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ABSTRACT

Neural networks are known to be universal computers for Boolean functions.
Recent advancements in hardware have significantly reduced matrix multiplication
times, making neural network simulation both fast and efficient. Consequently,
functions defined by complex Boolean networks are increasingly viable candidates
for simulation through their neural network representation. Prior research has
introduced a general method for deriving neural network representations of Boolean
networks. However, the resulting neural networks are often suboptimal in terms of
the number of neurons and connections, leading to slower simulation performance.
Optimizing them while preserving functional equivalence –lossless optimization–
is an NP-hard problem, and current methods only provide lossy solutions. In
this paper, we present a deterministic algorithm to optimize such neural networks
in terms of neurons and connections while preserving functional equivalence.
Moreover, to accelerate the compression of the neural network, we introduce
an objective-aware algorithm that exploits representations that are shared among
subproblems of the overall optimization. We demonstrate experimentally that we
are able to reduce connections and neurons by up to 70% and 60%, respectively,
in comparison to state-of-the-art. We also find that our objective-aware algorithm
results in consistent speedups in optimization time, achieving up to 34.3× and
5.9× speedup relative to naive and caching solutions, respectively. Our methods
are of practical relevance to applications such as high-throughput circuit simulation
and placing neurosymbolic systems on the same hardware architecture.

1 INTRODUCTION

Universal approximation theorems (Hornik et al., 1989) and Turing-completeness (Siegelmann &
Sontag, 1992) provide the theoretical foundation for implementing computable functions with neural
networks (NNs). At present, the predominant methods for implementing functions with NNs are
learning-based techniques, which rely on optimization algorithms, data, and compute to elicit a
function of interest (LeCun et al., 2015). While these techniques provide a solution for obtaining
functions that are difficult to programmatically specify, they come at the cost of unsustainable energy
usage (Strubell et al., 2019), ever-longer training times, and safety concerns due to the current lack of
understanding surrounding functions derived from learning-based techniques (Qi et al., 2023).

Another much less prevalent implementation method for NNs is to synthesize a network from a known
functional specification. The specification may be in the form of an explicit construction, detailing
the network structure, neurons, and connections (Hewitt et al., 2020; Karuvally et al., 2024), or it
may be provided in a programming language, requiring a method to convert the specification into a
resulting NN (Siegelmann, 1994; Gruau et al., 1995; Neto et al., 2003). These implementation methods
generally require significantly less time and energy in comparison to learning-based techniques and
provide guarantees on NN functionality which are critical for safety and security.

One such programmatic implementation method is that of NN-based technology mapping (Patel et al.,
2022; Gavier et al., 2023), the problem of finding a NN that is functionally equivalent to a Boolean
network (BN) (i.e., ∀x ∈ {0, 1}n, NN(x) = BN(x)). This method holds significant potential for
applications in the integrated circuits industry and for neurosymbolic hardware architectures; however,
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Neural Network representation of a Boolean Network, 
as a composition of two-layer subnetworks NNi

Shortcut learned 
from optimizing NNi

Figure 1: Summary of our optimization problem. A neural network (NN) representing a Boolean
network (BN) can be constructed as a composition of two-layer sub-NNs NNi (left). Optimizing the
size of the NN is performed by optimizing each sub-NN NNi (top right). To maintain functional
equivalence of the original NN, it is necessary that each subproblem solution lies within its lossless
region. Subproblems can be accelerated for sub-NNs NNj that have shared representation with (i.e.,
are in the same class as) already optimized sub-NNs NNi (bottom and top right).

the current state-of-the-art (SOTA) solution of Gavier et al. (2023) faces two significant drawbacks: (1)
the resulting NNs are often suboptimal in terms of neurons and connections, and (2) slow execution
time makes the technique less appealing for industrial settings.

In light of these shortcomings in the SOTA, our first goal is to develop a technique for optimizing
NN size while maintaining functional equivalence. NN compression techniques, such as pruning and
quantization, have been extensively researched under the learning-based paradigm (Liang et al.,
2021; Li et al., 2023). However, in general, pruning techniques are lossy and do not guarantee
preservation of functional equivalence (Vadera & Ameen, 2022). Moreover, since optimal bit widths
for parameters and activations can be calculated analytically following NN-based technology mapping,
further quantization cannot be applied as it would break functional equivalence. While lossless
compression techniques that maintain functional equivalence have been presented for ReLU (Serra
et al., 2020) and single-hidden-layer hyperbolic tangent (Sussmann, 1992; Farrugia-Roberts, 2024)
NNs, they are not applicable to the Heaviside threshold NNs we investigate in this work.

Figure 1 (left) depicts the NN representation of a BN as proposed by Gavier et al. (2023); a compo-
sition of two-layer sub-NNs. Optimizing the size of the NN can be thought of as the aggregation of
subproblems, one for each sub-NN, as shown in Figure 1 (top right). Our second goal is to develop
an algorithm that exploits shared representations among these subproblems to accelerate the NN

optimization process, which is key for dealing with the large-scale BNs faced in industrial applications.

Summary: The SOTA solution for NN-based technology mapping does not effectively optimize
the resulting NN representation. Since existing NN compression techniques are either lossy or
inapplicable, the challenge of efficiently optimizing NN representations of BNs remains open.

Contributions. We introduce a practical methodology to overcome these challenges:

• We propose a lossless technique for optimizing a two-layer NN representation of a Boolean
function (see § 3.1). We present two objectives that correlate with minimizing neurons or
connections.

• We propose an objective-aware optimization algorithm based on Negation-Permutation-
Negation (NPN) classification, exploiting shared representations among the two-layer
sub-NNs (see § 3.2). We show that our algorithm consistently accelerates optimization
time, achieving up to 34.3× and 5.9× speedup relative to naive and caching solutions,
respectively (see Figure 6).

• We propose an architecture-aware lossless optimization algorithm that selects which two-
layer sub-NNs to minimize (see § 3.3). We demonstrate experimentally that we are able to
reduce connections and neurons by up to 70% and 60%, respectively, in comparison to
SOTA (see Figure 5).
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2 BACKGROUND

In this section we introduce the necessary definitions and background for NN-based technology map-
ping and our optimization algorithms. The essential notions are covered here, while a comprehensive
treatment is provided in the appendix.

2.1 DEFINITIONS

Notation. We denote the set of binary numbers as B = {0, 1}, the set of natural numbers (including
0) as N0 = {0, 1, 2, . . . }, and the set of integers as Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
Definition 2.1 (Boolean function). A k-input, (single-output) Boolean function (BF) is a function
f : Bk → B, x 7→ f(x), where x = (x1, . . . , xk) is a bit vector representing the k input variables
xi ∈ B, 1 ≤ i ≤ k.
Definition 2.2 (Truth table representation of a BF). The truth table representation is an expansion of
BF f : Bk → B in a basis of indicator functions f(x) =

∑
a∈Bk f(a)1a(x), where 1a : Bk → B is

defined as 1a(x) = 1 if x = a, and 0 otherwise. The truth table vector f ∈ B2k of f is the vector of
coordinates f(a) in such a basis. E.g., the truth table vector of f(a, b) = a ∨ b is f = [0, 1, 1, 1]⊺.
Definition 2.3 (Multilinear polynomial representation of a BF). The multilinear polynomial (MP)
representation is an expansion of BF f : Bk → B, extended to p : Zk → Z, in the basis (O’Donnell,
2014) of logical AND functions p(x) =

∑
S⊆{1,...,k} f̂(S)χS(x), where χS : Zk → Z is defined

as χS(x) =
∏

i∈S xi and S ⊆ {1, . . . , k}. The MP vector p ∈ Z2k of f is the vector of coordinates
f̂(S) in such a basis. E.g., if f(a, b) = a ∨ b then p(a, b) = a+ b− ab and p = [0, 1, 1,−1]⊺.
Definition 2.4 (Boolean network). A Boolean network (BN) GF = (V,E) is a directed-acyclic
graph (DAG), with vertex labeling function ψ : V → F , that represents an n-input, m-output BF

B : Bn → Bm. Vertices with indegree zero are primary inputs (PI), and vertices with outdegree zero
are primary outputs (PO). The labeling function ψ assigns a single-output BF to each non-PI vertex in
the graph. A directed edge (u, v) ∈ E exists if the output of u’s BF is an input to v’s BF. The depth of
vertex v ∈ V , denoted depth(v) ∈ N0, is the length of the longest path from any PI to v. The depth
of a BN, denoted depth(GF ), is the maximum vertex depth in the BN.
Definition 2.5 (Neural network). Let L ∈ N0 and (D0, D1, . . . , DL) ∈ NL

0 . A neural network (NN)
N : BD0 → BDL is a function with specification

N = σ
(
WL

(
σ
(
WL−1

(
. . . σ

(
W 1x+ b1

)
. . .

)
+ bL−1

))
+ bL

)
, (1)

where σ is the Heaviside step function 1 and ∀l ∈ {1, . . . , L}, W l ∈ ZDl×Dl−1 and bl ∈ ZDl . The
depth of a NN is denoted depth(N ) = L.
Definition 2.6 (Functional equivalence). Two functions f, g : X → Y are functionally equivalent if
∀x ∈ X , f(x) = g(x).

2.2 OBTAINING A NEURAL NETWORK REPRESENTATION OF A BOOLEAN NETWORK

Here we review the SOTA for NN-based technology mapping (Gavier et al., 2023). The method takes a
BN Ginit

F as input and, through a sequence of mappings, converts it into a functionally equivalent NN.

LUT-based technology mapping. K-LUT-based technology mapping (Cong & Ding, 1994), K ∈
N0, is used to convert Ginit

F into a functionally equivalent BN GFf
with function set Ff = ∪Kk=0B2k

consisting of k-input look-up tables (LUTs), or truth table vectors f ∈ B2k , k ≤ K.

MP-based technology mapping. Following K-LUT-based technology mapping, each truth table
vector f ∈ B2k , k ≤ K, in BN GFf

is mapped to a functionally equivalent MP vector p ∈ Z2k . The
resulting function set is Fp = ∪Kk=0Z2k . This can be computed via a divide-and-conquer algorithm
in time O(2kk) (Gavier et al., 2023). We denote this conversion algorithmically as ttToMP.

1σ(x) = 1 if x > 0, and 0 otherwise, and it is extended to an element-wise function.
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NN-based technology mapping from MP BNs. Following MP-based technology mapping, each MP

vector p ∈ Z2k , k ≤ K, in BN GFp is mapped to a functionally equivalent two-layer NN ζ : Zk → Z,
ζ(x) = W2σ(W1x + b1) with parameters (W1, b1,W2) ∈ Z(2k×k)+(2k)+(1×2k). The resulting
function set is FN = ∪Kk=0Z(2k×k)+(2k)+(1×2k). See Figure 2 for an example of k = 2.

Intra-depth parallelization & the Unmerged NN. Let GFN = (V,E) be a BN following NN-based
technology mapping in which all vertices v ∈ V have incoming edges only from vertices at depth
depth(v) − 1, that is, there are no “skip connections” (this can be achieved by adding additional
vertices that compute the identity function). Moreover, let Vd = {v ∈ V | depth(v) = d} be
the set of vertices at depth d, and d ∈ {1, . . . , depth(GFN )}. Then the output of all vertices in
Vd = {v1, v2, . . . , v|Vd|} can be computed in parallel as ζ(xv1)

...
ζ(xv|Vd|)

 =

W
v1
2 · · · 0
...

. . .
...

0 · · · W
v|Vd|
2

σ

W

v1
1 · · · 0
...

. . .
...

0 · · · W
v|Vd|
1


 xv1

...
xv|Vd|

+

 bv11
...

b
v|Vd|
1


 (2)

where (W vi
1 , bvi1 ,W

vi
2 ) = ψ(vi), i ∈ {1, . . . , |Vd|}. Note that various vertices at the same depth

could share the same input signals and in turn hidden vertices, thus reducing the input and hidden
dimensions of the above two-layer NN. We call the NN obtained via intra-depth parallelization of GFN
the unmerged NN of BN GFN .

Inter-depth composition & the Layer-Merged NN. Let d ∈ {1, . . . , depth(GFN )−1}. Moreover,
let ζ(d)(x(d−1)) =W

(d)
2 σ(W

(d)
1 x(d−1)+b

(d)
1 ) = x(d) and ζ(d+1)(x(d)) =W

(d+1)
2 σ(W

(d+1)
1 x(d)+

b
(d+1)
1 ) = x(d+1) be the intra-depth parallelized two-layer NNs (as in Equation 2) for vertices in Vd

and Vd+1, respectively. Then,

x(d+1) = (ζ(d+1) ◦ ζ(d))(x(d−1)) (3)

=W
(d+1)
2 σ

(
W

(d+1)
1

(
W

(d)
2 σ

(
W

(d)
1 x(d−1) + b

(d)
1

))
+ b

(d+1)
1

)
(4)

=W
(d+1)
2 σ

(
W ′σ

(
W

(d)
1 x(d−1) + b

(d)
1

)
+ b

(d+1)
1

)
, (5)

whereW ′ =W
(d+1)
1 W

(d)
2 . That is, since the second layer at depth d does not required a threshold, we

can merge it with the first layer at depth d+ 1. We call the NN obtained via intra-depth parallelization
and inter-depth composition of GFN the layer-merged NN of BN GFN .
Remark 2.1 (Implications for depth). Let d = depth(GFN ). Then the depth of the unmerged NN is
2d (non-PI vertices in V1, . . . , Vd have a layer of hidden neurons added before them), and the depth
of the layer-merged NN is d+ 1 (the second layer of non-PI and non-PO vertices in V1, . . . , Vd−1 is
merged with the first layer of vertices at the next depth).

3 METHODS

Figure 2: NN represen-
tation of MP p(a, b) =
c∅ + caa + cbb + cabab.
Weights and biases are
shown above connections
and neurons.

In this section we set out to achieve the two goals stated in the introduc-
tion: (1) optimizing the NN size and (2) doing so efficiently. We begin
by considering the problem of optimizing NN size while maintaining
functional equivalence. The SOTA mapping procedure reviewed in § 2.2
constructs a NN representation of a BN via a composition of sub-NNs, each
built from the MP representation of a BF. We propose to optimize the size
of the NN by treating the sub-NNs as optimization subproblems. In § 3.1,
we identify sub-NN optimization as a constrained minimization problem,
and propose a convex technique to solve it.

Next, we turn our attention to accelerating the NN optimization process in
aggregate. Since we pose NN optimization as minimizing various sub-NNs,
we seek to exploit similarities among the subproblems that must be solved.
We develop this idea in § 3.2, showing that by classifying the subproblems
into classes, the solution for a representative of the class can be used to
accelerate the acquisition of the solutions for all other members of the class.
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Finally, in § 3.3, we piece these insights together to form architecture-aware optimization algorithms
for the problem of NN-based technology mapping. In particular, we consider how to apply the
proposed optimization techniques to the two kinds of NNs that result from the SOTA mapping procedure
reviewed in § 2.2: unmerged and layer-merged NNs. The essential notions critical for describing the
main results are presented here, while a comprehensive treatment is provided in the appendix.

3.1 OPTIMIZING NEURAL NETWORK REPRESENTATIONS OF BOOLEAN FUNCTIONS

We begin by establishing a relationship between MPs and the size of their two-layer NN representation.
Figure 2 depicts this relationship for k = 2. We see that the number of hidden neurons in the NN

corresponds to the number of non-constant monomials in the MP, and the number of (layer one)
connections corresponds to the sum of non-constant monomial degrees. To express this relationship
in terms of MP vectors, we introduce the following definition and lemma.

Definition 3.1 (Uniform & degree criterions). Let k ∈ N0 and cunik , cdegk ∈ Z2k have specification

(cunik )i = 1 if i > 0 and 0 otherwise, and cdegk =
[
cdegk−1, cdegk−1 + 1k−1

]⊺
if k > 0 and [1] otherwise,

where 1k−1 ∈ B2k−1

denotes the all ones vector. E.g., cuni2 = [0, 1, 1, 1]
⊺ and cdeg2 = [0, 1, 1, 2]

⊺.

Lemma 3.1. Let p ∈ Z2k be a MP vector, c ∈ Z2k , and C : Z2k → N0 be a cost function with
specification C(p) = ∥p∥0,c , where ∥·∥0,c denotes the zero-norm weighted by vector c. Then, (1)
C(p) = ∥p∥0,cuni

k
is the number of non-constant monomials in the MP p, and (2) C(p) = ∥p∥0,cdeg

k

is the sum of non-constant monomial degrees in the MP p.

Following Lemma 3.1, we can now formally restate our observation of the relationship between MPs

and the size of their two-layer NN representation: ∥p∥0,cuni
k

and ∥p∥0,cdeg
k

are the number of neurons
and (layer one) connections in the two-layer NN representation of MP p. Optimizing the two-layer
NN can now be viewed as finding a polynomial with, for example, fewer monomials. However, at
present, removing monomials from a MP will change the BF it represents, and we would lose functional
equivalence. Since the BN to NN mapping procedure results in a σ (Heaviside) threshold NN, the key
insight is to consider MPs equivalent under σ threshold.

Definition 3.2 (The∼σ equivalence relation). Let p, q ∈ Z2k be MPs. We define∼σ: Z2k×Z2k → B
as the relation p ∼σ q ⇐⇒ ∀x ∈ Bk

(
(σ ◦ p)(x) = (σ ◦ q)(x)

)
. Since ∼σ is an equivalence

relation (see Appendix C), we denote the σ equivalence class of MP p as [p]σ = {q ∈ Z2k | p ∼σ q}.
Definition 3.3 (Minimal multilinear polynomial representation of a BF). Let f : Bk → B be a BF

with MP p ∈ Z2k , and C : Z2k → N0 be a cost function. A minimal multilinear polynomial (MMP)
representation of f with respect to C is a MP p′ ∈ Z2k where

p′ ∈ argmin
q∈[p]σ

C(q). (6)

E.g., p′(a, b) = a + b is an MMP of the the MP p(a, b) = a + b − ab (logical OR) with respect to
the number of monomials, as they are equivalent under σ threshold. Notice, that by removing −ab,
the resulting two-layer NN has 1 fewer neuron and 3 fewer connections (see Figure 2). However, to
maintain functional equivalence, the two-layer NN requires a threshold on its output neuron.

Lemma 3.1 and Definition 3.3 suggest that finding the MMP of an arbitrary BF requires minimizing an
objective with ℓ0-norm. These problems are non-convex and NP-hard (Feng et al., 2013), so it is not
possible to solve them with conventional convex optimization methods. However, by relaxing the
norm to ℓ1, the cost function becomes convex and of the form ∥q∥1,c = ∥c⊙ q∥1.2 Although the
solution to the relaxed problem may differ from the actual minimum, both aim for sparsity (Feng
et al., 2013), which results in compressed NNs. Next, we will show that q ∈ [p]σ can be defined as a
linear constraint, making the optimization problem convex.

Theorem 3.1 (Linear constraints determine a σ equivalence class). Let p ∈ Z2k be an MP, b =

1k − 2σ(Skp) ∈ Z2k , and A = 2(diag(b)Sk) ∈ Z2k×2k , where Sk ∈ B2k×2k is the k-th Sierpiński

2⊙ denotes the Hadamard product.
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matrix,3 1k ∈ B2k is the all ones vector, and σ is the Heaviside step function. Then, for MP q ∈ Z2k ,

q ∈ [p]σ ⇐⇒ Aq ≤ b. (7)

Following Theorem 3.1, we have all the components necessary to define an optimization problem for
obtaining an MMP representation of a BF and in turn its compressed two-layer NN.

