programmable specification of all of the above for
synthetic data generation. ProgSyn converts the user-provided specifications to a differentiable loss
and uses it to train the generative model. We now describe the underlying generative model, training
procedure, and the technical details of the supported specifications.

4.1 THE PROGSYN FRAMEWORK

Following Liu et al. (2021), in the base generative model, we make use of the generator of a GAN
to generate datasets from random noise, which is then trained by comparing marginals calculated
on this generated dataset to the marginals of the original dataset. Formally, denote the parametric
generative model as gy, then gy : R? — X’ is a mapping to the one-hot representation-space of the
original dataset. The input to g is standard normal random noise z, i.e., z ~ N (0, I,%p) (shorthand:
Np). As such, we can sample from gy by first sampling an input noise and feeding it through the
network to obtain the corresponding dataset sample. To ensure that the output of gy is in the correct
binary representation described in Section 2, we use a per-feature straight-through gumbel-softmax
estimator (Jang et al., 2017) as the final layer, which differentiably produces one-hot representations

Under review as a conference paper at ICLR 2024

for each output feature. The goal of training is to match the distribution induced by gy to that of the
original data, i.e., to find a 6 such that Py, ~ P,.

Non-Private Pre-Training For the non-private training of gy, we first measure a set of marginals
on the original dataset X, denoted as M (X). To obtain the training loss £, we calculate the total
variation (TV) distance between the true marginals M (X ') and the marginals measured on a generated
sample M (go(2)) of size B, i.e., Lar(go(2), X) == 5 |M(X) — M(go(2))|, where z ~ M. We
then use iterative gradient-based optimization to minimize £, resampling z at each iteration.

Differentially Private Pre-Training For DP training, we adapt the DP iterative framework
of McKenna et al. (2022), exchanging the original graphical model with our gy. Crucially, we
also modify the budget adaptation step; in a similar vein to adaptive ODE solvers, we allow both for
increasing and decreasing the per iteration DP budget, depending on the improvements observed in
the previous step. For more details, we refer the reader to Appendix E.

Training ProgSyn Depending on whether DP is a requirement, we first pre-train ProgSyn either by
the non-private or the DP training method described above without any other specifications. Once
pre-training is done, we fine-tune ProgSyn minimizing the pre-training objective £, regularized
by additional soft-constraints £§Qec. derived from the provided n specifications, resulting in the
objective:

‘Cfine(g9(2)7 X, XT) = LM(QO(Z)ﬂ X) + Z Ai ‘Cgip)ec. (99('2)7 Xr)ﬂ ey
i=1
where {\;}7_, are real valued parameters weighing the soft-constraints’ impact on the objective, X
is the original dataset, and X, is a reference dataset, which is either the original dataset itself, or, to
respect DP, a sample generated at the end of fine-tuning. The goal is to find a 8* that minimizes the
fine-tuning loss L¢ine(g0(2), X, X,). We discuss the choice of {A;}7; in Appendix D.1.

4.2 PRIVACY, LOGICAL, STATISTICAL, AND DOWNSTREAM SPECIFICATIONS

Using the ProgSyn program on the Adult dataset (Dua & Graff, 2017) shown in Figure 3 as a running
example, we introduce the technical details of each supported specification below.

ProgSyn Programs FEach program
begins with a command fixing the
source dataset we wish to make a syn-

SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:

thetic copy of and ends in an END; EPSILON=1.0, DELTA=1E-9;
command. In between, we may spec- ENFORCE: ROW CONSTRAINT:
ify all customizations over the learned age > 35 AND age < 55;
synthetic distribution. If no specifica- MINIMIZE: IMPLICATION:
tiOIlS are giVGIl go iS trained to maxi- marital_ status in {Divorced, Never married}

’ .. . IMPLIES
mally matCh the Orlglnal dataset in a relationship not in {Husband, Wife};
non-private manner. Each commgnd T T
consists of (i) an action description, E[age|sex=Male] == E[age|sex=Female] ;
deﬁning how the Optimizer should MINIMIZE: BIAS: PARAM 0.01:
treat the resu]ting regularizer (maxi- DEMOGRAPHIC_ PARITY (protected=sex, target=salary);
mize, minimize, enforce, or ensure); MINIMIZE: DOWNSTREAM: PARAM 0.05:
(11) a command type description; (111) DOWNSTREAM ACCURACY (features=all, target=sex)
an optional PARAM specification, set- END;

ting the corresponding regularization
weight)\, and (iv) an expression de-
scribing the specification directly in
terms of the data attributes.

Figure 3: ProgSyn program on the Adult dataset containing
example commands for each supported constraint type.

Differential Privacy Constraint ProgSyn can protect the privacy of individuals in X with DP by
using the constraint shown in line 2 of Figure 3. This ensures that the pre-training of gy is done by
the iterative DP method described in Section 4.1, and that fine-tuning does not access the original
dataset X. This constraint guarantees that ProgSyn respects DP at the given € privacy level.

Under review as a conference paper at ICLR 2024

Logical Constraints To avoid generating unrealistic data points or when aiming to incorporate
domain knowledge, it is necessary to support logical constraints over individual rows. For instance,
consider the constraint (denoted as ¢) in line 3 of Figure 3, requiring that each generated individual’s
age is between 35 and 55. We refer to such first order logical expressions consisting of feature-
constant comparisons chained by logical AND and OR operations that have to hold for each row of
the synthetic samples as row constraints. Returning to our example, ¢ consists of two comparisons
t; = age > 35andt, = age < 55. To enforce ¢ over gg, we first negate the expression ¢
to obtain ¢ = age <= 35 OR age >= 55, and at each iteration count the rows where the
negated expression holds, penalizing the fine-tuning loss with this count. However, as both hard logic
and counting are non-differentiable, enforcing such constraints over the synthetic data is challenging.
To circumvent this issue, we introduce a novel differentiable computation of a binary mask b-

marking the rows in a generated synthetic sample X of length NNV that satisfy —¢, the sum of which
is exactly the number of rows violating ¢. We do this by making use of the differentiable one-hot
encoding in X. First, we translate each of the negated comparison terms —t; and —t5 into binary
masks m—_;,, m—z, € {0, 1}7 over the columns by setting each coordinate that corresponds to a
valid assignment in ¢; to 1 and keeping the rest of the entries 0. For instance, if the age feature is
discretized as [18-35, 36-45, 46-54, 55-80], then —¢1[age] = [1,0,0,0] and —t2[age] = [0,0, 0, 1],
with the rest of the ¢ — 4 dimensions padded with zeros. Finally, to compute the resulting binary
mask bﬁ¢ over the rows of X, we introduce the followmg differentiable logical operator primitives:

AND: th ® th , and OR: thT + th th ® thT In the case of composite logical
expressions, we apply these primitives to each pair of comparisons recursively. Notice that as we
only make use of matrix-vector operations between X and constants independent of the data, the
calculation is fully differentiable with respect to the generator. Altogether, we can add the following
loss term to the fine-tuning loss of gy to enforce ¢: L4(go(2)) = va b-4(ge(2))s, using the notation
b-(ge(2)) for the binary mask calculated over the sample obtained from gg.

Further, we extend the above relaxation to support logical implications, such as line 4 in Figure 3.
We enforce implications ¢ == 1) over the gy by penalizing every generated row that violates the
implication, i.e., every row that satisfies (:= ¢ A —). Notice that { can be understood as a row
constraint expression, allowing for the techniques described above to calculate b¢(gg(z)) (note that
we do not negate (). Therefore, the resulting loss term to be added to the fine-tuning objective is:

Ly—= u(90(2 Zbc (90(2))i = Zb¢(90(2))i © by (g6(2)):-)

To guarantee that each sample respects the defined logical constraints, we use the same masking
technique as during training to reject any generated sample that violates the constraint. In Section 5
we demonstrate that the described fine-tuning with the relaxed constraints is necessary to achieve
high performance, with rejection sampling alone not being sufficient.

Statistical Customization One may want to smoothen out undesired statistical differences between
certain groups to limit bias, e.g., encourage that the mean age measured over males and females
agree (line 5 of Figure 3); or obfuscate sensitive statistical information, such as hiding the most
prevalent disease in their dataset (recall the example in Section 1). To facilitate such statistical
customizability we support the calculation of conditional statistical operations (expectation, variance,
standard deviation, and entropy) composed into arithmetic (4, —, *, /) and logical (A, V, <, <,
>, >, =, #) expressions. The calculation of the corresponding loss term consists of two steps: (i)
differentiably calculating the value of each involved statistical expression (involved), and (ii) as
afterwards we are left with logical and arithmetical terms of reals, we can calculate the resulting loss
term using t-norms and DL2 primitives (Fischer et al., 2019). Here (ii), we rely on prior work (Fischer
et al., 2019), therefore we only elaborate on the more involved step (i) below.

