
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPOSERFLOW: STEP-BY-STEP COMPOSITIONAL
SONG GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Song generation models seek to produce audio recordings with vocals and instru-
mental accompaniment from user-provided lyrics and textual descriptions. While
end-to-end approaches yield compelling results, they demand vast training data
and computational resources. In this paper, we demonstrate that a compositional
approach can make song generation far more data-efficient by decomposing the
task into three sequential sub-tasks: melody composition, singing voice synthe-
sis, and accompaniment generation. Although prior work exists for each sub-
task, we show that naı̈vely chaining off-the-shelf models yields suboptimal out-
comes. Instead, these components must be re-engineered with song generation in
mind. To this end, we introduce MIDI-informed singing accompaniment genera-
tion—a novel technique unexplored in prior literature—that conditions accompa-
niment on MIDI representations of vocal melody, empirically boosting rhythmic
and harmonic consistency between singing and instrumentation. By integrating
pre-existing models with our newly trained components (requiring only 6k hours
of audio data on a single RTX 3090 GPU), our pipeline achieves perceptual qual-
ity on par with leading end-to-end open-source models, while offering advantages
in training efficiency, licensed singing voices from professional artists, and ed-
itable intermediates. We provide audio demos and will open-source our model at
https://composerflow.github.io/web/.

1 INTRODUCTION

Traditional song production is a staged, collaborative workflow that progresses from songwriting
(lyrics, melody, form), arrangement, multitrack recording, editing, mixing, and mastering. Each
stage depends on specialized expertise—producers, topliners, instrumentalists, and engineers—and
tight iterative feedback in a DAW, where decisions about key, tempo, harmony, vocal delivery, and
sound design are refined across multiple passes. While this process is flexible and quality-driven, it
is time- and resource-intensive; revisions at any stage often cascade into downstream rework. Pro-
ducers preserve editability by saving stems and session states, yet precisely reproducing changes re-
mains laborious. This conventional pipeline sets a high bar for control and fidelity—highlighting an
opportunity for computational systems that retain its editability while reducing cost and turnaround.

Recent advances in large generative models have led to commercial systems (e.g., Suno (2025)) and
emerging open-source models (Yuan et al., 2025; Liu et al., 2025b; Ning et al., 2025; Gong et al.,
2025; Yang et al., 2025; Lei et al., 2025; Liu et al., 2025a) that demonstrate high-quality, convenient
song generation. Diverging from the conventional studio workflow, these models accept lyrics and
textual descriptions and produce songs in an end-to-end manner. However, this monolithic approach
presents several challenges: (i) the lack of interpretable and editable intermediates makes refining
unsatisfactory outputs difficult; (ii) directly learning a mapping from text to audio is notoriously
data- and compute-hungry; and (iii) vocals may misalign with the lyrics and exhibit unnatural timbre.

A compelling, yet currently under-explored, alternative to these end-to-end systems is the composi-
tional approach, which leverages a sequence of specialized component models to construct the final
audio. Between the initial user input (lyrics/descriptions) and the final target audio, we identify three
critical intermediate outputs: the vocal MIDI score (specifying pitch and duration for each syllable),
the singing voice audio (rendering the melody and lyrics), and the instrumental accompaniment au-
dio (forming the complete musical track). Song generation can thereby be decomposed into three

1

https://composerflow.github.io/web/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

System Training data (hrs) Training GPUs

YuE (Yuan et al., 2025) 650K 16× H800
DiffRhythm (Ning et al., 2025) 60K 8× Huawei Ascend 910B
ACE-Step (Gong et al., 2025) 100K 120× A100
SongBloom (Yang et al., 2025) 100K 16× A100
JAM (Liu et al., 2025a) 54K 8× H100
Levo (Lei et al., 2025) 110K 8× A100
Ours 6K 1 × 3090

Table 1: Comparison of the proposed compositional pipeline with existing open-source song gener-
ation models, all of which are end-to-end models, in terms of data and computational demand.

sub-tasks: melody composition, singing voice synthesis (SVS), and singing accompaniment genera-
tion (SAG), each handled by a dedicated model. This modularity offers practical benefits, including
editability of the intermediate stages (e.g., modifying the vocal MIDI score) and substantially re-
duced training costs for each component model compared to massive monolithic architectures.

While the compositional concept is not new, one might assume a functional system could be created
by chaining off-the-shelf component models. Our literature review reveals two discrepancies that
challenge this: first, there is little empirical data directly comparing the performance and resource
efficiency of compositional methods against prevailing end-to-end architectures. Second, prior work
treats these components in isolation, failing to exploit their interdependencies. We assert that achiev-
ing optimal data efficiency and perceptual quality requires more than simple concatenation—the
components must be re-designed and integrated within a tightly-coupled pipeline.

Our core technical contribution is the introduction of MIDI-informed singing accompaniment gen-
eration (MIDI-SAG), a novel cross-stage conditioning mechanism previously unexplored. Existing
(non-informed) accompaniment generation models (Donahue et al., 2023; Chen et al., 2024; Trinh
et al., 2024) rely solely on the raw vocal audio as model input. In contrast, we exploit the fact that
the underlying vocal melody is already available in a MIDI representation from the preceding stages,
and use it as an additional condition for the accompaniment generator. Doing so boosts the rhythmic
consistency between the singing and the accompaniment, as we can more easily trace the beats and
downbeats from the MIDI input than from the vocal audio. Moreover, we can also improve harmonic
consistency between vocal and backing by further integrating a melody harmonization module (Yi
et al., 2022) that generates the chord progression that the accompaniment has to follow—this chord
condition is not available directly from the vocal audio.

Besides, we address a practical limitation where conventional SAG models implicitly assume con-
tinuous vocal input. This assumption fails in real-world song generation, where the accompaniment
component must generate the instrumental sections (e.g., intro, bridge, outro) despite the absence of
vocal condition. While this challenge of structural completeness is naturally handled by end-to-
end models, it presents a key concern for our compositional pipeline. We address this by leveraging
the full-song rhythm, chord structure, and the inpainting and outpainting capabilities of latent diffu-
sion (Tsai et al., 2025), ensuring seamless structural integrity throughout the generated song.

