Under review as a conference paper at ICLR 2026

COMPOSERFLOW: STEP-BY-STEP COMPOSITIONAL
SONG GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-source end-to-end song generators have emerged in the wake of commer-
cial systems like Suno, offering one-shot music with lyrics but at the cost of
large datasets and substantial compute. We propose ComposerFlow, a hierarchical
pipeline that composes songs by chaining four specialized components—Iyrics-
to-melody, melody harmonization, singing-voice synthesis (SVS), and singing ac-
companiment generation (SAG). This modular design is resource-efficient (trained
on a single RTX 3090; 6k hours of data) and editable: users can revise in-
termediate results (e.g., melody, chords, vocal) and regenerate corresponding
downstream results. We evaluate our pipeline against representative end-to-
end baselines and observe perceptual quality comparable to open-source sys-
tems, while requiring significantly less training. We release audio demos at
https://composerflow.github.io/web/. Our results suggest that modular, control-
lable pipelines are a practical alternative to end-to-end song models, enabling
rapid iteration and reliable production on accessible hardware.

1 INTRODUCTION

Traditional song production is a staged, collaborative workflow that progresses from songwriting
(Iyrics, melody, form) to arrangement and pre-production, then multitrack recording, editing, mix-
ing, and mastering. Each stage depends on specialized expertise—producers, topliners, instrumen-
talists, and engineers—and tight iterative feedback in a DAW, where decisions about key, tempo,
harmony, vocal delivery, and sound design are refined across multiple passes. While this process is
flexible and quality-driven, it is time- and resource-intensive; revisions at any stage often cascade
into downstream rework. Producers preserve editability by saving stems and session states, yet pre-
cisely reproducing changes remains laborious. This conventional pipeline sets a high bar for control
and fidelity—highlighting an opportunity for computational systems that retain its editability while
reducing cost and turnaround.

With recent advances in generative models, commercial systems such as/Suno|(2025) and |Udio, Inc.
(2024) demonstrate high-quality, convenient song generation, followed by emerging open-source
models (Yuan et al.,|2025; [Liu et al., 2025b; Ning et al.,|2025; |Gong et al., 2025; Yang et al.| 2025;
Lei et al., 2025} [Liu et al., 2025a). In contrast to the conventional studio workflow, these models
accept lyrics and textual descriptions and produce full songs within seconds. However, end-to-end
generation poses several challenges: (i) when the final output is unsatisfying, intermediate edits are
challenging; (ii) directly learning a mapping from lyrics/descriptions to audio is data- and compute-
hungry; and (iii) vocals often misalign with the given lyrics and unnatural timbre.

We address these limitations with ComposerFlow, a step-by-step pipeline that leverages three small
modules and a text-to-music model, trained only with a single RTX 3090. ComposerFlow also be-
gins from lyrics but progressively generates melody, chords, singing voice, and backing track (Fig-
ure . For lyric-conditioned melody, we use CSL-L2M [Chai & Wang| (2025); for harmony, we
apply AccoMontage?2 |Yi et al.| (2022) to retrieve chord progressions that fit the generated melody.
We then synthesize vocals with an SVS model fine-tuned from FastSpeech (Ren et al.| 2020). Fi-
nally, we perform singing-accompaniment generation using Stable-Audio-Open (Evans et al.| [2025)
fine-tuned with MuseControlLite (Tsai et al., 2025). This modular design preserves editability:
users may adjust melody, chords, or singer identity and deterministically regenerate downstream
audio. It also leverages each component’s strengths—requiring training only for SVS and MuseC-

Under review as a conference paper at ICLR 2026

Lyrics-to-Melody Melody Harmonization

- Vocal-to-Backing
Audio (from the
last output I (l, Trained

Key Accomontage2
p —_— . Inference only
MuseControlLite
(Stuctre }—1— cstLou T
Rhythm
Lyrics } Fast-singerq—'{Vocal audio]—»[Vocal Melody { Backing Mixed Song J
Singing Voice Synthesis I

Figure 1: Overview of ComposerFlow. The pipeline begins with lyrics and proceeds through lyrics-
to-melody, melody harmonization, SVS, and singing accompaniment generation. Composer-
Flow is a flexible paradigm rather than a fixed system; any component can be replaced, provided it
adheres to the same input and output specifications.

ontrolLite (Tsai et al.} [2025). To mitigate copyright concerns, we trained the SVS on two licensed
singers. For accompaniment, we condition Stable-Audio-Open on time-varying controls (chords,
vocal melody, rthythm, reference audio, key, and structure) to ensure the backing track follows the
vocal. All training runs on a single RTX 3090 GPU, substantially lowering training costs while
improving lyric-vocal alignment and timbral quality. We present the first open-source pipeline that
decomposes lyrics-to-song generation into editable stages, allowing low-cost fine-tuning and mid-
pipeline modification. In particular, we adapt a text-to-music model for singing accompaniment
generation, and evaluate our approach against state-of-the-art end-to-end systems using both ob-
jective and subjective metrics. Results show comparable perceptual quality to open-source models
while requiring substantially less training data and compute.

