
Conformal Prediction for Time Series with
Modern Hopfield Networks

Andreas Auer ∗ Martin Gauch∗ ,† Daniel Klotz∗ Sepp Hochreiter∗
∗ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning,

Johannes Kepler University Linz, Austria
†Google Research, Zürich, Switzerland

Abstract

To quantify uncertainty, conformal prediction methods are gaining continuously
more interest and have already been successfully applied to various domains.
However, they are difficult to apply to time series as the autocorrelative structure
of time series violates basic assumptions required by conformal prediction. We
propose HopCPT, a novel conformal prediction approach for time series that not
only copes with temporal structures but leverages them. We show that our approach
is theoretically well justified for time series where temporal dependencies are
present. In experiments, we demonstrate that our new approach outperforms state-
of-the-art conformal prediction methods on multiple real-world time series datasets
from four different domains.

1 Introduction

Uncertainty estimates are imperative to make actionable predictions for complex time-dependent
systems (e.g., Gneiting & Katzfuss, 2014; Zhu & Laptev, 2017). This is particularly evident for
environmental phenomena such as flood forecasting (e.g., Krzysztofowicz, 2001), since they exhibit
pronounced seasonality. Conformal Prediction (CP, Vovk et al., 1999) provides uncertainty estimates
based on prediction intervals. It achieves finite-sample marginal coverage with almost no assumptions,
except that the data is exchangeable (Vovk et al., 2005; Vovk, 2012). However, CP for time series is
not trivial because temporal dependencies often violate the exchangeability assumption.

HopCPT. For time series models that predict a given system, the errors are typically specific to
the input describing the current situation. To apply CP, HopCPT uses continuous Modern Hopfield
Networks (MHNs). The MHN uses large weights for past situations that were similar to the current
one and weights close to zero for past situations that were dissimilar to the current one (Figure 1). The
CP procedure uses the weighted errors to construct strong uncertainty estimates close to the desired
coverage level. This exploits that similar situations (which we call a regime) tend to follow the same
error distribution. HopCPT achieves new state-of-the-art efficiency, even under non-exchangeability
and on large datasets.

Our main contributions are:
1. We propose HopCPT, a CP method for time series, a domain where CP struggled so far.
2. We introduce the concept of error regimes to CP, which softens the excitability requirements

and enables efficient CP for time series.
3. HopCPT uses MHN for a similarity-based sample reweighting. In contrast to existing

approaches, HopCPT can learn from large datasets and predict intervals at arbitrary coverage
levels without retraining.

4. HopCPT achieves state-of-the-art results for conformal time series prediction tasks from
various real-world applications.
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Figure 1: Schematic illustration of HopCPT. The Modern Hopfield Network (MHN) identifies
regimes similar to the current one and up-weights them (colored lines). The weighted information
enriches the conformal prediction (CP) procedure so that prediction intervals can be derived.

5. HopCPT is the first algorithm with coverage guarantees that was applied to hydrological
prediction applications — a domain where uncertainty plays a key role in tasks such as flood
forecasting and hydropower management.

1.1 Related Work

Regimes. In a world with non-linear dynamics, different environmental conditions lead to different
error characteristics of models that predict based on these conditions. If we do not account for these
different conditions, temporal changes may lead to unnecessarily large prediction intervals, i.e., to
high uncertainty. For example, solar energy production is high and stable on a sunny day, fluctuates
during cloudy days, and is zero at night. Often, the current environmental condition was already
observed at previous points in time. The error at these time steps is therefore assumed to have the
same distribution as the current error. Following Quandt (1958) and Hamilton (1990), we call the
sets of time steps with similar environmental conditions regimes. Although conditional CP is in
general impossible (Foygel Barber et al., 2021), we show that conditioning on such regimes can lead
to better prediction intervals while preserving the specified coverage. Hamilton (1990) models time
series regimes as a discrete Markov process and conditions a classical autoregressive model on the
regime states. Sanquer et al. (2012) use a smooth transition approach to model multi-regime time
series. Tajeuna et al. (2021) propose an approach to discover and model regime shifts in an ecosystem
that comprises multiple time series. Further, Masserano et al. (2022) handle distribution shifts by
retraining a forecasting model with training data from a non-uniform adaptive sampling. Although
these approaches are not in a CP setting, their work is similar in spirit, as they also follow the general
idea to condition on parts of the time series with similar regimes.

CP and extensions. For thorough introductions to CP, we refer the reader to the foundational
work of Vovk et al. (1999) and a recent introductory paper by Angelopoulos & Bates (2021). There
exist a variety of extensions for CP that go “beyond exchangeability” (Vovk et al., 2005). For
example, Papadopoulos & Haralambous (2011) apply CP to a nearest neighbor regression setting,
Teng et al. (2022) apply CP to the feature space of models, Angelopoulos et al. (2020) use CP
to generate uncertainty sets for image classification tasks, and Toccaceli et al. (2017) use a label-
conditional variant to apply CP to biological activity prediction. Of specific interest to us is the
research regarding non-exchangeable data of Tibshirani et al. (2019) and Foygel Barber et al. (2022).
Both handle potential shifts between the calibration and test set by reweighting the data points.
Tibshirani et al. (2019) restrict themselves to settings with full knowledge about the change in
distribution; Foygel Barber et al. (2022) rely on fixed weights. In our work, we refrain from this
assumption because such information is typically not available in time series prediction. Another
important research direction is the work on normalized conformity scores (see Fontana et al., 2023,
and references therein). In this setting, the goal is to adapt the conformal bounds through a scaling
factor in the nonconformity function. The work on normalized conformity scores does not explicitly
tailor their approaches to time series.
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CP for time series. Gibbs & Candes (2021) and Zaffran et al. (2022) account for shifts in sequential
data by continuously adapting an internal coverage target. Adaption-based approaches like these
are orthogonal to HopCPT and can serve as an enhancement. Stankevičiūtė et al. (2021) use CP
in conjunction with recurrent neural networks in a multi-step prediction setting, assuming that the
series of observations is independent. Thus, no weighting of the scores is required. Sun & Yu (2022)
introduce CopulaCPTS which applies CP to time series with multivariate targets. They conformalize
their prediction based on a copula of the target variables and adapt their calibration set in each step.
Jensen et al. (2022) use a bootstrap ensemble to enable CP on time series. NexCP (Foygel Barber
et al., 2022) uses exponential decay as the weighting method, arguing that the recent past is more
likely to be of the same error distribution. HopCPT can learn this strategy, but does not a priori
commit to it. Xu & Xie (2022a) propose EnbPI, which uses quantiles of the k most recent errors
for the prediction interval. Additionally, they introduce a novel leave-one-out ensembling technique.
This is specifically geared to settings with scarce data and difficult to use for larger datasets, which
is why we do not apply it in our experiments. EnbPI is designed around the notion that near-term
errors are often independent and identically distributed and therefore exchangeable. SPCI (Xu &
Xie, 2022b) softens this requirement by exploiting the autocorrelative structure with a random forest.
However, it re-calculates the random forest model at each time step, which is a computational burden
that prohibits its application to large datasets. Our approach relaxes the requirement even further, as
we do not assume that the data for the interval computations pertains to the k most recent errors.

Non-CP methods Beside CP there exist a wide range of approaches for uncertainty-aware time
series prediction. For example, Mixture Density Networks (Bishop, 1994) directly estimate the
parameters of a mixture of distributions. However, they require a distribution assumption and do not
provide any theoretical guarantees. Gaussian Processes (e.g., Zhu et al., 2023; Corani et al., 2021;
Sun et al., 2022) model time series by calculating posterior functions based on the samples and a
prior but are computationally limited for large and high dimensional datasets.

Continuous Modern Hopfield Networks. MHN are energy-based associative memory networks.
They advance conventional Hopfield Networks (Hopfield, 1982) by introducing continuous queries
and states via a new energy function. The new energy function leads to exponential storage capacity,
while retrieval is possible with a one-step update (Ramsauer et al., 2021). Examples for successful
applications of MHN are Widrich et al. (2020); Fürst et al. (2022); Dong et al. (2022); Sanchez-
Fernandez et al. (2022); Paischer et al. (2022); Schäfl et al. (2022); and Xu et al. (2022). MHN are
related to Transformers (Vaswani et al., 2017) as their attention mechanism is closely related to the
association mechanism in MHN. In fact, Ramsauer et al. (2021) show that Transformers attention is a
special case of the MHN association, at which we arrive when the queries and states are mapped to
an associative Hopfield space with the dimensions dk, and the inverse softmax temperature is set to
β = 1√

dk
. However, we use the framework of MHN because we want to highlight the associative

memory mechanism as HopCPT directly ingests encoded observations. This perspective further
allows HopCPT to update the memory for each new observation. For more details, we refer to
Appendix H in the supplementary material.

1.2 Setting

Our setting consists of a multivariate time series {(xt, yt)}, t = 1, . . . , T , with a feature vector
xt ∈ Rm, a target variable yt ∈ R, and a given black-box prediction model µ̂ that generates a point
prediction ŷt = µ̂(Xt). The input feature matrix Xt+1 can include all previous and current feature
vectors {xi}t+1

i=1, as well as all previous targets {yi}ti=1. Our goal is to construct a corresponding
prediction interval Ĉα

t (Zt+1) — a set that includes yt+1 with at least a specified probability 1− α.
In its basic form, Zt+1 will only contain ŷt+1, but it can also inherit Xt+1 or other useful features.
Following Vovk et al. (2005), we define the coverage as

Pr
{
Yt+1 ∈ Ĉα

t (Zt+1)
}
≥ 1− α, (1)

where Yt+1 is the random variable of the prediction. An infinitely wide prediction interval is 100%
reliable, but not informative of the uncertainty. Thus, CP aims to minimize the width of the prediction
interval Ĉα

t , while preserving the coverage. A smaller prediction interval is called a more efficient
interval (Vovk et al., 2005) and usually evaluated as the mean of the interval width over the prediction
period (PI-Width).
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Standard split conformal prediction takes a calibration set of size n which has not been used to train
the prediction model µ̂. For each data sample, it calculates the so-called non-conformity score (Vovk
et al., 2005). In a regression setting, this score often simply corresponds to the absolute error of the
prediction (e.g., Foygel Barber et al., 2022). The prediction interval is then calculated based on the
empirical 1− α quantile Q1−α of the calibration scores:

Ĉα
n (Zt+1) = µ̂(Xt+1)± Q1−α({|yi − µ̂(Xi)|}ni=1). (2)

If the data is exchangeable and µ̂ treats the data points symmetrically, the errors on the test set follow
the distribution from the calibration. Hence, the empirical quantiles on the calibration and test set
will be approximately equal and it is guaranteed that the interval provides the desired coverage.

The actual marginal miscoverage α⋆ is based on the observed samples of a test set. If the specified
miscoverage α differs from the α⋆ in the evaluation, we denote the difference as the coverage gap
∆ Cov = α− α⋆.

The remainder of this manuscript is structured as follows: In Section 2, we present HopCPT alongside
a theoretical motivation and a synthetic example that demonstrates the advantages of the approach. In
Section 3, we evaluate the performance against state-of-the-art CP approaches and discuss the results.
Section 4 gives our conclusions and provides an outlook on potential future work.

2 HopCPT

HopCPT1 combines conformal-style quantile estimation with learned similarity-based MHN retrieval.

2.1 Theoretical Motivation

The theoretical motivation for the MHN retrieval stems from Foygel Barber et al. (2022), who
introduced CP with weighted quantiles. In the split conformal setting, the according prediction
interval is calculated as

Ĉα
t (Xt+1) = µ̂(Xt+1)± Q1−α

(
t∑

i=1

aiδϵi + at+1δ+∞

)
, (3)

where µ̂ represents an existing point prediction model, Qτ is the τ -quantile of a distribution, and
δϵi is a point mass at |ϵi| (i.e., a probability distribution with all its mass at |ϵi|), where ϵi are the
errors of the existing prediction model defined by ϵi = yi − µ̂(Xi). The normalized weight ai of
data sample i is

ai =

{
1

ω1+...+ωt+1 if i = t+ 1,
ωi

ω1+...+ωt+1 else,
(4)

where ωi are the un-normalized weights of the samples. In the case of ω1 = . . . = ωt = 1, this
corresponds to standard split CP. Given this framework, Foygel Barber et al. (2022) show that ∆ Cov
can be bounded in a non-exchangeable data setting: Let D = ((X1, Y1), . . . , (Xt+1, Yt+1)) be a
dataset where the last entry represents the test sample, and Di be a permutation of D which exchanges
the test sample at t+1 with the i-th sample. Then, ∆ Cov can be bounded from below by the weighted
sum of the total variation distances dTV between these permutations:

∆ Cov ≥ −
t∑

i=1

ai · dTV(D,Di) (5)

If D is a composite of multiple regimes and the test sample is from the same regime as the calibration
sample i, then the distance between D and Di is small. Conversely, the distance might be big if the
calibration sample is from a different regime. In HopCPT, the MHN association resembles direct
estimates of ai — dynamically assigning high values to samples from similar regimes.

Appendix B provides an extended theoretical discussion that relates HopCPT to the work of
Foygel Barber et al. (2022) and Xu & Xie (2022a), who provide the basis for our theoretical

1https://github.com/ml-jku/HopCPT
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analyses of the CP interval. The latter compute individual quantiles for the upper and lower bound
of the prediction interval on the errors themselves, in contrast to standard CP which uses only the
highest absolute error quantile. This can provide more efficient intervals in case E[ϵ] ̸= 0 within the
corresponding error distribution. Applying this principle to HopCPT where the error distribution is
conditional to the error regime and assuming that HopCPT can successfully identify these regimes
(Appendix: Assumption B.3), we arrive at a conditional asymptotic coverage bound (Appendix:
Theorem B.8) and an asymptotic marginal coverage bound (Appendix: Theorem B.9).

2.2 Associative Soft-selection for CP

We use a MHN to identify parts of the time series where the conditional error distribution is similar:
For time step t+ 1, we query the memory of the past and look for matching patterns. The MHN then
provides an association vector at+1 that allows to soft-select the relevant periods of the memory. The
selection procedure is analogous to a k-nearest neighbor classifier for hard selection, but it has the
advantage that the similarity measure can be learned. Formally, the soft-selection is defined as:

at+1 = softmax
(
β m(Zt+1)Wq Wk m(Z1:t)

)
, (6)

where m is an encoding network (Section 2.3) that transforms the raw time series features of the
current step Zt+1 to the query pattern and the memory Z1:t to the stored key patterns; Wq and Wk

are the learned transformations which are applied before associating the query with the memory; β
is a hyperparameter that controls the softmax temperature. As mentioned above, HopCPT uses the
softmax to amplify the impact of the data samples that are likely to follow a similar error distribution
and to reduce the impact of samples that follow different distributions (see Section 2.1). This error
weighting leads not only to more efficient prediction intervals in our experiments, but can also reduce
the miscoverage (Section 3.2).

With the soft-selected time steps we can derive the CP interval using the observed errors ϵ. Following
Xu & Xie (2022a), we use individual quantiles for the upper and lower bound of the prediction
interval, calculated from the errors themselves. HopCPT computes the prediction interval Ĉα

t for
time step t+ 1 in the following way:

Ĉα
t (Zt+1) =

[
µ̂(Xt+1) + q(

α

2
,Zt+1), µ̂(Xt+1) + q(1− α

2
,Zt+1)

]
, (7)

where q(τ,Zt+1) = Qτ (Et+1) and Et+1 is a multiset created by drawing n times from [ϵi]
t
i=1 with

corresponding probabilities [at+1,i]
t
i=1.