Corollary 3.1 (Obtaining an MMP representation of a BF). If p ∈ Z2k is the MP of a BF f : Bk → B,
and C : Z2k → N0 has specification C(q) = ∥c ⊙ q∥1, where c ∈ Z2k , then the set of MMP

representations of f with respect to C equals the solution set of the following integer linear program:

minimize
q∈Z2k

C(q), subject to Aq ≤ b. (8)

Corollary 3.1 shows that indeed we can find an MMP of an arbitrary BF. While relaxing the optimization
objective to an ℓ1-norm provides us with convexity, since the variables are integers the problem is
still NP-hard (Karp, 1972). We conclude by connecting the new representation into the technology
mapping sequence discussed in § 2.2.

MMP-based technology mapping. Following MP-based technology mapping, each MP vector
p ∈ Z2k , k ≤ K, in BN GFp is mapped to a functionally equivalent MMP p′ ∈ [p]σ by solving
an integer linear program of the form presented in Corollary 3.1. The resulting function set is
Fp′ = ∪k≤KZ2k . We denote this conversion algorithmically as mpToMMP.

3.2 OBJECTIVE-AWARE OPTIMIZATION USING SHARED REPRESENTATIONS

ത

ത

ത

Figure 3: BFs f ∈ B22 in the
same NPN equivalence class.
Arrows depict NPN transforma-
tions, and the NPN canonical
form (dark red) is defined to
be the member with minimum
truth table.

In § 2.2, we saw that a NN that is functionally equivalent to a BN can
be constructed by computing the MP of each BF (ttToMP) in the BN.
In § 3.1, we saw that MMPs are the solution to lossless optimization of
each MP, resulting in a compressed two-layer (sub-)NN (mpToMMP).
At first glance, one may think we need to solve all these subprob-
lems independently. However, we can improve such an algorithm
by caching the solution to each subproblem. Alternatively, we can
classify the subproblems in terms of shared representations, and find
solutions to their class as a whole. One option for this classification
problem is to use Negation-Permutation-Negation (NPN) classifica-
tion of BFs (Sasao & Butler, 2022). We introduce NPN classification
with the following definitions.

Definition 3.4 (NPN transformation). An NPN transformation τ = τν ◦
τπ ◦ τϕ of a BF or MP is the composition of an input phase assignment
τϕ (whether variable xi is to be negated), an input permutation τπ,
and an output polarity assignment τν (whether the output is to be
negated).

Definition 3.5 (NPN equivalence). BFs f , g ∈ B2k are NPN equivalent,
denoted f ≡NPN g, if there exists an NPN transformation τ such that
τ(f) = g. The NPN equivalence class of f is denoted [f ]NPN = {g ∈ B2k | f ≡NPN g}.
Remark 3.1. There are 2k+1k! NPN transformations, as there are 2k possible input phase assignments,
k! possible input permutations, and 2 possible output polarity assignments. Hence, an NPN equivalence
class contains at most 2k+1k! BFs.

Definition 3.6 (NPN canonical form). The NPN canonical form of BF f ∈ B2k , denoted κ(f), is
a mapping κ : B2k → B2k that satisfies the following conditions: (1) κ(f) ∈ [f ]NPN, and (2)
∀g ∈ [f ]NPN, κ(g) = κ(f) (i.e., the canonical form is a unique representative of the class). We
denote κ(f) as κf ∈ B2k , and the MP of κf as κp ∈ Z2k .

3Sk =

[
Sk−1, Ok−1

Sk−1, Sk−1

]
if k > 0, and [1] otherwise, where Ok−1 denotes the all zeros matrix

6
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Figure 4: Accelerating the computation of multilinear polynomial (MP) and minimal MP (MMP)
representations of Boolean functions (BFs) with Negation-Permutation-Negation (NPN) transformations.
Given distinct BFs f1,f2 ∈ B2k (as truth table vectors), the dashed arrows indicate that MPs p1,p2 ∈
Z2k and MMPs p′

1,p
′
2 ∈ Z2k can be obtained via two calls to ttToMP (truth table to MP) followed

by two calls to mpToMMP (MP to MMP). If (i) the two functions share NPN canonical form (τ
(1)
ν ◦

τ
(1)
π ◦ τ (1)ϕ )(f1) = (τ

(2)
ν ◦ τ (2)π ◦ τ (2)ϕ )(f2) = κf ∈ B2k , (ii) equality π(1)(ϕ(1)) = π(2)(ϕ(2)) holds,

and (iii) the MMP criterion is invariant under input permutation and output negation, then the solid
arrows indicate that by utilizing NPN transformations MP and MMP representations of f1 and f2 can be
obtained via a single call to ttToMP and mpToMMP. In fact, since the number of functions in each
NPN equivalence class is at most 2k+1k!, if all MPs and MMPs are required to be computed for a class,
this process can lead to 2k+1k!− 1 fewer calls to ttToMP and 2k!− 1 fewer calls to mpToMMP (at
the cost of computing the NPN canonical form and transformations). The red and blue shaded regions
depict NPN and σ equivalence classes, respectively (where two MPs are σ-equivalent if their outputs
over x ∈ Bk are equivalent under threshold).

Figure 3 depicts one of the NPN equivalence classes for k = 2. NPN classification provide us with a way
to partition the set of BFs in GFf

into equivalence classes, where each function in a class is related
by an NPN transformation. We can now investigate how to define solutions to the subproblems of
obtaining MPs and MMPs in terms of NPN classes as a whole. The central idea is to transform functions
in the same equivalence class to a designated canonical form, perform ttToMP and mpToMMP on
the canonical form, and then use inverse transformations to convert the solutions for the canonical
form into solutions for all members of the class. The first question we must address is whether the
MMP solutions we obtain for members of the class are ∼σ equivalent to their MPs.

Theorem 3.2 (NPN transformations between σ equivalence classes). Let p, q ∈ Z2k be MPs of BFs such
that p = τ(q), where τ is an NPN transformation and q′ ∈ [q]σ . Then τ(q′) ∈ [p]σ .

We introduce a running example. Let κp ∈ Z2k be the NPN canonical form of MP p ∈ Z2k , meaning
there exists an NPN transformation τ = (τν ◦ τπ ◦ τϕ) such that τ(p) = κp. Now let κp′ be an MMP of
κp w.r.t. some criterion c ∈ Z2k . Since τ−1(κp) = p, Theorem 3.2 ensures us that τ−1(κp′) ∈ [p]σ .
Hence, we are one step closer to converting the MMP solution of the canonical form into an MMP

solution for a member of the class. The final question is whether τ−1(κp′) is a minimum w.r.t. the
cost function defined by criterion c. We introduce the following notions of invariance to answer this.

Definition 3.7 (PN-invariant criterion). Let p ∈ Z2k be an MP, τπ be an input permutation, and τν be
an output polarity assignment. A criterion vector c ∈ Z2k is PN-invariant if

∥c⊙ p∥1 = ∥c⊙ (τν ◦ τπ)(p)∥1. (9)

Lemma 3.2 (Uniform & degree criterions are PN-invariant). cunik and cdegk are PN-invariant.

If a criterion is PN-invariant, it means that the MMP cost function of MP p will not change when we
apply input permutation and output negation transformations on p. However, it says nothing about
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input negation transformations τϕ. Consequently, if κp′ is an MMP w.r.t. either the degree or uniform
criterion, we cannot say for certain that τ−1(κp′) = (τν ◦ τπ ◦ τϕ)−1(κp′) is an MMP of p, since τ−1

ϕ

is being applied. This suggests we should apply the inverse phase assignment τ−1
ϕ before finding an

MMP. This idea is captured in the following two theorems.

Theorem 3.3 (Inverse NPN transformation). Let τ = τν ◦ τπ ◦ τϕ be an NPN transformation. Then
τ−1 = τν ◦ τπ−1 ◦ τπ(ϕ). We call τπ(ϕ) the permuted phase assignment.

Theorem 3.4 (Computing MMPs with NPN transformations under PN-invariant criterions). Let c ∈ Z2k

be a PN-invariant criterion, p, q ∈ Z2k be MPs of BFs such that p = (τν ◦ τπ)(q), and q′ ∈ [q]σ be an
MMP with respect to criterion c. Then p′ = (τν ◦ τπ)(q′) ∈ [p]σ is an MMP with respect to criterion c.

Using Theorem 3.3, we can firstly apply the permuted phase assignment to the canonical form
τπ(ϕ)(κp) = κ

τπ(ϕ)
p and then obtain an MMP of the resulting MP w.r.t. either the degree or uniform

criterion, which we denote κ
τπ(ϕ)

p′ . Now, since all the conditions of Theorem 3.4 are satisfied, comput-
ing (τν ◦ τπ−1)(κ

τπ(ϕ)

p′ ) results in an MMP for p (see Figure 4). Following these ideas, we propose an
optimization-objective-aware NPN classification algorithm for MP- and MMP-based technology mapping.
The complete algorithm, a formal analysis of its advantages over unique function caching, and the
time complexity of computing NPN canonical forms and transformations are provided in Appendix E.4.

3.3 ARCHITECTURE-AWARE LOSSLESS OPTIMIZATION

The previous section provides us with a technique for accelerating the acquisition of all MPs and MMPs

of BFs in a BN. We now consider how to use these two representations to optimize the two kinds
of NN architectures that result from the SOTA mapping procedure reviewed in § 2.2: unmerged and
layer-merged NNs. We begin by connecting this goal to the technology mapping discussed in § 2.2.

NN-based technology mapping from MP and MMP BNs. Let GF = (V,E) be a BN, VPI ⊆ V
denote the set of PIs, and ψp

F , ψ
p′

F : V → F , F = ∪Kk=0Z2k , be the labeling functions following
MP- and MMP-based technology mapping, respectively. Moreover, let M ⊆ V \ VPI be a subset
of vertices selected to be represented as MMPs. Then, if v /∈ M, its resulting two-layer NN is
of the form ζ(x) = W2σ(W1x + b1). If v ∈ M, its resulting two-layer NN is of the form
ζ ′(x) = σ(W2σ(W1x+ b1)). We consider three NN optimization algorithms for selectingM:

• optNone: no vertices in the BN are represented as MMPs (M = ∅). This results in no compression
and corresponds to the SOTA NN-based technology mapping solution of Gavier et al. (2023).

• optAll: all vertices in the BN are represented as MMPs (M = V \ VPI).
• optMaintainDepth: a subset of vertices are selected to be represented as MMPs such that the

depth of the resulting layer-merged NN does not increase (M⊆ V \ VPI).

Applications that seek maximal compression would choose optAll, whereas applications that
require latency (depth) constraints would choose optMaintainDepth. In the remainder of this
section, we develop an algorithm for optMaintainDepth. Suppose v ∈ V \ VPI is a non-PO
vertex on a longest path in GF . Then following inter-depth composition, v will be on a longest
path in the resulting layer-merged NN. Hence, if v were to be represented as an MMP, an additional
layer would be required to compute its output due to the addition of a threshold on its output neuron;
pushing all of v’s descendants forward, and thus increasing the depth of the layer-merged NN. (Note
we require v to be a non-PO vertex in this argument since POs do not have any successor to merge
with, and hence can always be represented as MMPs without increasing depth). In contrast, if v were
not on a longest path in GF , then the additional layer to compute v would not cause the depth of the
NN to increase. The following definition and lemma capture this insight.

Definition 3.8 (Leeway). The leeway of vertex v ∈ V in BN GF = (V,E) is defined as

leeway(v) = depth(GF )− depth(v)− lpl(v) ∈ N0, (10)

where lpl(v) denotes the length of the longest path from v to any PO in GF .

Lemma 3.3 (Zero leeway indicates membership in longest path). Let GF = (V,E) be a BN and
v ∈ V be a vertex. Then leeway(v) = 0 ⇐⇒ v is on a longest path in GF .

8
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(a) Reduction in connections (blue) and neurons (red) relative to the unmerged NN by optimizing all sub-NNs
with the proposed optAll algorithm. Both criterions achieve significant size reductions.
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(b) Reduction in connections and neurons relative to the layer-merged NN by optimizing a subset of sub-NNs
selected by the proposed optMaintainDepth algorithm. The size of the layer-merged NN is able to be
reduced without increasing its depth. The degree criterion leads to larger reduction.

Figure 5: Neural network (NN) lossless optimization with respect to the uniform (cuni) and degree
(cdeg) criterions for minimal multilinear polynomials (MMPs) (see Definition 3.1). We find that the
size (both in terms of connections and neurons) of unmerged (a) and layer-merged (b) NNs can be
reduced by optimizing the sub-NN representations via MMPs. NN depths are shown in gold. Circuit
sizes are shown in parentheses in terms of the number of binary logic gates.

Since GF = (V,E) is a DAG, computing the leeway for all vertices can be done in time O(V +E).
This lets us propose an O(V (V + E)) time algorithm for optMaintainDepth that repeatedly
selects vertices that have positive leeway (i.e., are not on a longest path). Each time a vertex is
selected to be represented as an MMP, the algorithm augments the graph by adding a predecessor
hidden vertex to simulate the increase in path length for all paths containing this vertex. This ensures
the depth of the optimized NN is the same as the layer-merged NN. In Appendix D we present the
complete algorithm and illustrate it with a figure.

4 RESULTS

We evaluate the proposed architecture- and objective-aware optimization algorithms on four BNs

derived from digital circuits: uart, sha3, ecg, and aes (see Appendix F for details). In Ap-
pendix G.2, we report results on additional BNs to provide a comprehensive analysis. Experiments
were conducted on an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz with 196 GB RAM. We use
the algorithm proposed by Zhou et al. (2020) to compute NPN transformations and canonical forms.
As the mapping procedure is deterministic, we only show statistical significance for timing results.

4.1 ARCHITECTURE-AWARE LOSSLESS OPTIMIZATION OF NEURAL NETWORKS

We consider two settings under which to apply the architecture-aware lossless optimization algorithms.
The first setting considers optimizing the unmerged NN that results from NN-based technology mapping.
In this case, we apply the optAll optimization algorithm to evaluate, without depth constraint,
how many neurons and connections can be removed from the NN while maintaining functional
equivalence (see Figure 5a). The second setting considers optimizing the layer-merged NN. We apply
the optMaintainDepth optimization algorithm to see how many neurons and connections can
be removed from the NN while maintaining both its depth and functional equivalence (see Figure 5b).
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Figure 6: Accelerating neural network (NN) optimization with Negation-Permutation-Negation (NPN)
classification. The optimized NN representation of a Boolean network (BN) with vertices associated
with k-input truth tables, 1 ≤ k ≤ K, requires computing the multilinear polynomial (MP) and
obtaining a minimal MP (MMP) for each vertex. Naive (blue) solves each vertex independently, while
Cached (red) does so per unique function. NPN classes (green) solves using the proposed objective-
aware NPN classification algorithm. We report the optimization time for MP- and MMP-based technology
mapping w.r.t. the uniform (cuni) and degree (cdeg) criterions. NPN classes results in consistent
speedups under both MMP criterions, achieving 34.3× for sha3 (K = 10, cuni) relative to Naive
and 5.9× for aes (K = 11, cdeg) relative to Cached. Lines and error bars denote sample mean and
standard deviation over 3 trials. Circuit sizes are shown in parentheses in terms of number of binary
logic gates. Naive (uart, K = 11) and (aes, K = 11) not reported due to compute constraints.

We note that in Figure 5, the SOTA solution of Gavier et al. (2023) corresponds to 100% connections
and 100% neurons. In the first setting, optAll significantly optimizes the structure of the NN,
reducing the connections and neurons by up to 70% and 60%, respectively. In the second, depth-
constrained, setting, optMaintainDepth reduces the connections and neurons by up to 50% and
20%, respectively. We observe that the degree criterion consistently results in fewer connections and
neurons than when optimizing with the uniform criterion.

4.2 ACCELERATING OPTIMIZATION USING SHARED REPRESENTATIONS

Here we apply the objective-aware NPN classification algorithm from § 3.2 to accelerate NN opti-
mization. Due to lack of prior work, we define two baselines for comparison. Naive computes the
MP and obtains an MMP per vertex in BN GFf

, whereas Cached does so per unique BF. NPN classes
implements the proposed NPN classification algorithm to compute MPs and obtain MMPs. See Figure 6.
We found that when the BN or K is small, NPN classes is competitive with Cached. However, for larger
circuits and K ≥ 4, NPN classes consistently accelerates the optimization time in comparison to both
baselines, independent of the MMP criterion used. In particular, the greatest speedup of 34.3× was
achieved for sha3 (K = 10, cuni) relative to Naive, and a speedup of 5.9× was achieved for the
largest circuit aes (K = 11, cdeg) relative to Cached (we analyze this result in Appendix G.3).

For larger BNs, we observed that the optimization time starts high for smallK, lessens for intermediate
K, and then increases again for large K. When the BN is large and K small, there is a relatively large
number of vertices in GFf

= (V,E). Consequently, the mapping time is dominated by iterating over
V . In contrast, for large K, although GFf

has fewer vertices, the mapping time increases due to the
runtime of ttToMP and mpToMMP. Intermediate K avoids both extremes.

5 CONCLUSION

In this paper, we proposed techniques for optimizing the NN representation of a BN. Realizing the
NN representation is composed of various sub-NNs, we began by establishing a relationship between
MPs and sub-NN size, allowing us to compress sub-NNs by minimizing the MP representation. Next,
to accelerate this minimization, we introduced an objective-aware algorithm to exploit the shared
structure in optimization solutions among the members of an NPN equivalence class. Finally, we
integrated these insights into architecture-aware lossless compression algorithms that allow for
NN optimization in both depth constrained and unconstrained settings. Our experimental results
demonstrate that our methods lead to significant optimization in NN size, as well as consistent speedups
in the optimization process. Broader impacts of our work are further discussed in Appendix I.
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A APPENDIX OUTLINE

This appendix has the following order. In Appendix B, we define the truth table and multilinear
polynomial (MP) representations of Boolean functions (BFs), and show how these representations
are related via linear transformations. In Appendix C, we define the ∼σ relation between BFs to
capture the notion of equivalence under threshold and prove that it is an equivalence relation. We
proceed to define a minimal MP (MMP) representation of a BF in terms of σ equivalence classes, and
by proving that linear constraints determine a σ equivalence class, show that such a representation
can be obtained by solving an integer linear program. In Appendix D, we define various network
compression algorithms that incorporate MMPs into neural-network-based technology mapping. We
present an O(V (V +E)) time algorithm that greedily selects vertices to be represented as MMPs while
ensuring the resulting layer-merged neural network depth does not increase. In Appendix E, we define
Negation-Permutation-Negation (NPN) transformations and prove how these transformations act on
MPs. In Appendix E.1, we prove that the inverse NPN transformation can be computed in a non-standard
order, a result relevant for reusing solutions to MMPs. In Appendix E.2, we prove that the functions
in the σ equivalence classes of two NPN equivalent functions are related via NPN transformations.
This result is applied in Appendix E.3, where we define the notion of PN-invariant criterions for
MMPs, and prove that MMPs under PN-invariant criterions can be computed from other MMPs using
NPN transformations. In Appendix E.4, we use these results to define an objective-aware algorithm
based on NPN classification for MP- and MMP-based technology mapping that computes MP and MMPs

via NPN canonical forms to minimize the number of calls to procedures requiring exponential runtime.
Finally, Appendix F details the the circuits and automata used in experiments, and Appendix G
presents additional results and analyses. Appendix H presents the synthesized neural networks (NNs)
for Figure 7, and Appendix I concludes with the broader impacts of our work.
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Table 1: Outline of the key definitions, statements and algorithms covered in the appendix. Hyperlinks
provide a correspondence between definitions and statements in the main paper and in the appendix.