Denote a conditional statistical operator as OP[f(S)|¢], where f is a differentiable function over
a subset of features S, and ¢ is a row constraint condition. Incorporating such an expression is
fundamentally challenging, as the conditioning is not differentiable. To address this issue, we select

all rows of X where ¢ applies, using the differentiable technique for row constraints, described in an
earlier paragraph. From the resulting subset of the sample X, C X, we compute the normalized joint

marginal of all features involved in S, i(S, X;), describing a probability distribution over f(S),
which enables the computation of the given statistical operation following its mathematical definition.

Under review as a conference paper at ICLR 2024

As such statistical specifications can be directly measured on any produced sample, they can be
verified by the sampling entity if they are met to a desired degree or further regularization is needed
using the soft-constraining procedure described above. Section 5 we demonstrate that the above
procedure allows for effective statistical customization while preserving high synthetic data quality.

Downstream Specifications As the synthetic data is expected to be deployed to train machine
learning models, we need to support specifications involving them. For instance, consider synthetic
data such that models trained on it exhibit lower bias, or that no models can be trained on the data
to predict a certain protected column (lines 6 and 7 of Figure 3). Facilitating such specifications
is challenging, as here we have to optimize not over measures of the data itself, but instead over
the effect of the data on downstream classifiers. We achieve this by introducing a novel regularizer
involving the differentiable training of downstream models. In each iteration of fine-tuning gy,
we train a differentiable surrogate classifier i, on the prediction task defined by the provided
specification. Then, we "test" k., on the reference dataset X, and compute the statistic of interest ST
(e.g., demographic parity distance mp_ for bias w.r.t. the protected feature D;, or the cross entropy
Lc g for predictive objectives). We then update gy influencing ST in our desired direction. Denote
the synthetic sample generated at the current iteration as X, the features available to the surrogate

model for prediction as X [features], and the target features as X [target]. Then the loss term
added to the fine-tuning objective can be defined as:

Loomstream(g9(2), Xy) == s SI(hy+(X[features]), X[target]), 3)

with

P = mwin Lop(hy(X[features]), X[target]), 4)

where Lcg denotes the cross-entropy loss, and s € {—1, 1} depending on whether we wish to

maximize or minimize the computed statistic. Note that ¢)* depends (differentiably) on € through X,
and as such Equation (3) exhibits a differentiable dependency on 6.

In Section 5 we demonstrate the effectiveness of the above method in encouraging desirable behavior
from downstream models and even setting a new state-of-the-art in fair synthetic data generation.

5 EXPERIMENTAL EVALUATION

Experimental Setup For realizing gy we use a fully connected neural network with residual con-
nections. The regularization parameters are selected with on a hold-out validation dataset. Wherever
possible, we report the mean and standard deviation of a given metric, measured over 5 retrainings
and 5 samples from each model. For further details on the experimental setup please see Appendix A.
We evaluate our method on four popular tabular datasets: Adult (Dua & Graff, 2017), German
Credit (Dua & Graff, 2017), Compas (Angwin et al., 2016), and the Health Heritage Prize dataset
from Kaggle (Kaggle, 2023). Due to the space constraint, most experiments included in the main
paper are conducted on the Adult dataset, and repeated on all other datasets in Appendix B. For
evaluating the quality of the produced synthetic data w.r.t., we measure the test accuracy of an
XGBoost (Chen & Guestrin, 2016) model trained on the synthetic data and tested on the real test
data. We resort to this evaluation metric to keep the presentation compact, while providing a compre-
hensive measure of the usefulness of the generated data. As XGBoost is state-of-the-art on tabular
classification problems, it allows us to capture fine-grained deviations in data quality (Kotelnikov
et al., 2022). We compare only to prior works with an available open source implementation.

Downstream Specifications: Reducing Bias and Predictability We evaluate ProgSyn’s perfor-
mance on the task of generating a synthetic copy of the Adult dataset that is fair w.r.t the sex feature,
both in the non-private and private (DP) setting, using the command shown in line 6 of Figure 3. We
compare to two recent non-private (DECAF (van Breugel et al., 2021), and TabFairGAN (Rajabi &
Garibay, 2022)), and one private (Prefair (Pujol et al., 2022)) fair synthetic data generation methods.
The statistic of interest is a low demographic parity distance w.r.t. the sex feature of an XGBoost
trained on the synthetic dataset and tested on the real testing dataset. In Table 1, we collect both
our results in the non-private (top) and in the private (bottom, ¢ = 1) settings. Notice that ProgSyn
attains the highest accuracy and lowest demographic parity distance in both settings, achieving a new
state-of-the-art in both private and non-private fair synthetic data generation. Most notably, while the

Under review as a conference paper at ICLR 2024

other methods were specifically developed for producing fair synthetic data, ProgSyn is general, with
this being just one of the many specifications it supports.

Further, it can often be useful to Typle 1: XGB accuracy [%] vs. demographic parity distance
data owners to ensure that malicious o the sex feature of various fair synthetic data generation

actors cannot learn to predict cer- . . -
. lgorithms compar Pr n h in -
tain personal features from the re- algorithms compared to ProgSyn, both in a non-private (top)

leased synthetic data. Using the and private (¢ = 1) settings (bottom).
DOWNSTREAM command shown in

line 7 of Figure 3, we synthesize XGB Acc. [%] Dem. Parity sex
Adult, such that it cannot be used to True Data 85.4 4 0.0 0.18 4+ 0.00
train a classifier predicting the sex DECAF Dem, Parity 668+ 7.0 0.08 + 0.07
feature from other columns. As a re- TabFairGAN 798 + 0.5 0.02 + 0.01
sult, we reduce the balanced accuracy ProgSyn 821403 0.01+0.01

of an XGBoost on the sex feature

. Prefair Greedy (e = 1) 80.2+0.4 0.04 £0.01
from 83.3% ;19150'2%’ Le., gifi’}ydom Prefair Optimal (€ — 1) 75.7+ 1.5 0.03 + 0.02
guessing, while retaining $4.4/ ac- ProgSyn (e = 1) 80.9+0.3 0.01 +0.01

curacy on the original task.

Statistical Properties Recall that ProgSyn allows direct manipulations of statistical properties of
the generated datasets, using STATISTICAL specifications. We evaluate its effectiveness on this
task with 3 statistical commands on Adult: S1: set the average age across the dataset to 30 instead of
the original ~ 37; S2: set the average age of males and females equal (line 5 in Figure 3); and S3: set

the correlation of sex and salary to zero, i.e., Elsex-salary] Elsex]E[salary] _) \which is easily
\/Var(sex) Var(salary)

expressible in ProgSyn. Note here we do not compare to prior work, as no prior work allows for such
statistical manipulations. On S1, we achieve a mean age of 30.2 retaining 84.6% accuracy, while on
S2 ProgSyn reduces the average age gap from 2.3 years to < 0.1 maintaining 85.1% accuracy. Most
interestingly, on S3, we reduce the correlation between sex and salary from —0.2 to just —0.01,
and retain an impressive 84.9% accuracy. We provide more details in Appendix D.

Logical Constraints We evaluate the performance of ProgSyn in enforcing logical constraints on
the Adult dataset, using three implication (I1, 12, I3) and two row constraints (RC1, RC2). While
RC2 and 12 correspond to lines 3 and 4 in Figure 3, we list the rest of the constraints in Appendix D.
Note that the binary mask obtained for each constraint, as explained in Section 4.2, can easily be used
for rejection sampling (RS) from ProgSyn. Therefore, in our comparison, we distinguish between
ProgSyn with just RS and ProgSyn fine-tuned on the given constraint and rejection sampled (FT
+ RS). In the private setting, we compare our performance also to AIM (McKenna et al., 2022),
where we encode the constraints in the graphical model as structural zeros (SZ). We summarize our
results in Table 2, where in the first two rows we show the constraint satisfaction rates (CSR) on
the original dataset, and on the evaluated synthetic datasets (i.e., we compare the methods at 100%
CSR). Observe that while other methods also yield competitive results on constraints that are easy
to enforce, i.e., have high base satisfaction rate, as the constraint difficulty increases, fine-tuning
becomes necessary, yielding superior results. Further, we tested ProgSyn in case all 5 constraints are
applied at once, resulting in 84.0% accuracy, demonstrating a strong performance in composability.
These experiments show that ProgSyn is strongly effective in enforcing logical constraints.