2.3 Encoding Network

We embed Zt using a 2-layer fully connected network mL with ReLU activations and enhance the
representation by temporal encoding features ztime

T,t . The full encoding network can be represented as
m(Zt) = [mL(Zt) || ztime

T,t ], where ztime
T,t is a simple temporal encoding that makes time dependent

notions of similarity learnable (e.g., the windowed approach of EnbPI or the exponentially decaying
weighting scheme of NexCP). Specifically, we use ztime

T,t = t
T . In general, we find that our method is

not very sensitive to the exact encoding strategy (e.g., number of layers), which is why we kept to a
simple choice throughout all experiments.

2.4 Training Procedure

We partition the split conformal calibration data into training and validation sets. Training MHN
with quantiles is difficult, which is why we use an auxiliary task: Instead of applying the association
mechanism from Equation 6 directly, we use the absolute errors as the value patterns of the MHN.
This way, the MHN learns to align errors from time steps with similar regime properties. Intuitively,
the observed errors from these time steps should work best to predict the current absolute error.
We use the mean squared error as loss function (Equation 8). To allow for efficient training, we
simultaneously calculate the association of all T time steps within a training split with each other.
We mask the association from a time step to itself. The resulting association from each step to each
step is A1:T,1:T , and the loss function L is

L = T−1 ∗ ∥(|ϵ1:T | −A1:T,1:T |ϵ1:T |)2∥1. (8)
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Figure 2: Synthetic example evaluation. HopCPT has the smallest prediction interval width (PI-
width), while maintaining the warranted coverage (i.e., a ∆ Cov that is positive and close to zero).

This incentivizes the network to learn a representation such that the resulting soft-selection focuses
on time steps with a similar error distribution. Alternatively, one could use a loss based on sampling
from the softmax. This would correspond more closely to the inference procedure. However, it makes
training less efficient because each training step only carries information about a single value of ϵi.
In contrast, L leads to more sample-efficient training. Choosing L assumes that it leads to a retrieval
of errors from appropriate regimes instead of mixing unrelated errors. Section 3.2 and Appendix A.3
provide evidence that this holds empirically.

2.5 Synthetic Example

The following synthetic example illustrates the advantages of the HopCPT association mechanism.
We model a bivariate time series D = {(xt, yt)}Tt=1. While yt serves as the target variable, xt

represents the feature in our prediction. The series is composed of two different regimes: target values
are generated by yt = 10 + xt +N (0, xt

2 ) or yt = 10 + xt + U(−xt, xt). xt is constant within a
regime (x = 3 and x = 21, respectively). The regimes alternate. For each regime, we sample the
number of time steps from the discrete uniform distribution U(1, 25). We create 1,000 time steps
and split the data equally into training, calibration, and test sets. We use a ridge regression model as
prediction model µ̂. HopCPT can identify the time steps of relevant regimes and therefore creates
efficient prediction intervals while still preserving the coverage (Figure 2). EnbPI, SPCI, and NexCP
focus only on the recent time steps and thus fail to base their intervals on information from the correct
regime. Whenever the regime changes from small to high errors, EnbPI propagates the small error
signal and therefore loses coverage. Similarly, its prediction intervals for the small error regime are
inefficient (Figure 2, row 3). SPCI, NexCP, and standard CP cannot properly select the relevant time
steps, either. They do not lose coverage, but produce wide intervals for all time steps (Figure 2, rows
4 and 5). Lastly, if we replace the MHN with a kNN, it can retrieve information from similar regimes.
However, its naive retrieval mechanism fails to focus on the informative features because it cannot
learn them (Figure 2, row 2).

2.6 Limitations

HopCPT builds upon the formal guarantees of CP, but it is able to relax the data exchangeability
assumption of CP which are problematic for time series data. That said, HopCPT still relies on
assumptions on how it learns to identify the respective error regimes and exchangablity within regimes
(see Section 2.1 and Appendix B). Our extensive empirical evaluation suggests that these assumptions
hold in practice. HopCPT is generally well-suited for very long time series because the memory
requirement in the inference scales only linearly with the memory size. Nevertheless, for extremely
large datasets it can be the case that not all historical time steps may be kept in the Hopfield memory
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anymore. HopCPT can, similar to existing methods, disregard time steps by removing the oldest
entries from the memory, or alternatively use a sub-sampling strategy. On the other hand, for datasets
with very scarce data it might be difficult to learn a useful embedding of the time steps. In that case,
it could be better to use kNN rather than learning the similarity with MHN (Appendix D). Additional
considerations regarding the potential social impact of the method are summarized in Appendix I.

3 Experiments

This section provides a comparative evaluation of HopCPT and analyzes its association mechanism.

3.1 Setup

Datasets. We use datasets from four different domains: (a) Three solar radiation datasets from
the US National Solar Radiation Database (Sengupta et al., 2018). The smallest one consists of 8
time series from different locations over a period of 84 days. This dataset is also used in Xu & Xie
(2022a,b). In addition, we evaluate on a 1-year and a 3-year dataset, with 50 time series each. (b)
An air quality dataset from Beijing, China (Zhang et al., 2017). It consists of 12 time series, each
from a different measurement station, over a period of 4 years. The dataset has two prediction targets,
the PM10 (as in Xu & Xie, 2022a,b) and PM2.5 concentrations, which we evaluate separately. (c)
Sap flow2 measurements from the Sapfluxnet data project (Poyatos et al., 2021). Since the individual
measurement series are considerably heterogeneous in length, we use a subset of 24 time series, each
with between 15,000 and 20,000 data points and varying sampling rates. (d) Streamflow, a dataset
of water flow measurements and corresponding meteorologic observations from 531 rivers across
the continental United States (Newman et al., 2015; Addor et al., 2017). The measurements span 28
years at a daily time scale. For more detailed information about the datasets see Appendix C.

Prediction models. We use four prediction models for the solar radiation, the air quality, and the sap
flux datasets to ensure that our results generalize: a random forest, a LightGBM, a ridge regression,
and a Long Short-Term Memory (LSTM) (LSTM; Hochreiter & Schmidhuber, 1997) model. For the
former three models we follow the related work (Xu & Xie, 2022a,b; Foygel Barber et al., 2022) and
train a separate prediction model for each individual time series. The random forest and LightGBM
models are implemented with the darts library (Herzen et al., 2022), the ridge regression model with
sklearn (Pedregosa et al., 2011). For the LSTM model, we instead train a global model on all time
series of a dataset, as is standard for state-of-the-art deep learning models (e.g., Oreshkin et al., 2020;
Salinas et al., 2020; Smyl, 2020). The LSTM is implemented with PyTorch (Paszke et al., 2019). For
the streamflow dataset, we deviate from this scheme and instead only use the state-of-the-art model,
which is also an LSTM network (Kratzert et al., 2021, see Appendix C).

Compared approaches. We compare HopCPT to different state-of-the-art CP approaches for time
series data: EnbPI (Xu & Xie, 2022a), SPCI (Xu & Xie, 2022b), NexCP (Foygel Barber et al., 2022),
CopulaCPTS (Sun & Yu, 2022), and AdaptiveCI3 (Gibbs & Candes, 2021). In addition, the results of
standard split CP (CP) serve as a baseline, which, for the LSTM base predictor, corresponds to CF-
RNN (Stankevičiūtė et al., 2021) in our setting (one-step, univariate target variable). Appendix A.1
describes our hyperparameter search for each method. For SPCI, an adaption of the original algorithm
was necessary to provide scalability to larger datasets. Appendix A.2 contains more details and an
empirical justification. Appendix G evaluates the addition of AdaptiveCI (Gibbs & Candes, 2021) as
an enhancement to HopCPT and the other time series CP methods. Appendix A.3 gives a comparison
to non-CP methods. Lastly, Appendix D presents a supplemental comparison to kNN that shows the
superiority of the learned similarity representation in HopCPT.

2Sap flow refers to the movement of water within a plant. In the environmental sciences, it is commonly used
as a proxy for plant transpiration.

3AdaptiveCI works on top of an existing quantile prediction method. Hence, we exclusively make compar-
isons based on the LightGBM models that can predict quantiles instead of point estimates. The approach is
orthogonal to the remaining compared models and could be combined with HopCPT.
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Table 1: Performance of the evaluated CP algorithms for the Solar (3Y), Air Quality (10PM), Sap
flow, and Streamflow (SF) datasets. The specified miscoverage level is α = 0.1 for all experiments.
The column FC specifies the prediction algorithm used for the experiment (Forest: Random Forest,
LGBM: LightGBM, Ridge: Ridge Regression, LSTM: LSTM neural network). Bold numbers
correspond to the best result for the respective metric in the experiment (PI-Width and Winkler score),
given that ∆Cov ≥ −0.25α, i.e., the specific algorithm reached at least approximate coverage (the
result is grayed otherwise). The error term represents the standard deviation over repeated runs with
different seeds (results without an error term are from deterministic models).
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Sa
p

flo
w

Fo
re

st ∆ Cov 0.009±0.019 0.007±0.000 -0.042 0.000 0.014 0.005
PI-Width 1078.7±73.7 1741.8±2.4 3671.6 6137.1 7131.1 7201.5
Winkler 0.30±0.01 0.59±0.00 1.24 1.56 1.76 1.80

L
G

B
M ∆ Cov -0.016±0.013 0.003±0.000 -0.040 -0.003 0.006 -0.007 0.010

PI-Width 875.5±49.8 1582.3±1.0 2924.1 4805.3 5588.5 5614.8 6273.5
Winkler 0.27±0.00 0.49±0.00 0.96 1.25 1.43 1.46 1.50

R
id

ge ∆ Cov -0.025±0.023 -0.241±0.000 -0.041 -0.015 -0.251 -0.358
PI-Width 1639.6±93.2 2060.5±1.6 3117.5 10628.9 8943.3 7148.7
Winkler 0.46±0.05 2.52±0.00 0.92 2.42 3.31 5.85

L
ST

M ∆ Cov 0.004±0.004 0.004±0.000 -0.019 -0.000 -0.022 -0.042
PI-Width 594.3±7.7 628.2±0.9 768.0 990.0 903.9 817.2
Winkler 0.19±0.01 0.24±0.00 0.28 0.32 0.35 0.36

SF

L
ST

M ∆ Cov 0.001±0.041 0.027±0.000 -0.054 -0.000 0.005 0.009
PI-Width 1.39±0.17 1.58±0.00 1.55 1.94 1.99 2.08
Winkler 0.79±0.03 0.91±0.00 1.27 1.21 1.28 1.29
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Metrics. In our analyses, we compute ∆ Cov, PI-Width, and the Winkler score (Winkler, 1972)
per time series and miscoverage level. The Winkler score jointly elicitates miscoverage and interval
width in a single metric:

WSα(Zt+1, yt+1) =


IWα

t (Zt+1) +
2
α (yt+1 − Ĉα,u

t (Zt+1)) if yt+1 > Ĉα,u
t (Zt+1),

IWα
t (Zt+1) +

2
α (Ĉ

α,l
t (Zt+1)− yt+1) if yt+1 < Ĉα,l

t (Zt+1),

IWα
t (Zt+1) else.

(9)

The score is calculated per time step t and miscoverage level α. It corresponds to the interval width
IWα

t = Ĉα,u
t − Ĉα,l

t whenever the observed value yt is between the upper bound Ĉα,u
t (Zt+1) and

the lower bound Ĉα,l
t (Zt+1) of Ĉα

t (Zt+1). If yt+1 is outside these bounds, a penalty is added to the
interval width. We evaluate the mean Winkler score over all time steps.

We repeated each experiment with 12 different seeds. For brevity, we only show the mean performance
of one dataset per domain for α = 0.1 in the main paper (which is the most commonly reported
value in the CP literature; e.g., Xu & Xie, 2022b; Foygel Barber et al., 2022; Gibbs & Candes, 2021).
Appendix A.3 presents additional results for all datasets and more α levels.

3.2 Results & Discussion

HopCPT has the most efficient prediction intervals for each domain — with only one exception
(Table 1; significance tested with a Mann–Whitney U test at p < 0.005) for the evaluated miscoverage
level (α = 0.1). In multiple experiments (Solar (3Y), Solar (1Y)), the HopCPT prediction intervals
are less than half as wide as those of the approach with the second-smallest PI-Width. The second-
most efficient intervals are predicted most often by SPCI. This ranking also holds for the Winkler
score, where HopCPT achieves the best (i.e., lowest) Winkler scores and SPCI ranks second in most
experiments. Notably, these results reflect the increasing requirements posed by each uncertainty
estimation method on the dataset (Section 1.1).

Furthermore, HopCPT outperforms the other methods regarding both Winkler score and PI-Width
when we evaluate over additional datasets and at different miscoverage levels (see Appendix A.3).
HopCPT is the best-performing approach in the vast majority of cases. The variation in size of the
different solar datasets (results for Solar (1Y) and Solar (3M) in Appendix A.3) shows that HopCPT
especially increases its lead when more data is available. We hypothesize that this is because the
MHN can learn more generalizable retrieval patterns with more data. However, data scarcity is not a
limitation of similarity-based CP in general. In fact, a simplified and almost parameter-free variation
of HopCPT, which replaces the MHN with kNN retrieval, performs best on the smallest solar dataset,
as we demonstrate in Appendix D.

Most approaches have a coverage gap close to zero in almost all experiments — they approximately
achieve the specified marginal coverage level. This is also reflected by the fact that the ranking of
Winkler scores and PI-Widths agree in most evaluations. Appendix A.4 provides a supplementary
analysis of the local coverage. The results for non-CP methods show a different picture (see Appendix
A.3 and Table 7). Here, the non-CP models most often exhibit very narrow prediction intervals at the
cost of high miscoverage.

Interestingly, standard CP also achieves good coverage for all experiments at the cost of inefficient
prediction intervals. There is one notable exception: for the Sap flow dataset with ridge regression, we
find ∆ Cov = −0.358. In this case, we argue that the bad performance of standard CP is driven by a
strong violation of the (required) exchangeability assumption. Specifically, a trend in the errors leads
to a distribution shift over time (as illustrated in Appendix A.3, Figure 4). HopCPT and NexCP handle
this shift without substantial loss in coverage. The inferior coverage of SPCI is likely influenced by
the modification to larger datasets (see Appendix A.2).

Performance gaps between the approaches differ considerably across datasets, but are generally
consistent across prediction models. The biggest differences between the best and worst methods
exist in Solar (3Y) and Sap flow, likely due to the distinctive regimes in these datasets. The smallest
(but still significant) differences are visible in the Streamflow data. On this dataset, we also evaluated
the state-of-the-art non-CP uncertainty model in the domain (Klotz et al., 2022, see Appendix A.3)
and found that HopCPT outperforms it with respect to efficiency.
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Figure 3: Exemplary visualization of the 30 highest association weights that the MHN places on
previous time steps (some are before the visualized part of the memory). HopCPT retrieves similar
peak values when estimating at a peak, and it retrieves similar small values when estimating at a
small value.

In terms of computational resources, SPCI is most demanding followed by HopCPT, as both methods
require a learning step in contrast to the other methods. A detailed overview can be found in
Appendix A.6.

To assess whether HopCPT learns meaningful associations within regimes, we conducted a qualitative
study on the Solar (3Y) dataset. Figure 3 shows that HopCPT retrieves the most highly weighted
errors from time steps with similar regimes. The illustrated weighting at the time step with a low
prediction value retrieves previous time steps which are also in low-valued regimes. Similarly,
Figure 5 (Appendix A.3) suggests that the learned distinction corresponds to the error regimes, which
is crucial for HopCPT.