Definition/Statement Main paper Appendix

Boolean function (BF) Definition 2.1 Definition B.1
Truth table representation of a BF Definition 2.2 Definition B.3
Multilinear polynomial (MP) representation of a BF Definition 2.3 Definition B.4
The ∼σ relation Definition 3.2 Definition C.2
Minimal MP (MMP) representation of a BF Definition 3.3 Definition C.4
Uniform criterion Definition 3.1 Definition C.5
Degree criterion Definition 3.1 Definition C.6
Boolean network (BN) Definition 2.4 Definition D.1
Leeway Definition 3.8 Definition D.3
Negation-Permutation-Negation (NPN) transforma-
tion

Definition 3.4 Definition E.1

PN-invariant criterion Definition 3.7 Definition E.5

The ∼σ relation is an equivalence relation Lemma C.1
Linear constraints determine a σ equivalence class Theorem 3.1 Theorem C.1
Obtaining an MMP representation of a BF Corollary 3.1 Corollary C.1
Maintain depth network reduction algorithm Algorithm 1
Inverse NPN transformation Theorem 3.3 Theorem E.1
NPN transformations between σ equivalence classes Theorem 3.2 Theorem E.2
Uniform criterion is PN-invariant Lemma 3.2 Lemma E.13
Degree criterion is PN-invariant Lemma 3.2 Lemma E.14
Computing MMPs with NPN transformations under
PN-invariant criterions

Theorem 3.4 Theorem E.3

MP- and MMP-based technology mapping with NPN

caching
Algorithm 4

B BACKGROUND

Remark B.1. We denote the set of binary numbers as B = {0, 1}, the set of natural numbers (including
0) as N0 = {0, 1, 2, . . . }, and the set of integers as Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
Definition B.1 (Boolean function). A k-input, (single-output) Boolean function (BF) is a function
f : Bk → B, x 7→ f(x), where x = (x1, . . . , xk) is a bit vector representing the k input variables
xi ∈ B, 1 ≤ i ≤ k. If bit vector x, when interpreted as binary number (xkxk−1 . . . x1)2, encodes
value m ∈ {0, 1 . . . , 2k − 1}, we write x(m).
Example B.1. If k = 3, x(4) is the bit vector (x1, x2, x3) = (0, 0, 1) since its interpretation as a
binary number (x3x2x1)2 = (100)2 encodes the value 4.
Definition B.2 (Multilinear polynomial). A degree-k multilinear polynomial (MP) is a polynomial in
variables x1, . . . , xk where no variable occurs to a power of 2 or higher.
Example B.2. If k = 2, p(x1, x2) = x1 + x2 − x1x2 is a MP whereas q(x1, x2) = x21 + x22 is not.
Definition B.3 (Truth table representation of a BF). The truth table (TT) representation is an expression
of BF f : Bk → B in the basis of the indicator functions 1a : Bk → B, a ∈ Bk,

1a(x) =

{
1, if x = a,

0, otherwise.
(11)

The expression of f in this basis is

f(x) =
∑
a∈Bk

f(a)1a(x). (12)

The truth table vector f ∈ B2k of f is the 2k-dimensional vector of coefficients f(a) in the above
linear combination of indicator functions. Hence,

f =
∑
a∈Bk

f(a)1a, (13)
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where 1a ∈ B2k denotes the vector with a 1 in the i-th coordinate, 0 ≤ i ≤ 2k− 1, and 0’s elsewhere,
if a = a(i).

Example B.3. Let f(x1, x2) = x1 ⇒ x2 = x̄1 ∨ x2. Then the truth table representation of f is the
expression

f(x1, x2) =
∑
a∈B2

f(a)1a(x1, x2)

= f(0, 0)1(0,0)(x1, x2) + f(1, 0)1(1,0)(x1, x2) + f(0, 1)1(0,1)(x1, x2) + f(1, 1)1(1,1)(x1, x2)

= (1)1(0,0)(x1, x2) + (0)1(1,0)(x1, x2) + (1)1(0,1)(x1, x2) + (1)1(1,1)(x1, x2),

and the truth table vector f ∈ B22 of f is

f =
∑
a∈B2

f(a)1a = f(0, 0)

100
0

+ f(1, 0)

010
0

+ f(0, 1)

001
0

+ f(1, 1)

000
1

 =

f(0, 0)f(1, 0)
f(0, 1)
f(1, 1)

 =

101
1


Definition B.4 (Multilinear polynomial representation of a BF). The MP representation is an expression
of BF f : Bk → B in the basis of the logical AND functions χS : Zk → Z, S ∈ P({1, . . . , k}),
where P(·) denotes the power set,

χS(x) = χS(x1, . . . , xk) =

{
1, if S = ∅,∏

i∈S xi, otherwise.
(14)

The expression of f in this basis, which we denote p : Zk → Z, is

p(x) =
∑

S∈P({1,...,k})

f̂(S)χS(x), (15)

where f̂(S) ∈ Z and ∀x ∈ Bk
(
f(x) = p(x)

)
. The MP vector p ∈ Z2k of f is the 2k-dimensional

vector of coefficients f̂(S) in the above linear combination of logical AND functions. Hence,

p =
∑

S∈P({1,...,k})

f̂(S)χS , (16)

where χS ∈ Z2k denotes the vector with a 1 in coordinate I(S), 0 ≤ I(S) ≤ 2k − 1,
and 0’s elsewhere, and I : P({1, . . . , k}) → {0, . . . 2k − 1} is a bijection with specification
(∅, 0), ({1}, 1), ({2}, 2), ({1, 2}, 3), ({3}, 4), . . . , ({1, . . . , k}, 2k − 1).

Remark B.2 (Obtaining coefficients f̂(S) in the MP representation). We briefly mention one method
for obtaining the coefficients in the MP representation of BF f : Bk → B, which also serves as a
construction proof for the MP representation. Firstly, we define the indicator MPs p1a : Zk → Z,
a ∈ Bk,

p1a(x) =

k∏
i=1

(1− ai − xi + 2aixi).

The indicator MPs have the property that for all x ∈ Bk, p1a(x) equals 1 if x = a and 0 otherwise.
Let p : Zk → Z be the MP

p(x) =
∑
a∈Bk

f(a)p1a(x), (17)

then ∀x ∈ Bk
(
f(x) = p(x)

)
(follows from Equation 12). Since the indicator MPs p1a(x) are

multilinear, simplifying p(x) will produce a MP with the coefficients f̂(S) ∈ Z, S ∈ P({1, . . . , k}),
in the MP representation of f . Lemma B.1 generalizes this conversion procedure.
Example B.4. Let f(x1, x2) = x1 ⇒ x2 = x̄1 ∨ x2. In Example B.3, we found that the truth table
representation of f is the expression

f(x1, x2) =
∑
a∈B2

f(a)1a(x1, x2)

= (1)1(0,0)(x1, x2) + (0)1(1,0)(x1, x2) + (1)1(0,1)(x1, x2) + (1)1(1,1)(x1, x2).
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Let p : Zk → Z be the MP p(x1, x2) =
∑

a∈B2 f(a)p1a(x1, x2), then

p(x1, x2) =
∑
a∈B2

f(a)p1a(x1, x2)

= (1)p1(0,0)(x1, x2) + (0)p1(1,0)(x1, x2) + (1)p1(0,1)(x1, x2) + (1)p1(1,1)(x1, x2)

= (1)(1− x1)(1− x2) + (0)(x1)(1− x2) + (1)(1− x1)(x2) + (1)(x1)(x2)

= (1− x1 − x2 + x1x2) + (0) + (x2 − x1x2) + (x1x2)

= (1)(1) + (−1)(x1) + (0)(x2) + (1)(x1x2)

= (1)χ∅ + (−1)χ{1} + (0)χ{2} + (1)χ{1,2}

=
∑

S∈P({1,2})

f̂(S)χS(x1, x2),

and
∑

S∈P({1,2}) f̂(S)χS(x1, x2) is the MP representation of f . The MP vector p ∈ Z22 of f is

p =
∑

S∈P({1,2})

f̂(S)χS = f̂(∅)

100
0

+ f̂({1})

010
0

+ f̂({2})

001
0

+ f̂({1, 2})

000
1



=


f̂(∅)
f̂({1})
f̂({2})
f̂({1, 2})

 =

 1
−1
0
1


Definition B.5 (Cofactors of a BF and its MP representation). Let i ∈ {1, . . . , k}, and f : Bk → B be
a BF with MP representation p : Zk → Z. The positive and negative cofactors of f with respect to xi
are the BFs fxi , fx̄i : Bk−1 → B, where

fxi = f(. . . , xi = 1, . . . ), fx̄i = f(. . . , xi = 0, . . . ). (18)

Similarly, the positive and negative cofactors of p with respect to xi are the MPs pxi
, px̄i

: Zk−1 → Z,
where

pxi
= p(. . . , xi = 1, . . . ), px̄i

= p(. . . , xi = 0, . . . ). (19)

Note that pxi
and px̄i

are the MP representations of fxi
and fx̄i

, respectively.

Definition B.6 (Fourier transformation matrix). Let k ∈ N0 and Tk ∈ Z2k×2k be a matrix with
specification

Tk =


[
1
]
, k = 0,[

Tk−1, Ok−1

−Tk−1, Tk−1

]
, k > 0,

(20)

where Ok−1 ∈ B2k−1×2k−1

denotes the all zeros matrix. We call Tk the k-th Fourier transformation
matrix.

Lemma B.1 (Computing the MP vector from the truth table vector). Let k ∈ N0, f : Bk → B be a
BF with truth table vector f ∈ B2k and MP vector p ∈ Z2k , and Tk ∈ Z2k×2k be the k-th Fourier
transformation matrix. Then Tkf = p.

Proof. We prove this statement by induction on k ∈ N0.

Basis (k = 0). Let f : B0 → B be the constant BF f() = c, where c ∈ B. Then f = [c] and p = [c].
Thus, as T0 = [1], T0f = p.
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Inductive step (assume k − 1). Let f : Bk → B be a BF. Following Boole’s expansion theorem,

f(x) =
∑
a∈Bk

f(a)1a(x) (21)

=
∑

a=(x1,...,xk−1,0)∈Bk

f(a)1a(x) (22)

+
∑

a=(x1,...,xk−1,1)∈Bk

f(a)1a(x) (23)

= 1(0)(xk)
( ∑

a=(x1,...,xk−1)∈Bk−1

f(a, 0)1a(x1, . . . , xk−1)
)

(24)

+ 1(1)(xk)
( ∑

a=(x1,...,xk−1)∈Bk−1

f(a, 1)1a(x1, . . . , xk−1)
)

(25)

= 1(0)(xk)fx̄k
(x1, . . . , xk−1) + 1(1)(xk)fxk

(x1, . . . , xk−1) (26)

Hence, following the discussion in Example B.4, MP p : Zk → Z with specification

p(x) = p1(0)(xk)
( ∑

a=(x1,...,xk−1)∈Bk−1

f(a, 0)p1a(x1, . . . , xk−1)
)

(27)

+ p1(1)(xk)
( ∑

a=(x1,...,xk−1)∈Bk−1

f(a, 1)p1a(x1, . . . , xk−1)
)

(28)

= p1(0)(xk)pxk
(x1, . . . , xk−1) + p1(1)(xk)px̄k

(x1, . . . , xk−1) (29)

= (1− xk)px̄k
(x1, . . . , xk−1) + (xk)pxk

(x1, . . . , xk−1) (30)

= px̄k
(x1, . . . , xk−1) +

(
pxk

(x1, . . . , xk−1)− px̄k
(x1, . . . , xk−1)

)
xk (31)

has the property that ∀x ∈ Bk
(
f(x) = p(x)

)
. We next consider the truth table vector f ∈ B2k and

MP vector p ∈ Z2k of f . From the above analysis, they must have specifications

f =

[
f x̄k

fxk

]
, p =

[
px̄k

pxk
− px̄k

]
, (32)

where fxk
,f x̄k

∈ B2k−1

and pxk
,px̄k

∈ Z2k−1

. Thus, by the inductive hypothesis for k − 1, the
following sequence of equalities completes the lemma,

Tkf =

[
Tk−1, Ok−1

−Tk−1, Tk−1

] [
f x̄k

fxk

]
=

[
px̄k

pxk
− px̄k

]
= p. (33)

Example B.5. We can now find the MP vector from Example B.4 using matrix multiplication. Let
f(x1, x2) = x1 ⇒ x2 = x̄1 ∨ x2 be a BF with truth table vector f ∈ B22 and MP vector p ∈ Z22 .
Following Example B.3,

f =
∑
a∈B2

f(a)1a =

101
1

 .
Following Lemma B.1, we have

p =
∑

S∈P({1,...,k})

f̂(S)χS ,= T2f =

 1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1


101
1

 =

 1
−1
0
1

 ,
which was our result for the MP vector of f in Example B.4.
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Definition B.7 (Sierpiński matrix). Let k ∈ N0 and Sk ∈ B2k×2k be a matrix with specification

Sk =


[
1
]
, k = 0,[

Sk−1, Ok−1

Sk−1, Sk−1

]
, k > 0,

(34)

where Ok−1 ∈ B2k−1×2k−1

denotes the all zeros matrix. We call Sk the k-th Sierpiński matrix.
Lemma B.2 (The Sierpiński matrix is the inverse of the Fourier transformation matrix). Let k ∈ N0,
Tk ∈ Z2k×2k be the k-th Fourier transformation matrix, and Sk ∈ B2k×2k be the k-th Sierpiński
matrix. Then SkTk = Ik, where Ik ∈ B2k×2k is the identity matrix.

Proof. We prove this statement by induction on k ∈ N0.

Basis (k = 0). S0T0 = [1] [1] = [1] = I0.

Inductive step (assume SkTk = Ik).

Sk+1Tk+1 =

[
Sk, Ok

Sk, Sk

] [
Tk, Ok

−Tk, Tk

]
=

[
SkTk, Ok

Ok, SkTk

]
=

[
Ik, Ok

Ok, Ik

]
= Ik+1. (35)

Corollary B.1 (Computing the truth table vector from the MP vector). Let k ∈ N0, f : Bk → B be a
BF with truth table vector f ∈ B2k and MP vector p ∈ Z2k , and Sk ∈ B2k×2k be the k-th Sierpiński
matrix. Then Skp = f .

Proof.

Skp = SkTkf = f . (36)

where Tk ∈ Z2k×2k is the k-th Fourier transformation matrix, and the first equality follows from
Lemma B.1.

Example B.6. We can now find the truth table vector from Example B.3 using matrix multiplication.
Let f(x1, x2) = x1 ⇒ x2 = x̄1 ∨ x2 be a BF with truth table vector f ∈ B22 and MP vector p ∈ Z22 .
Following Example B.5,

p =
∑

S∈P({1,...,k})

f̂(S)χS =

 1
−1
0
1

 .
Following Corollary B.1, we have

f =
∑
a∈B2

f(a)1a = S2p =

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


 1
−1
0
1

 =

101
1

 ,
which was our result for the truth table vector of f in Example B.3.
Remark B.3. In the following sections, we refer to the truth table (resp. MP) representation and the
truth table (resp. MP) vector of a BF interchangeably. Boldface notation is used for vectors in order to
distinguish between the objects.
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C MINIMAL MULTILINEAR POLYNOMIAL REPRESENTATION

Definition C.1 (Heaviside step function). Let σ : Z→ B be a function with specification

σ(x) =

{
1, x > 0,

0, x ≤ 0.
(37)

We extend the definition to σ : Z2k → B2k , where (σ(x))i = σ(xi) (i.e., it is applied element-wise).

Definition C.2 (The ∼σ relation). Let p, q ∈ Z2k be MPs. We define ∼σ: Z2k × Z2k → B as the
relation

p ∼σ q ⇐⇒ ∀x ∈ Bk
(
(σ ◦ p)(x) = (σ ◦ q)(x)

)
. (38)

Example C.1. Let f(x1, x2) = x1 ⇒ x2 = x̄1 ∨ x2 be a BF with MP representation p(x1, x2) =
1− x1 + x1x2 and MP vector p = [1,−1, 0, 1]. Moreover, let q(x1, x2) = 1− x1 + x2 be a MP with
MP vector q = [1,−1, 1, 0]. Then p ∼σ q, as

p(0, 0) = 1, q(0, 0) = 1,

p(1, 0) = 0, q(1, 0) = 0,

p(0, 1) = 1, q(0, 1) = 2,

p(1, 1) = 1, q(1, 1) = 1.

Lemma C.1. ∼σ is an equivalence relation.

Proof. We show the ∼σ relation is reflexive, symmetric and transitive. Let p, q, r ∈ Z2k be MPs.

1. ∼σ is reflexive.

p ∼σ p ≡ ∀x ∈ Bk
(
(σ ◦ p)(x) = (σ ◦ p)(x)

)
(39)

≡ ∀x ∈ Bk
(
⊤
)

(40)

≡ ⊤ (41)

2. ∼σ is symmetric.

p ∼σ q ≡ ∀x ∈ Bk
(
(σ ◦ p)(x) = (σ ◦ q)(x)

)
(42)

≡ ∀x ∈ Bk
(
(σ ◦ q)(x) = (σ ◦ p)(x)

)
(43)

≡ q ∼σ p (44)

3. ∼σ is transitive.

p ∼σq ∧ q ∼σ r

≡ ∀x ∈ Bk
(
(σ ◦ p)(x) = (σ ◦ q)(x)

)
∧ ∀x ∈ Bk

(
(σ ◦ q)(x) = (σ ◦ r)(x)

)
(45)

≡ ∀x ∈ Bk
((
(σ ◦ p)(x) = (σ ◦ q)(x)

)
∧
(
(σ ◦ q)(x) = (σ ◦ r)(x)

))
(46)

≡ ∀x ∈ Bk
(
(σ ◦ p)(x) = (σ ◦ r)(x)

)
(47)

≡ p ∼σ r (48)

Definition C.3 (σ equivalence class). The σ equivalence class of MP p ∈ Z2k , denoted [p]σ, is the
set {q ∈ Z2k | p ∼σ q}.
Definition C.4 (Minimal multilinear polynomial representation of a BF). Let f : Bk → B be a BF

with MP p ∈ Z2k , and C : Z2k → N0 be a cost function. An minimal multilinear polynomial (MMP)
representation of f with respect to C is an MP p′ ∈ Z2k where

p′ ∈ argmin
q∈[p]σ

C(q). (49)
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Example C.2. Let f(x1, x2) = x1 ∨ x2 be a BF with MP representation p(x1, x2) = x1 + x2 − x1x2
and MP vector p = [0, 1, 1,−1]. Moreover, let p′(x1, x2) = x1 + x2 be a MP with MP vector
p′ = [0, 1, 1, 0]. Then, under the assumption that C(q) represents the number of terms in MP q,

p′ ∈ argmin
q∈[p]σ

C(q), (50)

and p′ is an MMP representation of f with respect to C.