Stacking Specifications of Different Types In a significantly harder scenario, the user may wish
to conduct several customizations of different type simultaneously. To evaluate ProgSyn in this case,
we selected at least one command from each of the previously examined ones, and combined them in
a single ProgSyn program. We picked the following commands for this experiment: (i) the command
used to generate fair synthetic data w.r.t. sex; (ii) & (iii) S1 and S2 statistical manipulations, setting
the average age to thirty, and equating the average ages of males and females; and (iv) & (v) two
logical implication constraints (I3 and 12) from Table 2. In Table 3 we show the effect of applying
these customizations increasingly one-after-another, with each row in the table standing for one
additional active specification (marked in green). Observe that after sacrificing the expected ~ 3.4%
accuracy for achieving low bias, ProgSyn maintains stable accuracy, while adhering to all remaining
customizations. This result demonstrates the strong ability of ProgSyn to effectively incorporate
diverse specifications simultaneously, with little cost to synthetic data quality.

Under review as a conference paper at ICLR 2024

Table 2: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three
implication constraints (I1 - I3) and two row constraints, applied separately, both in a non-private

(top) and |private| (¢ = 1) setting (bottom). RS: rejection sampling, FT: fine-tuning, and SZ: structural
zeros. ProgSyn + FT + RS is consistent across all settings, maintaining high data quality throughout.

Constraint 11 12 13 RC1 RC2

Real data CSR 93.6% 100% 60.4% 32.4% 40.5%
TVAE 82.14+0.5 821+£05 821+05 81.1+1.2 81.3+0.6
CTGAN 83.4+0.3 83.0+06 83.4+03 8254+0.7 825+0.8
ProgSyn + RS 85.1+0.1 85.1+01 851+£02 8294+0.8 84.5+0.1
ProgSyn + FT + RS 85.1+0.1 85.0+0.18 85.1+0.2 84.7+0.1 84.8+0.2
AIM+SZ (e =1) 84.2+0.2 84.1+£03 83.7+03 739408 676xt14
ProgSyn + RS (e = 1) 83.7£0.2 837402 83.7+0.2 81.0£09 83.5+£02

ProgSyn+FT+RS(e=1) 83.8+02 83.7£02 839+£01 831+02 834402

Table 3: ProgSyn’s performance on 5 different specifications applied together, progressively adding
more of them. In each row the active specifications are highlighted in green . The specifications are:

the command used for fair data; statistical manipulations S1 and S2, setting the average age to 30,
and equating the average ages of males and females; and two implications. ProgSyn demonstrates
strong composability, adhering to all customizations while maintaining competitive accuracy.

XGB Acc. [%] Dem. Parity sex A Avg. Ageto30 A M-F Avg. Age 13 Sat. [%] 12 Sat. [%]

85.1 £0.16 0.19 4+ 0.005 37.3 £0.05 2.3+0.17 59.3 +0.85 98.5 +£0.09
81.7+0.25 0.02 + 0.007 37.3+0.05 2.1+0.19 57.6 +0.78 96.7 £ 0.09
82.5+0.76 0.06 & 0.053 30.2 £+ 0.04 1.3+£0.14 57.0 +0.84 96.4 +0.25
82.0 £ 0.50 0.04 + 0.036 30.2 +0.03 0.0+ 0.10 56.9 +1.11 96.5 £0.19
81.3 £0.34 0.01 4 0.006 30.2 + 0.04 0.0+ 0.12 100.0 & 0.00 95.5 £0.16
81.6 +0.29 0.02 4+ 0.011 30.2 + 0.04 0.1+0.12 100.0 4 0.00 100.0 &+ 0.00

Experiments on Health Heritage, German Credit, and Compas We demonstrate the general-
izability of ProgSyn by repeating our main experiments presented above on three further tabular
datasets. For each dataset, we defined 3 implication, 2 row constraint, 2 statistical, and one down-
stream fairness command. We then evaluated ProgSyn under the same setup as on the Adult dataset,
comparing to baseline methods. Our detailed results are included in Appendix B, where ProgSyn
exhibits competitive performance across all examined datasets. Most notably, it often prevails as the
best method in fair synthetic data generation, outperforming state-of-the-art specialized approaches,
both in the non-private and DP settings. Further, we draw similar conclusions from the experiments
on these datasets as on Adult; namely, (i) for harder to enforce logical constraints soft-constrained
fine-tuning benefits performance; (ii) ProgSyn can effectively facilitate diverse customizations at
the same time. For further details on the results of the experiments on the Health Heritage, German
Credit, and Compas datasets, we refer the reader to Appendix B.

6 CONCLUSION

We presented ProgSyn, a new method for programmable synthetic data generation. The key idea
was to pretrain a generative model, and then fine-tune it according to programmable specifications
provided by the data owner. The fine-tuning is performed by converting the specifications into a
differentiable loss using novel relaxations. ProgSyn is first to enable data owners to customize their
synthetic data to their own use case by programmatically declaring logical and statistical specifications.
We evaluated ProgSyn on a large number of practical specifications, most of them not supported by
prior work, and obtained strong results across several datasets. Moreover, on tasks supported by prior
work we either match or exceed their performance, e.g., we set a new state-of-the-art in fair synthetic
data generation. Our work shows that it is possible to generate high-quality customized synthetic
data, thus opening doors for its wider adoption.

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY STATEMENT

Our submission includes an anonymized code repository, with details for reproducing all our main
results presented in the paper. Further, in all our experiments we have accounted for randomness
by running each experiment on several random seeds. Finally, both in the main paper and in the
Appendix, we give details on the experimental setup used, and how and which hyperparameters were
selected.

REFERENCES

Mahed Abroshan, Mohammad Mahdi Khalili, and Andrew Elliott. Counterfactual fairness in synthetic
data generation. In NeurlPS 2022 Workshop on Synthetic Data for Empowering ML Research,
2022.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Semantic
probabilistic layers for neuro-symbolic learning. In Advances in Neural Information Processing
Systems, volume 35, 2022.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias, 2016.

Sergiil Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth,
and Amaresh Ankit Siva. Differentially private query release through adaptive projection. In Proc.
of ICML, volume 139, 2021.

Samy Badreddine, Artur d’ Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303, 2022.

Mislav Balunovic, Anian Ruoss, and Martin T. Vechev. Fair normalizing flows. In Proc. of ICLR,
2022.

Nathan Benaich and Ian Hogarth. State of ai report 2021. https://www.stateof.ai/2021,
2021.

Vadim Borisov, Tobias Leemann, Kathrin Seler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. In The Eleventh International Conference on Learning
Representations, 2023.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Proceedings of the Ist Conference on Fairness, Accountability and
Transparency, volume 81, 2018.

Bhushan Chaudhari, Himanshu Choudhary, Aakash Agarwal, Kamna Meena, and Tanmoy Bhowmik.
Fairgen: Fair synthetic data generation. ArXiv preprint, abs/2210.13023, 2022.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, 2016. doi: 10.1145/2939672.2939785.

Michael Chiu, Brice Hall, Alex Singla, and Alex Sukharevsky. The state of ai in 2021.
https://www.mckinsey.com/capabilities/quantumblack/our-insights/
global-survey—-the-state-of-ai-in-2021, 2021.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision
making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, 2017. doi:
10.1145/3097983.3098095.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

10

https://www.stateof.ai/2021
https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021

Under review as a conference paper at ICLR 2024

Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, 2006. ISBN
978-3-540-35908-1.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference,
2012.

European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the European
Parliament and of the Council, 2016.

Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin T.
Vechev. DL2: training and querying neural networks with logic. In Proc. of ICML, volume 97,
2019.

Georgi Ganev, Bristena Oprisanu, and Emiliano De Cristofaro. Robin hood and matthew effects:
Differential privacy has disparate impact on synthetic data. In International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162, 2022.

Chang Ge, Shubhankar Mohapatra, Xi He, and Thab F Ilyas. Kamino: Constraint-aware differentially
private data synthesis. ArXiv preprint, abs/2012.15713, 2020.

Nick Hoernle, Rafael-Michael Karampatsis, Vaishak Belle, and Kobi Gal. Multiplexnet: Towards
fully satisfied logical constraints in neural networks. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022, 2022.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. In Proc. of ACL, 2016. doi: 10.18653/v1/P16-1228.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proc. of ICLR, 2017.

James Jordon, Jinsung Yoon, and Mihaela van der Schaar. PATE-GAN: generating synthetic data
with differential privacy guarantees. In Proc. of ICLR, 2019.

Kaggle. Health heritage prize. https://www.kaggle.com/c/hhp, 2023.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. ArXiv preprint, abs/2209.15421, 2022.