System Training data (hrs) Compute resources
Yue (Yuan et al., 2025) 650K 16x H800
DiffRhythm (Liu et al., [2022) 60K 8 x Huawei Ascend 910B
Acestep (Gong et al., 2025) 100K 120x A100
SongBloom (Yang et al.,[2025) 100K 16x A100

JAM (Liu et al., [2025a) 54K 8x H100

Levo (Lei et al., 2025) 110K 8x A100

Ours 6K 1 x 3090

Table 1: Comparison of training data and compute resources across Song Generation systems. Our
proposed ComposerFlow used significantly less training data and resources, serving as an eco-
friendly song generation pipeline.

2 RELATED WORKS

2.1 TEXT-TO-MUSIC

Generating music purely from text is appealing: it bypasses the complexity of the traditional pro-
duction pipeline. Building on the success of Stable Diffusion (Rombach et al., [2022)) in text-to-
image, Riffusion (Forsgren & Martiros, [2022)), AudioLDM (Borsos et al., 2023)), AudioLDM?2 |Liu
et al.| (2024), and MusicLDM (Chen et al., 2024b) adopt latent-diffusion models that generate
mel-spectrograms, which are then converted to audio with a vocoder (Kong et al., |2020). Stable
Audio (Evans et al., 2024ajb; 2025)) accelerates inference and replaces the vocoder with a fully
convolutional variational autoencoder. Apart from diffusion, MusicGen [Copet et al.| (2024)) uses
a transformer over Encodec tokens Défossez et al.| (2022) and can accept audio inputs for melody
conditioning. To avoid training from scratch, Music ControlNet Wu et al.| (2024a); Hou et al.| (2025)
fine-tunes ControlNet adapters to equip text-to-music systems with time-varying controls. MuseC-
ontrolLite Tsai et al.[(2025)) further reduces the number of trainable parameters while broadening the

Under review as a conference paper at ICLR 2026

set of supported controls. In ComposerFlow, we utilize MuseControlLite with time-varying controls
that we consider helpful for singing accompaniment generation.

2.2 SONG GENERATION

Song generation is inherently harder than purely instrumental generation because it composes sev-
eral sub-tasks—Ilyrics-to-melody (Yu et al., |2021; |Sheng et al.l 20215 Ju et al.| [2021; (Chai & Wang,
2023)), singing voice synthesis (Lu et al., 2020; |Chen et al., 2020; |Liu et al., 2022), and singing-
accompaniment generation Donahue et al.|(2023)); Chen et al.|(2024a); Trinh et al.|(2024). Recent
systems often tackle the lyrics-to-song problem with large end-to-end models trained from scratch
that render a full track directly from lyrics. LLM-based approaches such as Yue |Yuan et al.| (2025)
and Levo |[Lei et al|(2025) produce full-length songs but exhibit slow inference. DiffRhythm Ning
et al.| (2025) and AceStep |Gong et al.| (2025) employ diffusion transformers to markedly speed
up decoding, while SongBloom |Yang et al.| (2025) uses an autoregressive diffusion design to pair
diffusion-level fidelity with sequence modeling. However, these end-to-end paradigms typically re-
quire massive datasets and substantial compute, and they offer limited opportunities to intervene or
edit intermediate representations. In contrast, our step-by-step pipeline leverages three lightweight
specialist models alongside a text-to-music generator, thereby significantly reducing training costs
and data requirements.

3 METHOD

The initial input is lyrics (with structure tags) provided by the users, just like other song generation
models, but it also offers optional input for emotion and global key. The intermediate output of every
model can be edited and passed to the downstream.

3.1 LYRICS-TO-MELODY

Lyrics-to-Melody. Lyrics-to-melody is challenging because lyrics and melody are only weakly
correlated. We adopt the state-of-the-art CSL-L2M model |Chai & Wang|(2025) to map input lyrics
to melody. CSL-L2M is a Transformer decoder with an in-attention mechanism Wu & Yang (202
that supports fine-grained lyric—melody controls. We condition on the global ke and emotlo
as well as sentence-level structureﬂ and statistical musical attrlbutesﬂ that strengthen lyrlc—melody
coupling. The statistical attributes are extracted from a melody track. Users may specify emotion,
key, and structure (the latter carried by the lyrics), and optionally provide a reference MIDI from
which we derive the statistical attributes. The model performs best when the reference melody and
input lyrics have similar section structure, line count, and per-line word counts.

To enable use without a user-provided MIDI, we curate a bank of 1,000 reference attribute sets.
Given new lyrics, ComposerFlow scores each candidate using a weighted sum

P = 0~4Psent + 0'4Pprof + 0'2Pslruct7

where lower is better. Here, Pi., penalizes differences in total line count (optionally rejecting
candidates with fewer lines than the target); Py is the mean absolute difference between per-
line token counts—treating each visible Chinese character as one token—after padding the shorter
sequence with its median and scaling by the maximum observed token count; and Py,¢ cOmpares
section tags mapped to integers, counting position-wise mismatches and adding a penalty for extra
sections, normalized by the longer sequence length.

12 major: C, Db, D, Eb, E, F, Ff, G, Ab, A, Bb, B; 12 minor: ¢, cf, d, df, e, f, ff, g, gfi, a, bb, b.

>Three emotions: Neutral, Positive, Negative.