Definition C.5 (Uniform criterion). Let k ∈ N0 and cunik ∈ B2k be a vector with specification

(cunik )i =

{
0, i = 0,

1, i > 0.
(51)

Example C.3. cuni3 ∈ B23 = [0, 1, 1, 1, 1, 1, 1, 1]
⊺.

Definition C.6 (Degree criterion). Let k ∈ N0 and cdegk ∈ Z2k be a vector with specification

cdegk =


[
0
]
, k = 0,[

cdegk−1, cdegk−1 + 1k−1

]⊺
, k > 0,

(52)

where 1k−1 ∈ B2k−1

denotes the all ones vector.

Example C.4. cdeg3 ∈ Z23 = [0, 1, 1, 2, 1, 2, 2, 3]
⊺.

Lemma C.2 (Cost functions for MMP). Let q ∈ Z2k be a MP vector, c ∈ Z2k , and C : Z2k → N0 be
a cost function with specification C(q) = ∥q∥0,c , where ∥·∥0,c denotes the zero-norm weighted by
vector c. Then,

1. C(q) = ∥q∥0,cuni
k

is the number of non-constant monomials in the MP.

2. C(q) = ∥q∥0,cdeg
k

is the sum of monomial degrees in the MP.

Proof. Let I(S) be the bijection specified in Definition B.4 to index the components of the MP vector,
and 10 : Z→ B be an indicator function where 10(x) = 0 ⇐⇒ x = 0. Then 1. follows from the
definition of the weighted zero-norm:

C(q) = ∥q∥0,cuni
k

(53)

=
∑

S∈P({1,...,k})

(cunik )I(S)

(
1− 10(f̂(S))

)
(weighted zero-norm) (54)

= (cunik )I(∅)

(
1− 10(f̂(∅))

)
+

∑
S∈P({1,...,k})\{∅}

(cunik )I(S)

(
1− 10(f̂(S))

)
(55)

=
∑

S∈P({1,...,k})\{∅}

(
1− 10(f̂(S))

)
. (56)

Similarly, 2. follows from the same definitions. We prove this statement by induction on k ∈ N0.

Basis (k = 0). C(q) = ∥q∥0,cdeg
0

= (cdeg0 )I(∅)

(
1− 10(f̂(∅))

)
= (cdeg0 )0

(
1− 10(f̂(∅))

)
= 0.

Inductive step (assume k − 1). Let 1k−1 ∈ B2k−1

denotes the all ones vector. Recall from the proof
of Lemma B.1 that q = [qx̄k

, qxk
− qx̄k

]⊺, where qx̄k
and qxk

are the MP vectors of the cofactors of
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the MP vector q. For q ∈ Z2k we have,

C(q) = ∥q∥0,cdeg
k

(57)

=
∑

S∈P({1,...,k})

(cdegk )I(S)

(
1− 10(f̂(S))

)
(58)

=
∑

S∈P({1,...,k−1})

(cdegk−1)I(S)

(
1− 10(f̂(S))

)
+

∑
S∈P({1,...,k−1})

(
(cdegk−1)I(S) + 1

)(
1− 10(f̂(S ∪ {k}))

)
(59)

= ∥qx̄k
∥0,cdeg

k−1
+ ∥qxk

− qx̄k
∥0,cdeg

k−1
+ ∥qxk

− qx̄k
∥0,1k−1

. (60)

Where, by the inductive hypothesis, the first term corresponds to summing the degree of each
monomial in q not containing xk, and the second term corresponds to summing the degree minus
one of each monomial in q containing xk. The third term corresponds to the sum of monomials
in q containing xk. Hence, the second and third term correspond to summing the degree of each
monomial in q containing xk.

Theorem C.1 (Linear constraints determine a σ equivalence class). Let p ∈ Z2k be an MP, f =

σ(Skp) ∈ B2k , b = 1k − 2f ∈ Z2k , and A = 2(diag(b)Sk) ∈ Z2k×2k , where Sk ∈ B2k×2k is the
k-th Sierpiński matrix, 1k ∈ B2k denotes the all ones vector, and σ is the Heaviside step function.
Then, for MP q ∈ Z2k ,

q ∈ [p]σ ⇐⇒ Aq ≤ b. (61)

Proof. Let g = Skq ∈ Z2k . We begin by expanding the expression Aq ≤ b:

Aq ≤ b

≡ 2(diag(b)Sk)q ≤ 1k − 2f (62)
≡ 2 · diag(b)Skq ≤ 1k − 2f (63)
≡ 2 · diag(1k − 2f)g ≤ 1k − 2f (64)

≡ 2 ·


1− 2f(a(0)) 0 · · · 0

0 1− 2f(a(1)) · · · 0
...

...
. . .

...
0 0 · · · 1− 2f(a(2k−1))




g(a(0))
g(a(1))

...
g(a(2k−1))

 ≤


1− 2f(a(0))
1− 2f(a(1))

...
1− 2f(a(2k−1))


(65)

≡ 2 ·


(1− 2f(a(0)))g(a(0))
(1− 2f(a(1)))g(a(1))

...
(1− 2f(a(2k−1)))g(a(2k−1))

 ≤


1− 2f(a(0))
1− 2f(a(1))

...
1− 2f(a(2k−1))

 (66)

≡ ∀i ∈ {0, 1, . . . , 2k − 1}
(
2(1− 2f(a(i)))g(a(i)) ≤ 1− 2f(a(i))

)
. (67)

We next derive an equivalence for q ∈ [p]σ in terms of the k-th Sierpiński matrix:

q ∈ [p]σ ≡ p ∼σ q (68)

≡ ∀x ∈ Bk
(
(σ ◦ p)(x) = (σ ◦ q)(x)

)
(69)

≡ ∀i ∈ {0, 1, . . . , 2k − 1}
(
σ((Skp)i) = σ((Skq)i)

)
(70)

≡ ∀i ∈ {0, 1, . . . , 2k − 1}
(
(σ(Skp))i = σ((Skq)i)

)
(71)

≡ ∀i ∈ {0, 1, . . . , 2k − 1}
(
f(a(i)) = σ(g(a(i)))

)
. (72)
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We now show both directions.
1. (q ∈ [p]σ =⇒ Aq ≤ b): If q ∈ [p]σ , then by Equation 72,

∀i ∈ {0, 1, . . . , 2k − 1}
(
f(a(i)) = σ(g(a(i)))

)
. (73)

Since f(a(i)) ∈ B, either f(a(i)) = 0 or f(a(i)) = 1. Taking f(a(i)) = 0, we have σ(g(a(i))) = 0
which implies g(a(i)) ≤ 0 and that 2g(a(i)) ≤ 1 as g(a(i)) ∈ Z. Taking f(a(i)) = 1, we have
σ(g(a(i))) = 1 which implies g(a(i)) > 0 and that 2g(a(i)) ≥ 1 as g(a(i)) ∈ Z. Consequently,

∀i ∈ {0, 1, . . . , 2k − 1}
(
f(a(i)) = σ(g(a(i)))

)
=⇒ ∀i ∈ {0, 1, . . . , 2k − 1}

(
2(1− 2f(a(i)))g(a(i)) ≤ 1− 2f(a(i))

)
. (74)

By Equation 67 we conclude Aq ≤ b.

2. (Aq ≤ b =⇒ q ∈ [p]σ): If Aq ≤ b, then by Equation 67,

∀i ∈ {0, 1, . . . , 2k − 1}
(
2(1− 2f(a(i)))g(a(i)) ≤ 1− 2f(a(i))

)
. (75)

Since f(a(i)) ∈ B, either f(a(i)) = 0 or f(a(i)) = 1. Taking f(a(i)) = 0, we have 2g(a(i)) ≤ 1
which implies g(a(i)) ≤ 0 as g(a(i)) ∈ Z, meaning σ(g(a(i))) = 0 = f(a(i)). Taking f(a(i)) = 1,
we have 2g(a(i)) ≥ 1 which implies g(a(i)) ≥ 1 as g(a(i)) ∈ Z, meaning σ(g(a(i))) = 1 = f(a(i)).
Consequently,

∀i ∈ {0, 1, . . . , 2k − 1}
(
2(1− 2f(a(i)))g(a(i)) ≤ 1− 2f(a(i))

)
=⇒ ∀i ∈ {0, 1, . . . , 2k − 1}

(
f(a(i)) = σ(g(a(i)))

)
. (76)

By Equation 72 we conclude q ∈ [p]σ .

Remark C.1. Lemma C.2 and Theorem C.1 allow us to formulate the MMP problem as an ℓ0-norm
optimization problem. These problems are known to be non-convex and NP-hard (Feng et al., 2013),
so it is not possible to use conventional convex optimization methods to find optimal solutions.
However, as it is common in optimization problems, by relaxing the norm from ℓ0 to ℓ1, the cost
functions specified in Lemma C.2 become ∥q∥1,c = ∥c⊙ q∥1, resulting in a convex optimization
problem.

Example C.5. Let p = [0, 1, 1,−1]⊺ be a MP vector, and Cℓ : Z2k → N0 be a cost function with
specification Cℓ(q) = ∥q∥ℓ,cuni

k
. Following Theorem C.1, we can compute b = (1k − 2σ(Skp))

and A = 2(diag(b)Sk):

b =

 1
−1
−1
−1

 , A =

 2 0 0 0
−2 −2 0 0
−2 0 −2 0
−2 −2 −2 −2

 .
The MP vector that minimizes C0(q) such that Aq ≤ b is q = [0, 1, 1, 0]⊺, but it also minimizes
C1(q).

Example C.6. Let p = [1,−1, 0, 1]⊺ be an MP vector, and Cℓ : Z2k → N0 be a cost function with
specification Cℓ(q) = ∥q∥ℓ,cdeg

k
. Following Theorem C.1, we can compute b = (1k − 2σ(Skp))

and A = 2(diag(b)Sk):

b =

−11−1
−1

 , A =

−2 0 0 0
2 2 0 0
−2 0 −2 0
−2 −2 −2 −2

 .
The MP vector that minimizes C0(q) such that Aq ≤ b is q = [1,−1,−1, 0]⊺, but it also minimizes
C1(q).

Corollary C.1 (Obtaining an MMP representation of a BF). Let p ∈ Z2k be the MP of BF f : Bk → B,
f = Skp ∈ B2k , b = 1k − 2f ∈ Z2k , and A = 2(diag(b)Sk) ∈ Z2k×2k , where Sk ∈ B2k×2k is the
k-th Sierpiński matrix, 1k ∈ B2k denotes the all ones vector, and σ is the Heaviside step function.
Moreover, let C : Z2k → N0 have specification C(q) = ∥c⊙ q∥1, where c ∈ Z2k . Then the set of
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MMP representations of f with respect to C is equal to the solution set of the following integer linear
program:

minimize
q∈Z2k

C(q), (77)

subject to Aq ≤ b. (78)

Proof. This statement follows from Theorem C.1.

Remark C.2 (Runtime analysis for obtaining an MMP representation of a BF). 0-1 integer linear
programming, the decision problem in which variables are restricted to take on values in B and
only the constraints must be satisfied, is NP-complete (Karp, 1972). This implies integer linear
programming, the problem we solve to obtain an MMP representation of a BF, is NP-hard. We can also
observe that the number of variables, constraints, and possible coefficient values in the program all
grow according to O(2k).

Due to the problem being NP-hard, we bound the time complexity by considering a brute-force search
for an MMP under a model of computation in which addition, multiplication, inequality checking,
and computing the absolute value and indicator function all cost unit time. Let q ∈ Z2k , where
qi ∈ Q = {−2k−1, . . . , 2k−1} ⊆ Z, meaning qi can take on |Q| = 2k + 1 possible values.
Evaluating Aq ≤ b from Corollary C.1, to check if q is a feasible point, requires 22k+1 units of
time. Moreover, computing cost function ∥·∥0,c or ∥·∥1,c requires 2k+1 + 2k − 1 units of time.
Consequently, a brute-force search over all |Q|2k MMP candidates, checking feasibility with Aq ≤ b
and solution cost with either ∥·∥0,c or ∥·∥1,c, requires time

TmpToMMP(k) = |Q|2
k

· (22k+1 + 2k+1 + 2k − 1) (79)

= (2k + 1)2
k

· (22k+1 + 2k+1 + 2k − 1) (80)

≤ (2k + 2k)2
k

· (22k+1 · 22k+1) (81)

= (2k+1)2
k

· 22k+2 (82)

= 2k2
k+2k · 22k+2 (83)

= 2k2
k+2k+2k+2 (84)

= 2O(k2k) (85)

We note that while relaxing ∥·∥0,c to ∥·∥1,c does not reduce the asymptotic time complexity, in
practice it allows for the use of branch and bound algorithms that make use of linear program
subroutines over the reals. These algorithms tend to find solutions significantly faster than brute-force
search. Such a relaxation can however lead to suboptimal solutions. We discuss this point further
in Appendix C.1. We add that another relaxation would be to remove integer constraints, solve the
resulting linear program, and then round the solution coefficients to the nearest integer. This would
provide an algorithm with time complexity polynomial in 2k. However, since this kind of relaxation
can lead to infeasible solutions that would break functional equivalence, we did not consider it.

C.1 SUBOPTIMALITY OF ℓ1-RELAXATION IN MMP PROBLEMS

The weighted zero-norms ∥p∥0,cuni
k

and ∥p∥0,cdeg
k

correspond to the number of neurons and (layer

one) connections in the two-layer NN representation of MP p ∈ Z2k . Consequently, given that our
objective is to find NN representations of BNs with as few neurons and connections as possible, we
would like to find MMP representations of BFs that minimize these cost functions.

However, in Remark C.2, we saw that, in the worst case, solving such an optimization problem
requires a brute-force search, which is computationally intractable even for small k ∈ N. This
motivated the relaxation to the weighted one-norm ∥·∥1,c in our formulation of MMPs.

While a theoretical analysis of the consequences of this relaxation lies beyond the scope of this work,
we discuss some preliminary investigations on the topic of solution suboptimality.
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Table 2: The number (and percentage) of BFs for which the proposition in Equation 86 is true.

cuni cdeg

k # BFs Count (%) Count (%)

2 16 0 0.0 0 0.0
3 256 0 0.0 0 0.0
4 65536 180 0.3 557 0.8

Table 3: cuni4 - and cdeg4 -weighted zero- and one-norms for MP vector p0x635A ∈ Z24 and its corre-
sponding MMP vector p0x635A ∈ Z24 .

cuni cdeg

∥·∥0,cuni
4

∥·∥1,cuni
4

∥·∥0,cdeg
4

∥·∥1,cdeg
4

p0x635A 10 16 21 38

p′
0x635A 11 14 23 30

Difference -1 2 -2 8

Particularly, we consider the following question. Let p′ ∈ [p]σ be an MMP of MP p ∈ Z2k w.r.t. the
c-weighted one-norm ∥·∥1,c, where c ∈ {cuni, cdeg}. Is the following proposition ever true?

∥p∥1,c > ∥p′∥1,c ∧ ∥p∥0,c < ∥p′∥0,c. (86)

That is, by optimizing the MP representation of the BF w.r.t. the weighted one-norm, we increase the
value of the weighted zero-norm. In such a case, for the purposes of NN compression, we should
choose the MP over the MMP. (Note that the results reported do not do this, selecting MMPs based on the
value of the weighted one-norm). By iterating over all BFs for k ∈ {2, 3, 4}, we are able to answer
this question in the affirmative. See Table 2. We find that this proposition is not true (for the MMPs

found) for all BFs with k = 2 and k = 3 inputs. However, there is a small fraction of BFs with k = 4
inputs for which this proposition is true. We report one such function below.

Let f0x635A : B4 → B be the BF with truth table 0x635A. The MP representation of f0x635A is

p0x635A(x1, x2, x3, x4) = x4 + x3 + x1 − 2x3x4 − x2x4 − x1x4 − 2x1x3

+ 2x2x3x4 + 3x1x3x4 − 2x1x2x3x4. (87)

The sets of MMP representations of f0x635A with respect to ∥·∥1,cuni
4

and ∥·∥1,cdeg
4

have the following
polynomial in their intersection

p′0x635A(x1, x2, x3, x4) = +x4 + x3 + x1 − 2x3x4 − x2x4 + x2x3 − 2x1x3

+ x2x3x4 + 2x1x3x4 − x1x2x4 − x1x2x3. (88)

We report the weighted zero- and one-norms of the corresponding MP and MMP vectors in Table 3.
We see that under the cuni criterion, the MMP reduces the weighted one-norm by 2, but increases the
weighted zero-norm by 1, and that under the cdeg criterion, the MMP reduces the weighted one-norm
by 8, but increases the weighted zero-norm by 2. Hence, the weighted one-norm MMP is suboptimal
in comparison to the original MP in terms of the weighted zero-norm. In regard to the two-layer NN

representation of MMP p′0x635A, it would have one additional neuron and two additional connections
in its first layer in comparison to the two-layer NN representation of MP p0x635A.

We conclude this brief investigation by noting that there are many interesting questions in this
direction that remain unanswered, such as the effect of MMP selection based on the weighted zero-
norm (instead of the weighted one-norm) when considering the NN optimization algorithms optAll
and optMaintainDepth, and, as pointed out by a reviewer, the consideration of alternative
approximation methods for the weighted zero-norm MMP optimization problem.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D ARCHITECTURE-AWARE LOSSLESS OPTIMIZATION

Definition D.1 (Boolean network). A BN GF = (V,E) is a directed-acyclic graph (DAG), with
vertex labeling function ψ : V → F , that represents an n-input, m-output BF B : Bn → Bm. Vertices
with indegree zero are primary inputs (PI), and vertices with outdegree zero are primary outputs (PO).
The labeling function ψ assigns a single-output BF to each non-PI vertex in the graph. A directed
edge (u, v) ∈ E exists if the output of u’s BF is an input to v’s BF. The depth of vertex v ∈ V ,
denoted depth(v) ∈ N0, is the length of the longest path from any PI to v. The depth of a BN, denoted
depth(GF ), is the maximum vertex depth in the BN.

Remark D.1 (Types of NN optimization algorithms). Let GF = (V,E) be a BN and VPI ⊆ V denote
the set of PIs. NN optimization algorithms select a subset of verticesM⊆ V \ VPI to be represented
as MMPs in the synthesized NN. We consider three types of NN optimization algorithms.

1. optNone: no vertices in the BN are represented as MMPs (M = ∅).

2. optAll: all vertices in the BN are represented as MMPs (M = V \ VPI).

3. optMaintainDepth: a subset of vertices are selected to be represented as MMPs such
that the depth of the resulting layer-merged NN does not increase (M⊆ V \ VPI).

We propose a greedy algorithm for optMaintainDepth that runs in time O(V (V + E)).