Zenan Li, Zehua Liu, Yuan Yao, Jingwei Xu, Taolue Chen, Xiaoxing Ma, and Jian L\”{u}. Learning
with logical constraints but without shortcut satisfaction. In The Eleventh International Conference
on Learning Representations, 2023.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: Generative
modelling for tabular data by learning relational structure. In The Eleventh International Conference
on Learning Representations, 2023.

Terrance Liu, Giuseppe Vietri, and Steven Wu. Iterative methods for private synthetic data: Unifying
framework and new methods. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, 2021.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, 2018.

Ryan McKenna, Gerome Miklau, and Daniel Sheldon. Winning the nist contest: A scalable and
general approach to differentially private synthetic data. ArXiv preprint, abs/2108.04978, 2021.

Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. Aim: An adaptive and iterative
mechanism for differentially private synthetic data. ArXiv preprint, abs/2201.12677, 2022.

11

https://www.kaggle.com/c/hhp

Under review as a conference paper at ICLR 2024

Yatin Nandwani, Abhishek Pathak, Mausam, and Parag Singla. A primal dual formulation for deep
learning with constraints. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurlPS 2019, December §8-14, 2019,
Vancouver, BC, Canada, 2019.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In IEEE International
Conference on Data Science and Advanced Analytics (DSAA), 2016. doi: 10.1109/DSAA.2016.49.

David Pujol, Amir Gilad, and Ashwin Machanavajjhala. Prefair: Privately generating justifiably fair
synthetic data. ArXiv preprint, abs/2212.10310, 2022.

Amirarsalan Rajabi and Ozlem Ozmen Garibay. Tabfairgan: Fair tabular data generation with
generative adversarial networks. Machine Learning and Knowledge Extraction, 4(2), 2022.

Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar, and Parisa Kordjamshidi.
DomiKnowsS: A library for integration of symbolic domain knowledge in deep learning. In Proc.
of EMNLP, 2021. doi: 10.18653/v1/2021.emnlp-demo.27.

Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data—anonymisation groundhog
day. In 31st USENIX Security Symposium (USENIX Security 22), 2022.

Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Gerome Miklau. Bench-
marking differentially private synthetic data generation algorithms. ArXiv preprint, abs/2112.09238,
2021.

Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differentially private
synthetic data and label generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2019.

Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. DECAF: generating
fair synthetic data using causally-aware generative networks. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, 2021.

Shuai Wang, Paul Verhagen, Jennifer Zhuge, and Velizar Shulev. Replication study of DECAF:

Generating fair synthetic data using causally-aware generative networks. In ML Reproducibility
Challenge 2021 (Fall Edition), 2022.

Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fairgan: Fairness-aware generative adversarial
networks. In IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA,
December 10-13, 2018, 2018. doi: 10.1109/BigData.2018.8622525.

Depeng Xu, Yongkai Wu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Achieving causal fairness
through generative adversarial networks. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, 2019a. doi:
10.24963/ijcai.2019/201.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional GAN. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurlPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, 2019b.

Zhun Yang, Joohyung Lee, and Chiyoun Park. Injecting logical constraints into neural networks via
straight-through estimators. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162, 2022.

Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui Xiao. Privbayes:
private data release via bayesian networks. In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, 2014. doi: 10.1145/2588555.2588573.

12

Under review as a conference paper at ICLR 2024

APPENDIX

In Appendix A we give extended details on the experimental setup used to evaluate ProgSyn, including
hyperparameters, and training details. In Appendix B we present our main results on the Health
Heritage, Compas, and German datasets. Appendix C presents additional results in private and non-
private unconstrained settings on all four datasets, compared to six baselines. In Appendix D, we list
all ProgSyn commands used for our evaluation in the main paper, together with their corresponding
hyperparameters and method of selecting these. In Appendix E, we give the technical details of
the private training method for ProgSyn. In Appendix F we explain the differences between the
base generative model used in ProgSyn and GEM (Liu et al., 2021). Finally, in Appendix G and
Appendix H, we discuss the broader impact and limitations of ProgSyn.

A EXTENDED EXPERIMENTAL DETAILS

In this section we give extended details on the experimental setup used to obtain our presented
results, and introduce the datasets used in the main body of the paper, the UCI Adult Census
dataset (Dua & Graff, 2017), the Health Heritage Prize dataset from Kaggle (Kaggle, 2023), the
Compas dataset (Angwin et al., 2016), and the German Credit dataset (Dua & Graff, 2017).

A.1 SETUP AND TRAINING PARAMETERS

Here, we first give more details on the experimental setup used to obtain the results presented in
the main body of the paper. Then, we also list all parameters and their choices relevant for training
ProgSyn. Finally, we list the reproduced baselines and link to their source code.

Experimental Setup In each of our experiments the base architecture of the ProgSyn generative
model gy is formed by a four-layer fully connected neural network with residual connections, where
the first hidden layer contains 100 neurons, and the rest of the layers 200. The input dimension of
the network, i.e., the dimension of the sampled Gaussian noise z, is 100. In the non-private setting,
we pre-train the generator for 2 000 epochs on a marginal workload containing all three-way feature
marginals that involve the label. Then, we fine-tune on each constraint for a varying number of
epochs using the original dataset as a reference (we give more training details for each constraint in
Appendix D). In the private setting, we pre-train the generator on a marginal workload containing
all three-way marginals in the dataset using our modified AIM algorithm presented in Appendix E.
Then, we fine-tune on the constraints (we give more details for each constraint in Appendix D), using
a sample from the model before fine-tuning for reference. We pre-train for each dataset and privacy
scenario a generative model on random seed 42 and fine-tune it over 5 retries for each constraint.
Then, from each of these models, we sample 5 datasets to measure the performance. Finally, we
report the mean and the standard deviation of the resulting 25 measurements whenever possible. Note
that this estimate incorporates the randomness in the fine-tuning phase, and the sampling noise.

Hyperparameters For pre-training the non-private model, we use batch size 15000 (i.e., the
generated dataset we measure the marginals of has 15 000 rows), and train the model for 2 000 epochs.
For the private model, we use a batch size of 1 000, and train the generative model at each step of the
private outer selection loop for 1 000 epochs. In both cases, we use the Adam optimizer, with the
default parameters, in combination with the CosineAnnealing learning rate scheduler. Additionally,
for non-private pre-training, we update on every group of 16 marginals, where one epoch is completed
once we have updated on every marginal of all three-way marginals containing the label. For
measuring the utility of the dataset using the XGB accuracy metric, we use an XGBoost classifier
with the default hyperparameters, as included in the XGBoost Python library'.

Resources Used For running the experiments we had 7x NVIDIA GeForce RTX 2080 Ti GPUs,
4x NVIDIA TITAN RTX, 2x NVIDIA GeForce GTX 1080 Ti, and 2x NVIDIA A100 SXM 40GB
Tensor Core GPUs available, where the A100 cards were used only for the experiments on Health
Heritage.

'XGBoost library: https://xgboost.readthedocs.io/en/stable/python/python_api.
html

13

https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html

Under review as a conference paper at ICLR 2024

Reproducing Baselines Here, we will list the works we compared against, including a link to
the repositories we have downloaded their code from. In our paper (including this appendix) we
reproduced the following works for comparison:

* TVAE (Xu et al., 2019b), code from the Synthetic Data Vault Patki et al. (2016): https:
//github.com/sdv-dev/SDV,

* CTGAN (Xu et al., 2019b), code from the Synthetic Data Vault Patki et al. (2016): https:
//github.com/sdv-dev/SDV,

e GReaT (Borisov et al., 2023), code: https://github.com/kathrinse/be_
great,

e AIM (McKenna et al., 2022), code: https://github.com/ryanll12358/
private—-pgm,

e MST (McKenna et al., 2021), code: https://github.com/ryanll2358/
private-pgm,

e GEM (Liu et al, 2021), code: https://github.com/terranceliu/
iterative-dp,

* Prefair (Pujol et al., 2022), code: https://github.com/David-Pujol/Prefair,

* DECAF (van Breugel et al., 2021), code from a reproduction study (Wang et al., 2022) (down-
loadable from the supplementary materials on OpenReview: https://openreview.
net/forum?id=SVx46hzmhRK),

* TabFairGAN (Rajabi & Garibay, 2022), code: https://github.com/
amirarsalan90/TabFairGAN.

A.2 DATASETS

In this subsubsection we briefly describe the technical details of each dataset used in this paper.

Adult The UCI Adult Census dataset (Dua & Graff, 2017) contains US-census data of 45222
individuals (excluding incomplete rows), split into training and test sets of size 30 162 and 15 060,
respectively. After removing the duplicate feature of education_num, the dataset contains 14
features (5 continuous and 9 discrete). We discretize each continuous feature uniformly in 32 bins
and one-hot encode the data, resulting in 261 dimensions for each row. The original task of Adult is
to predict the binary label of salary, which is 0 if the given individual earns > $50K per year, and
1 otherwise. The labels are imbalanced, with around 75% of the labels being 1. This also means that
any classifier that assigns the label 1 to every instance will have an accuracy of around 75%.