3Five sections: Verse, Chorus, Insertion, Bridge, Outro.

412 attributes: pitch mean (PM), pitch variance (PV), pitch range (PR), direction of melodic motion (DMM),
amount of arpeggiation (AA), chromatic motion (CM), duration mean (DM), duration variance (DV), duration
range (DR), prevalence of most common note duration (MCD), note density (ND), fraction of lyric syllables to
melody notes (Align).

Under review as a conference paper at ICLR 2026

3.2 SINGING VOICE SYNTHESIS (SVS)

Previous song-generation systems typically synthesize vocals and accompaniment jointly, often
yielding unnatural vocal timbre and weak lyric-phoneme alignment. In contrast, given user-
provided lyrics and a melody (Section[3.T), we employ a lightweight SVS model to render realistic,
controllable singing voices—something end-to-end models struggle to achieve. Accordingly, we
decouple the pipeline: the SVS module focuses on high-quality vocal rendering, while accompa-
niment is generated separately. Specifically, we train FastSpeech (Ren et al., [2020) from scratch
on licensed data from two singers (male/female), and add a MIDI-conditioning embedding that
aligns each phoneme to its corresponding MIDI note. Before synthesis, we compare the register
of the melody to typical vocal ranges—male (lower) vs. female (higher)—and test octave shifts
A € {-12,0,+12} to align the melody with each profile’s comfortable tessitura. We then choose
the (singer, A) that keeps the most notes inside the target range while minimizing |A|. By focusing
solely on vocal generation, our approach produces more natural, intelligible singing with improved
lyric alignment, while remaining model-agnostic—any high-quality SVS model can be plugged into
ComposerFlow.

3.3 SINGING ACCOMPANIMENT GENERATION (SAG)

In prior Singing Accompaniment Generation (SAG) systems (Donahue et al| [2023; (Chen
et al., 2024a; [Trinh et al., 2024), models typically condition on separated vocals. However,
SingSong (Donahue et al.,2023) exhibits slow inference and FastSAG (Chen et al.,[2024a) is limited
to 10-second outputs. More importantly, conditioning on raw vocals may fail when the vocal track
is silent (eg, intro, outro, solo). We therefore replace raw-vocal conditioning with structured, time-
varying controls extracted from the data, reducing irrelevant information and enabling more reliable
instrumental generation, and use MuseControlLite [Tsai et al. (2025)) to generate backing tracks to
follow the extracted time-varying conditions.

Rhythm. To align backing with vocals, we enforce shared beats and downbeats. We use All-In-
One (Kim & Naml [2023)) to obtain beat and downbeat timestamps from training audio and convert
them into binary indicator sequences of shape (7', 1), where T is the number of time frames (1 if an
event occurs at a frame, else 0). We then apply a Gaussian filter to yield smooth “rhythm activation”
curves. At inference, when All-In-One cannot operate on a cappella input, we derive beat/downbeat
timing from the quantized MIDI produced by our lyrics-to-melody model (CSL-L2M (Chai & Wang,
2025))), which outputs melodies in 4/4.

Structure. Structure organizes a song’s energy and narrative—shaping tension and release—so
listeners can follow, feel, and remember the hook. We extract segment tags and timestamps with
All-In-One (Kim & Nam, 2023ﬂ Timestamps slice audio at segment boundaries; segment-level
captions are produced by AudioFlamingo3 (Goel et al.| [2025), and the structure tags themselves are
used as a time-varying conditioning signal.

Vocal Melody Vocal melody constrains plausible harmony. We first separate vocals and accom-
paniment with Mel-Band RoFormer (Wang et al., [2023)), then select prominent pitches via the top-4
constant-Q-transform (CQT) method of [Hou et al.|(2025)). In inference, we extract melody from the
SVS-generated singing.

Chord. Chord progressions underpin harmonic flow, shape emotion, and support melody. We
initially omitted chord conditioning in MuseControlLite (Tsai et al., 2025) and observed unstable
harmony and weak progressions. To remedy this, we apply a chord detector (Park et al.|[2019) to the
separated backing track and encode the results as 12-bin chromagrams (pitch-class membership over
time). At inference, chord sequences are provided by AccoMontage? as described in Section [3.4]

Key. While chords convey strong local tonality, we include a segment-level key condition to cap-
ture broader tonal context. We apply key-CNN (Schreiber & Miiller, |2019) per structure segment,
reflecting that key modulations often occur at section boundaries.

SWe discard truncated start/end fragments and retain intro, outro, break, bridge, inst, solo, verse, chorus.

Under review as a conference paper at ICLR 2026

Table 2: Evaluating Rhythm and key alignment to the vocal audio

Model / Setting Rhythm F1 Key acc.
MuseControlLite w/ vocal audio 0.64 0.55
MuseControlLite w/ all condition 0.81 0.90

Vocal Melody

i

Mel-Band BTC Chord

Roformer

Music Structure

Backing audio
sliced for each
structure

Captions for each
Backing segment

Audio Flamingo 3
All-In-One

Key for each

Key-CNN Backing segment

Figure 2: The data-preprocessing pipeline

The full data-processing pipeline is shown in Figure [2] We then train MuseControlLite (Tsai et al.,
2025) to follow these controls. To quantify the benefit of explicit controls, we compare against a
baseline conditioned only on the raw vocal signal (encoded with the Stable-Audio-Open VAE). As
summarized in Table the raw-vocal baseline fails to reliably track tempo and key, whereas our
control-conditioned model adheres to both—suggesting that direct raw-vocal conditioning is not
enough for MuseControlLite (Tsai et al., 2025]).