4 Conclusions

We have introduced HopCPT, a novel CP approach for time series tasks. HopCPT uses continuous
Modern Hopfield Networks to construct prediction intervals based on previously seen events with
similar error distribution regimes. We exploit that similar features lead to similar errors. Associating
features with errors identifies regimes with similar error distributions. HopCPT learns this association
in the Modern Hopfield Network, which dynamically adjusts its focus on stored previous features
according to the current regime.

Our experiments with established and novel datasets show that HopCPT achieves state of the art: It
generates more efficient prediction intervals than existing CP methods and approximately preserves
coverage, even in non-exchangeable scenarios like time series. HopCPT comes with formal guarantees
within the CP framework for uncertainty estimation in real-world applications such as streamflow
prediction. Furthermore, HopCPT scales well to large datasets, provides multiple coverage levels
after calibration, and shares information across individual time series within a dataset.

Future work comprises: (a) Drawing from multiple time series during the inference phase. HopCPT
is already trained on the whole dataset at once, but it might be advantageous to leverage more
information during inference as well. (b) Investigating direct training objectives from which learning-
based CP might benefit. (c) Using HopCPT beyond time series, as non-exchangeability is also an
issue in other domains which limits the applicability of existing CP methods.
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A Extended Experimental Setup & Results

A.1 Hyperparameter Search

We conducted an individual hyperparameter grid search for each predictor–dataset combination. For
methods that require calibration data (HopCPT, AdaptiveCI, NexCP), each calibration set was split
in half: One part served as actual calibration data while the other half was used for validation.4
As EnbPI requires only the k past points, we used the full calibration set minus these k points for
validation, so that it could fully exploit the available data. Table 2 shows all sets of hyperparameters
used for the search.

Table 2: Parameters used in the hyperparameter search of the uncertainty models

Method Parameter Value

HopCPT
Learning Rate 0.01, 0.001
Dropout 0, 0.25, 0.5
Time Encode yes/no

AdaptiveCI Mode simple, momentum
γ 0.002, 0.005, 0.01, 0.02

EnbPI Window Length 200, 150, 125, 100,
75, 50, 25, 10

NexCP ρ
0.999, 0.995, 0.993,
0.99, 0.98, 0.95, 0.90

kNN k-Top Share 0.025, 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, 0.35

MCD

Learning Rate 0.005, 0.001, 0.0001
Dropout 0.1, 0.25, 0.5
Batch Size 512, 256
Hidden Size 64, 128, 256

Gaus

Learning Rate 0.005, 0.001, 0.0001
Dropout 0, 0.1, 0.25
Batch Size 512, 256
Hidden Size 64, 128, 256

MDN

Learning Rate 0.005, 0.001, 0.0001
Dropout 0, 0.1, 0.25
Batch Size 512, 256
Hidden Size 64, 128, 256
# Components 3, 5, 7

Model selection. Model selection was done uniformly for all algorithms: As a first step, all models
with a negative ∆ Cov on the validation set were excluded. From the remaining models, the model
with the smallest PI-Width was selected. In cases where no model achieved non-negative ∆ Cov, the
model with the highest ∆ Cov was selected.

HopCPT. HopCPT was trained for 3,000 epochs in each experiment. We chose this number
to make sure that the loss and model selection metric curves are already converged. Throughout
training, we validated every 5 epochs and selected the model that best fulfilled the model selection
criteria described above. AdamW (Loshchilov & Hutter, 2019) with standard parameters (β1 = 0.9,
β2 = 0.999, δ = 0.01) was used as optimizer. The learning rate was part of the hyperparameter
search. Depending on the dataset size, the batch size was set to 2 or 4, where a batch size of n would
mean that the full training part of the calibration set of n time series is used.

4Note that this is only the case in the hyperparameter search. In the evaluation, the full calibration set was
used for calibration.
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SPCI. The computational demand of SPCI did not allow to conduct a full hyperparameter search
for the window length parameter (see more in Section A.2). Since SPCI applies a random forest on
the window, one can assume that it is capable to find the relevant parts of the window. On top of
that, a longer window has less risk than a window that is too short and (potentially) cuts off relevant
information. Hence, we set the window length to 100 for all experiments, which corresponds to the
longest setting in the original paper. To check our reasoning, we evaluated the performance of SPCI
with window length 25 on all but the largest two datasets (Table 4 and Table 5). We found hardly any
differences except for the smallest datasets Solar (3M). In that case we reason that the result is due to
the limited calibration data in this setting.

MCD/MDN/Gauss. In Appendix A.3 we compare HopCPT to non-CP architectures that can
provide prediction interval estimates. Specifically, we use Monte Carlo Dropout (MCD; Gal &
Ghahramani, 2016), a Mixture Density Network (MDN; Bishop, 1994), and a Gauss model (i.e.,
an MDN with a single Gaussian density). An LSTM serves as backbone for all models. Therefore,
there is no distinction between the predictor model and the uncertainty model. To allow for a fair
comparison to CP approaches, the models are trained on both the predictor training data and the
calibration data combined. None of these approaches are CP methods, and MCD was specifically
devised to estimate only epistemic uncertainty. Nevertheless, we consider these methods as useful
comparisons, since they are widely used for uncertainty quantification. The models were trained for
150 epochs with AdamW (Loshchilov & Hutter, 2019) (using its standard parameters: β1 = 0.9,
β2 = 0.999, δ = 0.001). We chose this number to ensure that the loss and model selection metrics
already converged. Throughout the training, we validated after every epoch and selected the model
that best fulfilled the model selection criteria described above. The learning rate was part of the
hyperparameter search.

Global LSTM. We conducted an individual hyperparameter tuning of the global LSTM prediction
model for each dataset. Table 3 shows the hyperparameters used for the grid search. Similar to the
LSTM uncertainty models, we trained for 150 epochs with an AdamW optimizer (Loshchilov &
Hutter, 2019) and validated after each epoch. We optimized for the mean squared error and selected
the model with the smallest validation mean squared error.

Table 3: Parameters used in the hyperparameter search of the global LSTM prediction model.

Parameter Value

Learning Rate 0.005, 0.001, 0.0001
Dropout 0, 0.1, 0.25
Batch Size 512, 256
Hidden Size 64, 128, 256

A.2 SPCI Retraining

As our results show, SPCI is very competitive (see, for example, Section 3.2). Xu & Xie (2022b)
did, however, design SPCI so that its random forest regressor is retrained after each prediction
step. This design choice is computationally prohibitive for larger datasets. To nevertheless allow a
comparison against SPCI on the larger datasets, we modified the algorithm so that the retraining is
skipped. Experiments on the smallest dataset (Table 6) show only small performance decrease with
the modified algorithm. One limitation of the adapted algorithm is, however, that a strong shift in the
error distribution(s) would potentially require a retraining on the new distribution. A viable proxy to
detect such a change in our setting is the coverage performance of standard CP. The reason for this
is that standard CP predictions are solely based on the calibration data and can thus not account for
shifts. In the experiments (Section 3 and Appendix A.3), standard CP achieves good coverage with
only one exception (see Section 3). Hence, we decided to include SPCI (in the modified version) to
enable a comparison to it on larger datasets.
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Table 4: Performance of SPCI with an input window of length 100 and length 25 on the solar datasets.
The differences in performance are small compared to the differences across methods (Section 3.2).
The error term represents the standard deviation over repeated runs.

Window 100 25
Data FC

So
la

r1
Y

Forest
∆ Cov 0.045±0.000 0.047±0.000

PI-Width 97.2±0.1 97.8±0.3

Winkler 1.26±0.00 1.25±0.00

LGBM
∆ Cov 0.045±0.000 0.047±0.000

PI-Width 96.6±0.2 97.6±0.1

Winkler 1.26±0.00 1.26±0.00

Ridge
∆ Cov 0.031±0.000 0.030±0.000

PI-Width 112.9±0.2 113.7±0.1

Winkler 1.40±0.00 1.42±0.00

LSTM
∆ Cov 0.018±0.000 0.018±0.000

PI-Width 22.5±0.0 22.2±0.0

Winkler 0.41±0.00 0.40±0.00

So
la

rS
m

al
l

Forest
∆ Cov −0.064±0.002 −0.024±0.000

PI-Width 38.8±0.4 43.2±0.2

Winkler 1.82±0.01 1.53±0.00

LGBM
∆ Cov −0.052±0.002 −0.027±0.001

PI-Width 37.4±0.2 43.3±0.1

Winkler 1.84±0.01 1.63±0.00

Ridge
∆ Cov −0.055±0.002 −0.057±0.001

PI-Width 51.9±0.2 52.8±0.2

Winkler 1.91±0.02 1.83±0.00

6000 4000 2000 0 2000 4000 6000
t

-2

-1

0

1 (1
04 )

End of calibration period

Figure 4: Time series of the prediction error ϵ for the ridge regression model on the Sap flow dataset.
The time series spans the calibration (t < 0) and test (t ≥ 0) data. The red line (fitted by the least
squares method) shows a strong trend in the error distribution.
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Table 5: Performance of SPCI with an input window of length 100 and length 25 on the different
non-solar datasets. The differences in performance are small compared to the differences across
methods (Section 3.2). The error term represents the standard deviation over repeated runs.

Window 100 25
Data FC

A
ir

10
PM

Forest
∆ Cov 0.008±0.000 0.008±0.000

PI-Width 118.5±0.0 118.5±0.1

Winkler 2.23±0.00 2.23±0.00

LGBM
∆ Cov 0.024±0.000 0.023±0.000

PI-Width 113.2±0.2 113.2±0.1

Winkler 1.94±0.00 1.94±0.00

Ridge
∆ Cov 0.024±0.000 0.024±0.000

PI-Width 93.9±0.0 93.8±0.0

Winkler 1.52±0.00 1.52±0.00

LSTM
∆ Cov 0.010±0.000 0.010±0.000

PI-Width 62.3±0.1 62.3±0.0

Winkler 1.21±0.00 1.21±0.00

A
ir

25
PM

Forest
∆ Cov −0.009±0.000 −0.009±0.000

PI-Width 81.5±0.0 81.4±0.0

Winkler 2.02±0.00 2.02±0.00

LGBM
∆ Cov 0.002±0.001 0.001±0.000

PI-Width 73.3±0.0 73.3±0.0

Winkler 1.84±0.00 1.83±0.00

Ridge
∆ Cov 0.010±0.000 0.010±0.000

PI-Width 65.5±0.0 65.4±0.1

Winkler 1.40±0.00 1.40±0.00

LSTM
∆ Cov −0.017±0.000 −0.017±0.000

PI-Width 32.4±0.0 32.3±0.0

Winkler 0.93±0.00 0.92±0.00

Sa
p

flo
w

Forest
∆ Cov 0.007±0.000 0.007±0.000

PI-Width 1743.1±1.4 1742.7±1.2

Winkler 0.59±0.00 0.59±0.00

LGBM
∆ Cov 0.003±0.000 0.003±0.000

PI-Width 1581.9±0.7 1583.6±1.3

Winkler 0.49±0.00 0.49±0.00

Ridge
∆ Cov −0.241±0.000 −0.242±0.000

PI-Width 2061.5±1.4 2066.8±1.2

Winkler 2.52±0.00 2.52±0.00

LSTM
∆ Cov 0.004±0.000 0.006±0.000

PI-Width 628.6±0.8 631.9±0.2

Winkler 0.24±0.00 0.24±0.00

19



Table 6: Performance of the original SPCI algorithm (Retrain) and the modified version (No Retrain)
on the Solar (3M) dataset. Performance in terms of the evaluation metrics is similar compared to the
differences between methods (Section 3.2). The computational demand of the modified version is
considerably lower. The error term represents the standard deviation over repeated runs.

UC No Retrain Retrain
FC α

Fo
re

st

0.05
∆ Cov −0.074±0.001 −0.049±0.001

PI-Width 58.0±0.2 62.4±0.0

Winkler 2.62±0.03 2.28±0.01

0.10
∆ Cov −0.064±0.002 −0.045±0.003

PI-Width 38.8±0.4 41.6±0.0

Winkler 1.82±0.01 1.67±0.00

0.15
∆ Cov −0.050±0.002 −0.038±0.003

PI-Width 26.8±0.2 28.9±0.0

Winkler 1.44±0.02 1.35±0.00

L
G

B
M

0.05
∆ Cov −0.062±0.001 −0.061±0.001

PI-Width 56.1±0.4 58.2±0.0

Winkler 2.65±0.03 2.51±0.01

0.10
∆ Cov −0.052±0.002 −0.049±0.001

PI-Width 37.4±0.2 39.8±0.0

Winkler 1.84±0.01 1.78±0.01

0.15
∆ Cov −0.042±0.001 −0.037±0.001

PI-Width 26.9±0.3 28.3±0.0

Winkler 1.47±0.00 1.42±0.00

R
id

ge

0.05
∆ Cov −0.063±0.001 −0.056±0.002

PI-Width 67.3±0.2 68.7±0.0

Winkler 2.47±0.01 2.25±0.01

0.10
∆ Cov −0.055±0.002 −0.048±0.001

PI-Width 51.9±0.2 54.2±0.0

Winkler 1.91±0.02 1.77±0.01

0.15
∆ Cov −0.039±0.003 −0.036±0.000

PI-Width 43.1±0.3 45.0±0.0

Winkler 1.59±0.00 1.50±0.00
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Figure 5: Visualization of the 30 highest association weights that the Hopfield network places on
previous time steps. HopCPT retrieves similar error values when predicting at a time of high error,
and it retrieves similar, previous small errors when predicting at a time step with small error.

A.3 Additional Results

Tables 17–23 show the results for miscoverage levels α ∈ {0.05, 0.10, 0.15} for all evaluated
combinations of datasets and predictors. Results for individual time series of the datasets are
uploaded to the code repository (Appendix J).

CMAL. For the Streamflow dataset, we additionally compare to CMAL, which is the state-of-the-
art non-CP uncertainty estimation technique in the respective domain (Klotz et al., 2022). CMAL is a
mixture density network (Bishop, 1994) based on an LSTM that predicts the parameters of asymmetric
Laplacian distributions. As our experiments use the same dataset, we adopt the hyperparameters
from Klotz et al. (2022) but lower the learning rate to 0.0001 because we train CMAL on more
training samples (18 years, i.e., the training and calibration period combined, which allows for a fair
comparison against the CP methods). Despite the fact that CMAL is not based on the CP paradigm, it
achieves good coverage results, however, at the cost of wide prediction intervals. We argue that the
Winkler score is low because CMAL considers all (and therefore also uncovered) samples during the
optimization while CP methods do not consider them at all — therefore, the distance of these points
to the interval might be smaller (see Table 23).

Error trend. Figure 4 shows the prediction errors of the ridge regression model on the Sap flow
dataset. The errors exhibit a strong trend and shift towards a negative expectation value.

Association weights. Figure 5 investigates the association patterns of HopCPT and shows its
capabilities to focus on time steps from similar error regimes. The depicted time step in a regime with
negative errors retrieves time steps with primarily negative errors and, likewise, the time step in a
regime with positive errors retrieves time steps with primarily positive errors of the same magnitude.

Non-CP methods We also compare HopCPT to non-CP methods to evaluate its performance within
the broader field of uncertainty estimation for time series. Specifically, we compare against a Monte
Carlo Dropout (MCD); a Mixture Density Network (MDN), and a Gauss model (i.e., an MDN with
a single Gaussian component), with an LSTM backbone (see Appendix A.1 for more details about
the models and their hyperparameters). This comparison shows that, although the non-CP methods
often lead to very narrow prediction intervals, they fail to provide approximate coverage on most
experiments (Table 7).
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A.4 Local Coverage

Standard CP only provides marginal coverage guarantees and a constant prediction interval width
(Vovk et al., 2005). In time series prediction tasks, this can lead to bad local coverage (Lei &
Wasserman, 2014). To evaluate whether the coverage approximately holds also locally, we evaluated
∆ Cov on windows of size k. To avoid compensation of negative ∆ Cov in some windows by other
windows with positive ∆ Cov, we upper-bounded each window’s ∆ Cov by zero before averaging
over the bounded coverage gaps — i.e., we calculated 1

W

∑W
w=1 −∆ Cov⊤0

w , with

∆ Cov⊤0
w =

{
∆ Covw if ∆ Covw ≤ 0,

0 else,
(10)

where ∆ Covw is the ∆ Cov within window w.