Health Heritage The Health Heritage Prize dataset from Kaggle (Kaggle, 2023) contains health-
related data of patients admitted to the hospital, collected in a table. The dataset is widely used in
algorithmic fairness research in the machine learning community. The preprocessing details of the
dataset are included in the accompanying code repository. The constructed task, in this case, is to
classify each patient if they are likely to be admitted to emergency care in the near future or not,
i.e., if they have amaxCharlsonIndex of > 0 or = 0, respectively. The dataset contains 218415
rows, where we randomly split to create a training dataset of 174 732 rows and a test set of 43 683
rows. There are 18 columns in the dataset, with 7 discrete and 11 continuous columns, where, again,
we uniformly discretize the continuous columns into 32 bins. The dataset is imbalanced, with &~ 64%
of the labels being = 0, therefore, a majority classifier achieves an accuracy of around 64%.

Compas The Compas dataset (Angwin et al., 2016) contains personal attributes and criminal record
related data of 6 172 individuals. The dataset is widely used in the fairness literature. To preprocess
the dataset, we follow the same technique as Balunovic et al. (2022). Finally, we split the dataset into
4937 training data points, and 1 235 testing data points. The dataset contains 9 columns, of which 5
are discrete and 4 are continuous. We discretize the continuous features into 32 equal-width bins.
The dataset is relatively balanced, with around 55% of the data points having label 1, therefore a
classifier always predicting 1 only achieves an accuracy of around 55%.

14

https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/SDV
https://github.com/kathrinse/be_great
https://github.com/kathrinse/be_great
https://github.com/ryan112358/private-pgm
https://github.com/ryan112358/private-pgm
https://github.com/ryan112358/private-pgm
https://github.com/ryan112358/private-pgm
https://github.com/terranceliu/iterative-dp
https://github.com/terranceliu/iterative-dp
https://github.com/David-Pujol/Prefair
https://openreview.net/forum?id=SVx46hzmhRK
https://openreview.net/forum?id=SVx46hzmhRK
https://github.com/amirarsalan90/TabFairGAN
https://github.com/amirarsalan90/TabFairGAN

Under review as a conference paper at ICLR 2024

Table 4: XGB accuracy [%] vs. demographic parity distance on the AgeAtFirstClaim feature
of various fair synthetic data generation algorithms compared to ProgSyn on the Health Heritage

dataset, both in a non-private (top) and |private (e = 1) settings (bottom).

XGB Acc. [%] Dem. Parity AgeAtFirstClaim

True Data 81.0 £ 0.00 0.51 £ 0.000
TabFairGAN 78.7+0.45 0.40 £ 0.016
ProgSyn 70.9+0.67 0.14 +£0.023
Prefair Greedy (e = 1) 73.5+0.11 0.35 4+ 0.004
Prefair Optimal* (e = 1) - -
ProgSyn (e = 1) 73.9+0.17 0.228 4+ 0.006

Table 5: XGB accuracy [%] vs. demographic parity distance on the race feature of various
fair synthetic data generation algorithms compared to ProgSyn on the Compas dataset, both in a

non-private (top) and |private (e = 1) settings (bottom).

XGB Acc. [%] Dem. Parity race

True Data 63.4 +0.00 0.13 £0.000
TabFairGAN 62.3 + 2.36 0.19 £ 0.057
ProgSyn 62.1 +1.28 0.05 + 0.031
Prefair Greedy (e = 1) 59.4 +1.53 0.15 £ 0.058
Prefair Optimal (e = 1) 58.0 £ 3.31 0.13 £0.055
ProgSyn (e = 1) 60.5 £ 0.58 0.04 £0.032

German Credit The German Credit dataset (Dua & Graff, 2017) contains personal data of 1 000
individuals, where the task is to classify each person in good or bad credit risk. We randomly split
the dataset into 800 training data points and 200 test data points. The dataset consists of 20 columns,
of which 14 are categorical, and the rest are continuous, which we discretize into 32 equal-width
bins. The dataset is imbalanced, with approximately 70% of the labels being 0, therefore, a classifier
predicting only 0 achieves ~ 70% accuracy.

B MAIN RESULTS ON GERMAN CREDIT, COMPAS, AND HEALTH HERITAGE
B.1 FAIRNESS

In Tables 4 to 5 we present our results on fair synthetic data generation on the Health Heritage,
Compas, and German datasets, respectively. Notice that ProgSyn exhibits a consistently strong
performance, often clearly providing the best accuracy-fairness trade-off. Note also that in some
cases Prefair Optimal (Pujol et al., 2022) did not converge even after more than a week of running.
Also, in the DP case, on German ProgSyn due to the low prevalence of the protected class, the DP
noise eliminated that class from the modeled distribution, and as such, no fairness measurements were
possible. This is because the German dataset has very few samples (800) therefore it is possible that
DP leads to the complete elimination of certain features. Note that for these experiments we binarize
the AgeAtFirstClaim column of the Health Heritage dataset with patients above and below sixty,
and we also binarize the race column of the Compas dataset by only keeping the Caucasian
and African—-American features. Note that here we follow the example of fair representation
learning literature, e.g., Balunovic et al. (2022).

B.2 LOGICAL CONSTRAINTS

In Tables 7 to 9 we present our results on the Health Heritage, Compas, and German datasets in
enforcing logical constraints. Notice that the observations that can be drawn from these tables match
those made in the main paper; namely, ProgSyn outperforms the methods from the Synthetic Data
Vault (Patki et al., 2016), and fine-tuning helps in enforcing hard logical constraints.

15

Under review as a conference paper at ICLR 2024

Table 6: XGB accuracy [%] vs. demographic parity distance on the foreign worker feature
of various fair synthetic data generation algorithms compared to ProgSyn on the German Credit

dataset, both in a non-private (top) and |private (e = 1) settings (bottom).

XGB Acc. [%] Dem. Parity foreign worker

True Data 74.0 £ 0.00 0.28 £ 0.000
TabFairGAN 64.0 £+ 4.57 0.09 4+ 0.064
ProgSyn 73.6 +£1.43 0.10 +£0.091
Prefair Greedy (e = 1) 65.0 +5.32 0.12 4+ 0.086
Prefair Optimal* (e = 1) 62.5 + 2.07 0.22 +0.125

ProgSyn (e = 1) - -

Table 7: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three
implication constraints (I1 - I3) and two row constraints, applied separately, both in a non-private

(top) and | private (e = 1) setting (bottom) on the Health Heritage dataset. RS: rejection sampling,

and FT: fine-tuning. ProgSyn + FT + RS is consistent across all settings, maintaining high data
quality throughout.

Constraint 11 12 13 RCl1 RC2

Real data CSR 18.3% 79.3% 5.4% 44.8% 1.8%
TVAE 7824+0.22 782+0.23 77.8+040 78.1+0.20 68.8+6.70
CTGAN 7844+0.22 788+0.58 785+041 78.74+0.51 75.9+2.62
ProgSyn + RS 80.0+0.08 80.1+0.08 79.9+009 79.9+0.07 79.2+0.11
ProgSyn + FT + RS 80.1+0.09 80.0+0.11 79.7+0.12 80.0+0.08 79.6+0.13
ProgSyn + RS (e = 1) 779+009 77.9+0.13 77.8+010 77.8+0.09 77.8+0.12

ProgSyn+ FT+RS(e=1) 77.7+£0.12 781+0.11 77.6+0.13 774+£0.10 77.7£0.09

Table 8: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three
implication constraints (I1 - I3) and two row constraints, applied separately, both in a non-private

(top) and |private (e = 1) setting (bottom) on the Compas dataset. RS: rejection sampling, and

FT: fine-tuning. ProgSyn + FT + RS is consistent across all settings, maintaining high data quality
throughout.

Constraint 11 12 13 RC1 RC2

Real data CSR 60.4% 87.0% 26.2% 35.2% 51.8%
TVAE 66.2+1.03 66.24+1.02 66.2+1.13 64.9+0.97 63.9+0.99
CTGAN 60.4+230 60.5+£3.38 599+3.64 60.4+2.67 59.1+230
ProgSyn + RS 65.2+089 652+083 64.8+1.01 642+1.38 62.0+0.66
ProgSyn + FT + RS 64.1 +0.82 64.8+097 61.1+0.87 64.6+1.35 62.3+0.76
ProgSyn + RS (e = 1) 62.7+ 093 62.7+095 624+1.15 62.6+0.82 60.3+0.73

ProgSyn + FT+RS (e =1) 61.9£086 62.5+£063 584+£151 621+£070 59.1+£0.77

16

Under review as a conference paper at ICLR 2024

Table 9: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three
implication constraints (I1 - I3) and two row constraints, applied separately, both in a non-private

(top) and [private (e = 1) setting (bottom) on the German dataset. RS: rejection sampling, and

FT: fine-tuning. ProgSyn + FT + RS is consistent across all settings, maintaining high data quality
throughout.