Finally, to overcome the 47 s context limit of Stable-Audio-Open (the MuseControlLite backbone),
we adapt and extend the audio-continuation strategy of Tsai et al.|(2025) to produce seamless long-
form outputs. During training, audio is sliced on structural boundaries: each slice starts at S5,
where ¢ € {intro, verse, chorus, solo, inst, bridge, break, outro}, and ends at S5**™* + 47. A 47-
second window anchored at S5**'* may span multiple structural segments. We use the first segment’s
audio as a reference and train the model to improvise the forward continuation over subsequent
segments. We also train backward continuation: because intros often lack vocal melody and degrade
conditioning, when the target slice begins with an intro, we replace the reference with the chorus
with probability 50%. The overall training setup is illustrated in Figure

3.4 MELODY HARMONIZATION

Because chord progressions are used as time-varying controls during training, inference must supply
compatible chord sequences. We harmonize the melody produced by CSL-L2M (Chai & Wang,
2025)) using AccoMontage2 (Yi et al. 2022). To provide an instrumental lead-in, we prepend a
4-bar intro without melody and reuse (duplicate) the chord sequence from the first 4 melodic bars
to harmonize this intro. Melody harmonization supplies chord progression, enabling the singing-
accompaniment generator to produce coherent, musically appropriate harmony. If the automatically
generated chords are unsatisfactory, users may instead provide their own progression.

4 EXPERIMENT SETUP

4.1 TRAINING DATASET AND IMPLEMENTATION DETAILS

Trainable vs. frozen components. We keep CSL-L2M |Chai & Wang| (2025) and AccoMon-
tage2 (Yi et al.,|2022)) fixed, and train only the SVS stack and MuseControlLite. Within MuseCon-
trolLite, beyond the adapter, we unfreeze the self-attention blocks of the Stable-Audio-Open back-
bone (Evans et al., 2025) to improve continuity across structure boundaries.

SVS data and training. The SVS model is trained from scratch on an internal corpus totaling 10
hours from two licensed singers, with aligned MIDI notes, phoneme labels, and ground-truth mel-

Under review as a conference paper at ICLR 2026

Table 3: Per-module inference latency for generating a 90—120 seconds intro—verse—chorus—outro
song. For the singing-accompaniment stage, MuseControlLite (Tsai et al., 2025)) is configured with
50 denoising steps.

Module Time (s)
Lyrics-to-Melody 10
Melody Harmonization 0.2
Singing Voice Synthesis 3
singing accompaniment generation 40

ol |||| - o Stable-Audio |
Alepfurens] S R | CE
Referece Audio VAE
Captions for the - . T5 text
) Smooth jazz back ex
current Backing ,,mo:va:ifnz .j:;igl,%? encoder concatenate all
L segment) bass brushed drums. conditions
Key for the current , ™
: E major E—
Backing segment
\ / / v
Chord E / ‘ MuseControlLite
Vocal Melody NWE — / I
~ (I
\ J AR Backing track

nn.Embedding and 1D CNN
Feature extraction

Figure 3: Equipping Stable-Audio Open with singing accompaniment generation and audio contin-
uation abilities via MuseControlLite.

spectrograms. Training uses a single NVIDIA RTX 3090 for 24 hours. We then fine-tune a Parallel
WaveGAN vocoder [Yamamoto et al.| (2020) for one week on a single RTX 3090 to reconstruct
waveform audio.

SAG training data processing. For the singing accompaniment generation (SAG) task, we curate
6,000 hours of Mandarin pop. The pipeline (Figure 2] and [3.3)) separates vocal and backing track,
captions the audio, extracts time-varying controls—chords, rhythm, vocal melody, structure tags,
and local key—which serve as conditioning signals.

MuseControlLite training strategy. Following Tsai et al.|(2025)), all time-varying conditions are
temporally interpolated to a common sequence length and concatenated along the cross-attention
feature dimension (not along time). This yields stable conditioning while allowing the partially
unfrozen backbone to learn smoother transitions at section boundaries. MuseControlLite is trained
using a single NVIDIA RTX 3090 with equivalent batch size of 108 for 9 days.

ComposerFlow inference process. As shown in Figure[I] users provide lyrics with structure tags,
plus optional conditions (emotion and key). As described in Section[3.1] the system selects suitable
statistical musical attributes from our collection and, together with the structure and lyrics, condi-
tions the melody generator. The resulting melody and lyrics are then passed to the SVS model to
synthesize a singing voice. Because the pitch contour of a quantized MIDI melody can deviate from

Under review as a conference paper at ICLR 2026

the realized vocal pitch, we extract the melody from the synthesized singing and use this extracted
contour as the vocal melody condition.