Table 8 shows the results of this evaluation for window sizes k ∈ {10, 20, 50} and miscoverage level
α = 0.1. Depending on the dataset, most often either HopCPT or SPCI perform best. The overall
rankings are only partly similar to the evaluation of the marginal coverage (Table 1 and Appendix A.3).
Especially standard CP, which achieves competitive results in marginal coverage, falls short in this
comparison. Only for Solar (3M), where the approach achieves a high marginal ∆ Cov, it preserves
the local coverage best. Note that this comes with the drawback of very wide prediction intervals, i.e.,
bad efficiency. Overall, the results show that HopCPT and other time series CP methods improve the
local coverage in non-exchangeable time series settings, compared to standard CP.

A.5 Negative Results

We also tested training with more involved training procedures than directly using the mean squared
error. However, based on our empirical findings, the vanilla method with mean squared error
outperforms more complex approaches. In the following, we briefly describe those additional
configurations (so that potential future research can avoid these paths):

• Pinball Loss. We tried to train the MHN with a pinball loss (the original use seems to stem
from Fox & Rubin, 1964, we are however not aware of the naming origin) in many different
variations (see points that follow), but consistently got worse results than with the mean
squared error.

– Inspired by the ideas lined out by Tagasovska & Lopez-Paz (2019) we tried to use the
miscoverage level as an additional input to the network, while also parameterizing the
loss with it.

– We tried to use the pinball loss to predict multiple miscoverage values at the same time
to get a more informed representation of the distribution we want to approximate.

• Softmax Probabilities. We tried to use the softmax output of the MHN to directly estimate
probabilities and use a maximum likelihood procedure. This did train, but it did not produce
good results.

A.6 Computational Resources

We used different hardware setups in our experiments, however, most of them were executed on a
machine with an Nvidia P100 GPU and a Xeon E5-2698 CPU. The runtime differs greatly between
different dataset sizes. We report the approximate run times for a single experiment (i.e., one seed, all
evaluated coverage levels, not including training the prediction model µ̂):

1. HopCPT: Solar (3Y) 5h, Solar (1Y) 1h, Solar (3M) 7min, Air Quality (10PM) 3h, Air
Quality (25PM) 3h, Sap flow 2.5h, Streamflow 12–20h

2. SPCI: (adapted): Solar (3Y) 5–10 days, Solar (1Y) 10–30h, Solar (3M) 45min, Air Quality
(10PM) 13–30h, Air Quality (25PM) 13–30h, Sap flow 20–50h, Streamflow 12–17 days

3. EnbPI: all datasets under 6h
4. NexCP: all datasets under 45min
5. AdaptiveCI: all datasets under 45min
6. Standard CP: all datasets under 45min
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Table 7: Performance of the best two CP methods (HopCPT and SPCI) and state-of-the-art non-CP
methods for the different datasets and levels of α. All approaches build upon an LSTM model. Bold
numbers correspond to the best result for the respective metric in the experiment (PI-Width and
Winkler score), given that ∆Cov ≥ −0.25α, i.e., the specific algorithm reached at least approximate
coverage (the result is grayed out otherwise). The error term represents the standard deviation over
repeated runs with different seeds (results without an error term are from deterministic models).

HopCPT SPCI MCD Gauss MDN
α

So
la

r3
Y

0.
05

∆ Cov -0.003±0.005 0.004±0.000 -0.058±0.004 -0.331±0.243 -0.005±0.013

PI-Width 22.7±0.8 47.7±0.0 17.5±0.1 25.9±4.1 16.2±1.0

Winkler 0.38±0.01 0.87±0.00 0.75±0.01 0.46±0.10 0.33±0.06

0.
10

∆ Cov 0.001±0.006 0.014±0.000 -0.030±0.006 -0.310±0.238 -0.013±0.047

PI-Width 17.9±0.6 27.8±0.0 14.8±0.1 21.8±3.5 13.2±0.8

Winkler 0.30±0.01 0.62±0.00 0.49±0.00 0.37±0.06 0.26±0.03

0.
15

∆ Cov 0.002±0.007 0.024±0.000 0.001±0.007 -0.320±0.166 -0.053±0.141

PI-Width 15.0±0.4 18.1±0.0 12.9±0.1 19.1±3.0 11.4±0.8

Winkler 0.26±0.00 0.48±0.00 0.38±0.00 0.32±0.04 0.23±0.02

So
la

r1
Y

0.
05

∆ Cov 0.019±0.003 0.006±0.000 -0.041±0.004 -0.109±0.191 -0.055±0.104

PI-Width 21.4±0.7 37.0±0.0 20.5±0.3 14.6±0.8 13.2±1.4

Winkler 0.27±0.01 0.58±0.00 0.58±0.01 0.22±0.01 0.20±0.03

0.
10

∆ Cov 0.028±0.010 0.018±0.000 -0.011±0.005 -0.134±0.253 -0.130±0.182

PI-Width 16.0±0.6 22.5±0.0 17.3±0.2 12.3±0.7 10.8±1.2

Winkler 0.22±0.01 0.41±0.00 0.40±0.01 0.18±0.01 0.17±0.02

0.
15

∆ Cov 0.029±0.017 0.032±0.000 0.022±0.006 -0.148±0.236 -0.185±0.224

PI-Width 13.1±0.5 15.3±0.0 15.2±0.2 10.8±0.6 9.3±1.1

Winkler 0.19±0.00 0.32±0.00 0.32±0.00 0.16±0.01 0.15±0.02

A
ir

10
PM

0.
05

∆ Cov -0.001±0.001 0.003±0.000 -0.202±0.008 -0.191±0.024 -0.218±0.115

PI-Width 90.7±1.9 86.1±0.0 42.3±0.8 45.8±2.2 43.9±9.5

Winkler 1.83±0.03 1.63±0.00 2.36±0.03 2.08±0.12 2.22±0.59

0.
10

∆ Cov -0.002±0.005 0.010±0.000 -0.201±0.009 -0.211±0.026 -0.243±0.122

PI-Width 62.7±1.5 62.2±0.0 35.7±0.7 38.6±1.9 35.3±7.3

Winkler 1.33±0.01 1.21±0.00 1.49±0.01 1.42±0.06 1.48±0.30

0.
15

∆ Cov -0.002±0.010 0.017±0.000 -0.192±0.009 -0.218±0.027 -0.252±0.122

PI-Width 49.4±1.7 50.2±0.0 31.4±0.6 33.8±1.7 30.2±6.0

Winkler 1.09±0.01 1.01±0.00 1.16±0.01 1.15±0.04 1.17±0.20

A
ir

25
PM

0.
05

∆ Cov 0.005±0.005 -0.015±0.000 -0.100±0.022 -0.227±0.018 -0.209±0.119

PI-Width 57.1±5.6 44.9±0.0 31.7±3.5 27.1±1.4 26.9±6.1

Winkler 1.19±0.08 1.29±0.00 1.41±0.05 1.58±0.08 1.57±0.47

0.
10

∆ Cov 0.007±0.008 -0.017±0.000 -0.095±0.027 -0.247±0.020 -0.234±0.129

PI-Width 40.7±4.3 32.4±0.0 26.6±3.0 22.8±1.2 21.6±4.9

Winkler 0.88±0.05 0.93±0.00 0.95±0.03 1.06±0.04 1.05±0.24

0.
15

∆ Cov 0.005±0.011 -0.016±0.000 -0.086±0.030 -0.253±0.020 -0.243±0.131

PI-Width 32.5±3.7 26.1±0.0 23.2±2.6 20.0±1.0 18.4±4.2

Winkler 0.74±0.04 0.76±0.00 0.76±0.02 0.85±0.02 0.84±0.16

Sa
p

flo
w

0.
05

∆ Cov 0.001±0.002 0.000±0.000 -0.150±0.007 -0.072±0.018 -0.059±0.035

PI-Width 783.5±9.2 897.7±0.9 421.6±5.2 494.7±26.0 494.6±41.2

Winkler 0.25±0.01 0.33±0.00 0.49±0.01 0.29±0.02 0.27±0.06

0.
10

∆ Cov 0.004±0.004 0.004±0.000 -0.139±0.007 -0.067±0.022 -0.067±0.037

PI-Width 594.3±7.7 628.2±0.9 355.2±4.3 416.5±21.9 391.7±31.4

Winkler 0.19±0.01 0.24±0.00 0.30±0.01 0.20±0.01 0.19±0.03

0.
15

∆ Cov 0.005±0.005 0.006±0.000 -0.122±0.007 -0.059±0.024 -0.068±0.039

PI-Width 489.9±7.0 493.2±0.5 311.4±3.8 364.9±19.2 331.5±25.8

Winkler 0.17±0.01 0.20±0.00 0.23±0.01 0.17±0.01 0.16±0.02
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Table 8: Negative average of zero-upper-bounded ∆ Cov of rolling windows with miscoverage level
α = 0.1. We evaluate each dataset–predictor combination at the windows sizes k ∈ {10, 20, 50}.

H
op

C
PT

SP
C

I

E
nb

PI

N
ex

C
P

C
P

Data FC k

So
la

r3
Y

Fo
re

st 10 .030 .040 .081 .059 .059
20 .020 .022 .055 .034 .040
50 .012 .016 .042 .021 .032

L
G

B
M 10 .051 .040 .076 .059 .058

20 .040 .022 .052 .035 .039
50 .031 .015 .038 .022 .031

R
id

ge 10 .023 .049 .099 .055 .056
20 .014 .035 .083 .039 .040
50 .007 .028 .075 .027 .030

So
la

r1
Y

Fo
re

st 10 .023 .023 .070 .055 .019
20 .015 .012 .043 .031 .010
50 .010 .008 .031 .017 .005

L
G

B
M 10 .059 .023 .071 .056 .018

20 .049 .012 .046 .032 .010
50 .041 .007 .033 .018 .005

R
id

ge 10 .063 .030 .070 .055 .066
20 .053 .021 .055 .038 .052
50 .045 .016 .043 .027 .045

So
la

rS
m

al
l Fo

re
st 10 .045 .108 .074 .075 .083

20 .026 .074 .046 .045 .055
50 .015 .067 .034 .030 .042

L
G

B
M 10 .048 .093 .074 .074 .078

20 .032 .061 .044 .044 .048
50 .020 .051 .030 .029 .035

R
id

ge 10 .051 .100 .065 .058 .064
20 .039 .073 .049 .039 .045
50 .032 .066 .041 .033 .038

A
ir

10
PM

Fo
re

st 10 .033 .049 .124 .075 .106
20 .025 .042 .114 .067 .100
50 .018 .035 .099 .053 .089

L
G

B
M 10 .038 .037 .115 .074 .100

20 .030 .030 .104 .065 .093
50 .021 .023 .089 .052 .083

R
id

ge 10 .041 .035 .099 .068 .064
20 .032 .028 .089 .059 .057
50 .024 .020 .074 .045 .048

A
ir

25
PM

Fo
re

st 10 .076 .061 .139 .080 .114
20 .067 .053 .129 .071 .108
50 .056 .044 .113 .056 .096

L
G

B
M 10 .073 .051 .124 .080 .113

20 .064 .044 .114 .072 .105
50 .053 .035 .097 .059 .093

R
id

ge 10 .057 .043 .107 .075 .079
20 .048 .035 .096 .066 .072
50 .039 .027 .081 .053 .061

Sa
p

flo
w

Fo
re

st 10 .070 .058 .107 .076 .073
20 .062 .050 .097 .068 .067
50 .051 .042 .082 .056 .059

L
G

B
M 10 .107 .060 .105 .078 .082

20 .098 .052 .094 .069 .075
50 .086 .045 .078 .056 .067

R
id

ge 10 .097 .286 .102 .086 .404
20 .088 .279 .089 .077 .397
50 .075 .271 .071 .063 .390
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B Theoretical Background

We denote the full dataset as D = (D1, . . . , Dt+1), where Di = (Xi, Yi) is the i-th datapoint. Since
we are in the split conformal setting (Vovk et al., 2005), the full dataset is subdivided into two parts:
the calibration and the test data. The prediction model µ̂ is already given in this setting and not
selected based on D. The prediction interval Ĉα

t for split conformal prediction is given by

Ĉα
t (Xt+1) = µ̂(Xt+1)± Q1−α

(
t∑

i=1

1
t+1 · δRi

+ 1
t+1 · δ+∞

)
, (11)

where Ri = |Yi − µ̂(Xi)|, δc is a point mass at c, and Qτ is the τ -quantile of a distribution. Vovk
et al. (2005) show that this interval provides a marginal coverage guarantee in case of exchangeable
data:
Theorem B.1 (Split Conformal Prediction (Vovk et al., 2005)).
If the data points (X1, Y1), . . . , (Xt, Yt), (Xt+1, Yt+1) are exchangeable then the split conformal
prediction set defined in (11) satisfies

Pr
{
Yt+1 ∈ Ĉα

t (Xt+1)
}
≥ 1− α.

This seminal result cannot be directly applied to our setting, because time series are often non-
exchangeable (as we discuss in the introduction) and models often exhibit locally specific errors.

The remainder of this section is split into two parts. First, we discuss the theoretical connections
between the MHN retrieval and CP through the lens of Foygel Barber et al. (2022). Second, we adapt
the theory of Xu & Xie (2022a) to be applicable to our regime-based setting.

For the MHN retrieval, we evoke the results of Foygel Barber et al. (2022), who introduce the concept
of non-exchangeable split conformal prediction. Instead of treating each calibration point equally,
they assign an individual weight for each point, to account for non-exchangeability. Formally, we
denote the weight for the i-th point by wi ∈ [0, 1], i = 1, . . . , t; and the respective normalized
weights are defined as

w̃i =
wi

w1 + · · ·+ wt + 1
, i = 1, . . . , t, and w̃t+1 =

1

w1 + · · ·+ wt + 1
. (12)

The prediction interval for non-exchangeable split conformal setting Ĉα
t is given by

Ĉα
t (Xt+1) = µ̂(Xt+1)± Q1−α

(
t∑

i=1

w̃i · δRi
+ w̃t+1 · δ+∞

)
. (13)

Foygel Barber et al. (2022) show that non-exchangeable split conformal prediction satisfies a similar
bound as exchangeable split conformal prediction, which is extended by a term that accounts for
a potential coverage gap ∆ Cov. Formally we define ∆ Cov = α − α⋆, where α is the specified
miscoverage and α⋆ is the observed miscoverage.

To specify the coverage gap they use the total variation distance dTV, which is a distance metric
between two probability distributions. It is defined as

dTV(P1, P2) = sup
A∈F

|P1(A)− P2(A)|, (14)

where P1 and P2 are arbitrary distributions defined on the space (Ω,F).