Constraint 11 12 13 RC1 RC2

Real data CSR 83.9% 61.7% 5.5% 40.9% 29.1%
TVAE 72.0+1.73 71.3 +1.80 72.2 +1.98 72.1 £1.66 70.5 £ 0.00
CTGAN 63.4+4.86 63.8+324 64.4+4.01 64.0+4.28 63.5+5.30
ProgSyn + RS 724+282 73.3+195 73.6+280 728+224 71.24+1.80
ProgSyn + FT + RS 70.2 £ 2.51 73.0+£2.13 72.6+£225 73.7+229 72.6+2.36
ProgSyn + RS (e = 1) 65.1+-3.16 654+258 64.6+3.24 68.7+2.00 60.6+3.94

ProgSyn+ FT+RS(e=1) 63.0+4.14 651+289 664+254 59.7+3.66 64.8+2.96

Table 10: ProgSyn’s performance on 5 different specifications applied together, pro-
gressively adding more of them on the Health Heritage dataset. In each row the

active specifications are highlighted in green . The specifications are: the command used for fair

data; statistical manipulations S1 and S2; and two implications. ProgSyn demonstrates strong
composability, adhering to customizations while maintaining competitive accuracy.

XGB Acc. [%] Dem. Parity S1 S2 13 Sat. [%] 12 Sat. [%]
79.7+0.09 0.52 +0.005 0.2 £0.00 5.7+£0.01 5.6 £ 0.09 77.54+0.79
76.7+0.13 0.33 + 0.005 0.2 £0.00 5.7 +0.02 5.4 4+0.11 81.4 +2.35
77.0+0.19 0.34 + 0.008 0.0 £0.00 5.7 +0.02 5.4 4+0.11 81.8 £2.28

76.3 £0.24 0.32+0.014 0.0+0.00 0.0 £0.00 5.1£0.09 79.8 £2.12
74.8 £0.31 0.24 +£0.011 0.6 £0.03 0.0 £0.00 100.0 £ 0.00 95.9£0.63
76.0 £ 0.43 0.33 £ 0.011 0.6 £0.01 0.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00

B.3 STACKING SPECIFICATIONS

In Tables 5, 10 and 11 we show our results in chaining specifications on the Helath Heritage, Compas,
and German datasets, respectively. Aligned with the conclusions drawn in the main part of this
paper, ProgSyn proves to be an effective method in being able to deal with several specification
simultaneously.

Table 11: ProgSyn’s performance on 5 different specifications applied together, progressively adding
more of them on the Compas dataset. In each row the 'active specifications are highlighted in green .
The specifications are: the command used for fair data; statistical manipulations S1 and S2; and two
implications. ProgSyn demonstrates strong composability, adhering to all customizations. Note that
once I3 is introduced, a constraint with which the method seems to struggle already, the accuracy
decreases by an amount expected after Table 8.

XGB Acc. [%] Dem. Parity Mean Age to 40 (S1) Cov(sex, y) (S2) 13 Sat. [%] 12 Sat. [%]

63.7+1.05 0.20 £ 0.042 33.6 £0.17 0.1+0.01 26.2 £1.02 87.1+0.90
61.6 +1.09 0.05 £ 0.021 33.5 £0.15 0.14£0.02 27.3+0.79 87.7+0.76
61.9+0.94 0.06 &= 0.036 39.6 £ 0.19 0.1£0.01 26.4 £ 0.69 87.3+1.01
61.44+1.04 0.05 £ 0.040 39.8+0.21 0.0 £ 0.02 26.3 £ 0.86 87.7+0.62
54.3 +1.89 0.07 £ 0.042 39.1£0.18 0.0 £0.02 100.0 & 0.00 100.0 £ 0.00
53.9+1.57 0.05 £ 0.035 39.1£0.20 0.0 £0.02 100.0 & 0.00 100.0 £ 0.00

17

Under review as a conference paper at ICLR 2024

Table 12: ProgSyn’s performance on 5 different specifications applied together, progressively adding
more of them on the German dataset. In each row the 'active specifications are highlighted in green .

The specifications are: the command used for fair data; statistical manipulations S1 and S2; and
two implications. ProgSyn demonstrates strong composability, adhering to all customizations while
maintaining competitive accuracy.

XGB Acc. [%] Dem. Parity Mean Age to 40 (S1) Cov(prot.,yy) (S2) 13 Sat. [%] 12 Sat. [%]

73.7 £ 2.86 0.14 £ 0.093 34.7£0.31 —0.1+0.04 7.0£241 62.1 +3.53
72.2+2.03 0.09 & 0.064 34.5+0.47 —0.1£0.04 6.8 +2.24 60.9 +2.21
72.9 £ 3.06 0.11 +0.071 40.0 £0.40 —0.1£0.05 6.6 & 2.72 62.8 £2.73
73.0£2.35 0.09 & 0.050 40.0 £ 0.43 0.0 £0.04 6.4+2.14 61.6 +3.11
71.5£2.48 0.10 £ 0.097 40.0 £ 0.25 —0.0+0.02 100.0 £ 0.00 62.3 +£2.32
71.4+£2.85 0.10 £ 0.097 40.7 +£0.31 0.0 £0.03 100.0 £ 0.00 100.0 £ 0.00

Table 13: TV distance on the training marginals, and downstream XGB accuracy, comparing ProgSyn
with baseline non-private generative models and private (¢ = 1.0) generative models on the Adult
dataset. The true data leads to an XGB accuracy of 86.7%, and to 85.4% when discretized. Per
metric, we highlight the best model in bold and underline the second best.

Non-Private ProgSyn TVAE CTGAN GReaT
TV distance [[107°] 4.14+0.09 28.6+4.02 3424243 26.8+0.21
XGB acc. [%] 85.2£0.12 82.0+0.43 83.3£0.32 85.7+0.13
Private (e = 1) ProgSyn MST GEM AIM
TV distance [(107°] 8.840.19 13.94+0.22 34.9+0.14 7.14+0.14
XGB acc. [%] 83.5£0.26 79.7+0.61 79.3£090 84.1+0.33

C UNCONSTRAINED NON-PRIVATE AND PRIVATE GENERATION

In this subsection, we present our results in unconstrained non-private and private generation on both
the Adult, Health Heritage, Compas, and German Credit datasets. For evaluation, we use two metrics:
(i) the total variation distance between the training marginals and the marginals of the synthetic
dataset, and (ii) the downstream XGB accuracy metric as used in the main body of the paper. The goal
of these experiments is to understand the performance of the generative model underlying ProgSyn,
note, however, that this generative model is not our main contribution. We believe that ProgSyn will
greatly benefit from improvements to its generative backbone by future work.

Non-Private Generation To understand the raw performance of gy we trained it on the Adult,
Health Heritage, Compas, and German Credit datasets w.r.t. all three-way marginals that include the
original task label. Then, we evaluated the synthetic data generated by this model and compared
it to three state-of-the-art tabular synthetic data generators, TVAE (Xu et al., 2019b), CTGAN (Xu
et al., 2019b), and GReaT (Borisov et al., 2023). Note that these models were designed with the sole
purpose of generating non-private synthetic data as close to the real data as possible in performance.
As such, they constitute a much more restricted set of models, that do not directly support DP
training nor customizations. In the top halves of Tables 13 to 16 we collect our results comparing the
performance of ProgSyn to the above-mentioned baselines. Note that on the Health Heritage and
German Credit datasets, we do not report any results for GReaT as it did not generate even a single
sample after 4+ hours of sampling that was accepted by the sampling filter in GReaT. Looking at the
non-private results, we can observe that ProgSyn achieved an around 7 reduction in TV distance
on the target marginals compared to the next best non-private method GReaT on Adult, and more
than 9x on Health Heritage compared to CTGAN. However, it is important to note that in contrast to
ProgSyn the other models do not directly optimize on the marginals. On XGB accuracy, ProgSyn
ranks as a competitive second-best method behind GReaT on Adult, exhibiting a comfortable margin
to TVAE and CTGAN; while on Health Heritage the comparison to GReaT was not possible, the
margin to the other methods is still significant. On Compas, somewhat surprisingly, TVAE ranks
as the best method, with GReaT and ProgSyn close in performance, while CTGAN is significantly

18

Under review as a conference paper at ICLR 2024

Table 14: TV distance on the training marginals, and downstream XGB accuracy, comparing ProgSyn
with baseline non-private generative models and private (e = 1.0) generative models on the Health
Heritage dataset. The true data leads to an XGB accuracy of 81.3%, and to 81.1% when discretized.
Per metric, we highlight the best model in bold and underline the second best.