Definition D.2 (Path). A path of length n, denoted Pn, in BN GF = (V,E) is a sequence of vertices
Pn = (v1, v2, . . . , vn) ∈ V n, where ∀i ∈ {1, . . . , n− 1}

(
(vi, vi+1) ∈ E

)
.

Definition D.3 (Leeway). The leeway of vertex v ∈ V , denoted leeway(v) ∈ N0, in BN GF = (V,E)
is defined as

leeway(v) = depth(GF )− depth(v)− lpl(v), (89)

where lpl(v) denotes the length of the longest path from v to any PO in GF .

Lemma D.1 (Zero leeway indicates membership in longest path). Let GF = (V,E) be a BN and
v ∈ V be a vertex. Then leeway(v) = 0 ⇐⇒ v is on a longest path in GF .

Proof. Recall that depth(v) is the length of the longest path from any PI to v and depth(GF ) is the
maximum vertex depth. Let n = depth(v)+ lpl(v) and Pn = (v1, . . . , v, . . . , vn) ∈ V n be a longest
length path in GF involving v. If leeway(v) = 0, then depth(GF ) = depth(v)+ lpl(v) = n, which
implies v is on a longest path in GF . If v is on a longest path in GF , then n = depth(v) + lpl(v) =
depth(GF ), which implies leeway(v) = 0.

Algorithm 1: Maintain depth NN optimization algorithm (optMaintainDepth)

Input: BN GF = (V,E), where F = ∪Kk=1Z2k , and function δ : V → N0 representing the
difference in criterion between MP and MMP representations of v ∈ V

Output: VerticesM⊆ V selected to be represented as MMPs

Function :optMaintainDepth(GF, δ)
1 G′

F ← augment(GF, {v ∈ V | v.outdegree = 0})
2 M← {v ∈ V | v.outdegree = 0 ∧ δ(v) > 0} // Consider POs
3 computeLeeways(G′

F)
4 for v ∈ V , in descending order w.r.t. δ, do // Greedy candidate selection
5 if

(
v.indegree > 0

)
∧
(
v.outdegree > 0

)
∧
(
v.leeway > 0

)
∧
(
δ(v) > 0

)
then

6 M←M∪ {v}
7 G′

F ← augment(G′
F, {v})

8 computeLeeways(G′
F)

9 end
10 end
11 returnM
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Remark D.2 (Correctness for Algorithm 1 (optMaintainDepth)). We prove correctness for
Algorithm 1 by showing that the subset of verticesM⊆ V it selects to be represented as MMPs do not
cause the depth of the resulting layer-merged NN to increase.

Let GF = (V,E) be a BN. We denote the unmerged NN and layer-merged NN of GF resulting from
synthesis as N and N ′, respectively.

Let
PGF
d = (v0, v1, v2, . . . , vi, vi+1, . . . , vd−1, vd) (90)

be a longest path in GF , where d = depth(GF ), v0 is a PI, and vd is a PO. Then
PN
2d = (v0, h1, v1, h2, v2, . . . , hi, vi, hi+1, vi+1, . . . , hd−1, vd−1, hd, vd) (91)

is a longest path in N , where hi represent some hidden vertex of vi, and

PN ′

d+1 = (v0, h1, h2, . . . , hi, hi+1, . . . , hd−1, hd, vd) (92)
is a longest path in N ′. Equation 91 holds since there are no vertices in GF representing constant BFs

(constant 1 or constant 0), as these vertices are combined with their successors by replacing successor
BFs with their positive or negative cofactor. Thus, each vi ∈ PGF

d will have at least one hidden vertex
hi as a predecessor in N .

We make two remarks about selecting vertices in GF to be represented as MMPs. Firstly, POs can
always be represented as MMPs without increasing the depth of N ′. Taking vd as an example, we see
that adding a non-linearity at vd does not prevent the merging of any vertices since vd ∈ PN

2d does
not have a hd+1 to merge with in N .

Secondly, note that if some intermediate vertex vi ∈ PGF
d , i ∈ {1, . . . , d − 1} is selected to be

represented as an MMP in GF , then since a non-linearity must be applied at vi in N , vi cannot be
merged with hi+1. This would cause the length of PN ′

d+1, and in turn the depth of N ′, to increase by
one. Consequently, any intermediate vertex v ∈ V , that is, a vertex that is neither a PI nor PO, can
only be selected to be an MMP if v does not appear on a longest path in GF . After selecting such a v,
the lengths of all paths in N ′ involving v will increase by 1, which may prevent the selection of other
vertices that could have been represented as MMPs.

Since Algorithm 1 only selects intermediate vertices with positive leeway and POs to be MMPs,
following Lemma D.1, the depth of N ′ will not increase.

Algorithm 2: Computing leeways
Input: BN GF = (V,E)
Function :computeLeeways(GF)

1 for d = GF.depth, GF.depth−1, . . . , 0 do
2 for v ∈ GF.verticesAtDepth(d) do
3 if v.outdegree = 0 then
4 v.lpl← 0 // Longest path length (lpl)
5 else
6 v.lpl← max({u.lpl ∈ N0 | (v, u) ∈ E}) + 1
7 end
8 v.leeway← GF.depth− v.depth− v.lpl
9 end

10 end

Remark D.3. Algorithm 2 runs in time O(|V |+ |E|).
Remark D.4. Algorithm 3 runs in time O(|E|).
Remark D.5 (Runtime analysis for Algorithm 1). Algorithm 1 runs in time O(V (V + E)). The
for-loop (lines 4:10 of Algorithm 1) run O(V ) times. Each iteration runs in time O(1) + O(E) +
O(V +E) = O(V +E). There may be O(V ) additional vertices and edges added via augmentations.
However, this does not affect the asymptotic runtime, as O((V + V ) + (E + V )) = O(V + E).
Remark D.6 (Space complexity for Algorithm 1). Algorithm 1 runs in space O(V + E). Storing the
input graph requires space O(V + E), and O(V ) additional space is used to store (i) vertices and
edges added via augmentations, (ii) vertex properties such as leeway, and (iii) the selected candidate
setM⊆ V .
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Algorithm 3: Augmenting a BN with a temporary vertex
Input: BN GF = (V,E) and vertices A ⊆ V
Output: Augmented BN G′

F = (V ′, E′)
Function :augment(GF, A)

1 for v ∈ A do
2 V ′ ← V ∪ {vtemp}
3 E′ ← (E \ {(u, v) ∈ E | u ∈ V }) ∪ {(u, vtemp) ∈ (V ′)2 | (u, v) ∈ E} ∪ {(vtemp, v)}
4 vtemp.depth← v.depth
5 v.depth← v.depth+ 1
6 end
7 return G′

F = (V ′, E′)

c
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Figure 7: Architecture-aware neural network (NN) lossless compression algorithm that selects a
subset of verticesM to be represented as minimal multilinear polynomials (MMPs) while maintaining
the layer-merged NN depth. a, Boolean network (BN) with three inputs (xi), two outputs (yi), and
internal vertices (zi), where z3, z5 have leeway (Definition D.3) greater than zero. b, Output vertices
are always augmented with hidden vertices (red). An MMP candidate (yellow) is an internal vertex
with positive leeway that is associated with a function whose multilinear polynomial (MP) can be
minimized. Here we assume minimization is with respect to the number of terms in the MP, and hence
a ∨ b = a + b − ab can be minimized to a + b, whereas a ∧ b = ab and ¬a = 1 − a cannot. c,
Supposing z3 is next selected to be represented as an MMP (blue), the newly introduced hidden vertex
(red) causes the leeway of z5 to drop to 0. Since no MMP candidates remain, the algorithm terminates
with MMP selectionM = {z3}. The NN synthesized from the BN in c is functionally equivalent to that
of b, has the same depth, yet has 4 fewer neurons and 10 fewer connections (see Appendix H).
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E NPN CLASSIFICATION ALGORITHM

Definition E.1 (NPN transformation). An NPN transformation τ of a BF (F = B) or multilinear
polynomial (MP) (F = Z) is the composition of an input phase assignment τϕ, an input permutation
τπ , and an output polarity assignment τν , where ϕ ⊆ {1, . . . , k}, i ∈ ϕ if and only if xi has negative
phase (i.e., xi is to be negated), π : {1, . . . , k} → {1, . . . , k} is a bijection, ν ∈ B, and ν = 1 if
and only if the output polarity is negative (i.e., the function output is to be negated). Applying NPN
transformation τ to vector p ∈ F2k is denoted τ(p) = (τν◦τπ◦τϕ)(p), where τν , τπ, τϕ : F2k → F2k .
Whereas applying transformation τ to function p : Fk → F is denoted p ◦ τ = τν ◦ p ◦ τπ ◦ τϕ, where
τπ, τϕ : Fk → Fk and τν : F→ F.

Remark E.1. Let f : B3 → B be a BF in variables x1, x2, x3. An input phase assignment corresponds
to selecting a subset of variables in f to negate. For example, the selection ϕ = {2, 3} corresponds to
g = f(x1, x̄2, x̄3). We say that the phase of x2 and x3 in g are negative w.r.t. f , whereas the phase
of x1 is positive w.r.t. f . Similarly, an output polarity assignment corresponds to selecting whether to
negate the output of f . For example, the selection ν = 1 corresponds to h = f̄(x1, x2, x3). We say
that the polarity of h is negative w.r.t. f , whereas the polarity of g is positive w.r.t. f .

Definition E.2 (NPN equivalent). BFs f , g ∈ B2k are NPN equivalent, denoted f ≡NPN g, if there
exists an NPN transformation τ such that τ(f) = g.

Definition E.3 (NPN equivalence class). The NPN equivalence class of BF f ∈ B2k , denoted [f ]NPN,
is the set {g ∈ B2k | f ≡NPN g}.

Definition E.4 (NPN canonical form). The NPN canonical form of BF f ∈ B2k , denoted κ(f), is a
mapping κ : B2k → B2k that satisfies the following conditions:

1. κ(f) ∈ [f ]NPN,

2. ∀g ∈ [f ]NPN

(
κ(g) = κ(f)

)
.

Note that the second condition implies that the canonical form of a BF is a unique representative of
the class. We denote κ(f) as κf ∈ B2k , and the MP of κf as κp ∈ Z2k .

Remark E.2. Computing the NPN canonical form of a k-input BF via exhaustive enumeration requires
computing 2k+1k! transformations, as there 2k possible input phase assignments, k! possible input
permutations, and 2 possible output polarity assignments.
Remark E.3. The MP representations of BFs x̄1, x1∧x2, and x1∨x2 are 1−x1, x1x2, and x1+x2−x1x2,
respectively.

Lemma E.1 (Cofactors of an MP vector). Let i ∈ {1, . . . , k}, p : Zk → Z be an MP, and pxi
, px̄i

:
Zk−1 → Z be the positive and negative cofactors of p with respect to xi, respectively. Then the MP

vectors pxi
,px̄i

∈ Z2k−1

of pxi and px̄i are given by the following expressions

pxi
=

∑
S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS , (93)

px̄i
=

∑
S∈P({1,...,k}\{i})

f̂(S)χS . (94)

Proof. Following the definition of an MP as a linear combination of logical AND functions, we have

p(x) =
∑

S∈P({1,...,k})

f̂(S)χS(x) (95)

=
∑

S∈P({1,...,k}\{i})

f̂(S)χS(x) +
∑

S∈P({1,...,k}\{i})

f̂(S)χS(x), (96)
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where we use P({1, . . . , k} \ {i}) to denote P({1, . . . , k}) \ P({1, . . . , k} \ {i}). Thus,
pxi = p(. . . , xi = 1, . . . ) (97)

=
∑

S∈P({1,...,k}\{i})

f̂(S)χS(. . . , xi = 1, . . . ) +
∑

S∈P({1,...,k}\{i})

f̂(S)χS(. . . , xi = 1, . . . )

(98)

=
∑

S∈P({1,...,k}\{i})

f̂(S)χS(. . . , xi = 1, . . . ) +
∑

S∈P({1,...,k}\{i})

f̂(S)χS\{i}(. . . , xi = 1, . . . )

(99)

=
∑

S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS(. . . , xi = 1, . . . ), (100)

and
pxi = p(. . . , xi = 0, . . . ) (101)

=
∑

S∈P({1,...,k}\{i})

f̂(S)χS(. . . , xi = 0, . . . ) +
∑

S∈P({1,...,k}\{i})

f̂(S)χS(. . . , xi = 0, . . . )

(102)

=
∑

S∈P({1,...,k}\{i})

f̂(S)χS(. . . , xi = 0, . . . ). (103)

Lemma E.2 (τϕi
acting on an MP vector). Let p ∈ Zk → Z be an MP with MP vector p ∈ Z2k , and

ϕi = {i} ⊆ {1, . . . , k}. Then the MP vector τϕi(p) ∈ Z2k is given by the expression

τϕi(p) =
∑

S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS +

∑
S∈P({1,...,k}\{i})

(
− f̂(S)

)
χS . (104)

Proof. Following Boole’s expansion theorem,
(p ◦ τϕi)(x) = p(τϕi(x)) (105)

= (1− xi)pxi(x) + xipx̄i(x) (106)

= pxi(x) +
(
px̄i(x)− pxi(x)

)
xi. (107)

Substituting for the cofactors according to Lemma E.1, we have
(p ◦ τϕi

)(x)

=
∑

S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS(x)

+
( ∑

S∈P({1,...,k}\{i})

f̂(S)χS(x)−
∑

S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS(x)

)
xi (108)

=
∑

S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS(x)

+
( ∑

S∈P({1,...,k}\{i})

(
− f̂(S ∪ {i})

)
χS(x)

)
xi (109)

=
∑

S∈P({1,...,k}\{i})

(
f̂(S) + f̂(S ∪ {i})

)
χS(x) +

∑
S∈P({1,...,k}\{i})

(
− f̂(S)

)
χS(x). (110)

Lemma E.3 (τπ acting on an MP vector). Let p ∈ Zk → Z be an MP with MP vector p ∈ Z2k ,
and π : {1, . . . , k} → {1, . . . , k} be a bijection. Then the MP vector τπ(p) ∈ Z2k is given by the
expression

τπ(p) =
∑

S∈P({1,...,k})

f̂(π−1(S))χS . (111)
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Proof.

(p ◦ τπ)(x) = p(τπ(x)) (112)

=
∑

S∈P({1,...,k})

f̂(S)χS(τπ(x)) (113)

=
∑

S∈P({1,...,k})

f̂(S)χπ(S)(x) (114)

=
∑

S∈P({1,...,k})

f̂(π−1(S))χS(x). (115)

Lemma E.4 (τν acting on an MP vector). Let p ∈ Z2k be an MP with MP vector p ∈ Z2k , and ν = 1.
Then the MP vector τν(p) ∈ Z2k is given by the expression

τν(p) =
(
1− f̂(∅)

)
χ∅ +

∑
S∈P({1,...,k})\∅

(
− f̂(S)

)
χS . (116)

Proof.

(τν ◦ p)(x) = 1− p(x) (117)

= 1−
( ∑

S∈P({1,...,k})

f̂(S)χS(x)
)

(118)

= 1−
(
f̂(∅)χ∅(x) +

∑
S∈P({1,...,k})\∅

f̂(S)χS(x)
)

(119)

=
(
1− f̂(∅)

)
χ∅(x) +

∑
S∈P({1,...,k})\∅

(
− f̂(S)

)
χS(x). (120)

Where the final equality holds since χ∅(x) = 1.

Example E.1. Let f(x1, x2, x3) = (x1 ∧ x2) ∨ x3. The MP representation of f is p(x1, x2, x3) =
x3 + x1x2 − x1x2x3, and the MP vector of f is

p =
∑

S∈P({1,2,3})

f̂(S)χS

=
[
f̂(∅), f̂({1}), f̂({2}), f̂({1, 2}), f̂({3}), f̂({1, 3}), f̂({2, 3}), f̂({1, 2, 3})

]⊺
= [0, 0, 0, 1, 1, 0, 0,−1]⊺ .

Following Lemma E.2, τϕ3
(p) ∈ Z23 is equal to

τϕ3
(p) =

∑
S∈P({1,2,3}\{3})

(
f̂(S) + f̂(S ∪ {i})

)
χS +

∑
S∈P({1,2,3}\{3})

(
− f̂(S)

)
χS (121)

=



f̂(∅) + f̂(∅ ∪ {3})
f̂({1}) + f̂({1} ∪ {3})
f̂({2}) + f̂({2} ∪ {3})

f̂({1, 2}) + f̂({1, 2} ∪ {3})
−f̂({3})
−f̂({1, 3})
−f̂({2, 3})
−f̂({1, 2, 3})


=



(0) + (1)
(0) + (0)
(0) + (0)
(1) + (−1)
−(1)
−(0)
−(0)
−(−1)


=



1
0
0
0
−1
0
0
1


, (122)

which corresponds to the MP (p◦τϕ3)(x1, x2, x3) = (1−x3)+x1x2−x1x2(1−x3) = 1−x3+x1x2x3.
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Let π231 =
(
1 2 3
2 3 1

)
be a permutation with inverse π−1

231 = π312 =
(
1 2 3
3 1 2

)
. Following Lemma E.3,

τπ231(p) ∈ Z23 is equal to

τπ231
(p) =

∑
S∈P({1,2,3})

f̂(π−1
231(S))χS (123)

=



π312(f̂(∅))
π312(f̂({1}))
π312(f̂({2}))
π312(f̂({1, 2}))
π312(f̂({3}))
π312(f̂({1, 3}))
π312(f̂({2, 3}))
π312(f̂({1, 2, 3}))


=



f̂(∅)
f̂({3})
f̂({1})
f̂({1, 3})
f̂({2})
f̂({2, 3})
f̂({1, 2})
f̂({1, 2, 3})


=



0
1
0
0
0
0
1
−1


, (124)

which corresponds to the MP (p ◦ τπ231
)(x1, x2, x3) = x1 + x2x3 − x1x2x3.

Lastly, let ν = 1. Following Lemma E.4, τν(p) ∈ Z23 is equal to

τν(p) =
(
1− f̂(∅)

)
χ∅ +

∑
S∈P({1,2,3})\∅

(
− f̂(S)

)
χS (125)

=



1− f̂(∅)
−f̂({1})
−f̂({2})
−f̂({1, 2})
−f̂({3})
−f̂({1, 3})
−f̂({2, 3})
−f̂({1, 2, 3})


=



1− (0)
−(0)
−(0)
−(1)
−(1)
−(0)
−(0)
−(−1)


=



1
0
0
−1
−1
0
0
1


, (126)

which corresponds to the MP (p ◦ τν)(x1, x2, x3) = 1− (x3 + x1x2 − x1x2x3) = 1− x3 − x1x2 +
x1x2x3.
Remark E.4 (Linear algebra perspective). Let p ∈ Z2k be a MP vector, ϕi = {i} ⊆ {1, . . . , k},
π, π1↔i : {1, . . . , k} → {1, . . . , k} be bijections, where π1↔i represents the transposition (1, i), and
ν = 1. Lemmas E.2, E.3, and E.4, respectively show

τϕi(p) =
(
Pπ1↔i

[
Ik−1, Ik−1

Ok−1, −Ik−1

]
Pπ1↔i

)
p, (127)

τπ(p) = Pπp, (128)

τν(p) =

[
1

02k−1

]
− p, (129)

where 02k−1 ∈ B2k−1, Ok−1 ∈ B2k−1×2k−1

, and Ik−1 ∈ B2k−1×2k−1

denote the all zeros vector, all
zeros matrix, and identity matrix, respectively, and Pπ, Pπ1↔i

∈ B2k×2k denote permutation ma-
trices. We see τϕi

(in turn τϕ) and τπ are linear transformations, whereas τν is an affine transformation.