Intuitively, dTV measures the largest distance between two distributions. It is connected to the widely
used Kullback–Leibler divergence DKL through Pinsker’s inequality (Pinsker, 1964):

dTV(P1, P2) ≤
√

1

2
DKL(P1||P2). (15)

Given this measure, Foygel Barber et al. (2022) bound the coverage of non-exchangeable split
conformal prediction as follows:

25



Theorem B.2 (Non-exchangeable split conformal prediction (Foygel Barber et al., 2022)).
The non-exchangeable split conformal method defined in (13) satisfies

Pr
{
Yt+1 ∈ Ĉα

t (Xt+1)
}
≥ (1− α)−

t∑
i=1

w̃i · dTV
(
R(D), R(Di)

)
,

where R(D) = (R1, R2, . . . , Rt+1) denotes the sequence of absolute residuals on D and Di denotes
a sequence where the test point Dt+1 is swapped with the i-th calibration point.

The coverage gap is represented by the rightmost term. Therefore,

∆ Cov ≥ −
t∑

i=1

w̃i · dTV(R(D), R(Di)).

Foygel Barber et al. (2022) prove this for the full-conformal setting, which also directly applies to
the split conformal setting (as they note, too). For the sake of completeness, we state the proof of
Theorem B.2 explicitly for split conformal prediction (adapted from Foygel Barber et al., 2022):

By the definition of the non-exchangeable split conformal prediction interval (13), it follows that

Yt+1 ̸∈ Ĉα
t (Xt+1) ⇐⇒ Rt+1 > Q1−α

(
t∑

i=1

w̃i · δRi
+ w̃t+1 · δ+∞

)
. (16)

Next, we show that, for a given K ∈ {1, . . . , t+ 1},

Q1−α

(
t∑

i=1

w̃i · δRi
+ w̃t+1 · δ+∞

)
≥ Q1−α

(
t+1∑
i=1

w̃i · δ(R(DK))i

)
, (17)

by considering that (
R(DK)

)
i
=


Ri, if i ̸= K and i ̸= t+ 1,

Rt+1, if i = K,

RK , if i = t+ 1.

(18)

In the case of K = t+1, this holds trivially since both sides are equivalent. In the case of K ≤ t, we
can rewrite the left-hand side of inequality (17) as

t∑
i=1

w̃i · δRi
+ w̃t+1 · δ+∞

=
∑

i=1,...,t;i̸=K

w̃i · δRi
+ w̃K(δRK

+ δ+∞) + (w̃t+1 − w̃K)δ+∞.

The right-hand side can be similarly represented as

t+1∑
i=1

w̃i · δ(R(DK))i =
∑

i=1,...,t;i̸=K

w̃i · δRi + w̃KδRt+1 + w̃t+1δRK

=
∑

i=1,...,t;i̸=K

w̃i · δRi + w̃K(δRK
+ δRt+1) + (w̃t+1 − w̃K)δRK

.

By the definition of the normalized weights (12) and the assumption that wK ∈ [0, 1], it holds that
w̃t+1 ≥ w̃K . Applying this to the rewritten forms of the left- and right-hand sides, we can see that
inequality (17) holds.
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Substituting the right hand side of (16) by using (17), we see that

Yt+1 ̸∈ Ĉα
t (Xt+1) =⇒ Rt+1 > Q1−α

(
t+1∑
i=1

w̃i · δ(R(DK))i

)
,

or equivalently by using (18):

Yt+1 ̸∈ Ĉα
t (Xt+1) =⇒ (R(DK))K > Q1−α

(
t+1∑
i=1

w̃i · δ(R(DK))i

)
. (19)

For the next step we use the definition of the set of so-called strange points S:

S(ϵ) =

i ∈ [t+ 1] : ϵi > Q1−α

t+1∑
j=1

w̃j · δϵj

 . (20)

A strange point s ∈ S therefore refers to a data point with residuals that are outside the prediction
interval. Given the definition of S , we can directly see that∑

i∈S(ϵ)

w̃i ≤ α for all ϵ ∈ Rt+1, (21)

Combining (19) and (20) we see that non-coverage of Yt+1 implies strangeness of point K:

Yt+1 ̸∈ Ĉα
t (Xt+1) =⇒ K ∈ S

(
R(DK)

)
. (22)

Given this, we arrive at the final derivation of the coverage bound:

Pr
{
K ∈ S

(
R(DK)

)}
=

t+1∑
i=1

Pr
{
K = i and i ∈ S

(
R(Di)

)}
=

t+1∑
i=1

w̃i · Pr
{
i ∈ S

(
R(Di)

)}
≤

t+1∑
i=1

w̃i ·
(
Pr
{
i ∈ S

(
R(D)

)}
+ dTV

(
R(D), R(Di)

))
= E

 ∑
i∈S(R(D))

w̃i

+

t∑
i=1

w̃i · dTV
(
R(D), R(Di)

)
≤ α+

t∑
i=1

w̃i · dTV
(
R(D), R(Di)

)
,

where we use (21) from the penultimate to the last line. The first to the second line follows from
K ⊥⊥ Di, which holds because K ⊥⊥ D and Di is a permutation of D that does not depend on K.

Foygel Barber et al. (2022) show two additional variations of the coverage gap bound based on
Theorem B.2. We do not replicate them here. One notable observation of theirs, however, is that
instead of using the total variation distance based on the residual vectors also the distance of the raw
data vector can be used:

∆ Cov ≥ −
∑
i

w̃i · dTV(D,Di). (23)
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This coverage bound suggests that low weights for time steps corresponding to high total variation
distance ensure small coverage gaps. However, lower weights weaken the estimation quality of the
prediction intervals. Hence, all relevant time steps should receive high weights, while all others
should receive weights close to zero.

HopCPT leverages these results by using the association weights ai from Equation 6 to reflect the
weights w̃i of non-exchangeable split conformal prediction. HopCPT aims to assign high association
weights to data points that are from the same error distribution as the current point, and low weights
to data points in the opposite case. By Theorem B.2, association weights that follow this pattern lead
to a small coverage gap.

An asymptotic (conditional) coverage bound If we assume clearly distinguished error distribu-
tions instead of gradually shifting ones, hard weight assignment, i.e., association weights that are
either zero or one, are a meaningful choice. Given this simplification we can directly link HopCPT to
the work of Xu & Xie (2022a).

Xu & Xie (2022a) introduce a variant of (split) conformal prediction with asymmetric prediction
intervals:

Ĉα
t (xt+1) :=

[
µ̂−(t+1)(xt+1) + Qα

2
({ϵ̂i}ti=1), µ̂−(t+1)(xt+1) + Q1−α

2

(
{ϵ̂i}ti=1

)]
(24)

The approach taken by Xu & Xie (2022a) additionally adjusts the share of α between the upper and
lower quantiles such that the width of the prediction interval is minimized. In contrast, HopCPT adopts
a simpler strategy and uses α

2 on both sides, which mitigates the need for excessive recalculation of
the quantile function.

Based on the introduced interval calculation procedure, they also provide bounds regarding its
coverage properties, in particular about the possible coverage gap. While Xu & Xie (2022a) base
their assumption on error properties only in temporal proximity, we generalize this to proximity in
the learned feature representation (which can include but is not limited to information about temporal
proximity). Based on this proximity we assume:

Assumption B.3 (Error regimes). Given {(Zi, yi, ŷi)}t+1
i=1 which represents the (encoded) dataset

and the predictions ŷi of µ̂, there exists a partition T = {Ti}i∈I of the time steps {1, . . . , t}, so that

(i) ∀i ∈ I : {ϵt = yt − ŷt | t ∈ Ti} ∼ Ei,

(ii) ∃i ∈ I : {ϵt+1} ∼ Ei,

(iii) the subset Ti corresponding to t+ 1 can be identified based on Zt+1,

(iv) ∀i, j ∈ I : i = j ∨ Ei ̸= Ej ,

where each Ei is an arbitrary error distribution.

Properties (i) and (ii) imply that any given time step t+ 1 can be associated to a subset Ti where all
errors follow a common error distribution Ei; property (iii) ensures that the partition can be found
or approximated from a set of features. Property (iv) is not necessary for the discussion at hand but
avoids degenerate solutions, since tight coverage bounds call for assigning all errors from the same
error distribution to one large partition. If the errors of the associated subset were sampled i.i.d. from
Ei, we could use standard split conformal methods (Vovk et al., 2005), and the variation distance
between permutations of the errors in properties (i) and (ii) is zero. In practice, error noise can make
it challenging to find and delineate a given partition. Thus, HopCPT uses a soft-selection approach to
approximate the discrete association of a partition and the current features.

To align HopCPT with the results of Xu & Xie (2022a), and thus make use of their proposed coverage
bounds for asymmetric prediction intervals, we first introduce their decomposition of the error:
ϵt = ϵ̌t + (µ(xt)− µ̂(xt)), where f is the true generating function, µ̂ the prediction model, and ϵ̌ a
noise term associated with the label. The notation µ−t(x) stems from Xu & Xie (2022a) and denotes
an evaluation of µ, selected without using t.

Next, we adopt their i.i.d. assumption about the noise with regard to our approach:
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Assumption B.4 (Noise is approximately i.i.d. within an error regime; adaptation of Xu & Xie
(2022a), Assumption 1). Assume ∃i ∈ I : {ϵ̌t|t ∈ Ti} ∪ {ϵ̌t+1}

iid∼ Ei and that the CDF F̌i of Ei is
Lipschitz continuous with constant Li > 0.

This i.i.d. assumption within each error regime only concerns the noise of the true generating function.
Xu & Xie (2022a) note that the generating process itself can exhibit arbitrary dependence and be
highly non-stationary while still having i.i.d. noise. The assumption is thus relatively weak.
Assumption B.5 (Estimation quality; adaptation of Xu & Xie (2022a), Assumption 2). There exist
real sequences {δi,|Ti|}i,|Ti|≥1 such that

(i) ∀i ∈ I : 1
|Ti|
∑

t∈Ti
(µ̂−t(xt)− µ(xt))

2 ≤ δ2i,|Ti|

(ii) ∃i ∈ I : |µ̂−(t+1)(xt+1)− µ(xt+1)| ≤ δi,|Ti|, where the i for a given t+ 1 is the same i as
in assumption B.4.

We want to bound the coverage of (24), which is based on the prediction error ϵ. How-
ever, Assumption B.4 only considers the noise ϵ̌ of the true generating function. Xu & Xie
(2022a) bind the difference between the CDF of the true generation function F̌i, the empiri-
cal analogue F̃i(x) := 1

|Ti|
∑

j∈Ti
1{ϵ̌j ≤ x}, and the empirical CDF of the prediction error

Fi(x) :=
1

|Ti|
∑

j∈Ti
1{ϵj ≤ x}.

In particular, they state two lemmas:
Lemma B.6 (Adaptation of Xu & Xie (2022a), Lemma 1). Under Assumption B.4, for any subset
size |Ti|, there is an event AT which occurs with probability at least 1 −

√
log(16|Ti|)/|Ti|, such

that conditioning on AT ,

sup
x

|F̃i(x)− F̌i(x)| ≤
√

log(16|Ti|)/|Ti|.

Lemma B.7 (Adaptation of Xu & Xie (2022a), Lemma 2). Under Assumptions B.4 and B.5, we have

sup
x

|Fi(x)− F̃i(x)| ≤ (Li + 1)δ
2/3
i,|Ti| + 2 sup

x
|F̃i(x)− F̌i(x)|.

With this result we arrive at a bound for a conditional and a marginal coverage:
Theorem B.8 (Conditional coverage gap; adaptation of Xu & Xie (2022a), Theorem 1). Given the
prediction interval Ĉα

t defined in (24). Under Assumption B.4 and B.5, for any subset size |Ti|,
α ∈ (0, 1), and β ∈ [0, α], we have:

∃i ∈ I :
∣∣Pr{Yt+1 ∈ Ĉα

t (Xt+1)|Xt+1 = xt+1

}
− (1− α)

∣∣
≤12

√
log(16|Ti|)/|Ti|+ 4(Li + 1)(δ

2/3
i,|Ti| + δi,|Ti|). (25)

Furthermore, if {δi,|Ti|}|Ti|≥1 converges to zero, the upper bound in (25) converges to 0 when
|Ti| → ∞, and thus the conditional coverage is asymptotically valid.
Theorem B.9 (Marginal coverage gap; adaptation of Xu & Xie (2022a), Theorem 2). Given the
prediction interval Ĉα

t defined in (24). Under Assumption B.4 and B.5, for any subset size |Ti|,
α ∈ (0, 1), and β ∈ [0, α], we have:

∃i ∈ I :
∣∣Pr{Yt+1 ∈ Ĉα

t (Xt+1)
}
− (1− α)

∣∣ ≤ 12
√

log(16|Ti|)/|Ti|+ 4(Li + 1)(δ
2/3
i,|Ti| + δi,|Ti|).

The proofs of the above theorems follow from Xu & Xie (2022a). To apply our adaptions to their
poofs, one has to select the error regime matching to the test time step t+1, i.e., select the right subset
Ti from the partitioning of time steps. Ti then corresponds to the overall calibration data in the original
assumptions, lemmas, theorems, and the respective proofs. This is valid since Assumption B.5-(i)
encompasses all subsets and the existing subset in Assumption B.4 and Assumption B.5-(ii) is, as
noted, the same.

Xu & Xie (2022a) provide additional bounds for two variations of Assumption B.4, imposing only
the requirement of strongly mixing noise or noise following a linear process. These bounds apply
also to our adaption but are omitted here for brevity.
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Notes on Exchangeability, Stationarity, Seasonality, and Drifts Comparing HopCPT to standard
CP we see that HopCPT assumes exchangeability over the weighted time steps within regimes. Hence,
we require that the relationship between inputs and outputs remains stationary within regimes, which
is weaker than requiring that the time series as such is stationary. For example, it allows that time
series values decrease or grow over time as long as these changes are reflected in the inputs of the
MHN and correspond to a regime. HopCPT softens the exchangeability requirements of standard CP
in two ways:

1. The CP mechanism assumes that exchangeability is given within a regime that is selected by
the MHN association.

2. Even if (1) is not the case, the memory of the MHN (and therefore the calibration data) is
updated with each new observation. This memory update allows HopCPT to account for
shifts — empirically, the benefit is visible in our experiments on the sap flow dataset, as we
discuss briefly in Section 3.2 (lines 283-289) and in more detail in Appendix A.3 (Error
Trend & Figure 4).

Regarding seasonality: HopCPT uses covariate features to describe the current time step. Hence,
HopCPT implicitly considers seasonality by comparing a given time step with the time steps from
the memory. Whenever a time step of a certain season is encountered, it focuses on time steps from
the same season. In fact, our experiments already comprise both regular and irregular seasonality
patterns. For example, the streamflow dataset contains yearly reoccurring patterns (spring, summer,
fall, winter) as well as irregularly reoccurring similar flood events. In both cases, HopCPT can
identify related time steps based on the covariates.

Regarding data drifts: an advantage of HopCPT is that the memory is updated with every new
observation. Therefore, HopCPT can somewhat incorporate drifts in the target value as long as the
covariates remain so that the learned representation is able to focus on the relevant observations.
Empirically, the robustness against drifts is visible in our experiments on the sap flow dataset, as we
discuss briefly in Section 3.2 (lines 283-289) and in more detail in Appendix A.3 (Error Trend &
Figure 4).
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C Dataset Details

Datsets from four different domains were used in the experiments. The following paragraphs
summarize the details. Table 9 provides a quantitative overview.

Solar. We conducted experiments on three solar radiation datasets: Solar (3M), Solar (1Y), and
Solar (3Y). All three datasets are based on data from the US National Solar Radiation Database
(NSDB; Sengupta et al., 2018). Besides solar radiation as the target variable, the datasets include
8 other environmental features. Solar (3M) is the same dataset as used by Xu & Xie (2022a,b) and
focuses on data from 8 cities in California. To show the scalability of HopCPT we additionally
generated two larger datasets Solar (1Y) and Solar (3Y), which include data from 50 cities from
different parts of the US. We selected the cities by ordering the areas provided by NSDB according to
the population density and picked the top 50 under the condition that no city appears twice in the
dataset.