Non-Private ProgSyn TVAE CTGAN GReaT
TV distance [-107°] 1.04+0.01 12.3+1.44 9.640.42 -
XGB acc. [%] 80.1+0.07 78.2+£0.22 78.3£0.65 -
Private (e = 1) ProgSyn MST GEM AIM
TV distance [-107°] 3.0 4+ 0.05 43£0.02 55+0.08 1.5+0.03
XGB acc. [%] 77.9+0.13 74.2+0.10 76.5+0.21 80.2+0.09

Table 15: TV distance on the training marginals, and downstream XGB accuracy, comparing ProgSyn
with baseline non-private generative models and private (¢ = 1.0) generative models on the Compas
dataset. The true data leads to an XGB accuracy of 69.9%, and to 67.0% when discretized. Per
metric, we highlight the best model in bold and underline the second best.

Non-Private ProgSyn TVAE CTGAN GReaT
TV distance [-(107%] 2.12+0.17 2024+1.95 184429 7.74+0.35
XGB acc. [%] 65.6 £0.78 66.7+1.04 608+£228 65.7+1.14
Private (e = 1) ProgSyn MST GEM AIM
TV distance [-1074] 5.874+0.77 8838+1.17 292428 3.64+0.15
XGB acc. [%] 61.9+2.13 626+130 56.0+£1.77 64.0+0.81

worse. Meanwhile on the German Credit dataset, ProgSyn ranks as the best method. These results
argue that the ProgSyn backbone is a strong generative model for tabular data.

Private Generation We compare the DP trained ProgSyn backbone to three state-of-the-art DP
methods, MST (McKenna et al., 2021), AIM (McKenna et al., 2022), and GEM (Liu et al., 2021) on
the Adult, Health Heritage, Compas, and German datasets at a privacy level of ¢ = 1. Note that as all
three of these baseline models require the same kind of discretization as ProgSyn, the comparison
is fair without further adjustments. We show our results in the bottom half of Tables 13 and 14.
Observe that ProgSyn often ranks as a strong second-best method behind AIM, more often than
not exhibiting a fair margin to the other methods. Most notably, on the German Credit dataset, it
ranks as the best method based on the XGB accuracy. This is remarkable, as AIM is, to the best of
our knowledge, the strongest currently available DP synthetic data generation model, but is far less
versatile than ProgSyn, which supports non-private training and a large set of constraints. Altogether,
this experiment demonstrates that ProgSyn is a strong base generative model for fine-tuning on
constraints, even in the private setting.

Table 16: TV distance on the training marginals, and downstream XGB accuracy, comparing ProgSyn
with baseline non-private generative models and private (¢ = 1.0) generative models on the German
dataset. The true data leads to an XGB accuracy of 78.0%, and to 74.0% when discretized. Per
metric, we highlight the best model in bold and underline the second best.

Non-Private ProgSyn TVAE CTGAN GReaT
TV distance [[1074] 5.444+0.19 37.1+£1.00 13.6+0.66 -
XGB acc. [%] 73.6+164 69.74+1.88 64.0+3.65 -
Private (e = 1) ProgSyn MST GEM AIM
TV distance [(1073] 2.940.21 1.7+0.09 6.434+0.18 1.78+0.1
XGB acc. [%] 67.0+£288 63.3+278 623+16.40 64.1+3.66

D CONSTRAINT EXPERIMENTS

In this section we first explain how one can choose the weights for the constraints without violating
the condition of train-test separation. Then, we list all commands used for the experiments in the

19

Under review as a conference paper at ICLR 2024

Table 17: Commands and hyperparameters used in the experiment:
Downstream Constraints: Eliminating Bias and Predictability

Command Weights

Reducing bias, non-private:
SYNTHESIZE: Adult;
MINIMIZE: FAIRNESS:

DEMOGRAPHIC_PARITY (protected=sex, target=salary, 0.0009
1lr=0.1, n_epochs=15, batch_size=256);
END;
Reducing bias, private (¢ = 1):
SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=le-9;
MINIMIZE: FAIRNESS: 0.0007
DEMOGRAPHIC_PARITY (protected=sex, target=salary,
1lr=0.1, n_epochs=15, batch_size=256);
END;
Predictability, non-private:
SYNTHESIZE: Adult;
MINIMIZE: UTILITY: 0.00133

DOWNSTREAM_ACCURACY (features=all, target=salary);
END;

main paper, with their corresponding hyperparameters (constraint weight and number of fine-tuning
epochs).

D.1 CHOOSING THE CONSTRAINT WEIGHTS AND OTHER HYPERPARAMETERS

For choosing the constraint weights {\;}7_;, we implemented a k-fold cross-validation scheme
splitting over the reference dataset of the fine-tuning objective. We fine-tune for each & splits and
each weight that is to be evaluated. The results are reported for each weight combination and their
corresponding diagnostic metrics on the data utility and the constraint satisfaction degree. The user
can use this diagnostic data to gauge the weights they want to set in their constraint program for their
final fine-tuning phase. To choose the weights we used for the results presented in the main body
of the paper, in order to save time and compute, we did not run the full k-fold cross-validation, but
validated only on the first split at £ = 5, and chose the best performing parameter from this data.

D.2 CoMMANDS USED

In this subsection we list for each paragraph from the experimental section in the main body the
corresponding commands and hyperparameters. Note that the syntax in the listed commands slightly
differs from the syntax presented in the main paper. The reason for this is that the commands included
here serve the purpose of reproduction, and therefore follow the syntax of the code repository version
submitted in the supplementary materials. The code syntax in the paper uses a more intuitive syntax
which is being adapted in the codebase in the current refactoring. For all constraints, we use batch
size 15 000.

* Downstream Constraints: Eliminating Bias and Predictability: Table 17.
* Statistical Properties: Table 18.

* Logical Constraints: non-private: Table 19, private: Table 20.

 Stacking Constraints of Different Types: Table 21.

E DIFFERENTIALLY PRIVATE TRAINING OF PROGSYN

In the case of DP training, we adapt the iterative and privacy budget adaptive DP training algorithm
presented in AIM (McKenna et al., 2022). In brief, given a privacy budget ¢ and a workload (set of

20

Under review as a conference paper at ICLR 2024

Table 18: Commands and hyperparameters used in the experiment:
Statistical Properties

Command Weights

Set the average age to 30 (S1):
SYNTHESIZE: Adult;
ENFORCE: STATISTICAL: 0.000025
Elage] == 30;
END;

Set the average age of males and females equal (S2):
SYNTHESIZE: Adult;
ENFORCE: STATISTICAL: 0.0000125
Elage|sex==Male] == [age | sex==Female];
END;

Decorrelate sex and salary (S3):
SYNTHESIZE: Adult;
ENFORCE: STATISTICAL:
(E[sex % salary] - E[sex] x El[salary])
/ (STD[sex] % STD[salary] + 0.00001) == O;

0.7525

END;

marginals that are to be preserved well by the final model) AIM works by iterating the following
steps: (i) using the exponential mechanism to select a marginal from the workload to be measured,
(i1) privately measuring this selected marginal using the Gaussian mechanism, (iii) fitting a generative
model to all the privately measured marginals up to this point, and (iv) increasing the per-iteration
budget ¢; in case the improvement obtained from the new measurement is insufficient. The steps
(i)—(iv) are repeated until the entire privacy budget € is used up. We adapt this algorithm by replacing
the graphical model used in AIM with our generative model gy for step (iii) and training it similarly
as in the non-private setting using the privately measured marginals as reference. Additionally, we
modify step (iv) in a similar vein to adaptive ODE solvers by also allowing for a decrease in the
budget in case the model showed a strong improvement in the given iteration, which we detail below.