In parallel, AccoMontage2 (Yi et al., [2022) performs melody harmonization to produce a chord
progression (one chord per bar). With the assembled controls—vocal melody, chords, rhythm
(from MIDI timestamps), key (user-specified or inferred from the generated MIDI), and struc-
ture—MuseControlLite generates the backing track. Although MuseControlLite generates at most
47 s per pass, we extend duration via the audio-continuation procedure in Section[3.3} we first gener-
ate the chorus without any audio condition, then generate the intro. Subsequent windows condition
on the previously generated audio (anchored at the chorus) and proceed segment by segment until
the outro.

Finally, we mix the completed backing track with the synthesized singing voice by summation and
apply peak normalization to avoid clipping.

4.2 BASELINES

Recent work has rapidly advanced song generation. For comparison, we select several representa-
tive baselines: Suno v4.5 (Suno, 2025), DiffRhythm 1.2-base (Ning et al.| |2025), AceStep (Gong
et al., 2025), and Levo (Lei et al), [2025). We exclude the following models from evaluation for
fairness and comparability: SongGen (Liu et al., |2025b)), whose outputs are limited to 30s; Song-
Bloom (Yang et al., 2025), which requires a 10s reference audio as a style prompt (incompatible
with our reference-free setting); and Jam (Liu et al.l [2025a), which leverages phoneme-level timing
supervision not available to other systems considered here.

4.3 EVALUATION DATASET

All baselines and our model are evaluated on a 200-sample test set curated for this study. Each
sample is automatically constructed via ChatGPT-5 system prompts that specify both lyrics and
text prompts; the lyrics include one verse, one chorus, and one outro. We target 90-120s intro—
verse—chorus—outro songs, avoiding full-length pieces to mitigate listener fatigue. To accommodate
heterogeneous model inputs, we also provide per-sample metadata (timestamps, timbre, genre, in-
struments) as separate annotations. For example, some systems (e.g., LeVo (Lei et al., [2025))) prefer
tag-style textual descriptions, while others (e.g., DiffRhythm (Ning et al.| 2025)) expect lyrics an-
notated with timestamps. We reformat inputs to match each model’s specification while keeping the
semantic content consistent across systems.

4.4 OBJECTIVE METRICS

To comprehensively evaluate the generated songs, we employ a set of objective metrics that capture
different aspects of alignment and fidelity. These metrics quantify how well the outputs follow the
intended textual and lyrical conditions. In addition, to better approximate human preferences, we
further adopt automatic evaluation tools designed to reflect human-like judgments of aesthetics and
production quality.

Lyrics Alignment: We employed Whisper ASR (Radford et al., 2022) to transcribe the generated
vocals and compared the transcriptions with the ground-truth lyrics. We compute alignment quality
by analyzing word-level confidence scores and measuring the consistency between the predicted
transcription and the reference text.

Style Alignment: We utilized CLAP (Wu et al., |2024b) to compute the cosine similarity between
audio embeddings of the generated music and embeddings of the text prompts, quantifying adher-
ence to the intended global style.

Aesthetics Evaluation: We used Audiobox-Aesthetics (Tjandra et al., [2025)), to provide an auto-
matic aesthetics qualification of the generated songs, capturing aspects such as clarity, richness,
and technical fidelity. Specifically, Audiobox reports four sub-scores: Coherence (CE), Cultural
Understanding (CU), Production Complexity (PC), and Production Quality (PQ).

SongEval(Yao et al., 2025) A recently released evaluation tool specifically designed for songs, used
to measure structural clarity, memorability, musical coherence, and overall musicality.

Under review as a conference paper at ICLR 2026

Table 4: Objective evaluation for Lyrics Alignment, Style Alignment, and inference speed. The
inference speed is tested on RTX 3090.

Model Lyrics Alignment T CLAP 1 Inference Time (s / song) |
Suno v4.5 0.634 0.210 -

Acestep 0.663 0.184 13.0
DiffRhythm 0.624 0.187 11.5

Levo 0.612 0.081 101.2

Ours 0.702 0.184 55.5

4.5 SUBJECTIVE METRICS

We conducted a mean opinion score (MOS)-style listening test with 33 participants, including both
music experts and non-experts. Each participant listened to 10 generated samples (5 models x 2
pairs of prompt —lyrics) and rated them on a scale of 1-5 across five dimensions:

Overall Preference: Overall liking of the song.

Lyrics Adherence: Whether the vocal content matches the given lyrics.

Musicality: Perceived musical quality, including melody and harmony.

Voice Naturalness: Naturalness of the generated singing voice.

Song Structure Clarity: Whether the song structure clearly follows the provided lyrical format.

This evaluation design allows us to simultaneously assess text—-music alignment, lyric—vocal align-
ment, and overall musical quality across systems.

4.6 RESULTS

Objective results For lyric—audio alignment, ComposerFlow outperforms all baselines, largely
because it leverages an SVS model that yields clear, well-timed vocals. We also observe that when
lyrics are short, Suno v4.5 (Suno| 2025) tends to repeat lines, reducing its alignment score. For
text—audio alignment, Suno v4.5 leads, while DiffRhythm (Ning et al., 2025)), Acestep (Gong et al.,
2025), and our system achieve comparable results. On Audiobox-Aesthetics, DiffRhythm scores
highest overall, with other models clustered closely behind. In contrast, SongEval (Yao et al., [2025))
indicates that Suno v4.5 is strongest across perspectives, consistent with the subjective evaluation
in Section and the SongEval metrics are highly correlated to each other. Our model is slightly
weaker than DiffRhythm but surpasses Acestep and Levo (Lei et al., 2025)).