While the proposed idea is general, in our implementation we leverage the off-the-shelf model CSL-
L2M (Chai & Wang, 2025) for melody composition, and train the SVS and SAG components on our
own, as illustrated in Figure 1. For SVS, we adopt the FastSpeech architecture (Ren et al., 2020)
with 10 hours of audio from two licensed professional singers. For MIDI-SAG, we curate 6k hours
of pop song recordings, and adopt the approach of MuseControlLite (Tsai et al., 2025) to add time-
varying controls (e.g., to handle the conditions from the MIDI) to Stable Audio Open (Evans et al.,
2025). Model training are all accomplished using a single RTX 3090 GPU. The proposed pipeline
employs dramatically fewer training resources compared to prevailing open-source architectures
(see Table 1), yet our experiments demonstrate that it achieves comparable perceptual quality, while
offering advantages in the use of licensed singing voices, better lyrics-to-vocal alignment, and ed-
itable intermediates. We provide extensive audio samples on our demo page, comparing our model’s
results against others and showcasing editability at different stages of the pipeline. We commit to
open-sourcing our model upon publication.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Model overview. The proposed pipeline begins with lyrics and proceeds through lyrics-
to-melody generation (through CSL-L2M), singing voice synthesis (SVS; through FastSpeech),
melody harmonization (through Accomontage2), and the proposed MIDI-informed singing accom-
paniment generation (MIDI-SAG; through modifying MuseControlLite).

2 RELATED WORK

Musical audio generation has seen rapid progress in recent years. Specifically, text-to-music (TTM)
generation models, such as MusicLM (Agostinelli et al., 2023), MusicGen (Copet et al., 2024) and
Stable Audio Open (Evans et al., 2025), primarily focus on generating instrumental music from
textual descriptions. In contrast, lyrics-to-song generation (or “song generation”) models take lyrics
as an additional input, aiming to produce full musical audio encompassing both singing vocals
and instrumental accompaniment. OpenAI’s Transformer-based Jukebox (Dhariwal et al., 2020)
represents an early exemplar of this paradigm, followed by contemporaneous commercial systems
such as Suno (2025), and a subsequent proliferation of open-source models, including Transformer-
based ones such as YuE (Yuan et al., 2025) and Levo (Lei et al., 2025), and diffusion-based ones
such as DiffRhythm (Ning et al., 2025), ACE-Step (Gong et al., 2025), and SongBloom (Yang et al.,
2025). While these end-to-end approaches yield compelling results, their reliance on vast datasets
(cf. Table 1) and extremely deep, non-modular architectures results in two constraints relevant to our
work: high training cost, and a lack of interpretable or editable intermediate representations. These
constraints motivate our investigation into a more resource-efficient, compositional alternative.

Long before the emergence of end-to-end song generation, extensive research existed for each sub-
task within the compositional pipeline. This includes work on lyrics-to-melody generation (Yu et al.,
2021; Sheng et al., 2021; Ju et al., 2021), SVS (Lu et al., 2020; Chen et al., 2020; Liu et al., 2022),
and SAG (Donahue et al., 2023). However, most prior work tackles these specific sub-tasks in iso-
lation, without implementing and comprehensively evaluating a unified, full-scale song generation
pipeline. For instance, Melodist (Hong et al., 2024) focuses primarily on integrating SVS and SAG
while assuming the melody and lyrics are pre-supplied, while SongComposer (Ding et al., 2025)
concentrates mainly on lyrics-to-melody generation. Although models addressing these individual
sub-tasks could theoretically be naı̈vely cascaded to realize a compositional song generation system,
the performance, coherence, and efficiency of such an approach remain unexplored and unevaluated.

To our knowledge, existing SAG models (Donahue et al., 2023; Chen et al., 2024; Trinh et al., 2024)
are designed for general applicability and solely condition on the raw vocal audio input, without
assuming the availability of the underlying melody MIDI. This constraint presents a sub-optimality
from the perspective of a compositional pipeline. Besides the MIDI-SAG idea, we also address the
structural completeness issue—the need to generate musically relevant transitions and standalone
instrumental passages guided by the broader context—which has not been tackled before.

3 COMPOSITIONAL SONG GENERATION FRAMEWORK

Formally, a compositional pipeline P for song generation sequentially maps user input (lyrics L and
description D, both of which are sequences of words) to the final audio A (a waveform encompassing
vocal and backing) through three distinct, modular stages: P = T1 ◦ T2 ◦ T3.

{L,D} T1−→ M
T2−→ V

T3−→ A , (1)

where T1, T2, and T3 stand for the sub-tasks lyrics-to-melody generation, SVS, and (MIDI-)SAG,
and M and V represent the intermediate outputs, the vocal melody MIDI and the vocal-only audio.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of conventional SAG versus MIDI-SAG; see Table 7 for empirical data.

Conventionally, SVS takes L and M as input and generates V , while SAG (Donahue et al., 2023)
takes the vocal audio V alone as input and generates A (i.e., V → A). In contrast, the proposed
MIDI-SAG exploits the data coupling among all sub-tasks and learns the mapping {D,M, V } → A.

Moreover, for stronger harmonic coherence between the vocal and backing, we insert an additional
sub-task “melody harmonization” (T4), that takes the symbolic vocal melody M as input and gen-
erates a symbolic chord progression sequence C (i.e., T4 : M → C) to guide the generation of the
accompaniment. In consequence, our MIDI-SAG actually learns {D,M,C, V } → A.

In what follows, we describe the core innovation MIDI-SAG (T3) in greater details, and only provide
high-level description for the others.

3.1 LYRICS-TO-MELODY GENERATION (T1) AND SINGING VOICE SYNTHESIS (T2)

We assume that the user has provided a full-song, sentence-by-sentence lyrics with structural in-
dicators that divide the lyrics into sections (e.g., intro, verse, and chorus), but not sentence-level
timestamps as required by some existing models such as DiffRhythm (Ning et al., 2025). Given
the lyrics L, a lyrics-to-melody generation model (T1) generates a sequence of monophonic musical
notes in a symbolic, MIDI-like representation M specifying the pitch and duration for each syllable
in the lyrics. The task is challenging because lyrics and melody are only weakly correlated, but there
are established models that we can leverage (e.g., (Chai & Wang, 2025; Ding et al., 2025)).

We note that melody composition is primarily implicitly performed by end-to-end song generation
models, so there is no intermediate representation of the vocal melody M that is interpretable and
editable. In contrast, in our compositional pipeline, M is the key piece of structured data that carries
timing and pitch information required in all downstream sub-tasks T2, T3 and T4.

SVS (T2) is an established task leveraged within our compositional pipeline to address the common
end-to-end issues of unnatural vocal timbre and high word error rate (Liu et al., 2025a). In our
framework, any suitable SVS model can be used to render the vocal audio V from the lyrics L and
melody M . Importantly, the melody M from T1 has to mark instrumental sections (e.g., intros)
where the vocal output V must be silent, ensuring synchronization with the broader song structure.