Remark E.5 (Time complexity of computing NPN transformation). If p is stored in memory as a
tensor of shape (2, . . . , 2)︸ ︷︷ ︸

k

, then computing τπ requires time O(k) from permuting tensor indices.

Computing τϕi
requires time O(k) + O(2k) + O(k) = O(2k) from (i) tensor index transposition,

(ii) adding the bottom half of p to the top half (O(2k−1)) and then sign flipping the bottom half
(O(2k−1)), and (iii) tensor index transposition. Lastly, computing τν requires time O(2k) from vector
addition.
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E.1 COMPUTING INVERSE NPN TRANSFORMATIONS

Lemma E.5 (Commutability of τν and τπ). Let p ∈ Z2k be an MP vector, ν ∈ B and π : {1, . . . , k} →
{1, . . . , k} be a bijection. Then (τν ◦ τπ)(p) = (τπ ◦ τν)(p).

Proof. If ν = 0, then τν = Id. and the statement is clearly true. We now consider the case where
ν = 1. Under the functional perspective of τ , the statement is equivalent to showing τν ◦ (p ◦ τπ) =
(τν ◦ p) ◦ τπ , where p : Zk → Z is an MP, which holds by associativity of function composition. The
statement also follows from Lemmas E.3 and E.4,

(τν ◦ τπ)(p) = τν

( ∑
S∈P({1,...,k})

f̂(π−1(S))χS

)
(130)

= τν

(
f̂(π−1(∅))χ∅ +

∑
S∈P({1,...,k})\∅

f̂(π−1(S))χS

)
(131)

= τν

(
f̂(∅)χ∅ +

∑
S∈P({1,...,k})\∅

f̂(π−1(S))χS

)
(132)

= (1− f̂(∅))χ∅ +
∑

S∈P({1,...,k})\∅

(−f̂(π−1(S)))χS (133)

(τπ ◦ τν)(p) = τπ

(
(1− f̂(∅))χ∅ +

∑
S∈P({1,...,k})\∅

(−f̂(S))χS

)
(134)

= τπ

(
(f̂ ′(∅))χ∅ +

∑
S∈P({1,...,k})\∅

f̂ ′(S)χS

)
(135)

= f̂ ′(π−1(∅))χ∅ +
∑

S∈P({1,...,k})\∅

f̂ ′(π−1(S))χS (136)

= f̂ ′(∅)χ∅ +
∑

S∈P({1,...,k})\∅

f̂ ′(π−1(S))χS (137)

= (1− f̂(∅))χ∅ +
∑

S∈P({1,...,k})\∅

(−f̂(π−1(S)))χS (138)

Lemma E.6 (Commutability of τν and τϕ). Let p ∈ Z2k be an MP vector, ν ∈ B, and ϕ ⊆ {1, . . . , k}.
Then (τν ◦ τϕ)(p) = (τϕ ◦ τν)(p).

Proof. We begin by noting that τϕ = τϕ1 ◦ · · · ◦ τϕk
, where τϕi = τ{i} if i ∈ ϕ, and τϕi = Id. if

i /∈ ϕ. Now, to prove the statement of the lemma, it suffices to show (τν ◦ τϕi
)(p) = (τϕi

◦ τν)(p). If
ν = 0 or i /∈ ϕ, then either τν = Id. or τϕi

= Id., and the statement is clearly true. We now consider
the case where ν = 1 and i ∈ ϕ. Under the functional perspective of τ , the statement is equivalent to
showing τν ◦ (p ◦ τϕi

) = (τν ◦ p) ◦ τϕi
, where p : Zk → Z, which holds by associativity of function

composition. The statement also follows from Lemmas E.2 and E.4,
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(τν ◦ τϕi
)(p)

= τν

( ∑
S∈P({1,...,k}\{i})

(f̂(S) + f̂(S ∪ {i}))χS +
∑

S∈P({1,...,k}\{i})

(−f̂(S))χS

)
(139)

= τν

(
(f̂(∅) + f̂(∅ ∪ {i}))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

(f̂(S) + f̂(S ∪ {i}))χS +
∑

S∈P({1,...,k}\{i})

(−f̂(S))χS

)
(140)

= τν

(
f̂ ′(∅)χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

f̂ ′(S)χS +
∑

S∈P({1,...,k}\{i})

f̂ ′(S)χS

)
(141)

= (1− f̂ ′(∅))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

(−f̂ ′(S))χS +
∑

S∈P({1,...,k}\{i})

(−f̂ ′(S))χS (142)

= (1− (f̂(∅) + f̂(∅ ∪ {i})))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

(−(f̂(S) + f̂(S ∪ {i})))χS +
∑

S∈P({1,...,k}\{i})

(−(−f̂(S)))χS (143)

= (1− f̂(∅)− f̂(∅ ∪ {i})))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

(−f̂(S)− f̂(S ∪ {i}))χS +
∑

S∈P({1,...,k}\{i})

f̂(S)χS (144)

(τϕi
◦ τν)(p)

= τϕi

(
(1− f̂(∅))χ∅ +

∑
S∈P({1,...,k})\{∅}

(−f̂(S))χS

)
(145)

= τϕi

(
f̂ ′(∅)χ∅ +

∑
S∈P({1,...,k})\{∅}

f̂ ′(S)χS

)
(146)

= τϕi

(
f̂ ′(∅)χ∅ +

∑
S∈P({1,...,k}\{i})\{∅}

f̂ ′(S)χS +
∑

S∈P({1,...,k}\{i})

f̂ ′(S)χS

)
(147)

= (f̂ ′(∅) + f̂ ′(∅ ∪ {i}))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

(f̂ ′(S) + f̂ ′(S ∪ {i}))χS +
∑

S∈P({1,...,k}\{i})

(−f̂ ′(S))χS (148)

= ((1− f̂(∅)) + (−1 · f̂(∅ ∪ {i})))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

((−f̂(S)) + (−f̂(S ∪ {i})))χS +
∑

S∈P({1,...,k}\{i})

(−(−f̂(S)))χS

(149)

= (1− f̂(∅)− f̂(∅ ∪ {i}))χ∅

+
∑

S∈P({1,...,k}\{i})\{∅}

(−f̂(S)− f̂(S ∪ {i}))χS +
∑

S∈P({1,...,k}\{i})

f̂(S)χS (150)

Lemma E.7 (Rearrangement of τπ and τϕ). Let p ∈ Z2k be an MP vector, ϕ ⊆ {1, . . . , k}, and
π : {1, . . . , k} → {1, . . . , k} be a bijection. Then (τϕ ◦ τπ−1)(p) = (τπ−1 ◦ τπ(ϕ))(p).
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Proof. We begin by noting that τϕ = τϕ1
◦· · ·◦τϕk

, where τϕi
= τ{i} if i ∈ ϕ, and τϕi

= Id. if i /∈ ϕ.
Now, to prove the statement of the lemma, it suffices to show (τϕi

◦ τπ−1)(p) = (τπ−1 ◦ τπ(ϕ)π(i)
)(p).

If i /∈ ϕ, then π(i) /∈ π(ϕ), τϕi
= Id., τπ(ϕ)π(i)

= Id., and the statement is clearly true. We now
consider the case where i ∈ ϕ, which implies π(i) ∈ π(ϕ).

(τϕi
◦ τπ−1)(p)

= τϕi

( ∑
S∈P({1,...,k})

f̂(π(S))χS

)
(151)

= τϕi

( ∑
S∈P({1,...,k})

f̂ ′(S)χS

)
(152)

=
∑

S∈P({1,...,k}\{i})

(f̂ ′(S) + f̂ ′(S ∪ {i}))χS +
∑

S∈P({1,...,k}\{i})

(−f̂ ′(S))χS (153)

=
∑

S∈P({1,...,k}\{i})

(f̂(π(S)) + f̂(π(S ∪ {i})))χS +
∑

S∈P({1,...,k}\{i})

(−f̂(π(S)))χS (154)

=
∑

S∈P({1,...,k}\{i})

(f̂(π(S)) + f̂(π(S) ∪ {π(i)}))χS +
∑

S∈P({1,...,k}\{i})

(−f̂(π(S)))χS

(155)

(τπ−1 ◦ τπ(ϕ)π(i)
)(p)

= τπ−1

( ∑
S∈P({1,...,k}\{π(i)})

(f̂(S) + f̂(S ∪ {π(i)}))χS +
∑

S∈P({1,...,k}\{π(i)})

(−f̂(S))χS

)
(156)

= τπ−1

( ∑
S∈P({1,...,k}\{π(i)})

f̂ ′(S)χS +
∑

S∈P({1,...,k}\{π(i)})

f̂ ′(S)χS

)
(157)

=
∑

S∈P({1,...,k}\{π(i)})

f̂ ′(π(S))χS +
∑

S∈P({1,...,k}\{π(i)})

f̂ ′(π(S))χS (158)

=
∑

S∈P({1,...,k}\{i})

f̂ ′(π(S))χS +
∑

S∈P({1,...,k}\{i})

f̂ ′(π(S))χS (159)

=
∑

S∈P({1,...,k}\{i})

(f̂(π(S)) + f̂(π(S) ∪ {π(i)}))χS +
∑

S∈P({1,...,k}\{i})

(−f̂(π(S)))χS

(160)

Equation 160 holds since i /∈ S =⇒ π(i) /∈ π(S) and i ∈ S =⇒ π(i) ∈ π(S).

Theorem E.1 (Inverse NPN transformation). Let τ = τν ◦ τπ ◦ τϕ be an NPN transformation. Then
τ−1 = τν ◦ τπ−1 ◦ τπ(ϕ).

Proof.

τ−1 = τ−1
ϕ ◦ τ−1

π ◦ τ−1
ν (161)

= τϕ ◦ τπ−1 ◦ τν (Boolean algebra) (162)
= τϕ ◦ τν ◦ τπ−1 (Lemma E.5) (163)
= τν ◦ τϕ ◦ τπ−1 (Lemma E.6) (164)
= τν ◦ τπ−1 ◦ τπ(ϕ) (Lemma E.7) (165)
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E.2 RELATING NPN AND σ EQUIVALENCE CLASSES

Lemma E.8. Let p, q ∈ Z2k be MPs of BFs, and p′ ∈ [p]σ . Then

∀x ∈ Bk
(
q(x) · σ

(
p′(x)

)
= σ

(
q(x) · p′(x)

))
. (166)

Proof. If q(x) = 0, then 0 = 0. If q(x) = 1, then σ
(
p′(x)

)
= σ

(
p′(x)

)
.

Lemma E.9. Let p, q, r ∈ Z2k be MPs of BFs, p′ ∈ [p]σ and q′ ∈ [q]σ . Then

∀x ∈ Bk
(
σ
(
r(x) · p′(x)

)
+ σ

(
r̄(x) · q′(x)

)
= σ

(
r(x) · p′(x) + r̄(x) · q′(x)

))
, (167)

where r̄(x) = 1− r(x).

Proof. The expression is akin to a 2-1 multiplexer. If r(x) = 0, then σ
(
q′(x)

)
= σ

(
q′(x)

)
. If

r(x) = 1, then σ
(
p′(x)

)
= σ

(
p′(x)

)
.

Lemma E.10 (Relating ∼σ and τϕi
). Let p, q ∈ Z2k be MPs of BFs such that p = τϕi

(q), where
ϕi = {i} ⊆ {1, . . . , k}, and q′ ∈ [q]σ . Then τϕi

(q′) ∈ [p]σ .

Proof.

p = τϕi
(q)⇒ ∀x ∈ Bk

(
p(x) = (1− xi)qxi

(x) + xiqx̄i
(x)

)
(168)

⇒ ∀x ∈ Bk
(
p(x) = (1− xi)σ

(
q′xi

(x)
)
+ xiσ

(
q′x̄i

(x)
))

(q′ ∈ [q]σ) (169)

⇒ ∀x ∈ Bk
(
p(x) = σ

(
(1− xi)q′xi

(x)
)
+ σ

(
xiq

′
x̄i
(x)

))
(Lemma E.8) (170)

⇒ ∀x ∈ Bk
(
p(x) = σ

(
(1− xi)q′xi

(x) + xiq
′
x̄i
(x)

))
(Lemma E.9) (171)

⇒ ∀x ∈ Bk
(
σ
(
p(x)

)
= σ

(
(1− xi)q′xi

(x) + xiq
′
x̄i
(x)

))
(172)

⇒ p ∼σ τϕi
(q′) (173)

Lemma E.11 (Relating ∼σ and τπ). Let p, q ∈ Z2k be MPs of BFs such that p = τπ(q), where
π : {1, . . . , k} → {1, . . . , k} is a bijection, and q′ ∈ [q]σ . Then τπ(q′) ∈ [p]σ .

Proof.

p = τπ(q)⇒ ∀x ∈ Bk
(
p(x) = q(τπ(x))

)
(174)

⇒ ∀x ∈ Bk
(
p(x) = σ

(
q′(τπ(x))

))
(q′ ∈ [q]σ) (175)

⇒ ∀x ∈ Bk
(
σ
(
p(x)

)
= σ

(
q′(τπ(x))

))
(176)

⇒ p ∼σ τπ(q
′) (177)

Lemma E.12 (Relating ∼σ and τν). Let p, q ∈ Z2k be MPs of BFs such that p = τν(q), where ν = 1,
and q′ ∈ [q]σ . Then τν(q′) ∈ [p]σ .
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Proof.

p = τν(q)⇒ ∀x ∈ Bk
(
p(x) = 1− q(x)

)
(178)

⇒ ∀x ∈ Bk
(
p(x) = 1− σ

(
q′(x)

))
(q′ ∈ [q]σ) (179)

⇒ ∀x ∈ Bk
(
p(x) = σ

(
1− q′(x)

))
(180)

⇒ ∀x ∈ Bk
(
σ
(
p(x)

)
= σ

(
1− q′(x)

))
(181)

⇒ p ∼σ τν(q
′) (182)

To prove Equation 180 holds, it suffices to consider the two cases where q′(x) > 0 and q′(x) ≤ 0. If
q′(x) > 0, then q(x) = 1 and p(x) = 0. Since q′(x) ∈ Z, 1− q′(x) ≤ 0 and hence σ

(
1− q′(x)

)
=

0 = p(x). If q′(x) ≤ 0, then q(x) = 0 and p(x) = 1. Since q′(x) ∈ Z, 1 − q′(x) > 0 and hence
σ
(
1− q′(x)

)
= 1 = p(x).

Theorem E.2 (NPN transformations between σ equivalence classes). Let p, q ∈ Z2k be MPs of
BFs such that p = τ(q), where τ = τν ◦ τπ ◦ τϕ is an NPN transformation, and q′ ∈ [q]σ. Then
τ(q′) ∈ [p]σ .

Proof. We begin by noting that τϕ = τϕ1
◦ · · · ◦ τϕk

, where τϕi
= τ{i} if i ∈ ϕ, and τϕi

= Id. if
i /∈ ϕ. Let q1 = τϕ(q), q2 = τπ(q1), and q3 = τν(q2). Then

q1 ∼σ τϕ(q
′) = q′

1, (Lemma E.10) (183)

q2 ∼σ τπ(q
′
1) = τπ(τϕ(q

′)) = q′
2, (Lemma E.11) (184)

q3 ∼σ τν(q
′
2) = τν(τπ(τϕ(q

′))) = q′
3. (Lemma E.12) (185)

Since, p = q3, p ∼σ (τν ◦ τπ ◦ τϕ)(q′) = τ(q′).
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E.3 COMPUTING MMPS WITH NPN TRANSFORMATIONS

Definition E.5 (PN-invariant criterion). Let p ∈ Z2k be an MP, ν ∈ B and π : {1, . . . , k} →
{1, . . . , k} be a bijection. A criterion vector c ∈ Z2k is PN-invariant if

∥c⊙ p∥1 = ∥c⊙ (τν ◦ τπ)(p)∥1. (186)

Lemma E.13 (Uniform criterion is PN-invariant). Let k ∈ N0. cunik is PN-invariant.

Proof.

∥cunik ⊙ p∥1 =
∥∥∥cunik ⊙

(
f̂(∅)χ∅ +

∑
S∈P({1,...,k})\{∅}

f̂(S)χS

)∥∥∥
1

(187)

=
∥∥∥ ∑

S∈P({1,...,k})\{∅}

f̂(S)χS

∥∥∥
1

(188)

=
∑

S∈P({1,...,k})\{∅}

∣∣f̂(S)∣∣ (189)

Let ν = 1 (a similar argument can be used to prove the case where ν = 0, and hence τν = Id.).
∥cunik ⊙ (τν ◦ τπ)(p)∥1

=
∥∥∥cunik ⊙

(
(1− f̂(∅))χ∅ +

∑
S∈P({1,...,k})\{∅}

(−f̂(π−1(S)))χS

)∥∥∥
1

(190)

=
∥∥∥ ∑

S∈P({1,...,k})\{∅}

(−f̂(π−1(S)))χS

∥∥∥
1

(191)

=
∑

S∈P({1,...,k})\{∅}

∣∣− f̂(π−1(S))
∣∣ (192)

=
∑

S∈P({1,...,k})\{∅}

∣∣f̂(S)∣∣ (193)

Lemma E.14 (Degree criterion is PN-invariant). Let k ∈ N0. cdegk is PN-invariant.

Proof.

∥cdegk ⊙ p∥1 =
∥∥∥cdegk ⊙

(
f̂(∅)χ∅ +

∑
S∈P({1,...,k})\{∅}

f̂(S)χS

)∥∥∥
1

(194)

=
∥∥∥ ∑

S∈P({1,...,k})\{∅}

(|S| · f̂(S))χS

∥∥∥
1

(195)

=
∑

S∈P({1,...,k})\{∅}

∣∣|S| · f̂(S)∣∣ (196)

Let ν = 1 (a similar argument can be used to prove the case where ν = 0, and hence τν = Id.).

∥cdegk ⊙ (τν ◦ τπ)(p)∥1

=
∥∥∥cdegk ⊙

(
(1− f̂(∅))χ∅ +

∑
S∈P({1,...,k})\{∅}

(−f̂(π−1(S)))χS

)∥∥∥
1

(197)

=
∥∥∥ ∑

S∈P({1,...,k})\{∅}

(−|S| · f̂(π−1(S)))χS

∥∥∥
1

(198)

=
∑

S∈P({1,...,k})\{∅}

∣∣− |S| · f̂(π−1(S))
∣∣ (199)

=
∑

S∈P({1,...,k})\{∅}

∣∣|S| · f̂(S)∣∣ (200)
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Theorem E.3 (Computing MMPs with NPN transformations under PN-invariant criterions). Let
c ∈ Z2k be an PN-invariant criterion, p, q ∈ Z2k be MPs of BFs such that p = (τν ◦ τπ)(q), and
q′ ∈ [q]σ be an MMP with respect to criterion c. Then p′ = (τν ◦ τπ)(q′) ∈ [p]σ is an MMP with
respect to criterion c.