Subjective results Consistent with the SongEval objective metrics (Yao et al. [2025), Suno
v4.5 (Suno, 2025) outperforms all systems, highlighting a sizable gap between closed- and open-
source models. Among open-source baselines, our system ranks above DiffRhythm (Ning et al.
2025) and Levo (Lei et al.,|2025) in Overall Preference, but trails Acestep (Gong et al., 2025)). For
Lyrics Adherence, our scores are on par with Acestep and exceed other open-source models; this
partially diverges from the objective Alignment metric. We hypothesize that participants’ adherence
judgments are influenced by other perceptual factors, even though an SVS front-end should strongly
align vocals to the provided lyrics. In Musicality and Song Structure Clarity, our model surpasses
Levo but falls short of the remaining systems. Notably, we obtain the best Voice Naturalness among
open-source methods, underscoring the benefit of using an SVS module within the song-generation
pipeline.

5 LIMITATIONS

Although our approach offers a promising alternative for song generation, several limitations remain.
First, melodies produced by CSL-L2M (Chai & Wangl |2025) tend to degrade beyond ~ 120 s, likely

Under review as a conference paper at ICLR 2026

Table 5: Objective evaluation (Audiobox-Aesthetics (Tjandra et al.,2025) and SongEval (Yao et al.,
20235)); higher is better).

Model Audiobox SongEval
CE CU PC PQ Coherence Musicality Memorability Clarity Naturalness
Suno v4.5 7.339 7.766 5.333 8.036 4.198 4.011 4.174 4.034 3.939
Acestep 7.209 7.642 5.820 7.948 3.449 3214 3.203 3.216 3.162
DiffRhythm 7.530 7.791 6.336 8.189 3.740 3.419 3.595 3512 3.354
Levo 7.565 7.674 4.993 8.295 3.392 3.272 3.198 3.265 3.155
Ours 7.589 7.715 6.287 8.231 3.648 3.396 3.436 3.434 3.250
Table 6: Subjective evaluation results across models (higher is better).
Model Overall Preference Lyrics Adherence Musicality Voice Naturalness Song Structure Clarity
Suno v4.5 4.091 4.076 4.091 3.909 3.970
ACE-Step 2.803 3.455 3.045 2.561 3.045
DiffRhythm 2.409 2.788 2.758 2.561 2.530
LeVo 2.212 2.045 2.5 2.288 2.394
Ours 2.530 3.348 2.561 2.924 2.409

because most training examples follow an intro—verse—chorus—outro form and are only ~90-120s
long, complicating full-length generation. Second, our MuseControlLite-based SAG model often
yields weaker intros than end-to-end baselines, plausibly because conditioning relies on vocals while
intros frequently lack singing. We attempted a reverse-generation strategy (generate the chorus first,
then the intro), but there remains room for improvement.

6 CONCLUSION

In this paper, we proposed ComposerFlow, demonstrating that combining three lightweight modules
(CSL-L2M (Chai & Wang},[2025)), SVS, and Accomontage?2 (Y1 et al.| [2022)) with a fine-tuned text-
to-music model can effectively enable song generation while requiring significantly less training
data and computational resources. Moreover, ComposerFlow allows users to freely edit intermedi-
ate results—such as melodies and chords in MIDI format—and provides separate vocal and backing
tracks for greater flexibility. Importantly, the modular design means that components can be re-
placed with newer models (e.g., more advanced SVS systems), as long as they satisfy the pipeline’s
input and output requirements. Thus, ComposerFlow represents a flexible paradigm rather than
a fixed system. We evaluated ComposerFlow through both objective and subjective experiments
and observed comparable results to state-of-the-art open-source systems. These findings suggest
that generating high-quality songs does not necessarily require massive datasets, excessive compu-
tational power, or high energy consumption.

7 REPRODUCIBILITY STATEMENT

We will release the full training and inference code for ComposerFlow, including the data-processing
pipeline and configuration files. The base models are open sourced; we provide adapted implemen-
tations to meet our specific requirements. Implementation details are provided in Section[3]

8 ETHICS STATEMENT

This work develops a modular song-generation pipeline intended for research and creative assis-
tance rather than full automation of musical labor. We mitigate risks as follows: (1) Data and
Copyright: the SVS module is trained solely on licensed recordings from two professional singers;
accompaniment modeling relies on time-varying symbolic controls (e.g., chords, rthythm, melody)
rather than reproducing copyrighted waveforms, but was still trained to learn the underlying data
distribution(2) Environmental Impact: training and fine-tuning are conducted on a single NVIDIA
RTX 3090 GPU, substantially reducing compute and energy use relative to typical end-to-end sys-

Under review as a conference paper at ICLR 2026

tems. (3) Responsible Use: the system does not include identity cloning or voice-matching features
and is intended for research, education, and human-in-the-loop creation. (4) Transparency: we
acknowledge the use of large language models (LLMs) to polish writing and assist with code where
appropriate. We will release code and configurations to support reproducibility and community
scrutiny.