3.2 MIDI-INFORMED SINGING ACCOMPANIMENT GENERATION (MIDI-SAG) (T3)

Given the vocal V , an SAG model generates the corresponding accompaniment that is supposedly
rhythmically and harmonically coherent with the vocal, leading to the final mix A. This suggests
that the beat and downbeat times of the vocal and back tracks have to be precisely synchronized,
and that the vocal melody line must align with the backing track’s underlying harmonic progression.
Existing SAG models attempt to achieve this coherence in an end-to-end fashion (see Figure 4(a)),
typically relying on massive training data (e.g., 46k hours of music for SingSong (Donahue et al.,
2023) and 300k hours for FastSAG (Chen et al., 2024)). However, our pilot studies showed that this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

approach yields insufficient coherence within our resource-constrained scenario (i.e., 6k hours of
training data and one 3090 GPU), necessitating a form of explicit structural conditioning.

Our initial idea, as illustrated in Figure 4(b), is to extract the vocal pitch contour from the vocal audio
V as melody condition for harmonic improvement, and extract the vocal beat and downbeat from
the vocal audio V as rhythmic condition. However, our pilot studies suggested that this approach
remains unreliable (see Table 7 for empirical data). The core difficulty lies in the fact that beat and
downbeat detection from pure singing audio remains error-prone (Heydari et al., 2023).

The proposed MIDI-informed SAG directly exploits the inherent data coupling within our compo-
sitional pipeline by employing structural, time-varying conditions derived from the symbolic vocal
melody M (the output of T1) to guide the accompaniment generation. As illustrated in Figure 4(c),
this strategy offers two key advantages over audio-based methods:

• Enhanced rhythmic consistency: We extract precise beat and downbeat information read-
ily available from the symbolic melody M , rather than relying on error-prone estimation
from the vocal audio V . This foundational step significantly improves the reliability and
accuracy of the rhythmic condition.

• Explicit harmonic guidance: We explicitly predict the accompaniment’s chord progression
C from the symbolic vocal melody M via an off-the-shelf melody harmonization model
Yi et al. (2022). This process generates an explicit harmonic condition C that accurately
reflects the intended structure (for both vocal and instrumental sections), thereby greatly
improving the accuracy of the harmonic guidance for the accompaniment generator.

Importantly, the structural information derived from MIDI-SAG extends its benefits to the overall
song architecture. In addition to leveraging audio inpainting and outpainting capabilities of diffu-
sion models for smooth transitions at section boundaries, our accompaniment generator has explicit
rhythmic and harmonic conditions to follow even within the instrumental sections, i.e., when the
vocal is absent. This ensures structural completeness throughout the entire composition, a guarantee
that conventional SAG models are unable to provide.

4 IMPLEMENTATION

4.1 MODEL ARCHITECTURE AND TRAINING DATA FOR EACH SUB-TASK

As depicted in Figure 1, we employ two established external models to generate key intermedi-
ate symbolic representations. For lyrics-to-melody generation (T1), we utilize CSL-L2M (Chai &
Wang, 2025). This model supports conditioning on various attributes, including key, emotion, and
reference MIDI. We exploit all these conditions via curating a bank of 1,000 reference attribute sets,
to ensure that CSL-L2M produces reliable result. We also integrate Accomontage2 (Yi et al., 2022)
for melody harmonization (T4). We keep CSL-L2M and AccoMontage2 fixed, and train only the
SVS and MIDI-SAG models. Please see the appendix (Sections B.1 and B.2) for details.

We note that the selection of specific model architectures throughout this paper is primarily for pro-
totyping and validating the core idea of the compositional song generation framework. In principle,
any other suitable model architecture could be used. However, the specific choices impose practical
constraints; for instance, as CSL-L2M currently supports only Chinese lyrics, our implementation
is consequently focused on Mandarin singers in SVS component and Mandarin pop for MIDI-SAG.

For SVS (T2), we train FastSpeech (Ren et al., 2020) from scratch on an internal corpus totaling
10 hours from two licensed singers (male/female), with aligned MIDI notes, phoneme labels, and
ground-truth melspectrograms. Training uses a single NVIDIA RTX 3090 for 24 hours. We then
fine-tune a Parallel WaveGAN vocoder (Yamamoto et al., 2020) for one week on the same RTX 3090
to reconstruct waveform audio from melspectrograms. See Section B.3 for more details.

We build our MIDI-SAG model (T3) based on fine-tuning the state-of-the-art latent diffusion-based
TTM model Stable Audio Open (SAO) (Evans et al., 2025). SAO is naturally suited for generating
the instrumental backing as it does not inherently synthesize singing voices. Our fine-tuning proce-
dure is two-fold. First, we curate a set of 6,000 hours of Mandarin pop to fine-tune it, following the
data preparation pipeline described in Section B.4. Second, we employ the lightweight mechanisms
of MuseControlLite (Tsai et al., 2025) to add time-varying controls to SAO via adapters. Following

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Conditioning signals used during training and inference for MIDI-SAG.
Feature Training Inference

Vocal pitch contour CQT top-4 from vocal track (Hou
et al., 2025)

CQT top-4 from vocal track (Hou et al.,
2025)

Rhythm Allin1 (Kim & Nam, 2023) From the generated vocal MIDI score
Chord chord detection (Park et al., 2019) Accomontage2 (Yi et al., 2022)
Structure Allin1 (Kim & Nam, 2023) Provided by user
Key Key CNN (Schreiber & Müller,

2019)
Provided by user or from generated vocal
MIDI score

Reference audio Randomly mask out one structure;
the remaining structures are used as
reference audio

From the previously generated song-
structure segment

Tsai et al. (2025), all time-varying conditions are temporally interpolated to a common sequence
length and concatenated along the cross-attention feature dimension. MuseControlLite is trained
using a single NVIDIA RTX 3090 with an equivalent batch size of 108, running for 9 days.

The original MuseControlLite supports two types of conditions—audio conditions that facilitates
audio inpainting and outpainting, and attribute conditions for guiding melody, loudness, and rhythm.
To adapt it to our song generation pipeline, we implement the following changes. First, to overcome
the 47 s context limit of SAO, we revise and extend the audio continuation strategy of Tsai et al.
(2025) to produce seamless long-form outputs. Second, unlike the original MuseControlLite, which
exclusively fine-tunes the cross-attention layers, we additionally fine-tune selected self-attention
blocks within SAO. This yields stable conditioning while allowing the partially unfrozen backbone
to learn smoother transitions at section boundaries (see Table 8). Finally, we consider a richer set of
time-varying conditions derived from the vocal melody MIDI, as detailed below.