Proof. If q′ is an MMP with respect to criterion c, then

q′ ∈ argmin
r∈[q]σ

C(r) = argmin
r∈[q]σ

∥c⊙ r∥1. (201)

Moreover, since c is PN-invariant, we have

∥c⊙ q′∥1 = ∥c⊙ (τν ◦ τπ)(q′)∥1 = ∥c⊙ p′∥1 = α, (202)

and by Theorem E.2 p′ ∈ [p]σ . We claim p′ ∈ argminr∈[p]σ∥c⊙ r∥1.

Suppose, for sake of contradiction, p′ /∈ argminr∈[p]σ∥c⊙ r∥1, then there exists p̂ ∈ [p]σ such that
∥c⊙ p̂∥1 < α. Let q̂ = (τ−1

π ◦ τ−1
ν )(p̂) = (τν ◦ τπ−1)(p̂), where the second equality holds due to

Theorem E.1. Following Theorem E.2, q̂ ∈ [q]σ , and since c is PN-invariant, we have

∥c⊙ p̂∥1 = ∥c⊙ (τν ◦ τπ−1)(p̂)∥1 = ∥c⊙ q̂∥1 < α, (203)

which is a contradiction, as we assumed q′ ∈ argminr∈[q]σ∥c⊙ r∥1.
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Algorithm 4: MP- and MMP-based technology mapping with NPN caching

Input: BN GF = (V,E) and vertex labeling function ψF : V → F , where F = ∪Kk=1B2k

Output: Functions ψp
F ′ , ψ

p′

F ′ : V → F ′, where F ′ = ∪Kk=1Z2k

Function :techMapNPN(GF, ψF)

1 Initialize ψp
F ′ ← ∅ and ψp′

F ′ ← ∅
2 for k ← 0 to K do
3 C ←npnClassify(GF, ψF, k) // Compute NPN classes
4 for each NPN class Cκf

= {(f i, τ
−1
i ) | f i = τ−1

i (κf )} ∈ C do
5 κp ← ttToMP(κf) // Compute MP of NPN canonical form
6 for each unique permuted phase assignment subset

Sπ(ϕ) = {(f , τ−1) ∈ Cκf
| τ−1 = τν ◦ τπ−1 ◦ τπ(ϕ)} do

7 if |Sπ(ϕ)| = |{(f , τ−1)}| = 1 then
8 p← τ−1(κp)
9 p′ ← mpToMMP(p) // Compute MMP of p

10 ψp
F ′ ← ψp

F ′ ∪ {(v,p) ∈ V × Z2k | ψF (v) = f}
11 ψp′

F ′ ← ψp′

F ′ ∪ {(v,p′) ∈ V × Z2k | ψF (v) = f}
12 else
13 κ

τπ(ϕ)
p ← τπ(ϕ)(κp)

14 κ
τπ(ϕ)

p′ ← mpToMMP(κ
τπ(ϕ)
p )// Compute MMP once for p sharing τπ(ϕ)

15 for (f , τ−1) ∈ Sπ(ϕ) do
16 p← (τν ◦ τπ−1)(κ

τπ(ϕ)
p )

17 p′ ← (τν ◦ τπ−1)(κ
τπ(ϕ)

p′ )

18 ψp
F ′ ← ψp

F ′ ∪ {(v,p) ∈ V × Z2k | ψF (v) = f}
19 ψp′

F ′ ← ψp′

F ′ ∪ {(v,p′) ∈ V × Z2k | ψF (v) = f}
20 end
21 end
22 end
23 end
24 return ψp

F ′ , ψ
p′

F ′

25 end

E.4 NPN CLASSIFICATION ALGORITHM

We propose an optimization-objective-aware NPN classification algorithm for MP- and MMP-based
technology mapping following these ideas. The algorithm firstly classifies functions into their respec-
tive NPN equivalence classes by computing canonical forms and corresponding NPN transformations.
The canonical forms are then mapped to their MP representations. Next, each equivalence class is
partitioned into subsets that share permuted phase assignments τπ(ϕ). The phase permuted “canonical
forms” of each subset are then minimized with respect to a PN-invariant criterion. Finally, the MPs

and MMPs of other members of the subset are computed following Theorem E.3. See Algorithm 4.

Remark E.6 (Correctness for Algorithm 4). The ordering of the cache hierarchy, and specifically
the order in which the inverse NPN transformation is computed, is correct following Theorem E.1.
Furthermore, the statement that all MMPs are indeed MMPs according to criterion cuni or cdeg follows
from Lemma E.13, Lemma E.14, and Theorem E.3.

Remark E.7 (Time complexity of NPN classification). Let m denote the number of unique k-input BFs

being classified. The NPN classification algorithm we used for our experimental results to compute
NPN canonical forms and transformations requires time O(m2kk) + e, where O(m2kk) is due
to computing a signature vector for m unique functions, and e denotes exhaustive enumeration
time (which requires checking at most 2k+1k! NPN transformations) (Zhou et al., 2020). Letting
e = O(2k+1k!), we have time O(m2kk + 2k+1k!). We note that asymptotic analysis does not
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provide significant insight here, as for practical reasons of synthesis K ≲ 10. Heuristics, low-level
implementations, and multi-level caches (Petkovska et al., 2016; Zhou et al., 2020) make NPN

classification relatively fast in comparison to the aggregate collection of ttToMP and mpToMMP
subproblems we aim to solve.

Remark E.8 (Time complexity of Algorithm 4). Let GFf
= (V,E) and ψFf

: V → Ff , where
Ff = ∪Kk=1B2k , be the K-LUT Boolean network (BN) and vertex labeling function provided as input
to Algorithm 4, respectively. Let Vk = {u ∈ V | indegree(u) = k} be the set of vertices with k
inputs in GFf

, ψFf
[Vk] =

{
g ∈ B2k | ∃v ∈ Vk

(
ψFf

(v) = g
)}

be the set of k-input BFs in GFf
,

and κ
[
ψFf

[Vk]
]
=

{
g ∈ B2k | ∃h ∈ ψFf

[Vk] (κ(h) = g)
}

be the set of k-input NPN canonical
forms in GFf

.

We now define the quantities of interest for our analysis of time complexity. Let

• v = |Vk| ∈ N0 denote the number of k-input BFs in GFf
,

• m =
∣∣ψFf

[Vk]
∣∣ ∈ N0 denote the number of unique k-input BFs in GFf

,
• c =

∣∣κ [ψFf
[Vk]

]∣∣ ∈ N0 denote the number of NPN equivalence classes on the set of k-input BFs

in GFf
, and

• s ∈ N0 denote the number of permuted phase assignment subsets on the set of k-input BFs in GFf
.

Next, we determine bounds on these quantities.

• 0 ≤ v, as v does not have an upper bound.
• 0 ≤ m ≤ 22

k

, as there are 22
k

k-input BFs.
• m

2k+1k!
≤ c ≤ m. The upper bound occurs when allm unique BFs fall into different NPN equivalence

classes. The lower bound requires some analysis. Recall from Remark 3.1, there are 2k+1k! NPN

transformations on k-input BFs. Moreover, let f ∈ ψFf
[Vk]. Now, suppose that applying the

2k+1k! NPN transformations on f returns 2k+1k! unique BFs. Then the size of the NPN equivalence
class of f is |[f ]NPN| = 2k+1k!. Hence, if [f ]NPN ⊆ ψFf

[Vk], the NPN class accounts for 2k+1k!
of the m unique BFs in ψFf

[Vk]. Consequently, if this happens for all BFs in ψFf
[Vk], then the

number of NPN equivalence classes on ψFf
[Vk] would be m

2k+1k!
.

• m
2k! ≤ s ≤ m and c ≤ s. These bounds require some analysis. Let Cκf

= {(f i, τ
−1
i ) | f i =

τ−1
i (κf )}, where f i ∈ ψFf

[Vk], be an NPN equivalence class with NPN canonical form κf . Then
a permuted phase assignment subset Sπ(ϕ) = {(f , τ−1) ∈ Cκf

| τ−1 = τν ◦ τπ−1 ◦ τπ(ϕ)} is
a subset of the NPN equivalence class that shares the same permuted phase assignment π(ϕ) ⊆
{1, . . . , k}. Notice, that there are 2k possible permuted phase assignments. For the lower bound
m
2k! ≤ s, suppose |Cκf

| = 2k+1k!. Then the NPN class will be partitioned into 2k permuted
phase assignment subsets, each of size 2k+1k!

2k
= 2k!. Consequently, if this happens for all BFs

in ψFf
[Vk], then the number of permuted phase assignment subsets on ψFf

[Vk] would be m
2k! .

For the upper bound s ≤ m, this occurs when all m unique BFs fall into different permuted
phase assignment subsets. Finally, since permuted phase assignment subsets are subsets of NPN

equivalence classes, we have that c ≤ s.

Before continuing with the time complexity, we note some corollaries of the analysis performed. Note
that all BFs in an NPN equivalence class share a NPN canonical form κp, and that for all functions in the
class Algorithm 4 computes ttToMP only once. Hence, since an NPN equivalence class can have up
to 2k+1k! members, Algorithm 4 will reduce the number of calls to ttToMP by up to 2k+1k!− 1 for
the class.

Similarly, note that all BFs in a permuted phase assignment subset of an NPN class share a “permuted
phase assignment NPN canonical form” κ

τπ(ϕ)
p = τπ(ϕ)(κp), and that for all functions in the subset

Algorithm 4 computes mpToMMP only once. Hence, since permuted phase assignment subsets can
have up to 2k! members, Algorithm 4 will reduce the number of calls to mpToMMP by up to 2k!− 1
for the subset.

We now continue with the time complexity of Algorithm 4. Firstly, the algorithm computes NPN

canonical forms and transformations for each of them functions inψFf
[Vk], requiring timeO(m2kk+
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2k+1k!) (see Remark E.7). A cache key (the hexadecimal string representation of a function’s truth
table) must then be computed per vertex, requiring time v ·O(2k). ttToMP is then computed for each
NPN canonical form, requiring time c ·O(2kk) (using the algorithm from Gavier et al. (2023)). Next,
at most k input negations τϕi

are performed to compute each of the s permuted phase assignment NPN

canonical forms, requiring time s · k ·O(2k) (see Remark E.5). mpToMMP is then computed for each
of the s permuted phase assignment NPN canonical forms, requiring time s · 2O(k2k) (see Remark C.2).
Finally, for each of the m unique BFs in ψFf

[Vk], an input permutation τπ and output negation τν are
computed, requiring time m ·O(2k) (see Remark E.5). The time complexity of Algorithm 4 for a
K-LUT BN is therefore:

TNPN classes(K) = O(m2KK + 2K+1K!) + vO(2K)+

+ cO(2KK) + sKO(2K) + s2O(K2K) +mO(2K) (204)

= O(m2KK + 2K+1K! + v2K + c2KK + s2KK +m2K) + s2O(K2K) (205)

= O(m2KK + 2K+1K! + v2K + c2KK) + s2O(K2K) (206)

= O((mK + 2K! + v + cK)2K) + s2O(K2K) (207)

= O((2K! + v +mK + cK)2K) + s2O(K2K). (208)

Remark E.9 (Time complexity of the Naive algorithm from § 4.2). We follow the notation introduced
in Remark E.8. The Naive algorithm computes ttToMP and mpToMMP per vertex in Vk, requiring
time v · O(2kk) (using the algorithm from Gavier et al. (2023)) and v · 2O(k2k) (see Remark C.2),
respectively. Hence, the time complexity of Naive for a K-LUT BN is:

TNaive(K) = vO(2KK) + v2O(K2K) (209)

= O((vK)2K) + v2O(K2K) (210)

Remark E.10 (Time complexity of the Cached algorithm from § 4.2). We follow the notation
introduced in Remark E.8. The Cached algorithm computes a cache key (the hexadecimal string
representation of a function’s truth table) per vertex in Vk, requiring time v ·O(2k). It then computes
ttToMP and mpToMMP per unique function in ψFf

[Vk], requiring time m · O(2kk) (using the
algorithm from Gavier et al. (2023)) and m · 2O(k2k) (see Remark C.2), respectively. Hence, the time
complexity of Cached for a K-LUT BN is:

TCached(K) = vO(2K) +mO(2KK) +m2O(K2K) (211)

= O(v2K +m2KK) +m2O(K2K) (212)

= O((v +mK)2K) +m2O(K2K) (213)

Remark E.11 (Additional space used by the Naive and Cached algorithms from § 4.2 and Algorithm 4).
We follow the notation introduced in Remark E.8. Firstly, note that storing a truth table requires
space O(2k), and storing an MP/MMP with coefficients in {−2k−1, . . . , 2k−1} requires space O(k2k).
Furthermore, storing τπ requires space O(k log k) from storing a sequence of k unique integers in
{0, 1, . . . , k − 1}, storing τϕ requires space O(k) from storing which inputs are to be negated, and
storing τν requires space O(1) from storing whether the output is to be negated. The Naive algorithm
requires no additional space. The Cached algorithm requiresm ·O(K2K) additional space for storing
the MP/MMP cache of unique functions. Lastly, Algorithm 4 requires m ·O(K2) additional space for
NPN classification, then m ·O(K logK) + c ·O(K2K) + s ·O(K2K) additional space for the NPN

transformations of unique functions, the top-level cache of NPN canonical forms, and the second-level
cache of phase permuted subset NPN canonical forms, respectively.
Remark E.12 (Comparison of the Naive and Cached algorithms from § 4.2 and Algorithm 4). We
follow the notation introduced in Remark E.8. For the set of k-input BFs of a K-LUT BN, Naive
requires v calls to ttToMP and v calls to mpToMMP. Cached requires m ≤ v calls to ttToMP and
m ≤ v calls to mpToMMP. Algorithm 4 requires m

2k+1k!
≤ c ≤ m calls to ttToMP and m

2k! ≤ s ≤ m
calls to mpToMMP. For practical reasons of synthesis, K ≲ 10 (as many operations and structures
grow exponentially in time and space). Consequently, for fixed K ≲ 10, as the number of vertices
v in a BN increases, we expect NPN classes and permuted phase assignment subsets to become more
densely populated, meaning s→ m

2k! and c→ m
2k+1k!

, increasing the benefits of Algorithm 4. See
Appendix G.3 for an empirical analysis of the quantities v, m, c and s.
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E.5 RELATION TO EXISTING NPN CLASSIFICATION TECHNIQUES AND NPN INVARIANCE

Negation-Permutation-Negation (NPN) classification forms a well-established and extensively studied
subfield within the broader domain of Boolean function (BF) classification (Sasao & Butler, 2022).
This interest in NPN classification is largely driven by its utility in areas such as logic synthesis,
technology mapping, and logic verification (Hinsberger & Kolla, 1998). In modern logic synthesis
tools, NPN classification is commonly used in rewriting algorithms, which optimize technology-
independent representations of BNs (Mishchenko et al., 2006). Rewriting for And-Inverter Graphs
(AIGs) typically involves precomputing a set of optimized structures for each k-input NPN canonical
form and storing them within a hash lookup table. Doing this for k ≤ 4 is common today and
computationally tractable (Li et al., 2024). However, for k = 5 and k = 6 there are 666, 126 and
2.0× 1014 NPN equivalence classes, respectively, meaning both the time to compute and the space to
store the optimized structures quickly becomes intractable (Sasao & Butler, 2022).

In this paper, we discuss the optimization of NN representations of BNs. It was noted by Gavier
et al. (2023) that the number of layers in the layer-merged NN representation of a BN, following the
technology mapping sequence reviewed in § 2.2 with K-LUT mapping, approximately depends on
(log2(K))

−1. Consequently, applications that are latency critical would aim to use the largest value
of K. From our preceding discussion, it is evident that an optimization algorithm which precomputes
and stores the MMP for each k-input NPN or permuted-phase-NPN canonical form, k ≤ K, would be
intractable both in time and space. For this reason, we could not utilize NPN classification in the same
way as existing rewriting algorithms based on precomputed hash lookup tables.

Instead of precomputing and storing MMPs, our solution involves computing them on-the-fly. Indeed,
the straightforward approach would be to compute them per unique BF in the K-LUT BN. However,
our goal was to utilize NPN equivalence to reduce the number of times we would need to solve the MMP

optimization problem. Based on the analysis in Remark E.8, it would be ideal if the MMP optimization
problem could be solved once per NPN equivalence class (as opposed to once per permuted phase
assignment subset of an NPN equivalence class, which is what is done in Algorithm 4). Following
the results presented in Appendix E.3 and specifically the proof of Theorem E.3, this would seem to
require that the criterions used in the MMP optimization problem are NPN-invariant. In Lemma E.13
and Lemma E.14, we respectively proved that the uniform criterion cuni and the degree criterion
cdeg, the criterions we care about for compressing the NN representation of the BF, are PN-invariant.
That is, they are invariant under input permutation and output negation transformations. Therefore,
the final step to being NPN-invariant would be N-invariance, that is, invariance under input negation
transformations. However, as the following lemmas prove, the criterions cuni and cdeg that we are
interested in are not N-invariant.

Definition E.6 (N-invariant criterion). Let p ∈ Z2k be an MP and ϕ ⊆ {1, . . . , k}. A criterion vector
c ∈ Z2k is N-invariant if

∥c⊙ p∥1 = ∥c⊙ τϕ(p)∥1. (214)

Lemma E.15 (Uniform criterion is not N-invariant). Let k ∈ N0, k ≥ 2. cunik is not N-invariant.

Proof. Let p = [1,−1,−1, 1,02k−22 ]
⊺ ∈ Z2k and ϕ = {1, 2}, where 02k−22 ∈ Z2k−22 is the all

zeros vector. Then τϕ(p) = [0, 0, 0, 1,02k−22 ]
⊺, and

∥cunik ⊙ p∥1 = 3 ̸= 1 = ∥cunik ⊙ τϕ(p)∥1. (215)

Lemma E.16 (Degree criterion is not N-invariant). Let k ∈ N0, k ≥ 2. cdegk is not N-invariant.

Proof. Let p = [1,−1,−1, 1,02k−22 ]
⊺ ∈ Z2k and ϕ = {1, 2}, where 02k−22 ∈ Z2k−22 is the all

zeros vector. Then τϕ(p) = [0, 0, 0, 1,02k−22 ]
⊺, and

∥cunik ⊙ p∥1 = 4 ̸= 2 = ∥cunik ⊙ τϕ(p)∥1. (216)
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Table 4: cdeg3 -weighted one-norms for MPs in Z23 , where ϕ = {1, 2, 3} and τϕ(p0x16) = p0x68.

p0x16 p′
0x16 p0x68 p′

0x68 τϕ(p
′
0x16)

∥·∥1,cdeg
3

24 15 15 9 21

This is why Algorithm 4 computes MMP per permuted phase assignment NPN canonical form, since
all members of the permuted phase assignment subset are related by input permutation and output
negation transformations, which do not change the MMP solution cost under the PN-invariant criterions
cuni and cdeg. To make these ideas concrete, we conclude this discussion with an example of what
can go wrong when trying to share MMP solutions w.r.t. non-N-invariant criterions among functions
that are related by input negation transformations.