REFERENCES

Zalan Borsos, Raphaél Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a
language modeling approach to audio generation. IEEE/ACM transactions on audio, speech, and
language processing, 31:2523-2533, 2023.

Li Chai and Donglin Wang. Csl-12m: Controllable song-level lyric-to-melody generation based on
conditional transformer with fine-grained lyric and musical controls. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 23541-23549, 2025.

Jianyi Chen, Wei Xue, Xu Tan, Zhen Ye, Qifeng Liu, and Yike Guo. Fastsag: towards fast non-
autoregressive singing accompaniment generation. arXiv preprint arXiv:2405.07682, 2024a.

Jiawei Chen, Xu Tan, Jian Luan, Tao Qin, and Tie-Yan Liu. Hifisinger: Towards high-fidelity neural
singing voice synthesis. arXiv preprint arXiv:2009.01776, 2020.

Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo Dub-
nov. Musicldm: Enhancing novelty in text-to-music generation using beat-synchronous mixup
strategies. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 1206—-1210. IEEE, 2024b.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and controllable music generation. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.

Chris Donahue, Antoine Caillon, Adam Roberts, Ethan Manilow, Philippe Esling, Andrea
Agostinelli, Mauro Verzetti, lan Simon, Olivier Pietquin, Neil Zeghidour, et al. Singsong: Gen-
erating musical accompaniments from singing. arXiv preprint arXiv:2301.12662, 2023.

Zach Evans, CJ Carr, Josiah Taylor, Scott H Hawley, and Jordi Pons. Fast timing-conditioned latent
audio diffusion. In Forty-first International Conference on Machine Learning, 2024a.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Long-form
music generation with latent diffusion. arXiv preprint arXiv:2404.10301, 2024b.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
open. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1-5. IEEE, 2025.

Seth* Forsgren and Hayk* Martiros. Riffusion - Stable diffusion for real-time music generation.
2022. URL https://riffusion.com/about.

Arushi Goel, Sreyan Ghosh, Jaechyeon Kim, Sonal Kumar, Zhifeng Kong, Sang-gil Lee, Chao-
Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, et al. Audio flamingo
3: Advancing audio intelligence with fully open large audio language models. arXiv preprint
arXiv:2507.08128, 2025.

Junmin Gong, Sean Zhao, Sen Wang, Shengyuan Xu, and Joe Guo. Ace-step: A step towards music
generation foundation model. arXiv preprint arXiv:2506.00045, 2025.

Siyuan Hou, Shansong Liu, Ruibin Yuan, Wei Xue, Ying Shan, Mangsuo Zhao, and Chao Zhang.
Editing music with melody and text: Using controlnet for diffusion transformer. In ICASSP 2025-
2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1-5. IEEE, 2025.

10

https://riffusion.com/about

Under review as a conference paper at ICLR 2026

Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang, Chen Zhang, Songruoyao Wu, Kejun Zhang, Xiangyang
Li, Tao Qin, and Tie-Yan Liu. Telemelody: Lyric-to-melody generation with a template-based
two-stage method. arXiv preprint arXiv:2109.09617, 2021.

Taejun Kim and Juhan Nam. All-in-one metrical and functional structure analysis with neighbor-
hood attentions on demixed audio. In 2023 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), pp. 1-5. IEEE, 2023.

Jungil Kong, Jachyeon Kim, and Jackyoung Bae. Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. Advances in neural information processing systems,
33:17022-17033, 2020.

Shun Lei, Yaoxun Xu, Zhiwei Lin, Huaicheng Zhang, Wei Tan, Hangting Chen, Jianwei Yu, Yixuan
Zhang, Chenyu Yang, Haina Zhu, et al. Levo: High-quality song generation with multi-preference
alignment. arXiv preprint arXiv:2506.07520, 2025.

Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqgiang Kong, Qiao Tian, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2: Learning holistic audio generation
with self-supervised pretraining. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 32:2871-2883, 2024.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis
via shallow diffusion mechanism. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 11020-11028, 2022.

Renhang Liu, Chia-Yu Hung, Navonil Majumder, Taylor Gautreaux, Amir Ali Bagherzadeh, Chuan
Li, Dorien Herremans, and Soujanya Poria. Jam: A tiny flow-based song generator with fine-
grained controllability and aesthetic alignment. arXiv preprint arXiv:2507.20880, 2025a.

Zihan Liu, Shuangrui Ding, Zhixiong Zhang, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao,
Dahua Lin, and Jiaqi Wang. Songgen: A single stage auto-regressive transformer for text-to-song
generation. arXiv preprint arXiv:2502.13128, 2025b.

Peiling Lu, Jie Wu, Jian Luan, Xu Tan, and Li Zhou. Xiaoicesing: A high-quality and integrated
singing voice synthesis system. arXiv preprint arXiv:2006.06261, 2020.

Zigian Ning, Huakang Chen, Yuepeng Jiang, Chunbo Hao, Guobin Ma, Shuai Wang, Jixun Yao,
and Lei Xie. Diffrhythm: Blazingly fast and embarrassingly simple end-to-end full-length song
generation with latent diffusion. arXiv preprint arXiv:2503.01183, 2025.