4.2 CONDITIONS FOR MIDI-SAG DURING TRAINING AND INFERENCE TIMES

We consider a much more extensive set of controls than the original MuseControlLite (Tsai et al.,
2025) to overcome the challenges presented in low-resource long-form song generation. At training
time, some conditions can be extracted from the accompaniment for preciseness. However, at infer-
ence time, the conditions can only be computed from the vocal audio or symbolic vocal melody. We
provide the details below and offer a summary in Table 2.

Vocal pitch contour. We first separate vocals and accompaniment with Mel-Band RoFormer (Wang
et al., 2023), then select prominent pitches via the top-4 constant-Q-transform (CQT) method of Hou
et al. (2025). During inference, we extract vocal pitch contour from the SVS-generated singing.

Rhythm. Our pilot study shows that existing beat tracking models do not work well for pure vocal
audio. For example, BeatNet (Heydari et al., 2021) only obtains a Rhythm F1 score of 0.3449 ac-
cording to our evaluation. Alternatively, at training time, we use All-In-One (Kim & Nam, 2023)
to extract beat and downbeat timestamps from the backing audio, converting them into binary in-
dicator sequences of shape (T, 1), where T is the number of time frames (1 if an event occurs at
a given frame, 0 otherwise). A Gaussian filter is then applied to produce smooth “rhythm acti-
vation” curves. During inference, when All-In-One cannot be applied to singing voice, we instead
derive beat and downbeat timings from the quantized MIDI generated by our lyrics-to-melody model
(CSL-L2M (Chai & Wang, 2025)), which outputs melodies in 4/4 time.

Chord. Our preliminary experiments show that our SAG generates unstable harmony and weak
progressions without the chord condition. To remedy this, at training time, we apply a chord detec-
tor (Park et al., 2019) to the separated backing track and encode the results as 12-bin chromagrams
(pitch-class membership over time). During inference, chord sequences are provided by our melody
harmonization model AccoMontage2 (Yi et al., 2022).

Structure. We extract section labels and timestamps with All-In-One (Kim & Nam, 2023), discard-
ing truncated start/end fragments and retaining intro, outro, break, bridge, inst, solo, verse, chorus.
Timestamps slice audio at section boundaries; section-level captions are produced by an large audio
language model (LALM) AudioFlamingo3 (Goel et al., 2025), and the section labels themselves are

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

used as a time-varying conditioning signal. To avoid abrupt changes, we align boundaries with song
structure transitions or downbeats during both training and inference times.

Key. While chords convey strong local tonality, we include a section-level key condition to cap-
ture broader tonal context. We apply key-CNN (Schreiber & Müller, 2019) per structure section,
reflecting that key modulations often occur at section boundaries.

Reference audio. We use similar audio conditions as MuseControlLite to facilitate the use of in-
painting and outpainting techniques to create the instrumental sections. We also introduce backward
continuation: since intros lack vocal pitch contour and slightly degrade conditioning quality, when
the target slice begins with an intro, we replace the reference with a verse section with a probability
of 50% during training. During training, all songs are sliced at section boundaries: each slice begins
at Sstart

i , where i ∈ {intro, verse, chorus, solo, inst, bridge, break, outro}, and ends at Sstart
i +47. A

47-second window anchored at Sstart
i may span multiple structural sections. We use the audio from

the first section as a reference and the time-varying conditions mentioned above to train the model.

We use all these conditions in the proposed pipeline, as illustrated in Figure 4 in the appendix. In
our experiments, we provide ablation studies examining the importance of each condition.

4.3 INFERENCE PROCESS OF THE PROPOSED PIPELINE

As shown in Figure 1, users provide lyrics with structure tags, plus optional conditions (emotion and
key). As described in Section 3.1, the system is conditioned on selected suitable statistical musical
attributes, structure, and lyrics. The resulting melody and lyrics are then passed to the SVS model
to synthesize a singing voice. Because the pitch contour of a quantized MIDI melody can deviate
from the realized vocal pitch, we extract the vocal pitch contour from the synthesized singing voice
and use it as a condition. In parallel, AccoMontage2 (Yi et al., 2022) performs melody harmo-
nization to produce a chord progression with the generated vocal MIDI track. With the assembled
controls—vocal melody, chords, rhythm (from MIDI timestamps), key (user-specified or inferred
from the generated MIDI), and structure—MuseControlLite generates the backing track. Although
MuseControlLite generates at most 47 s per pass, we extend duration via the audio-continuation
procedure in Section 3.2: we first generate the verse without any audio condition, then generate the
intro. Subsequent windows condition on the previously generated audio (anchored at the verse) and
proceed section by section until the outro. Finally, we mix the completed backing track with the
synthesized singing voice by summation and apply peak normalization to avoid clipping.

5 EXPERIMENTAL SETUP

5.1 BASELINES & EVALUATION DATASETS

For comparison, we select several representative baselines: Suno v4.5 (Suno, 2025), DiffRhythm
1.2-base (Ning et al., 2025), ACE-Step (Gong et al., 2025), and Levo (Lei et al., 2025). We exclude
the following models from evaluation for fairness and comparability: SongGen (Liu et al., 2025b),
whose outputs are limited to 30 s; SongBloom (Yang et al., 2025), which requires a 10 s reference
audio as a style prompt (incompatible with our reference-free setting); and JAM (Liu et al., 2025a),
which leverages phoneme-level timing supervision not available to other systems considered here.

All baselines and our model are evaluated on a 200-sample test set curated for this study. Each
sample is automatically constructed via ChatGPT-5 system prompts that specify both lyrics and
text prompts; the lyrics include one verse, one chorus, and one outro. We target 90–120 s intro–
verse–chorus–outro forms, avoiding full-length pieces to mitigate listener fatigue. To accommodate
heterogeneous model inputs, we also provide per-sample metadata (timestamps, timbre, genre, in-
struments) as separate annotations. For example, some systems (e.g., LeVo (Lei et al., 2025)) prefer
tag-style textual descriptions, while others (e.g., DiffRhythm (Ning et al., 2025)) expect lyrics an-
notated with timestamps. We reformat inputs to match each model’s specification while keeping the
semantic content consistent across systems.

5.2 OBJECTIVE METRICS

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Objective evaluation for style alignment, inference speed, and phonme error rate.
Model CLAP ↑ Inference time (s / song) ↓ PER ↓
Suno v4.5 (Suno, 2025) 0.210 — 0.290
ACE-Step (Gong et al., 2025) 0.184 13.0 0.238
DiffRhythm (Ning et al., 2025) 0.187 11.5 0.325
Levo (Lei et al., 2025) 0.081 101.2 0.617
Ours 0.184 55.5 0.213

Table 4: Objective evaluation using Audiobox-Aesthetics and SongEval; the higher the better).