Let ~; be the privacy parameter of the selection step (parameter of the exponential mechanism),
and o, the privacy parameter of measurement step (parameter of the Gaussian mechanism), each
at iteration ¢t. Also, let the sample generated by gy at iteration ¢ be denoted as X;, and denote
the marginal of the features r selected in round ¢ measured on the sample X; with domain size
n, as M, (X;). Then, using the budget annealing step of AIM, one doubles +; and halves o if
|M(Xt) — My (Xi—1)|1 < /2/7 - 0t - ny, i.e., the per-round privacy budget is increased 4 x
whenever the change in marginals is smaller than the expected error at the current noise level.
Although this choice is well motivated by McKenna et al. (2022), we found that for ProgSyn this led
to too few rounds of private training, as the per-round budget is only increased, and never decreased,
when for example the improvement at the current round was much better than expected. Especially,
as the increase every time is 4-fold, the budget was depleted very quickly, leading to poor results.
Therefore, we modified this annealing step in AIM by (i) allowing for a decrease in the per-round
budget in case the measurement provided an improvement that is larger than the expected error, and
(ii) setting a maximum adaptation factor of /2, meaning that the per-round privacy budget changes
at most 2x in each round. Our new annealing step is shown in Algorithm 1.

Algorithm 1 ProgSyn Privacy Budget Annealing

L€ o IME)-ME D,
: 2/m o n,

2: if € <1 then
op41 < max(E, l/ﬂ) -0

Yer1 < 1/ max(€, 1/v/2)
else

Otp1 < min(f, \/i) s O¢

Vi1 < v/ min(§, \/Q)
end if

A A

21

Under review as a conference paper at ICLR 2024

Table 19: Commands and hyperparameters used in the experiment:
Logical Constraints (non-private)

Command

Weights

Logical Implication (I1):
SYNTHESIZE: Adult;
ENFORCE: IMPLICATION:
marital_status == Widowed OR relationship == Wife
IMPLIES sex == Female;
END;

0.0000075

Logical Implication (12):
SYNTHESIZE: Adult;
ENFORCE: IMPLICATION:
marital_status in {Divorced, Never_married}
IMPLIES relationship not in {Husband, Wife};
END;

0.0000075

Logical Implication (I3):
SYNTHESIZE: Adult;
ENFORCE: IMPLICATION:
workclass in {Federal_gov, Local_gov, State_gov}
IMPLIES education in {Bachelors, Some_college,
Masters, Doctorate};
END;

0.0000075

Logical Row Constraint (R1):
SYNTHESIZE: Adult;
ENFORCE: LINE CONSTRAINT:
sex == Female;
END;

0.0000025

Logical Row Constraint (R2):
SYNTHESIZE: Adult;
ENFORCE: LINE CONSTRAINT:
age > 35 AND age < 55;
END;

0.0000075

Combined Command:
SYNTHESIZE: Adult;
ENFORCE: IMPLICATION:
marital_status == Widowed OR relationship == Wife
IMPLIES sex == Female;
ENFORCE: IMPLICATION:
marital_status in {Divorced, Never_married}
IMPLIES relationship not in {Husband, Wife};
ENFORCE: IMPLICATION:
workclass in {Federal_gov, Local_gov, State_gov}
IMPLIES education in {Bachelors, Some_college,
Masters, Doctorate};
ENFORCE: LINE CONSTRAINT:
sex == Female;
ENFORCE: LINE CONSTRAINT:
age > 35 AND age < 55;
END;

0.0000075

0.0000075

0.0000075

0.0000025

0.0000075

22

Under review as a conference paper at ICLR 2024

Table 20: Commands and hyperparameters used in the experiment:
Logical Constraints (private)

Command Weights

Logical Implication (I1):
SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=le-9;

ENFORCE: IMPLICATION: 0.00005
marital_status == Widowed OR relationship == Wife
IMPLIES sex == Female;
END;
Logical Implication (I2):
SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=le-9;
’ e 0.0000125

ENFORCE: IMPLICATION:
marital_status in {Divorced, Never_married}
IMPLIES relationship not in {Husband, Wife};
END;

Logical Implication (I3):
SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1le-9;
ENFORCE: IMPLICATION: 0.000375
workclass in {Federal_gov, Local_gov, State_gov}
IMPLIES education in {Bachelors, Some_college,
Masters, Doctorate};
END;

Logical Row Constraint (R1):
SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:

EPSILON=1.0, DELTA=le-9; 0.0000375
ENFORCE: LINE CONSTRAINT:
sex == Female;

END;

Logical Row Constraint (R2):
SYNTHESIZE: Adult;
ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1le-9; 0.0000125
ENFORCE: LINE CONSTRAINT:
age > 35 AND age < 55;
END;

23

Under review as a conference paper at ICLR 2024

Table 21: Commands and hyperparameters used in the experiment:
Stacking Constraints of Different Types

Command Weights

Full Program:
SYNTHESIZE: Adult;
MINIMIZE: FAIRNESS:

DEMOGRAPHIC_PARITY (protected=sex, target=salary, 0.0009
1r=0.1, n_epochs=15, batch_size=256);
ENFORCE: STATISTICAL: 0.000025
Elage] == 30;
ENFORCE: STATISTICAL:
. 12
E[age|sex==Male] == E[age]|sex==Female]; 0.0000125
ENFORCE: IMPLICATION:
workclass in {Federal_gov, Local_gov, State_gov} 0.0000075
IMPLIES education in {Bachelors, Some_college,
Masters, Doctorate};
ENFORCE: IMPLICATION: 0.0000075

marital_status in {Divorced, Never_married}
IMPLIES relationship not in {Husband, Wife};
END;

F DIFFERENCES TO GEM

The main difference to the fixed-noise model used in Liu et al. (2021) (GEM) is that ProgSyn
resamples the input noise at each training step, and therefore, it truly learns a generative model of the
data with respect to the Gaussian distribution at the input. Additionally, our final layer is different
from the one used in GEM, where the authors use a simple per-feature softmax head and conduct
the training of the network in a relaxed representation space. Only once the training is done, for
generating a final sample, the authors of GEM project the output of their model to the correct one-hot
representations by sampling each feature independently in proportion to their obtained values in the
relaxed representation. Whereas, we use a straight through estimator Gumbel Softmax (Jang et al.,
2017) at the output, meaning that we already conduct the training in the hard, one-hot encoded space.
Finally, for DP training we use a modified version of the selection and privacy budgeting algorithm
presented in McKenna et al. (2022), and not the method presented in Liu et al. (2021). We explained
the modifications we conduct in Appendix E.

G BROADER IMPACT

ProgSyn is the first programmable synthetic data generation method for tabular data, opening the
possibilities of data sharing in areas where previously this was limited, due to privacy, bias, or
proprietary issues. As such, we hope that ProgSyn, can open the way towards democratizing access
to data, by allowing even entities that were previously reluctant to share their records to publish
them. Such a development would be beneficial not only for the open-source community, and the
science community but also for the industrial players providing the data, who could benefit from the
open-sourced developments using their data themselves as well.

However, we have to acknowledge that allowing for mechanical manipulations in the data could
open the door for malicious actors to purposefully modify their data releases in a misleading or
straight-out harmful way. Although one could argue that ProgSyn makes this process potentially
easier, our contribution is still significant from a mitigation perspective. We raise awareness that such
manipulations on the data are possible and appeal to future work to approach this issue either from
the technical or the legal end.

H LIMITATIONS

Although ProgSyn achieves competitive results in synthetic data generation, there are some design
choices that may limit its performance. One of these factors is the fact that the data has to be
discretized prior to fitting ProgSyn, where we only used a simple uniform discretization scheme
with 32 buckets. We made this choice as the goal of this paper was not to present the best pure

24

Under review as a conference paper at ICLR 2024

synthetic data generation method, and we believe that a more carefully chosen discretization scheme
could improve the inherent performance of ProgSyn. Another delicate choice is the set of measured
marginals for training, where, for simplicity, we resorted to three-way marginals without exploring
other options. We believe that ProgSyn could greatly benefit from an advanced scheme choosing the
marginals for training, which improvement is likely to translate into the constrained setting as well.
In general, as ProgSyn relies on a generative model to learn the unconstrained data distribution, its
intrinsic performance influences the quality of the constrained data. Therefore, we believe that any
improvements to the generative model would, at least partially, translate into higher data quality in
the constrained setting as well. Additionally, we continue to work on ProgSyn to incorporate a larger
class of constraints, for example, constraints between pairs of generated data points.

25

	Introduction
	Background
	Related Work
	ProgSyn: Programmable Synthetic Data Generator
	The ProgSyn Framework
	Privacy, Logical, Statistical, and Downstream Specifications

	Experimental Evaluation
	Conclusion
	Reproducibility Statement
	Appendices
	Extended Experimental Details
	Setup and Training Parameters
	Datasets

	Main Results on German Credit, Compas, and Health Heritage
	Fairness
	Logical Constraints
	Stacking Specifications

	Unconstrained Non-Private and Private Generation
	Constraint Experiments
	Choosing the Constraint Weights and Other Hyperparameters
	Commands Used

	Differentially Private Training of ProgSyn
	Differences to GEM
	Broader Impact
	Limitations