Jonggwon Park, Kyoyun Choi, Sungwook Jeon, Dokyun Kim, and Jonghun Park. A bi-directional
transformer for musical chord recognition. In Arthur Flexer, Geoffroy Peeters, Julidn Urbano, and
Anja Volk (eds.), Proceedings of the 20th International Society for Music Information Retrieval
Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019, pp. 620-627, 2019. URL
http://archives.ismir.net/ismir2019/paper/000075.pdf.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision, 2022. URL https://arxiv.
org/abs/2212.04356.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2:
Fast and high-quality end-to-end text to speech. arXiv preprint arXiv:2006.04558, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Hendrik Schreiber and Meinard Miiller. Musical tempo and key estimation using convolutional
neural networks with directional filters. In Proceedings of the Sound and Music Computing Con-
ference (SMC), pp. 47-54, Malaga, Spain, 2019.

Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye, Shikun Zhang, and Tao Qin. Songmass:
Automatic song writing with pre-training and alignment constraint. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 13798-13805, 2021.

11

http://archives.ismir.net/ismir2019/paper/000075.pdf
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356

Under review as a conference paper at ICLR 2026

Inc. Suno. Introducing v4.5. https://suno.com/blog/introducing-v4->5, may 2025.
Accessed: 2025-09-24.

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi,
Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, and Wei-Ning Hsu. Meta
audiobox aesthetics: Unified automatic quality assessment for speech, music, and sound, 2025.
URL https://arxiv.org/abs/2502.051309.

Quoc-Huy Trinh, Minh-Van Nguyen, Trong-Hieu Nguyen Mau, Khoa Tran, and Thanh Do.
Sing-on-your-beat: Simple text-controllable accompaniment generations. arXiv preprint
arXiv:2411.01661, 2024.

Fang-Duo Tsai, Shih-Lun Wu, Weijaw Lee, Sheng-Ping Yang, Bo-Rui Chen, Hao-Chung Cheng,
and Yi-Hsuan Yang. Musecontrollite: Multifunctional music generation with lightweight condi-
tioners. arXiv preprint arXiv:2506.18729, 2025.

Udio, Inc. Introducing v1.5. https://www.udio.com/blog/introducing—v1-5, 2024.
Accessed: 2025-09-20.

Ju-Chiang Wang, Wei-Tsung Lu, and Minz Won. Mel-band roformer for music source separation.
arXiv preprint arXiv:2310.01809, 2023.

Shih-Lun Wu and Yi-Hsuan Yang. Musemorphose: Full-song and fine-grained piano music style
transfer with one transformer vae. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 31:1953-1967, 2023.

Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J Bryan. Music controlnet: Multiple
time-varying controls for music generation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 32:2692-2703, 2024a.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Marianna Nezhurina, Taylor Berg-Kirkpatrick,
and Shlomo Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and
keyword-to-caption augmentation, 2024b. URL https://arxiv.org/abs/2211.06687.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform gen-
eration model based on generative adversarial networks with multi-resolution spectrogram. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6199-6203. IEEE, 2020.

Chenyu Yang, Shuai Wang, Hangting Chen, Wei Tan, Jianwei Yu, and Haizhou Li. Songbloom:
Coherent song generation via interleaved autoregressive sketching and diffusion refinement. arXiv
preprint arXiv:2506.07634, 2025.

Jixun Yao, Guobin Ma, Huixin Xue, Huakang Chen, Chunbo Hao, Yuepeng Jiang, Haohe Liu,
Ruibin Yuan, Jin Xu, Wei Xue, Hao Liu, and Lei Xie. Songeval: A benchmark dataset for song
aesthetics evaluation, 2025. URL https://arxiv.org/abs/2505.10793.

Li Yi, Haochen Hu, Jingwei Zhao, and Gus Xia. Accomontage2: A complete harmonization and
accompaniment arrangement system. arXiv preprint arXiv:2209.00353, 2022.

Yi Yu, Abhishek Srivastava, and Simon Canales. Conditional Istm-gan for melody generation
from lyrics. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 17(1):1-20, 2021.

Ruibin Yuan, Hanfeng Lin, Shuyue Guo, Ge Zhang, Jiahao Pan, Yongyi Zang, Haohe Liu, Yiming
Liang, Wenye Ma, Xingjian Du, et al. Yue: Scaling open foundation models for long-form music
generation. arXiv preprint arXiv:2503.08638, 2025.

A USE OF LLMs

We use LLM to polish our paper, and parts of the code are collaborated with LLMs.

12

https://suno.com/blog/introducing-v4-5
https://arxiv.org/abs/2502.05139
https://www.udio.com/blog/introducing-v1-5
https://arxiv.org/abs/2211.06687
https://arxiv.org/abs/2505.10793

	Introduction
	Related works
	Text-to-music
	Song generation

	Method
	Lyrics-to-Melody
	Singing Voice Synthesis (SVS)
	singing accompaniment generation (SAG)
	Melody Harmonization

	Experiment setup
	Training Dataset and Implementation Details
	Baselines
	Evaluation dataset
	Objective metrics
	Subjective metrics
	Results

	Limitations
	Conclusion
	Reproducibility Statement
	Ethics Statement
	Use of LLMs