Model Audiobox SongEval
CE CU PC PQ Coherence Musicality Memorability Clarity Naturalness

Suno v4.5 7.339 7.766 5.333 8.036 4.198 4.011 4.174 4.034 3.939
ACE-Step 7.209 7.642 5.820 7.948 3.449 3.214 3.203 3.216 3.162
DiffRhythm 7.530 7.791 6.336 8.189 3.740 3.419 3.595 3.512 3.354
Levo 7.565 7.674 4.993 8.295 3.392 3.272 3.198 3.265 3.155
Ours (w/ all conditions) 7.590 7.712 6.294 8.240 3.653 3.397 3.442 3.440 3.260

Ours w/o chord 7.480 7.643 6.324 8.170 3.472 3.271 3.263 3.267 3.123
Ours w/o key 7.591 7.722 6.206 8.244 3.634 3.387 3.436 3.426 3.251
Ours w/o rhythm 7.428 7.588 5.864 8.102 3.193 3.055 2.984 3.003 2.867
Ours w/o structure 7.589 7.715 6.287 8.231 3.660 3.423 3.468 3.450 3.290
Ours w/o audio 7.589 7.720 6.307 8.225 3.687 3.432 3.471 3.450 3.275
Ours w/o vocal pitch contour 6.148 6.787 5.728 7.408 2.607 2.460 2.430 2.399 2.396

To comprehensively evaluate the generated songs, we employ a set of objective metrics that capture
different aspects of alignment and fidelity. These metrics quantify how well the outputs follow the
intended textual and lyrical conditions. In addition, to better approximate human preferences, we
further adopt automatic evaluation tools designed to reflect human-like judgments of aesthetics and
production quality.

Lyrics Alignment: We employed Whisper ASR (Radford et al., 2022) to transcribe the generated
vocals and compared the transcriptions with the ground-truth lyrics. Alignment quality is measured
using the phoneme error rate (PER). We first convert both the predicted and reference texts into their
phoneme representations. Then, PER is computed as PER = S+D+I

N , where S, D, and I denote
substitutions, deletions, and insertions, respectively. PER is the lower and the closer to 0 the better.

Style Alignment: We utilized CLAP (Wu et al., 2024b) to compute the cosine similarity between
audio embeddings of the generated music and embeddings of the text prompts, quantifying adher-
ence to the intended global style.

Aesthetics Evaluation: We used Audiobox-Aesthetics (Tjandra et al., 2025), to provide an auto-
matic aesthetics qualification of the generated songs, capturing aspects such as clarity, richness,
and technical fidelity. Specifically, Audiobox reports four sub-scores: Coherence (CE), Cultural
Understanding (CU), Production Complexity (PC), and Production Quality (PQ).

SongEval (Yao et al., 2025): A recently released evaluation tool specifically designed for songs,
used to measure structural clarity, memorability, musical coherence, and overall musicality.

Controllability: To evaluate whether MIDI-SAG successfully aligns with the given conditions, we
extract rhythm, chord, and key features from the generated backing audio using the same procedure
as in training, except that we use BeatNet (Heydari et al., 2021) instead of All-in-one (Kim & Nam,
2023) to probe whether using different beat detection methods yield consistent results. Following
Wu et al. (2024a), we use the F1 score to evaluate rhythm alignment, where the given timestamps
and the detected timestamps are considered aligned if they differ by less than 70 milliseconds. For
the chord condition, we also use the F1 score, computed between the chromagrams of the reference
and generated audio. Key accuracy is defined straightforwardly: if the given key and the detected
key match in both pitch class and mode (major/minor), the prediction is deemed correct.

5.3 SUBJECTIVE METRICS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Subjective evaluation results across models; the higher the better.
Model Overall Preference Lyrics Adherence Musicality Voice Naturalness Song Structure Clarity
Suno v4.5 4.091 4.076 4.091 3.909 3.970
ACE-Step 2.803 3.455 3.045 2.561 3.045
DiffRhythm 2.409 2.788 2.758 2.561 2.530
LeVo 2.212 2.045 2.5 2.288 2.394
Ours 2.530 3.348 2.561 2.924 2.409

Table 6: Ablation study on conditioning signals.
Setting Chord F1 Key Acc Rhythm F1

w/ all conditions 0.9006 0.79 0.8339
w/o chord 0.3908 0.21 0.7870
w/o key 0.9027 0.78 0.8535
w/o rhythm 0.8914 0.79 0.4279
w/o structure 0.8957 0.79 0.8317
w/o audio 0.9027 0.84 0.8442
w/o vocal pitch contour 0.5930 0.69 0.4319

We conducted a mean opinion score (MOS)-style listening test with 33 anonymous participants
recruited from the Internet, including self-reported music experts and non-experts. Each participant
listened to 10 generated samples (5 models × 2 pairs of prompt-lyrics) and rated them on a scale of
1–5 (the higher the better) across the following five dimensions:

Overall Preference: Overall liking of the song.

Lyrics Adherence: Whether the vocal content matches the given lyrics.

Musicality: Perceived musical quality, including melody and harmony.

Voice Naturalness: Naturalness of the generated singing voice.

Song Structure Clarity: Whether the song structure clearly follows the provided lyrical format.

This evaluation design allows us to simultaneously assess text–music alignment, lyric–vocal align-
ment, and overall musical quality across systems.

6 EXPERIMENTAL RESULTS

6.1 PERFORMANCE COMPARISON WITH EXISTING MODELS

Table 3 presents the CLAP scores and PER of the evaluated models. We see that our model attains
comparable CLAP scores as most open-source models, whereas the closed-source commercial sys-
tem Suno has the highest CLAP, demonstrating superior text–audio alignment. In terms of PER, our
model attains the lowest PER, slightly outperforming ACE-Step and Suno. We attribute this to the
use of an dedicated SVS model capable of generating clear and temporally well-aligned vocals in
our compositional approach.

Table 4 shows that, on Audiobox-Aesthetics, DiffRhythm scores the highest overall, with other
models clustered closely behind. On the other hand, SongEval indicates that Suno is the strongest
across perspectives, and the SongEval metrics are highly correlated to each other. Our model is
slightly weaker than DiffRhythm but surpasses ACE-Step and LeVo.