Air quality. The datasets Air Quality (10PM) and Air Quality (25PM) are air quality measurements
from 12 monitoring sites in Beijing, China (Zhang et al., 2017). The datasets provide two target
variables (10PM and 2.5PM measurements) which we use separately in our experiments (the variables
are used mutually exclusively in the datasets, e.g., when predicting 10PM we do not use 2.5PM as a
feature). We encode the wind direction, given as a categorical variable, by mapping the north–south
and the east–west components each to a scalar from −1 to 1.

Sap flow. The Sap flow dataset is a subset of the Sapflux data project (Poyatos et al., 2021).
This dataset includes sap flow measurements which we use as a target variable, as well as a set of
environmental variables. The available features, the length of the measurements, and the sampling
vary between the individual time series. To get a set of comparable time series we processed the data
as follows: (a) We removed all time series where not all of the 10 environmental features are available.
(b) If there was a single missing value between two existing ones, we filled the value with the value
before (forward fill). (c) We cut out all sequences without any missing target or feature values (after
step b). (d) From the resulting set of sequences we removed all that have less than 15,000 or more
than 20,000 time steps.

Streamflow. For our experiments on the streamflow data, we use the Catchment Attributes and
Meteorology for Large-sample Studies dataset (CAMELS; Newman et al., 2015; Addor et al.,
2017). It provides meteorological time series from different data products, corresponding streamflow
measurements, and static catchment attributes for catchments across the continental United States.
We ran our experiments on the subset of 531 catchments that were used in previous hydrological
benchmarking efforts (e.g., Newman et al., 2017; Kratzert et al., 2019, 2021; Klotz et al., 2022).
Specifically, we trained the LSTM prediction model with the NeuralHydrology Python library
(Kratzert et al., 2022) on precipitation, solar radiation, minimum and maximum temperature, and
vapor pressure from the NLDAS (Xia et al., 2012), Maurer (Maurer et al., 2002), and Daymet
(Thornton et al., 1997) meteorological data products. Further, the LSTM received 26 static catchment
attributes at each time step that identify the catchment properties. Table 4 in Kratzert et al. (2019)
provides a full list of these attributes. We trained the prediction model on data from the period Oct
1981 – Sep 1990 (note that for some catchments, this period starts later due to missing data in the
beginning), calibrated the uncertainty models on Oct 1990 – Sep 1999, and tested them on the period
Oct 1999 – Sep 2008.

D kNN vs. Learned Representation

As mentioned in the main paper, we designed HopCPT with large datasets in mind. It is only in such
a setting that the learned part of our approach can truly play to its strengths and take advantage of
nuanced interrelationships in the data. kNN provides us with a natural “fallback” option for settings
where not enough data is available to infer these relationships. Our comparisons in Table 10 and
Table 11 substantiate this argument: kNN provides competitive results for the small dataset Solar
(3M) (this can also be seen by contrasting the performance from Table 10 to the respective results in
Appendix A.3), but is outperformed by HopCPT for the larger datasets.
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Table 9: Details of the evaluated datasets.

Number of
Series

Time Steps
per Series Period Sampling Number of

Features Data Split [%]

Solar (3M) 8 2,000 01–03 2018 60m 8 60/15/25
Solar (1Y) 50 8,760 2019 60m 8 60/15/25
Solar (3Y) 50 26,304 2018–20 60m 8 34/33/33

Air Quality 12 35,064 2013–17 60m 11 34/33/33
(10PM)
Air Quality 12 35,064 2013–17 60m 11 34/33/33
(25PM)

Sap flow 24 15,000–
20,000 2008–16 varying 10 34/33/33

Streamflow 531 9,862 1981–2008 24h 41 34/33/33

E Quantile of Sample vs. Quantile of Weighted ECDF

HopCPT constructs prediction intervals by calculating a quantile on the set of weight-sampled errors
(see Equation 7). An alternative approach is to calculate the quantile over a weighted empirical CDF
of the errors. This approach would define q(τ,Zt+1) in Equation 7 as

q(τ,Zt+1) = Qτ

(
t∑

i=1

at+1,iδϵi

)
, (26)

where δϵi is a point mass at |ϵi|. Empirically, we find little differences in the performance when
comparing the two approaches (Tables 12 and 14).

F Asymmetrical Error Quantiles

HopCPT calculates the prediction interval by using equally large quantiles (in terms of distribution
mass, not width) for the upper and lower bound (see Equation 7). Xu & Xie (2022a) instead search
for a β̂ ∈ [0, α] and calculate the lower quantile with β̂ and the upper quantile with 1− α+ β̂, which
minimizes the overall interval with. Applying this principle to Equation 7 one would arrive at

β̂ = argmin
β∈[0,α]

[
µ̂(Xt+1) + q(β,Zt+1), µ̂(Xt+1) + q(1− α+ β,Zt+1)

]
Ĉα

t (Zt+1) =
[
µ̂(Xt+1) + q(β̂,Zt+1), µ̂(Xt+1) + q(1− α+ β̂,Zt+1)

]
,

(27)

Practically, the search is done by evaluating different β values within the potential value range
and selecting the one which produces the lowest interval width. Theoretically, this could lead to
more efficient intervals at the cost of additional computation and potential asymmetry in regard to
uncovered samples that are higher and lower than the prediction interval. Empirically, we do not find
a notable improvement when applying this search to HopCPT (see Table 13).

G AdaptiveCI and HopCPT

As noted in Section 3, AdaptiveCI is orthogonal to HopCPT, SPCI, EnbPI, and NexCP. We therefore
also evaluated the combined application of the models. Nevertheless, AdaptiveCI is an independent
model on top of an existing model, which is reflected in the way we select the hyperparameters of the
combined model: First, the hyperparameters are selected for each model without adaption through
AdaptiveCI (see Appendix A.1) — hence, we use the same hyperparameters as in the main evaluation.
Second, we conduct another hyperparameter search, given the model parameters from the first search,
where we only search for the parameter of the adaptive component.
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Tables 15 and 16 show the results of these experiments. Overall, the results are slightly better, as the
Winkler score (which considers both width and coverage) slightly improves in most experiments. The
ranking between the different models stays similar to the non-adaptive comparison (see Section 3.2)
with HopCPT performing best on all but the smallest dataset.

H Details on Continuous Modern Hopfield Networks

Modern Hopfield Networks are associative memory networks. They learn to associate entries of a
memory with a given “query” sample in order to produce a prediction. In HopCPT, the memory
corresponds to representations of past time steps and the query corresponds to a representation of
the current time step. The association happens by means of weights on every memory entry, which
are called “association weights”. Query–memory sample pairs that have similar representations are
assigned high association weights. In summary, the association weights indicate which samples
are closely related — in HopCPT, this corresponds to finding the time steps which are part of the
same time series regimes and therefore useful to estimate the current uncertainty. The association
mechanism is in that sense closely related to the attention mechanism of Transformers (Vaswani
et al., 2017). However, compared to other trainable networks, the memory-based architecture has the
advantage that it does not need to encode all knowledge in network parameters but can dynamically
adapt when given new memory entries.

We adapt the following arguments from Fürst et al. (2022) and Ramsauer et al. (2021) for a more
formal overview. Associative memory networks have been designed to store and retrieve samples.
Hopfield networks are energy-based, binary associative memories, which were popularized as artificial
neural network architectures in the 1980s (Hopfield, 1982, 1984). Their storage capacity can be
considerably increased by polynomial terms in the energy function (Chen et al., 1986; Psaltis &
Cheol, 1986; Baldi & Venkatesh, 1987; Gardner, 1987; Abbott & Arian, 1987; Horn & Usher, 1988;
Caputo & Niemann, 2002; Krotov & Hopfield, 2016). In contrast to these binary memory networks,
we use continuous associative memory networks with far higher storage capacity. These networks are
continuous and differentiable, retrieve with a single update, and have exponential storage capacity
(and are therefore scalable, i.e., able tackle large problems; Ramsauer et al., 2021).

Formally, we denote a set of patterns {x1, . . . ,xN} ⊂ Rd that are stacked as columns to the matrix
X = (x1, . . . ,xN ) and a state pattern (query) ξ ∈ Rd that represents the current state. The largest
norm of a stored pattern is M = maxi ∥xi∥. Then, the energy E of continuous Modern Hopfield
Networks with state ξ is defined as (Ramsauer et al., 2021)

E = − β−1 log

(
N∑
i=1

exp(βxT
i ξ)

)
+

1

2
ξT ξ + C, (28)

where C = β−1 logN + 1
2 M2. For energy E and state ξ, Ramsauer et al. (2021) proved that the

update rule
ξnew = X softmax(βXT ξ) (29)

converges globally to stationary points of the energy E and coincides with the attention mechanisms
of Transformers (Vaswani et al., 2017; Ramsauer et al., 2021).

The separation ∆i of a pattern xi is its minimal dot product difference to any of the other patterns:

∆i = min
j,j ̸=i

(
xT
i xi − xT

i xj

)
. (30)

A pattern is well-separated from the data if ∆i is above a given threshold (specified in Ramsauer et al.,
2021). If the patterns xi are well-separated, the update rule Equation 29 converges to a fixed point
close to a stored pattern. If some patterns are similar to one another and, therefore, not well-separated,
the update rule converges to a fixed point close to the mean of the similar patterns.

The update rule of a Hopfield network thus identifies sample–sample relations between stored patterns.
This enables similarity-based learning methods like nearest neighbor search (see Schäfl et al., 2022),
which HopCPT leverages to learn a retrieval of samples from similar error regimes.
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I Potential Social Impact

Reliable uncertainty estimates are crucial, especially for complex time-dependent environmental
phenomena. However, overreliance on these estimates can be dangerous. For example, unseen
regimes might not be properly predicted. A changing climate that evolves the environment beyond
already seen conditions can cause new forms of error regimes which cannot be predicted reliably. As
most machine learning approaches, our method requires accurately labeled training data. Incorrect
labels may lead to unexpected biases and prediction errors.

J Code and Data

The code and data to reproduce all of our experiments are available at https://github.com/
ml-jku/HopCPT.
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Table 10: Performance of kNN compared to HopCPT for the miscoverage α = 0.10 on the solar
datasets. The error term represents the standard deviation over repeated runs.

UC kNN HopCPT
Data FC

So
la

r3
Y

Fo
re

st ∆ Cov 0.015 0.029±0.012

PI-Width 97.2 39.0±6.2

Winkler 1.59 0.73±0.20
L

G
B

M ∆ Cov 0.012 0.001±0.003

PI-Width 108.4 37.7±0.7

Winkler 1.74 0.57±0.01

R
id

ge ∆ Cov −0.009 0.040±0.001

PI-Width 136.9 44.9±0.5

Winkler 1.99 0.64±0.00

L
ST

M ∆ Cov −0.002 0.001±0.006

PI-Width 22.9 17.9±0.6

Winkler 0.51 0.30±0.01

So
la

r1
Y

Fo
re

st ∆ Cov 0.026 0.047±0.004

PI-Width 66.9 28.6±1.0

Winkler 1.00 0.40±0.04

L
G

B
M ∆ Cov 0.003 −0.003±0.009

PI-Width 72.2 40.7±2.8

Winkler 1.08 0.57±0.08

R
id

ge ∆ Cov −0.007 −0.011±0.016

PI-Width 128.8 59.9±5.6

Winkler 1.63 0.92±0.12

L
ST

M ∆ Cov 0.000 0.028±0.010

PI-Width 16.1 16.0±0.6

Winkler 0.33 0.22±0.01

So
la

rS
m

al
l Fo

re
st ∆ Cov 0.034 0.008±0.006

PI-Width 35.0 38.4±3.4

Winkler 0.93 1.09±0.08

L
G

B
M ∆ Cov −0.022 0.007±0.012

PI-Width 47.2 48.2±1.7

Winkler 1.17 1.24±0.08

R
id

ge ∆ Cov 0.004 −0.016±0.022

PI-Width 49.1 78.2±24.5

Winkler 1.08 1.78±0.59
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Table 11: Performance of kNN compared to HopCPT for the miscoverage α = 0.10 on the different
non-solar datasets. The error term represents the standard deviation over repeated runs.

UC kNN HopCPT
Data FC

A
ir

10
PM

Fo
re

st ∆ Cov −0.071 0.028±0.019

PI-Width 186.3 93.9±11.1

Winkler 3.81 1.50±0.09

L
G

B
M ∆ Cov −0.064 0.017±0.016

PI-Width 164.6 85.6±7.4

Winkler 3.42 1.45±0.06
R

id
ge ∆ Cov −0.054 0.010±0.007

PI-Width 114.8 79.9±4.7

Winkler 2.39 1.35±0.06

L
ST

M ∆ Cov −0.031 −0.002±0.005

PI-Width 57.2 62.7±1.5

Winkler 1.30 1.33±0.01

A
ir

25
PM

Fo
re

st ∆ Cov −0.081 −0.024±0.017

PI-Width 158.4 48.1±5.6

Winkler 3.77 1.12±0.05

L
G

B
M ∆ Cov −0.073 −0.021±0.019

PI-Width 130.4 46.8±6.0

Winkler 3.10 1.10±0.05

R
id

ge ∆ Cov −0.059 −0.005±0.026

PI-Width 97.5 49.3±10.6

Winkler 2.30 1.04±0.11

L
ST

M ∆ Cov −0.033 0.007±0.008

PI-Width 34.7 40.7±4.3

Winkler 0.94 0.88±0.05

Sa
p

flo
w

Fo
re

st ∆ Cov −0.056 0.009±0.019

PI-Width 3246.1 1078.7±73.7

Winkler 1.00 0.30±0.01

L
G

B
M ∆ Cov −0.063 −0.016±0.013

PI-Width 2647.5 875.5±49.8

Winkler 0.88 0.27±0.00

R
id

ge ∆ Cov −0.052 −0.025±0.023

PI-Width 2808.4 1639.6±93.2

Winkler 0.82 0.46±0.05

L
ST

M ∆ Cov −0.026 0.004±0.004

PI-Width 719.5 594.3±7.7

Winkler 0.24 0.19±0.01

Streamflow LSTM
∆ Cov −0.108 0.001±0.041

PI-Width 1.70 1.39±0.17

Winkler 1.39 0.79±0.03
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Table 12: Performance of the weighted sample quantile (Sample) and the weighted empirical CDF
(ECDF) quantile strategies that HopCPT uses for the miscoverage α = 0.10 on the solar datasets.
The error term represents the standard deviation over repeated runs.