Let f0x16 : B3 → B be the BF with truth table 0x16. The MP representation of f0x16 is

p0x16(x1, x2, x3) = x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 3x1x2x3. (217)

An MMP representation of f0x16 w.r.t. cdeg3 is

p′0x16(x1, x2, x3) = x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3. (218)

Let f0x68 : B3 → B be the BF with truth table 0x68. The MP representation of f0x68 is

p0x68(x1, x2, x3) = x1x2 + x1x3 + x2x3 − 3x1x2x3. (219)

An MMP representation of f0x68 w.r.t. cdeg3 is

p′0x68(x1, x2, x3) = −1 + x1 + x2 + x3 − 2x1x2x3. (220)

Let ϕ = {1, 2, 3} and consider the input negation transformation τϕ. Firstly, notice that (p0x16 ◦
τϕ)(x1, x2, x3) = p0x68(x1, x2, x3). Next, we consider applying τϕ to the MMP p′0x16(x1, x2, x3),

(p′0x16 ◦ τϕ)(x1, x2, x3) = −3 + 3x1 + 3x2 + 3x3 − 2x1x2 − 2x1x3 − 2x2x3. (221)

Following Theorem E.2, τϕ(p′
0x16) ∈ [p0x68]σ . Therefore, τϕ(p′

0x16) could be an MMP of p0x68 w.r.t.
cdeg3 . However, as Table 4 shows, τϕ(p′

0x16) does not have minimum solution cost within [p0x68]σ.
Indeed, its cost under ∥·∥1,cdeg

3
is greater than both the found MMP p′

0x68 and the original MP p0x68.
Consequently, after mapping from the MMP solution p′

0x16 using τϕ, mpToMMP would need to be
called again to find an MMP of p0x68. However, this defeats the purpose of using NPN equivalence
since we do not save a call to the computationally expensive optimization produce of mpToMMP.
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F DIGITAL CIRCUITS AND AUTOMATA USED IN EXPERIMENTS

The technology mapping sequence discussed in § 2.2, and the optimization techniques we propose,
work for arbitrary Boolean networks (BNs). Hence, given a specification of a discrete graphical model,
if we can encode the model as a BN, then it can be provided as input to the optimized technology
mapping sequence to arrive at an optimized NN representation of the BN. In this section, we describe
encoding techniques for, and instances of, the two discrete graphical models that were used in our
experimental results; digital circuits and deterministic finite automata.

Digital circuits. Digital circuits specified in hardware description languages can be converted
into BNs via a process known as technology independent synthesis (see Gavier et al. (2023)). We
provide additional information and references for the four open-source digital circuits used in the
experimental results of the main text.

• uart4 is a communications core that parses internal bus commands via a Universal Asyn-
chronous Receiver-Transmitter (UART) interface.

• sha35 is a cryptographic core implementing Secure Hash Algorithm 3 (SHA-3) with an
output length of 512 bits.

• ecg6 is a cryptographic core implementing scalar multiplication of an element in the elliptic
curve group.

• aes7 is a cryptographic core implementing the encryption function of the Advanced En-
cryption Standard (AES) symmetric-key algorithm with a key length of 128 bits.

We also provide details on the digital circuits used in the extended results (see Appendix G.2).

• add is a 64-bit full adder.
• alu is a 32-bit arithmetic logic unit implementing +, −, ×, ÷, etc.
• rand8 and rand12 are randomly generated n-input, n-output look-up table (LUT) digital

circuits, where n ∈ {8, 12}.
• riscv8 is a RISC-V 3-stage pipeline.

Deterministic finite automata. A deterministic finite automaton (DFA) is a computational model
with finite memory. Formally, it is a 5-tuple D = (Q,Σ, δ, q0, F ), where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σ→ Q is the transition function,
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states (Sipser, 1996).

We now present a BN construction for an arbitrary DFA D = (Q,Σ, δ, q0, F ) using a one-hot encoding
for states and symbols. Let VPI = {q1, q2, . . . , q|Q|}∪{σ1, σ2, . . . , σ|Σ|} be the set of primary input
vertices, VPO = {q′1, q′2, . . . , q′|Q|} be the set of primary output vertices, and V = VPI ∪ VPO be
the set of vertices. Let ∆q′ = {(q, σ) ∈ Q × Σ | δ(q, σ) = q′} be the preimage of q′ ∈ VPO. Let
E = {(u, q′) ∈ VPI × VPO | ∃(q, σ) ∈ ∆q′ (u = q ∨ u = σ)} be the set of edges, and ψ : V → F
be the labeling function with specification

ψ(q′) =
∨

(q,σ)∈∆q′

(q ∧ σ), (222)

for all q′ ∈ VPO (recall the labeling function assigns a single output BF to each non-PI vertex). Then,
GF = (V,E) with labeling function ψ is a BN representation of DFA D. We note that the resulting BN

can be optimized using technology independent synthesis tools.
4https://opencores.org/projects/uart2bus
5https://opencores.org/projects/sha3
6https://opencores.org/projects/ecg
7https://opencores.org/projects/tiny_aes
8https://github.com/ucb-bar/riscv-mini
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(b) DFA Dcmod5.

Figure 8: State diagrams of the DFA used in the extended results.

We now provide details on the DFAs used in the extended results (see Appendix G.2).

• aaa is the BN representation of a DFA Daaa whose language is the set of all strings over
the alphabet Σ = {a, b} containing the substring “aaa”. The regular expression for this
language is (a+ b)∗aaa(a+ b)∗. Formally, let Daaa = (Q,Σ, δ, 0, F ) be a DFA, where

1. Q = {0, 1, 2, 3} is the set of states,
2. Σ = {a, b} is the alphabet,
3. 0 ∈ Q is the start state,
4. F = {3} is the set of accept states, and
5. transition function δ : Q× Σ→ Q is specified in Figure 8a.

• cmod5 (counter mod5) is the BN representation of a DFA Dcmod5 whose language is the
set of all strings over the alphabet Σ = {a, b} containing either (i) m a’s (increments),
or (ii) a suffix consisting of a b (reset) followed by m a’s (increments), where m ≡ 0
(mod 5). The regular expression for this language is (a5)∗ + (a+ b)∗b(a5)∗. Formally, let
Dcmod5 = (Q,Σ, δ, 0, F ) be a DFA, where

1. Q = {0, 1, 2, 3, 4} is the set of states,
2. Σ = {a, b} is the alphabet,
3. 0 ∈ Q is the start state,
4. F = {0} is the set of accept states, and
5. transition function δ : Q× Σ→ Q is specified in Figure 8b.
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G EXTENDED RESULTS

G.1 ACCELERATING MP-BASED TECHNOLOGY MAPPING WITH NPN CLASSIFICATION

aes (126,883)ecg (105,713)sha3 (31,144)uart (1,928)
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Figure 9: Accelerating MP- (multilinear polynomial) based technology mapping (and in turn NN-
based technology mapping) with NPN classification. MP-based technology mapping takes a Boolean
network (BN) with vertices associated with k-input truth tables, 1 ≤ k ≤ K, and computes the
functionally equivalent MP for each vertex. Naive (blue) computes the MPs per vertex in the BN, while
Cached (red) computes them per unique function. NPN classes (green) implements the proposed
NPN classification algorithm, computing MPs via NPN canonical forms and transformations. NPN

classes achieves consistent speedups when the overhead of computing NPN canonical forms and
transformations is insignificant to that of computing MPs. Lines and error bars denote the sample mean
and standard deviation over 3 trials. Logic gate counts, following technology independent synthesis,
are shown in parentheses.

G.2 RESULTS ON ADDITIONAL BOOLEAN NETWORKS

(a) Reduction in connections (blue) and neurons (red)
relative to the unmerged NN by optimizing all sub-NNs
with the proposed optAll algorithm.

(b) Mapping time for MP-based technology mapping.

(c) Reduction in connections and neurons relative to
the layer-merged NN by optimizing a subset of sub-
NNs selected by the proposed optMaintainDepth
algorithm. The size of the layer-merged NN is able to
be reduced without increasing its depth.

(d) Mapping time for MP- and MMP-based technology
mapping w.r.t. the uniform (cuni) and degree (cdeg)
criterions.

Figure 10: NN lossless optimization and mapping acceleration results for DFA BNs aaa and cmod5.
NN lossless optimization with respect to the uniform (cuni) and degree (cdeg) criterions for MMPs for
unmerged (a) and layer-merged (c) NNs. NN depths are shown in gold. Mapping time for MP-based
technology mapping (b) and MP- and MMP-based technology mapping (d). See § 4.2 for details on the
different methods (Naive, Cached, NPN classes). Lines and error bars denote the sample mean and
standard deviation over 3 trials. Logic gate counts, following the DFA BN construction and technology
independent synthesis, are shown in parentheses.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

(a) Reduction in connections (blue) and neurons (red) relative to the unmerged NN by optimizing all sub-NNs
with the proposed optAll algorithm.

(b) Reduction in connections and neurons relative to the layer-merged NN by optimizing a subset of sub-NNs
selected by the proposed optMaintainDepth algorithm. The size of the layer-merged NN is able to be
reduced without increasing its depth.

Figure 11: NN lossless optimization with respect to the uniform (cuni) and degree (cdeg) criterions for
MMPs. NN depths are shown in gold. Logic gate counts, following technology independent synthesis,
are shown in parentheses. For rand8 and rand12, lines and error bars denote the sample mean and
standard deviation across 3 different circuits.

(a) Mapping time for MP-based technology mapping.

(b) Mapping time for MP- and MMP-based technology mapping w.r.t. the uniform (cuni) and degree (cdeg)
criterions.

Figure 12: Accelerating MP- and MMP-based technology mapping with NPN classification. Naive (blue)
computes the MP (a) or MP and MMP (b) per vertex in the BN, while Cached (red) computes them per
unique function. NPN classes (green) implements the proposed NPN classification algorithm. For add
and alu, lines and error bars denote the sample mean and standard deviation over 3 trials. For
rand8 and rand12, they denote sample mean and standard deviation across 3 different BNs with 3
trials each. Logic gate counts, following technology independent synthesis, are shown in parentheses.
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Figure 13: NN lossless optimization and mapping acceleration results for riscv. NN lossless
optimization w.r.t. the uniform (cuni) and degree (cdeg) criterions for MMPs for unmerged (far left)
and layer-merged (mid left) NNs. NN depths are shown in gold. Mapping time for MP-based technology
mapping (mid right) and MP- and MMP-based technology mapping w.r.t. the uniform (cuni) and degree
(cdeg) criterions (far right). Lines and error bars denote the sample mean and standard deviation over
3 trials. Logic gate count, following technology independent synthesis, is shown in parentheses.

We present additional results on three different classes of digital circuit BNs (see Figure 11, Figure 12,
and Figure 13), as well as results on DFA BNs (see Figure 10), using the same experimental setting as
in the main text (see § 4). We provide details on the digital circuits and automata in Appendix F, and
summarize our findings below.

Well-known/Arithmetic circuits (add & alu) In comparison to the main results, we achieve a
new best under the depth-constrained NN compression setting with add, reducing the connections and
neurons in the layer-merged NN by 60% and 30%, respectively. When compressing the unmerged NN

of add and alu, we observe that as K increases so does the relative reduction in size (also observed
for uart and ecg in the main results). As for caching, add is too small to see benefits with NPN

caching. While alu is also relatively small, we observe a speedup in mapping time with NPN caching.

Arbitrary/Random circuits (rand8 & rand12) We achieve considerable compression in NN

size for rand8 and rand12. We also find that NPN (and function) caching is not useful for these
BNs for large K. This is because as K increases, the likelihood of having an NPN class cached tends
to zero (see Appendix G.3). We note that the applications in the Broader Impacts statement (see
Appendix I) mainly involve non-random BNs, for which our experiments have demonstrated the value
of NPN caching.

Large circuit / Core (riscv) riscv is 3.3 times larger than aes (the largest BN we reported in
the main results). For riscv, our techniques were able to reduce connections and neurons by up
to 40% and 10%, respectively, without a depth constraint, and by up to 40% and -1%, respectively,
in the depth-constrained setting (the increase in neurons is justified by the ℓ1-norm relaxation, see
§ 3.1). We also observed a mean speedup for NPN caching compared to function caching.

Deterministic finite automata (aaa & cmod5) Following the BN construction for DFAs discussed
in Appendix F, the BNs for Daaa and Dcmod5 have 6 and 7 primary input vertices, respectively.
Consequently, in Figure 10, we limit K-LUT mapping to K ≤ 6 and K ≤ 7 for the BNs aaa and
cmod5, respectively. Since the maximum number of inputs to any BF in aaa and cmod5 is 4 and
7, respectively, K-LUT mapping applied to aaa with K ∈ {4, 5, 6} results in the same K-LUT
BN. This is why we observe the same reduction results for aaa with K ∈ {4, 5, 6} in Figure 10a
and Figure 10c. Moreover, we see that the resulting NN representations for aaa and cmod5 with
K ∈ {4, 5, 6} and K = 7, respectively, have only two layers. In these cases, the unmerged and
layer-merged NNs are identical since inter-depth composition cannot be applied (see § 2.2). Even
though these BNs are significantly smaller than the digital circuits we examine, we are still able to
achieve substantial compression; observing a reduction in connections and neurons of 40% and 12%,
respectively, for aaa with K ∈ {4, 5, 6} under the cdeg criterion (reducing connections from 62
to 37, and neurons from 27 to 24), and a reduction in connections and neurons of 85% and 64%,
respectively, for cmod5 with K = 7 under the cdeg criterion (reducing connections from 407 to 60,
and neurons from 94 to 34). As for mapping time, all K-LUT BNs of aaa and cmod5 have ≤ 19 BFs.
Hence, these BNs are too small to see benefits from the proposed NPN classification algorithm.
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G.3 EMPIRICAL ANALYSIS OF NPN CLASSIFICATION
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Figure 14: Caching analysis for mapping digital circuit aes at K = 11 under the degree criterion.
Number of vertices (blue), unique functions (red), NPN classes (gold) and permuted phase assignment
subsets (green) in the Boolean network are shown for 0 ≤ k ≤ K.

We empirically examine Remark E.12 for the largest circuit (aes) and largest K presented in the
main text for MP- and MMP-based technology mapping. Since there are 22

k

BFs, and the lower bound

on the number of NPN classes is 22
k

2k+1k!
(Sasao & Butler, 2022), as k tends to infinity the number of

NPN classes will approach the number of unique functions, meaning function caching (the Cached
algorithm from § 4.2) and NPN caching techniques would require the same number of calls to ttToMP
and mpToMMP. However, K is generally limited to be around 10 due to the exponential runtime and
space requirements of synthesis operations and data structures, respectively. Hence, as mentioned
in Remark E.12, we can make use of NPN equivalence classes to speed up mapping time; which
we were also able to observe in the empirical results. In Figure 14, we observe both ends of the
bounds presented in Remark E.12 for the number of NPN classes and the number of permuted phase
assignment subsets. While for k = 5 there are 18 unique functions, 4 NPN classes and 6 permuted
phase assignment subsets, for k = 8, there are 1,096 unique functions yet only 11 NPN classes and 25
permuted phase assignment subsets. Thus, function caching (the Cached algorithm) requires 1,096
calls to ttToMP and mpToMMP, whereas the NPN algorithm requires 11 calls to ttToMP and 25
calls to mpToMMP. This explains the observed speedup of 5.9× in Figure 6.
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H SYNTHESIZED NEURAL NETWORKS FOR FIGURE 7

See Figure 15 and Figure 16.

Figure 15: Layer-merged neural network (NN) for panel b of Figure 7. The NN has 24 neurons and 38
connections.

Figure 16: Layer-merged neural network (NN) for panel c of Figure 7. The optMaintainDepth
NN compression algorithm was applied under the uniform criterion. The NN has 20 neurons and 28
connections.
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I BROADER IMPACTS

In this work, we propose a novel lossless optimization technique for neural network (NN) represen-
tations of Boolean networks (BNs) and an algorithm for accelerating the conversion from BN to NN.
Here, we briefly discuss the positive impacts our results suggest for two important domains: BN (in
particular, digital circuit) simulation and neurosymbolic artificial intelligence (AI).

Register-transfer level (RTL) simulation is used to achieve functional verification of digital circuits
(Tan & Rosdi, 2014). Although the use of GPUs for RTL simulation was proposed as early as 2011
(Qian & Deng, 2011), due to the continued developments in GPU hardware, modern machine learning
frameworks, and the proliferation of GPUs in data centers, there has been a recent call for accelerating
RTL simulation on parallel processing hardware platforms (Zhang et al., 2020). This has resulted
in GPU RTL simulation tools (Lin et al., 2022) and their integration into more advanced functional
verification techniques, such as hardware fuzzing (Lin et al., 2023). NN-based technology mapping
was recently applied in a GPU RTL simulation methodology, leveraging batched stimulus to parallelize
the evaluation of test cases (Gavier et al., 2023). Our proposed NN optimization technique reduces
the memory footprint of the resulting NN, meaning more test cases can be batched in parallel and
throughput can be further increased. Furthermore, our NPN classification technique for accelerating
mapping time is crucial for the adoption of NN-based simulation methodologies in practice, as time
delays are expensive in the interative design flow of digital circuits. Our proposed techniques are
also applicable to other Boolean network simulation frameworks, such as gene regulatory networks
(Bornholdt, 2008; Biswas et al., 2021).

Neurosymbolic AI is a promising paradigm for integrating learning-based techniques with symbolic
algorithms that provide robustness and explainability. However, neurosymbolic methods generally
involve heterogeneous computing architectures, which diverge from the current hardware roadmap of
improving matrix-vector multiplication (Wan et al., 2024). One way of utilizing recent advances in
matrix-vector multiplication architectures, such as compute-in-memory crossbars (Rao et al., 2023;
Ambrogio et al., 2023), is to use NN-based technology mapping to convert the symbolic circuits
into matrix-vector multiplications. Hence, all components of the neurosymbolic system can be
run on the same hardware architecture. Moreover, the high NN sparsity that results from K-LUT-
based technology mapping (Gavier et al., 2023) implies that the mapped NN is likely to satisfy the
thermal constraints that accompany three-dimensional crossbars (Boahen, 2022). Our proposed NN

optimization techniques reduce matrix sizes and energy requirements for neurosymbolic approaches
that would use such a matrix-vector multiplication architecture, which is of particular relevance for
memory- and energy-limited edge computing applications.

For example, autonomous systems often integrate data from multiple sensors to make informed
decisions about their actions. These systems typically employ NN encoders to transform high-
dimensional, continuous data into a discrete set of symbolic classifications, which encapsulate critical
information for the system. These classifications are then passed to a logical decision-making
algorithm that determines the system’s actions. In a modern computing architecture, the NN encoders
could leverage compute-in-memory crossbars for efficient processing. However, the decision-making
algorithms are generally executed on digital processors, resulting in a heterogeneous system design.
Using NN-based technology mapping, it is possible to translate logical circuits into a series of
matrix-vector multiplications. This approach enables a homogeneous system architecture consisting
exclusively of crossbars and their associated peripherals. Our lossless NN optimization techniques,
which reduce matrix sizes and the number of required operations in the resulting NN, would reduce
the area requirements on the crossbar and lower energy consumption for such an architecture while
ensuring the decision-making algorithm is computed without error – an aspect that is vital for system
safety and reliability.
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