Table 5 shows the subjective evaluation result. Consistent with the SongEval metrics, Suno out-
performs all systems, highlighting a sizable gap between closed- and open-source models. Among
open-source baselines, our system ranks above DiffRhythm and LeVo in Overall Preference, but
trails behind ACE-Step. For Lyrics Adherence, our scores are on par with ACE-Step and exceed
other open-source models; this partially diverges from the objective Alignment metric. We hypothe-
size that participants’ adherence judgments are influenced by other perceptual factors, even though
an SVS front-end should strongly align vocals to the provided lyrics. In Musicality and Song Struc-
ture Clarity, our model surpasses LeVo but falls short of the remaining systems. Notably, we obtain

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Rhythm and key alignment on a 200-song test set.
Model / Setting Rhythm F1 Key acc.
Conventional SAG (cf. Figure 4(a)) 0.64 0.55
Modified SAG (cf. Figure 4(b)) 0.55 0.72
Proposed MIDI-SAG (cf. Figure 4(c)) 0.81 0.90

Table 8: Modifying MuseControlLite for audio continuation
MuseControlLite (Tsai et al., 2025) FD↓ KL↓ CLAP↑ Smoothness value↑
w/ audio condition 111.58 0.2160 0.3622 –0.2734
w/ audio condition unfreeze self attnetion layers 109.62 0.1794 0.3961 –0.3529

the best Voice Naturalness among open-source methods, underscoring the benefit of using an SVS
module within the compositional song generation pipeline.

6.2 ABLATION STUDY

Tables 4 and 6 present an ablation study clarifying the contribution of each conditioning signal to
MIDI-SAG performance. We observe that condition alignment and SongEval scores are highest
when MIDI-SAG is conditioned only on non-audio inputs, where the model is freed from reconcil-
ing with ambiguous reference audio, allowing it to strictly follow the remaining time-varying condi-
tions. However, this simplification can introduce acoustic abruptness, which is easily detectable by
listeners despite high SongEval scores. Further analysis reveals redundancy in harmonic conditions:
removing the explicit key condition has negligible impact on key accuracy, and removing the chord
condition leaves both chord and key alignment metrics high. This suggests that the explicit key
condition is likely redundant. Conversely, excluding the vocal pitch contour leads to a performance
drop in Chord F1, key accuracy, and rhythm F1, indicating that SAG relies heavily on this condition.

Table 7 empirically compares the three SAG settings discussed in Section 4, demonstrating the lack
of rhythmic and harmonic consistency between vocal and backing using either the conventional
SAG approach or the naı̈ve modification detecting beats and downbeats directly from vocal audio.
Finally, Table 8 demonstrates partially unfreezing self-attention layers of SAO improves result.

7 LIMITATIONS

Although our approach offers a promising alternative for song generation, several limitations remain.
First, melodies produced by CSL-L2M (Chai & Wang, 2025) tend to degrade beyond ∼120 s, likely
because most of its training examples follow an intro–verse–chorus–outro form and are only ∼90–
120 s long, complicating full-length generation. Second, our MuseControlLite-based SAG model
often yields weaker intros than end-to-end baselines, leaving room for improvement.

8 CONCLUSION

In this paper, we proposed ComposerFlow, demonstrating that combining three lightweight modules
(CSL-L2M (Chai & Wang, 2025), SVS, and Accomontage2 (Yi et al., 2022)) with a fine-tuned text-
to-music model can effectively enable song generation while requiring significantly less training
data and computational resources. Moreover, our model allows users to freely edit intermediate
results—such as melodies and chords in MIDI format—and provides separate vocal and backing
tracks for greater flexibility. Importantly, the modular design means that components can be replaced
with newer models (e.g., more advanced SVS systems), as long as they satisfy the pipeline’s input
and output requirements. Thus, our model represents a flexible paradigm rather than a fixed
system. We evaluated our model through both objective and subjective experiments and observed
comparable results to state-of-the-art open-source systems. These findings suggest that generating
high-quality songs does not necessarily require massive datasets, excessive computational power, or
high energy consumption.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

We will release the full training and inference code for our model, including the data-processing
pipeline and configuration files. The base models are open sourced; we provide adapted implemen-
tations to meet our specific requirements. Implementation details are provided in Section 4.

10 ETHICS STATEMENT

This work develops a modular song-generation pipeline intended for research and creative assis-
tance rather than full automation of musical labor. We mitigate risks as follows: (1) Data and
Copyright: the SVS module is trained solely on licensed recordings from two professional singers;
accompaniment modeling relies on time-varying symbolic controls (e.g., chords, rhythm, melody)
rather than reproducing copyrighted waveforms, but was still trained to learn the underlying data
distribution(2) Environmental Impact: training and fine-tuning are conducted on a single NVIDIA
RTX 3090 GPU, substantially reducing compute and energy use relative to typical end-to-end sys-
tems. (3) Responsible Use: the system does not include identity cloning or voice-matching features
and is intended for research, education, and human-in-the-loop creation. (4) Transparency: we
acknowledge the use of large language models (LLMs) to polish writing and assist with code where
appropriate. We will release code and configurations to support reproducibility and community
scrutiny.

REFERENCES

MIREX 2018: Automatic lyrics-to-audio alignment. https://music-ir.org/mirex/
wiki/2018:Automatic_Lyrics-to-Audio_Alignment, 2018. Accessed: 2025-11-
21.

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

Li Chai and Donglin Wang. CSL-L2M: Controllable song-level lyric-to-melody generation based
on conditional transformer with fine-grained lyric and musical controls. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 23541–23549, 2025.

Jianyi Chen, Wei Xue, Xu Tan, Zhen Ye, Qifeng Liu, and Yike Guo. FastSAG: towards fast non-
autoregressive singing accompaniment generation. arXiv preprint arXiv:2405.07682, 2024.

Jiawei Chen, Xu Tan, Jian Luan, Tao Qin, and Tie-Yan Liu. Hifisinger: Towards high-fidelity neural
singing voice synthesis. arXiv preprint arXiv:2009.01776, 2020.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and controllable music generation. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Shuangrui Ding, Zihan Liu, Xiaoyi Dong, Pan Zhang, Rui Qian, Junhao Huang, Conghui He, Dahua
Lin, and Jiaqi Wang. SongComposer: A large language model for lyric and melody generation
in song composition. In Annual Meeting of the Association for Computational Linguistics (ACL),
2025.

Chris Donahue, Antoine Caillon, Adam Roberts, Ethan Manilow, Philippe Esling, Andrea
Agostinelli, Mauro Verzetti, Ian Simon, Olivier Pietquin, Neil Zeghidour, et al. SingSong: Gen-
erating musical accompaniments from singing. arXiv preprint arXiv:2301.12662, 2023.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable Audio
Open. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2025.

11

https://music-ir.org/mirex/wiki/2018:Automatic_Lyrics-to-Audio_Alignment
https://music-ir.org/mirex/wiki/2018:Automatic_Lyrics-to-Audio_Alignment

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang-gil Lee, Chao-
Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, et al. Audio Flamingo
3: Advancing audio intelligence with fully open large audio language models. arXiv preprint
arXiv:2507.08128, 2025.