UC Sample ECDF
Data FC

So
la

r3
Y

Fo
re

st ∆ Cov 0.029±0.012 0.021±0.008

PI-Width 39.0±6.2 33.1±1.0

Winkler 0.73±0.20 0.62±0.03

L
G

B
M ∆ Cov 0.001±0.003 −0.006±0.006

PI-Width 37.7±0.7 37.1±0.9

Winkler 0.57±0.01 0.58±0.01

R
id

ge ∆ Cov 0.040±0.001 0.041±0.001

PI-Width 44.9±0.5 45.0±0.5

Winkler 0.64±0.00 0.64±0.00

L
ST

M ∆ Cov 0.001±0.006 0.001±0.006

PI-Width 17.9±0.6 17.8±0.4

Winkler 0.30±0.01 0.30±0.00

So
la

r1
Y

Fo
re

st ∆ Cov 0.047±0.004 0.048±0.005

PI-Width 28.6±1.0 28.9±1.0

Winkler 0.40±0.04 0.40±0.04

L
G

B
M ∆ Cov −0.003±0.009 0.000±0.007

PI-Width 40.7±2.8 40.5±2.9

Winkler 0.57±0.08 0.56±0.08

R
id

ge ∆ Cov −0.011±0.016 −0.006±0.013

PI-Width 59.9±5.6 57.5±2.5

Winkler 0.92±0.12 0.88±0.10

L
ST

M ∆ Cov 0.028±0.010 0.032±0.007

PI-Width 16.0±0.6 16.6±1.1

Winkler 0.22±0.01 0.22±0.01

So
la

rS
m

al
l Fo

re
st ∆ Cov 0.008±0.006 0.026±0.023

PI-Width 38.4±3.4 37.1±5.7

Winkler 1.09±0.08 0.99±0.06

L
G

B
M ∆ Cov 0.007±0.012 0.011±0.013

PI-Width 48.2±1.7 46.3±1.3

Winkler 1.24±0.08 1.16±0.04

R
id

ge ∆ Cov −0.016±0.022 0.012±0.011

PI-Width 78.2±24.5 109.0±18.6

Winkler 1.78±0.59 2.55±0.38
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Table 13: Comparison of HopCPT (a) with applying the approach proposed by (Xu & Xie, 2022a,b)
to search for a β that minimizes the prediction interval width (right column), and (b) without this
approach which corresponds to β = α/2 (left column). The experiments are done with a miscoverage
rate α = 0.1. The error term represents the standard deviation over repeated runs.

UC β = α/2 With β search
Data FC

So
la

r3
Y

Fo
re

st ∆ Cov 0.029±0.012 0.010±0.018

PI-Width 39.0±6.2 41.0±7.6

Winkler 0.73±0.20 0.86±0.22

L
G

B
M ∆ Cov 0.001±0.003 −0.013±0.003

PI-Width 37.7±0.7 36.8±6.2

Winkler 0.57±0.01 0.62±0.12

R
id

ge ∆ Cov 0.040±0.001 0.021±0.015

PI-Width 44.9±0.5 50.0±28.3

Winkler 0.64±0.00 0.77±0.43

L
ST

M ∆ Cov 0.001±0.006 −0.013±0.007

PI-Width 17.9±0.6 16.2±0.5

Winkler 0.30±0.01 0.31±0.00

A
ir

10
PM

Fo
re

st ∆ Cov 0.028±0.019 0.007±0.028

PI-Width 93.9±11.1 83.4±11.2

Winkler 1.50±0.09 1.49±0.07

L
G

B
M ∆ Cov 0.017±0.016 −0.000±0.016

PI-Width 85.6±7.4 77.3±6.0

Winkler 1.45±0.06 1.41±0.04

R
id

ge ∆ Cov 0.010±0.007 −0.001±0.007

PI-Width 79.9±4.7 74.6±1.6

Winkler 1.35±0.06 1.32±0.02

L
ST

M ∆ Cov −0.002±0.005 −0.006±0.007

PI-Width 62.7±1.5 60.9±2.3

Winkler 1.33±0.01 1.33±0.02

Sa
p

flo
w

Fo
re

st ∆ Cov 0.009±0.019 −0.044±0.025

PI-Width 1078.7±73.7 857.2±56.7

Winkler 0.30±0.01 0.30±0.01

L
G

B
M ∆ Cov −0.016±0.013 −0.095±0.007

PI-Width 875.5±49.8 690.9±31.0

Winkler 0.27±0.00 0.28±0.01

R
id

ge ∆ Cov −0.025±0.023 −0.050±0.020

PI-Width 1639.6±93.2 1389.0±128.0

Winkler 0.46±0.05 0.42±0.03

L
ST

M ∆ Cov 0.004±0.004 −0.003±0.003

PI-Width 594.3±7.7 557.8±8.9

Winkler 0.19±0.01 0.19±0.00
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Table 14: Performance of the weighted sample quantile (Sample) and the weighted empirical CDF
(ECDF) quantile strategies that HopCPT uses for the miscoverage α = 0.10 on the different non-solar
datasets. The error term represents the standard deviation over repeated runs.

UC Sample ECDF
Data FC

A
ir

10
PM

Fo
re

st ∆ Cov 0.028±0.019 0.027±0.021

PI-Width 93.9±11.1 93.4±11.0

Winkler 1.50±0.09 1.50±0.09

L
G

B
M ∆ Cov 0.017±0.016 0.014±0.015

PI-Width 85.6±7.4 84.5±8.3

Winkler 1.45±0.06 1.43±0.09

R
id

ge ∆ Cov 0.010±0.007 0.013±0.010

PI-Width 79.9±4.7 79.3±4.6

Winkler 1.35±0.06 1.34±0.05

L
ST

M ∆ Cov −0.002±0.005 −0.005±0.010

PI-Width 62.7±1.5 65.6±20.1

Winkler 1.33±0.01 1.35±0.15

A
ir

25
PM

Fo
re

st ∆ Cov −0.024±0.017 −0.024±0.019

PI-Width 48.1±5.6 47.7±4.5

Winkler 1.12±0.05 1.11±0.01

L
G

B
M ∆ Cov −0.021±0.019 −0.023±0.019

PI-Width 46.8±6.0 46.6±6.1

Winkler 1.10±0.05 1.10±0.05

R
id

ge ∆ Cov −0.005±0.026 −0.007±0.027

PI-Width 49.3±10.6 49.1±10.7

Winkler 1.04±0.11 1.04±0.11

L
ST

M ∆ Cov 0.007±0.008 −0.002±0.015

PI-Width 40.7±4.3 35.0±2.1

Winkler 0.88±0.05 0.82±0.05

Sa
p

flo
w

Fo
re

st ∆ Cov 0.009±0.019 0.011±0.019

PI-Width 1078.7±73.7 1082.3±74.0

Winkler 0.30±0.01 0.30±0.01

L
G

B
M ∆ Cov −0.016±0.013 −0.017±0.013

PI-Width 875.5±49.8 875.6±49.5

Winkler 0.27±0.00 0.27±0.00

R
id

ge ∆ Cov −0.025±0.023 −0.035±0.046

PI-Width 1639.6±93.2 1634.0±90.2

Winkler 0.46±0.05 0.50±0.13

L
ST

M ∆ Cov 0.004±0.004 0.005±0.003

PI-Width 594.3±7.7 592.0±9.7

Winkler 0.19±0.01 0.19±0.00

Streamflow LSTM
∆ Cov 0.001±0.041 0.028±0.002

PI-Width 1.39±0.17 1.49±0.02

Winkler 0.79±0.03 0.77±0.01
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Table 15: Performance of the CP algorithms HopCPT, SPCI, EnbPI, and NexCP, each combined
with AdaptiveCI, for the miscoverage α = 0.10 on the solar datasets. Bold numbers correspond to
the best result for the respective metric in the experiment (PI-Width and Winkler score). The error
term represents the standard deviation over repeated runs. † combined with AdaptiveCI.

UC H
op

C
PT

†

SP
C

I†

E
nb

PI
†

N
ex

C
P

†

C
op

ul
aC

PT
S†

C
P/

C
F-

R
N

N
†

So
la

r3
Y

Fo
re

st ∆ Cov 0.004±0.001 0.002±0.000 −0.001 −0.000 0.000 0.000
PI-Width 29.8±0.7 97.6±0.1 155.7 170.8 168.6 168.5
Winkler 0.59±0.03 1.69±0.00 2.43 2.54 2.52 2.52

L
G

B
M ∆ Cov −0.001±0.000 0.002±0.000 −0.001 −0.000 0.000 0.000

PI-Width 39.9±7.0 95.8±0.1 155.0 164.8 162.3 162.4
Winkler 0.62±0.10 1.70±0.00 2.49 2.57 2.54 2.54

R
id

ge ∆ Cov 0.002±0.000 −0.000±0.000 −0.006 0.000 0.000 −0.000
PI-Width 36.0±0.3 110.6±0.1 166.3 177.3 172.8 172.4
Winkler 0.62±0.00 1.77±0.00 2.28 2.63 2.61 2.58

L
ST

M ∆ Cov 0.000±0.000 0.001±0.000 −0.002 −0.000 0.001 0.001
PI-Width 17.8±0.2 25.5±0.0 30.6 30.6 28.8 28.8
Winkler 0.30±0.00 0.59±0.00 0.63 0.62 0.63 0.63

So
la

r1
Y

Fo
re

st ∆ Cov 0.007±0.001 0.011±0.000 −0.002 −0.001 0.002 0.003
PI-Width 21.5±1.2 72.6±0.1 109.5 126.7 128.9 129.5
Winkler 0.40±0.02 1.14±0.00 1.63 1.85 1.84 1.84

L
G

B
M ∆ Cov 0.000±0.001 0.005±0.000 −0.001 −0.000 0.002 0.003

PI-Width 41.6±1.9 69.2±0.2 106.2 117.1 119.1 119.4
Winkler 0.56±0.04 1.15±0.00 1.63 1.78 1.77 1.77

R
id

ge ∆ Cov −0.003±0.005 0.004±0.000 −0.002 −0.000 −0.000 −0.000
PI-Width 61.5±9.9 98.9±0.2 167.8 174.8 174.9 175.6
Winkler 0.87±0.11 1.32±0.00 2.01 2.08 2.08 2.08

L
ST

M ∆ Cov 0.001±0.000 0.003±0.000 −0.001 −0.001 0.001 0.001
PI-Width 14.3±0.7 18.9±0.0 21.8 20.4 19.9 20.0
Winkler 0.22±0.01 0.40±0.00 0.42 0.41 0.41 0.41

So
la

rS
m

al
l Fo

re
st ∆ Cov 0.006±0.003 −0.023±0.002 −0.003 −0.014 −0.007 −0.009

PI-Width 33.6±2.9 64.7±0.7 92.9 127.3 131.1 128.1
Winkler 1.01±0.04 1.95±0.01 2.38 3.27 3.25 3.23

L
G

B
M ∆ Cov −0.001±0.002 −0.015±0.001 −0.005 −0.005 −0.008 −0.010

PI-Width 44.8±1.0 60.9±0.6 96.4 135.7 128.3 125.0
Winkler 1.18±0.04 1.95±0.01 2.54 3.32 3.33 3.31

R
id

ge ∆ Cov 0.008±0.004 −0.015±0.001 −0.003 0.008 0.008 0.006
PI-Width 104.7±19.8 69.3±0.7 102.5 97.7 96.2 93.0
Winkler 2.44±0.42 1.92±0.01 2.56 2.75 2.75 2.72
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Table 16: Performance of the CP algorithms HopCPT, SPCI, EnbPI, and NexCP, each combined
with AdaptiveCI, for the miscoverage α = 0.10 on the different non-solar datasets. Bold numbers
correspond to the best result for the respective metric in the experiment (PI-Width and Winkler score).
The error term represents the standard deviation over repeated runs. † combined with AdaptiveCI.

UC H
op

C
PT

†

SP
C

I†

E
nb

PI
†

N
ex

C
P

†

C
op

ul
aC

PT
S†

C
P/

C
F-

R
N

N
†

A
ir

10
PM

Fo
re

st ∆ Cov 0.002±0.001 −0.002±0.000 −0.002 0.000 −0.003 −0.005
PI-Width 80.7±2.6 112.6±0.1 250.4 270.5 228.7 228.3
Winkler 1.45±0.06 1.96±0.00 3.70 3.92 3.37 3.39

L
G

B
M ∆ Cov 0.001±0.001 0.001±0.000 −0.001 0.000 −0.002 −0.003

PI-Width 78.5±2.2 102.5±0.2 220.0 233.2 196.3 196.3
Winkler 1.38±0.04 1.83±0.00 3.38 3.54 3.01 3.01

R
id

ge ∆ Cov 0.001±0.001 0.000±0.000 −0.001 0.001 0.000 0.000
PI-Width 75.3±0.8 83.7±0.1 147.2 159.5 142.7 142.3
Winkler 1.30±0.02 1.46±0.00 2.46 2.67 2.41 2.42

L
ST

M ∆ Cov −0.001±0.000 0.000±0.000 0.000 0.001 0.001 0.000
PI-Width 65.4±0.3 59.2±0.1 69.2 65.7 62.9 62.5
Winkler 1.30±0.01 1.18±0.00 1.32 1.29 1.29 1.30

A
ir

25
PM

Fo
re

st ∆ Cov −0.001±0.001 −0.002±0.000 −0.003 −0.001 −0.004 −0.008
PI-Width 53.4±1.1 86.5±0.1 221.7 245.1 205.2 200.8
Winkler 1.10±0.02 1.76±0.00 3.68 3.97 3.43 3.47

L
G

B
M ∆ Cov −0.000±0.001 0.000±0.000 −0.001 0.000 −0.003 −0.007

PI-Width 52.5±1.7 76.1±0.1 180.6 191.7 151.1 147.2
Winkler 1.10±0.05 1.69±0.00 3.17 3.38 2.73 2.74

R
id

ge ∆ Cov −0.000±0.001 −0.001±0.000 −0.001 0.001 0.001 0.000
PI-Width 50.4±3.9 63.2±0.1 130.0 143.6 130.3 129.5
Winkler 1.04±0.10 1.33±0.00 2.36 2.64 2.53 2.52

L
ST

M ∆ Cov −0.001±0.001 −0.001±0.000 0.000 0.001 −0.001 −0.000
PI-Width 40.3±4.1 36.3±0.0 44.6 40.8 38.8 38.9
Winkler 0.89±0.06 0.89±0.00 0.96 0.94 0.95 0.93

Sa
p

flo
w

Fo
re

st ∆ Cov −0.004±0.007 0.004±0.000 −0.006 0.000 0.004 0.003
PI-Width 1006.9±44.5 1651.0±1.9 4142.8 6151.7 6034.6 6022.0
Winkler 0.29±0.01 0.51±0.00 1.11 1.54 1.53 1.53

L
G

B
M ∆ Cov −0.001±0.003 0.007±0.000 −0.005 −0.000 0.006 0.008

PI-Width 919.1±25.8 1601.7±3.0 3327.0 4845.1 4787.0 5016.1
Winkler 0.26±0.01 0.45±0.00 0.88 1.23 1.22 1.28

R
id

ge ∆ Cov −0.006±0.002 −0.121±0.000 −0.003 −0.000 −0.004 −0.126
PI-Width 1492.5±29.9 2974.7±6.9 3431.4 10665.6 10426.2 9521.9
Winkler 0.39±0.01 1.53±0.00 0.87 2.39 2.36 2.87

L
ST

M ∆ Cov 0.000±0.000 0.002±0.000 −0.001 −0.000 0.001 0.002
PI-Width 595.0±7.5 639.5±1.8 863.1 1019.1 980.1 992.6
Winkler 0.19±0.00 0.22±0.00 0.28 0.32 0.31 0.32
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Table 17: Performance of the evaluated CP algorithms on the Solar (3Y) datasets for the miscoverage
levels α ∈ {0.05, 0.10, 0.15}. The column FC specifies the prediction algorithm used for the
experiment (Forest: Random Forest, LGBM: LightGBM, Ridge: Ridge Regression, LSTM: LSTM
neural network). Bold numbers correspond to the best result for the respective metric in the experiment
(PI-Width and Winkler score), given that ∆Cov ≥ −0.25α, i.e., the specific algorithm reached at
least approximate coverage (the result is grayed out otherwise). The error term represents the standard
deviation over repeated runs (results without an error term are from deterministic models).
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Fo
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0.
05

∆ Cov 0.006±0.006 0.007±0.000 -0.030 -0.002 0.002 0.002
PI-Width 47.8±9.5 149.2±0.1 173.0 216.5 237.2 236.7
Winkler 0.99±0.35 2.22±0.00 3.01 2.95 3.30 3.30