Junmin Gong, Sean Zhao, Sen Wang, Shengyuan Xu, and Joe Guo. Ace-step: A step towards music
generation foundation model. arXiv preprint arXiv:2506.00045, 2025.

Mojtaba Heydari, Frank Cwitkowitz, and Zhiyao Duan. Beatnet: Crnn and particle filtering for
online joint beat downbeat and meter tracking. arXiv preprint arXiv:2108.03576, 2021.

Mojtaba Heydari, Ju-Chiang Wang, and Zhiyao Duan. SingNet: A real-time singing voice beat and
downbeat tracking system. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2023.

Zhiqing Hong, Rongjie Huang, Xize Cheng, Yongqi Wang, Ruiqi Li, Fuming You, Zhou Zhao,
and Zhimeng Zhang. Text-to-Song: Towards controllable music generation incorporating vocals
and accompaniment. In Annual Meeting of the Association for Computational Linguistics (ACL),
2024.

Siyuan Hou, Shansong Liu, Ruibin Yuan, Wei Xue, Ying Shan, Mangsuo Zhao, and Chao Zhang.
Editing music with melody and text: Using ControlNet for diffusion transformer. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025.

Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang, Chen Zhang, Songruoyao Wu, Kejun Zhang, Xiangyang
Li, Tao Qin, and Tie-Yan Liu. TeleMelody: Lyric-to-melody generation with a template-based
two-stage method. In Conference on Empirical Methods in Natural Language Processing, 2021.

Taejun Kim and Juhan Nam. All-in-one metrical and functional structure analysis with neighbor-
hood attentions on demixed audio. In IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), 2023.

Shun Lei, Yaoxun Xu, Zhiwei Lin, Huaicheng Zhang, Wei Tan, Hangting Chen, Jianwei Yu, Yixuan
Zhang, Chenyu Yang, Haina Zhu, et al. Levo: High-quality song generation with multi-preference
alignment. arXiv preprint arXiv:2506.07520, 2025.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. DiffSinger: Singing voice synthesis
via shallow diffusion mechanism. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 11020–11028, 2022.

Renhang Liu, Chia-Yu Hung, Navonil Majumder, Taylor Gautreaux, Amir Ali Bagherzadeh, Chuan
Li, Dorien Herremans, and Soujanya Poria. JAM: A tiny flow-based song generator with fine-
grained controllability and aesthetic alignment. arXiv preprint arXiv:2507.20880, 2025a.

Zihan Liu, Shuangrui Ding, Zhixiong Zhang, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao,
Dahua Lin, and Jiaqi Wang. SongGen: A single stage auto-regressive transformer for text-to-song
generation. arXiv preprint arXiv:2502.13128, 2025b.

Peiling Lu, Jie Wu, Jian Luan, Xu Tan, and Li Zhou. XiaoiceSing: A high-quality and integrated
singing voice synthesis system. arXiv preprint arXiv:2006.06261, 2020.

Ziqian Ning, Huakang Chen, Yuepeng Jiang, Chunbo Hao, Guobin Ma, Shuai Wang, Jixun Yao,
and Lei Xie. Diffrhythm: Blazingly fast and embarrassingly simple end-to-end full-length song
generation with latent diffusion. arXiv preprint arXiv:2503.01183, 2025.

Jonggwon Park, Kyoyun Choi, Sungwook Jeon, Dokyun Kim, and Jonghun Park. A bi-directional
transformer for musical chord recognition. In International Society for Music Information Re-
trieval Conference, pp. 620–627, 2019.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision, 2022.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. FastSpeech 2:
Fast and high-quality end-to-end text to speech. arXiv preprint arXiv:2006.04558, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hendrik Schreiber and Meinard Müller. Musical tempo and key estimation using convolutional
neural networks with directional filters. In Proceedings of the Sound and Music Computing Con-
ference (SMC), pp. 47–54, 2019.

Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye, Shikun Zhang, and Tao Qin. SongMASS:
Automatic song writing with pre-training and alignment constraint. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 13798–13805, 2021.

Inc. Suno. Introducing v4.5. https://suno.com/blog/introducing-v4-5, May 2025.
Accessed: 2025-09-24.

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi,
Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, and Wei-Ning Hsu. Meta
Audiobox Aesthetics: Unified automatic quality assessment for speech, music, and sound, 2025.
URL https://arxiv.org/abs/2502.05139.

Quoc-Huy Trinh, Minh-Van Nguyen, Trong-Hieu Nguyen Mau, Khoa Tran, and Thanh Do.
Sing-On-Your-Beat: Simple text-controllable accompaniment generations. arXiv preprint
arXiv:2411.01661, 2024.

Fang-Duo Tsai, Shih-Lun Wu, Weijaw Lee, Sheng-Ping Yang, Bo-Rui Chen, Hao-Chung Cheng,
and Yi-Hsuan Yang. MuseControlLite: Multifunctional music generation with lightweight con-
ditioners. In International Conference on Machine Learning, 2025.

Ju-Chiang Wang, Wei-Tsung Lu, and Minz Won. Mel-band roformer for music source separation.
arXiv preprint arXiv:2310.01809, 2023.

Shih-Lun Wu and Yi-Hsuan Yang. Musemorphose: Full-song and fine-grained piano music style
transfer with one transformer vae. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 31:1953–1967, 2023.

Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J Bryan. Music controlnet: Multiple
time-varying controls for music generation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 32:2692–2703, 2024a.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Marianna Nezhurina, Taylor Berg-Kirkpatrick,
and Shlomo Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and
keyword-to-caption augmentation, 2024b.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel WaveGAN: A fast waveform genera-
tion model based on generative adversarial networks with multi-resolution spectrogram. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

Chenyu Yang, Shuai Wang, Hangting Chen, Wei Tan, Jianwei Yu, and Haizhou Li. SongBloom:
Coherent song generation via interleaved autoregressive sketching and diffusion refinement. arXiv
preprint arXiv:2506.07634, 2025.

Jixun Yao, Guobin Ma, Huixin Xue, Huakang Chen, Chunbo Hao, Yuepeng Jiang, Haohe Liu,
Ruibin Yuan, Jin Xu, Wei Xue, Hao Liu, and Lei Xie. SongEval: A benchmark dataset for song
aesthetics evaluation, 2025.

Li Yi, Haochen Hu, Jingwei Zhao, and Gus Xia. Accomontage2: A complete harmonization and
accompaniment arrangement system. arXiv preprint arXiv:2209.00353, 2022.

Yi Yu, Abhishek Srivastava, and Simon Canales. Conditional LSTM-GAN for melody generation
from lyrics. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 17(1):1–20, 2021.

Ruibin Yuan, Hanfeng Lin, Shuyue Guo, Ge Zhang, Jiahao Pan, Yongyi Zang, Haohe Liu, Yiming
Liang, Wenye Ma, Xingjian Du, et al. YuE: Scaling open foundation models for long-form music
generation. arXiv preprint arXiv:2503.08638, 2025.

13

https://suno.com/blog/introducing-v4-5
https://arxiv.org/abs/2502.05139

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LLMS

We use LLM to polish our paper, and parts of the code are collaborated with LLMs.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS ON LYRICS-TO-MELODY GENERATION

We adopt the state-of-the-art CSL-L2M model Chai & Wang (2025) to map input Chinese lyrics
to a vocal MIDI score. CSL-L2M is a Transformer decoder with an in-attention mechanism Wu &
Yang (2023) that supports fine-grained lyric–melody controls. We condition on the global key1 and
emotion2, as well as sentence-level structure3 and statistical musical attributes4 that strengthen lyric–
melody coupling. The statistical attributes are extracted from a vocal MIDI track. Users may specify
emotion, key, and structure (the latter carried by the lyrics), and optionally provide a reference MIDI
from which we derive the statistical attributes. The model performs best when the reference vocal
MIDI track and input lyrics have similar section structure, line count, and per-line word counts.

To enable use without a user-provided MIDI, we curate a bank of 1,000 reference attribute sets.
Given new lyrics, we score each candidate using a weighted sum

P = 0.4Psent + 0.4Pprof + 0.2Pstruct,

where lower is better. Here, Psent penalizes differences in total line count (optionally rejecting
candidates with fewer lines than the target); Pprof is the mean absolute difference between per-
line token counts—treating each visible Chinese character as one token—after padding the shorter
sequence with its median and scaling by the maximum observed token count; and Pstruct compares
section tags mapped to integers, counting position-wise mismatches and adding a penalty for extra
sections, normalized by the longer sequence length.

B.2 IMPLEMENTATION DETAILS ON MELODY HARMONIZATION

Because chord progressions are used as time-varying controls during training, inference must supply
compatible chord sequences. We harmonize the vocal MIDI score produced by CSL-L2M (Chai &
Wang, 2025) using AccoMontage2 (Yi et al., 2022). To provide an instrumental lead-in, we prepend
a 4-bar intro without vocal and reuse (duplicate) the chord sequence from the first 4 melodic bars
to harmonize this intro. Melody harmonization supplies chord progression, enabling the singing-
accompaniment generator to produce coherent, musically appropriate harmony. If the automatically
generated chords are unsatisfactory, users may instead provide their own or partial edit the generated
progression.

B.3 IMPLEMENTATION DETAILS ON SINGING VOICE SYNTHESIS

We add a MIDI-conditioning embedding that aligns each phoneme to its corresponding MIDI note.
Before synthesis, we compare the register of the vocal MIDI track to typical vocal ranges—male
(lower) vs. female (higher)—and test octave shifts ∆ ∈ {−12, 0,+12} to align the vocal MIDI
track with each profile’s comfortable tessitura. We then choose the (singer,∆) that keeps the most
notes inside the target range while minimizing |∆|.

B.4 IMPLEMENTATION DETAILS ON SINGING ACCOMPANIMENT GENERATION

We curate a dataset to fine-tune Stable Audio Open by following the data preparation pipeline illus-
trated in Figure 3. Specifically, it separates vocal and backing track (Wang et al., 2023), captions the

112 major: C, D♭, D, E♭, E, F, F♯, G, A♭, A, B♭, B; 12 minor: c, c♯, d, d♯, e, f, f♯, g, g♯, a, b♭, b.
2Three emotions: Neutral, Positive, Negative.
3Five sections: Verse, Chorus, Insertion, Bridge, Outro.
412 attributes: pitch mean (PM), pitch variance (PV), pitch range (PR), direction of melodic motion (DMM),

amount of arpeggiation (AA), chromatic motion (CM), duration mean (DM), duration variance (DV), duration
range (DR), prevalence of most common note duration (MCD), note density (ND), fraction of lyric syllables to
melody notes (Align).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 3: The data-preprocessing pipeline to curate data for fine-tuing Stable Audio Open to imple-
ment our MIDI-informed singing accompaniment generation (MIDI-SAG) model.

Table 9: Per-module inference latency for generating a 90–120 seconds intro–verse–chorus–outro
song. For the singing-accompaniment stage, MuseControlLite (Tsai et al., 2025) is configured with
50 denoising steps.

Module Time (s)
Lyrics-to-Melody 10
Melody Harmonization 0.2
Singing Voice Synthesis 3
singing accompaniment generation 40

audio (Goel et al., 2025), extracts time-varying controls—chords (Park et al., 2019), rhythm (Kim
& Nam, 2023), vocal pitch contour (Hou et al., 2025), structure tags (Kim & Nam, 2023), and local
key (Schreiber & Müller, 2019) to serve as conditioning signals. We fetch the audio data of the
Mandarin pop from the Internet, and keep it as an internal data for academic research purpose with
no intention to distribute it further.

C ADDITIONAL NOTES

To ensure that using Whisper is appropriate in our setting, we additionally compute the PER on
real human singing from the CPOP (mir, 2018) dataset by comparing Whisper’s transcriptions with
the ground-truth lyrics. The resulting PER is 0.059, demonstrating that Whisper can effectively
recognize singing voice.

Moreover, we observe that, for short lyric inputs, Suno v4.5 tends to repeat lines, which would
otherwise inflates the PER. For a fair comparison, these repeated lines in the transcriptions are
removed before computing the PER.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Equipping Stable-Audio Open with singing accompaniment generation and audio contin-
uation abilities via MuseControlLite.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: The genre distribution of the curated training dataset for training MIDI-SAG.

17

	Introduction
	Related Work
	Compositional Song Generation Framework
	Lyrics-to-Melody Generation (T1) and Singing Voice Synthesis (T2)
	blueMIDI-informed Singing Accompaniment Generation (MIDI-SAG) (T3)

	Implementation
	Model Architecture and Training Data for Each Sub-Task
	Conditions for MIDI-SAG during Training and Inference Times
	Inference Process of the Proposed Pipeline

	Experimental Setup
	Baselines & Evaluation Datasets
	Objective metrics
	Subjective metrics

	Experimental Results
	Performance comparison with existing models
	Ablation Study

	Limitations
	Conclusion
	Reproducibility Statement
	Ethics Statement
	Use of LLMs
	Implementation Details
	Implementation Details on Lyrics-to-Melody Generation
	Implementation Details on Melody Harmonization
	Implementation Details on Singing Voice Synthesis
	Implementation Details on Singing Accompaniment Generation

	Additional Notes