0.
10

∆ Cov 0.029±0.012 0.012±0.000 -0.031 -0.002 0.005 0.004
PI-Width 39.0±6.2 103.1±0.1 131.1 166.6 174.9 174.6
Winkler 0.73±0.20 1.74±0.00 2.47 2.53 2.75 2.76

0.
15

∆ Cov 0.052±0.018 0.014±0.000 -0.027 -0.002 0.006 0.006
PI-Width 33.6±4.6 75.3±0.1 101.4 129.1 132.2 132.0
Winkler 0.61±0.15 1.46±0.00 2.12 2.23 2.38 2.39

L
G

B
M

0.
05

∆ Cov -0.008±0.002 0.007±0.000 -0.022 -0.002 0.002 0.002 0.001
PI-Width 45.6±0.8 148.0±0.1 183.0 215.9 237.9 237.8 88.1
Winkler 0.72±0.02 2.25±0.00 3.09 3.06 3.45 3.46 1.36

0.
10

∆ Cov 0.001±0.003 0.014±0.000 -0.023 -0.002 0.006 0.006 0.001
PI-Width 37.7±0.7 102.2±0.1 133.6 159.9 169.8 170.2 67.1
Winkler 0.57±0.01 1.75±0.00 2.52 2.55 2.80 2.81 1.19

0.
15

∆ Cov 0.009±0.003 0.017±0.000 -0.022 -0.002 0.008 0.009 0.001
PI-Width 32.7±0.7 75.5±0.1 100.6 121.3 126.6 127.2 55.1
Winkler 0.50±0.01 1.46±0.00 2.15 2.21 2.39 2.40 1.11

R
id

ge

0.
05

∆ Cov 0.010±0.001 -0.003±0.000 -0.080 -0.002 0.003 0.003
PI-Width 52.7±0.6 146.3±0.0 151.0 226.2 223.8 224.8
Winkler 0.78±0.00 2.31±0.00 3.04 3.20 3.44 3.46

0.
10

∆ Cov 0.040±0.001 0.002±0.000 -0.074 -0.001 0.004 0.005
PI-Width 44.9±0.5 108.2±0.0 131.1 171.0 166.0 167.7
Winkler 0.64±0.00 1.82±0.00 2.49 2.66 2.73 2.74

0.
15

∆ Cov 0.070±0.001 0.009±0.000 -0.069 -0.000 0.004 0.006
PI-Width 39.6±0.5 89.4±0.0 114.7 142.2 141.2 142.7
Winkler 0.56±0.00 1.56±0.00 2.21 2.34 2.37 2.37

L
ST

M

0.
05

∆ Cov -0.003±0.005 0.004±0.000 -0.018 -0.001 0.002 0.001
PI-Width 22.7±0.8 47.7±0.0 41.0 47.3 54.1 54.7
Winkler 0.38±0.01 0.87±0.00 0.90 0.87 0.96 0.97

0.
10

∆ Cov 0.001±0.006 0.014±0.000 -0.018 -0.001 0.007 0.007
PI-Width 17.9±0.6 27.8±0.0 24.6 28.2 31.9 33.0
Winkler 0.30±0.01 0.62±0.00 0.64 0.63 0.68 0.70

0.
15

∆ Cov 0.002±0.007 0.024±0.000 -0.017 -0.001 0.010 0.009
PI-Width 15.0±0.4 18.1±0.0 16.2 18.6 20.5 21.3
Winkler 0.26±0.00 0.48±0.00 0.50 0.50 0.54 0.55
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Table 18: Performance of the evaluated CP algorithms on the Solar (1Y) dataset for the miscoverage
levels α ∈ {0.05, 0.10, 0.15}. The column FC specifies the prediction algorithm used for the
experiment (Forest: Random Forest, LGBM: LightGBM, Ridge: Ridge Regression, LSTM: LSTM
neural network). Bold numbers correspond to the best result for the respective metric in the experiment
(PI-Width and Winkler score), given that ∆Cov ≥ −0.25α, i.e., the specific algorithm reached at
least approximate coverage (the result is grayed out otherwise). The error term represents the standard
deviation over repeated runs (results without an error term are from deterministic models).
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Fo
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0.
05

∆ Cov 0.016±0.002 0.029±0.000 -0.017 0.002 0.034 0.035
PI-Width 35.0±1.2 147.8±0.3 133.4 173.9 241.8 262.9
Winkler 0.50±0.05 1.71±0.00 1.97 2.18 2.61 2.82

0.
10

∆ Cov 0.047±0.004 0.045±0.000 -0.018 0.002 0.056 0.063
PI-Width 28.6±1.0 97.1±0.2 98.8 127.8 182.4 204.9
Winkler 0.40±0.04 1.26±0.00 1.65 1.84 2.10 2.30

0.
15

∆ Cov 0.078±0.006 0.052±0.000 -0.016 0.002 0.070 0.086
PI-Width 24.6±0.8 67.7±0.1 73.1 93.6 138.5 161.2
Winkler 0.35±0.03 1.00±0.00 1.42 1.59 1.76 1.93

L
G

B
M

0.
05

∆ Cov -0.010±0.006 0.029±0.000 -0.019 0.001 0.034 0.036 -0.000
PI-Width 51.0±3.4 147.8±0.2 131.5 165.0 237.9 265.2 62.2
Winkler 0.71±0.10 1.72±0.00 2.05 2.16 2.60 2.86 0.78

0.
10

∆ Cov -0.003±0.009 0.045±0.000 -0.017 0.002 0.056 0.065 0.000
PI-Width 40.7±2.8 96.5±0.2 93.9 118.0 171.1 196.6 49.5
Winkler 0.57±0.08 1.26±0.00 1.65 1.78 2.02 2.24 0.69

0.
15

∆ Cov 0.001±0.012 0.053±0.000 -0.014 0.002 0.068 0.086 0.000
PI-Width 34.5±2.5 68.0±0.1 68.2 85.7 125.5 149.1 42.5
Winkler 0.50±0.07 1.01±0.00 1.40 1.52 1.66 1.83 0.67

R
id

ge

0.
05

∆ Cov -0.025±0.012 0.018±0.000 -0.025 -0.004 0.008 0.011
PI-Width 70.3±6.5 151.0±0.2 178.0 196.3 207.9 219.8
Winkler 1.15±0.18 1.78±0.00 2.26 2.29 2.35 2.49

0.
10

∆ Cov -0.011±0.016 0.031±0.000 -0.031 -0.006 -0.010 -0.015
PI-Width 59.9±5.6 112.8±0.1 158.4 171.7 171.7 172.0
Winkler 0.92±0.12 1.40±0.00 2.06 2.09 2.12 2.17

0.
15

∆ Cov 0.000±0.020 0.035±0.001 -0.034 -0.008 -0.024 -0.040
PI-Width 52.9±4.9 92.5±0.1 144.1 154.6 150.2 146.6
Winkler 0.81±0.10 1.21±0.00 1.92 1.96 1.98 2.02

L
ST

M

0.
05

∆ Cov 0.019±0.003 0.006±0.000 -0.018 -0.001 0.010 0.013
PI-Width 21.4±0.7 37.0±0.0 29.5 33.6 39.4 42.2
Winkler 0.27±0.01 0.58±0.00 0.60 0.57 0.59 0.61

0.
10

∆ Cov 0.028±0.010 0.018±0.000 -0.018 -0.001 0.018 0.025
PI-Width 16.0±0.6 22.5±0.0 17.4 19.5 23.1 25.0
Winkler 0.22±0.01 0.41±0.00 0.42 0.41 0.43 0.43

0.
15

∆ Cov 0.029±0.017 0.032±0.000 -0.014 0.001 0.030 0.040
PI-Width 13.1±0.5 15.3±0.0 11.1 12.6 15.2 16.9
Winkler 0.19±0.00 0.32±0.00 0.33 0.33 0.33 0.34
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Table 19: Performance of the evaluated CP algorithms on the Solar (3M) dataset for the miscoverage
levels α ∈ {0.05, 0.10, 0.15}. The column FC specifies the prediction algorithm used for the
experiment (Forest: Random Forest, LGBM: LightGBM, Ridge: Ridge Regression). Bold numbers
correspond to the best result for the respective metric in the experiment (PI-Width and Winkler score),
given that ∆Cov ≥ −0.25α, i.e., the specific algorithm reached at least approximate coverage (the
result is grayed out otherwise). The error term represents the standard deviation over repeated runs
(results without an error term are from deterministic models).
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Fo
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0.
05

∆ Cov -0.002±0.005 -0.074±0.001 -0.022 -0.013 -0.022 -0.028
PI-Width 47.5±5.0 57.9±0.3 110.7 160.2 162.0 155.0
Winkler 1.29±0.11 2.62±0.02 2.92 3.70 3.95 4.04

0.
10

∆ Cov 0.008±0.006 -0.064±0.002 -0.022 -0.021 -0.027 -0.025
PI-Width 38.4±3.4 38.8±0.3 86.0 122.9 110.4 111.4
Winkler 1.09±0.08 1.82±0.01 2.54 3.28 3.47 3.48

0.
15

∆ Cov 0.020±0.010 -0.052±0.002 -0.028 -0.019 -0.020 -0.017
PI-Width 32.6±2.8 26.7±0.3 64.8 91.0 77.5 79.6
Winkler 0.99±0.07 1.45±0.02 2.40 2.91 2.99 2.98

L
G

B
M

0.
05

∆ Cov 0.002±0.008 -0.063±0.001 -0.024 -0.014 -0.018 -0.019 -0.000
PI-Width 59.7±3.4 56.3±0.3 111.7 161.7 164.5 162.1 61.8
Winkler 1.49±0.15 2.66±0.02 3.10 3.87 4.13 4.18 1.45

0.
10

∆ Cov 0.007±0.012 -0.052±0.002 -0.022 -0.020 -0.022 -0.021 -0.004
PI-Width 48.2±1.7 37.5±0.3 84.3 119.9 107.6 106.9 49.2
Winkler 1.24±0.08 1.84±0.01 2.67 3.35 3.52 3.53 1.26

0.
15

∆ Cov 0.005±0.016 -0.043±0.002 -0.024 -0.019 -0.013 -0.011 -0.007
PI-Width 41.4±1.3 26.9±0.2 60.8 85.1 75.8 77.5 44.1
Winkler 1.11±0.07 1.47±0.01 2.48 2.93 2.98 2.97 1.22

R
id

ge

0.
05

∆ Cov -0.017±0.014 -0.064±0.001 -0.021 0.004 0.009 -0.002
PI-Width 92.7±32.4 67.2±0.3 110.1 144.8 156.1 133.6
Winkler 1.99±0.69 2.49±0.02 3.07 3.82 3.78 3.75

0.
10

∆ Cov -0.016±0.022 -0.056±0.002 -0.020 0.007 0.014 -0.003
PI-Width 78.2±24.5 51.8±0.3 84.9 85.2 88.6 78.1
Winkler 1.78±0.59 1.91±0.01 2.66 2.85 2.83 2.81

0.
15

∆ Cov -0.009±0.021 -0.039±0.002 -0.017 0.003 0.014 0.003
PI-Width 67.4±19.0 43.2±0.2 71.6 70.9 71.9 70.7
Winkler 1.61±0.51 1.59±0.00 2.29 2.34 2.34 2.33
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Table 20: Performance of the evaluated CP algorithms on the Air Quality (10PM) dataset for the
miscoverage levels α ∈ {0.05, 0.10, 0.15}. The column FC specifies the prediction algorithm used
for the experiment (Forest: Random Forest, LGBM: LightGBM, Ridge: Ridge Regression, LSTM:
LSTM neural network). Bold numbers correspond to the best result for the respective metric in the
experiment (PI-Width and Winkler score), given that ∆Cov ≥ −0.25α, i.e., the specific algorithm
reached at least approximate coverage (the result is grayed out otherwise). The error term represents
the standard deviation over repeated runs (results without an error term are from deterministic
models).
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0.
05

∆ Cov 0.006±0.013 -0.001±0.000 -0.054 -0.005 -0.016 -0.027
PI-Width 116.7±14.4 152.7±0.1 242.9 321.5 322.5 297.1
Winkler 1.94±0.10 2.86±0.00 4.97 4.82 6.47 6.61

0.
10

∆ Cov 0.028±0.019 0.008±0.000 -0.066 -0.004 -0.019 -0.033
PI-Width 93.9±11.1 118.5±0.1 202.8 263.5 243.1 229.8
Winkler 1.50±0.09 2.23±0.00 4.16 4.03 4.94 4.98

0.
15

∆ Cov 0.050±0.025 0.018±0.000 -0.073 -0.002 -0.021 -0.039
PI-Width 80.5±9.4 99.8±0.1 175.7 229.4 207.1 198.2
Winkler 1.28±0.08 1.92±0.00 3.72 3.61 4.18 4.20

L
G

B
M

0.
05

∆ Cov -0.000±0.011 0.008±0.000 -0.047 -0.005 -0.014 -0.022 -0.000
PI-Width 106.3±9.9 146.1±0.1 219.5 285.7 281.1 264.6 228.0
Winkler 1.87±0.07 2.49±0.00 4.56 4.46 5.72 5.79 3.61

0.
10

∆ Cov 0.017±0.016 0.023±0.000 -0.057 -0.004 -0.017 -0.028 -0.001
PI-Width 85.6±7.4 113.2±0.1 178.3 224.8 206.7 196.5 186.4
Winkler 1.45±0.06 1.94±0.00 3.69 3.64 4.33 4.36 3.00

0.
15

∆ Cov 0.033±0.019 0.038±0.000 -0.061 -0.004 -0.017 -0.029 -0.001
PI-Width 73.4±6.2 94.9±0.1 151.4 188.9 168.2 161.9 161.1
Winkler 1.24±0.06 1.66±0.00 3.23 3.20 3.63 3.65 2.71

R
id

ge

0.
05

∆ Cov 0.001±0.003 0.010±0.000 -0.037 -0.003 0.005 0.006
PI-Width 100.6±6.2 120.2±0.1 152.6 202.3 215.7 219.3
Winkler 1.70±0.08 1.93±0.00 3.32 3.42 3.96 3.98

0.
10

∆ Cov 0.010±0.007 0.024±0.000 -0.045 -0.002 0.010 0.012
PI-Width 79.9±4.7 93.9±0.1 120.0 153.3 153.7 155.3
Winkler 1.35±0.06 1.52±0.00 2.60 2.68 2.95 2.96

0.
15

∆ Cov 0.016±0.011 0.038±0.001 -0.049 -0.003 0.015 0.018
PI-Width 68.1±4.1 79.4±0.1 100.5 126.9 125.7 127.0
Winkler 1.17±0.05 1.31±0.00 2.23 2.31 2.46 2.46

L
ST

M

0.
05

∆ Cov -0.001±0.001 0.003±0.000 -0.021 -0.002 -0.002 -0.001
PI-Width 90.7±1.9 86.1±0.0 80.8 88.8 86.8 88.1
Winkler 1.83±0.03 1.63±0.00 1.81 1.77 1.86 1.86

0.
10

∆ Cov -0.002±0.005 0.010±0.000 -0.025 -0.002 0.001 0.004
PI-Width 62.7±1.5 62.2±0.0 58.1 62.4 61.8 63.0
Winkler 1.33±0.01 1.21±0.00 1.32 1.29 1.34 1.34

0.
15

∆ Cov -0.002±0.010 0.017±0.000 -0.028 -0.002 0.005 0.009
PI-Width 49.4±1.7 50.2±0.0 46.5 49.6 49.6 50.8
Winkler 1.09±0.01 1.01±0.00 1.08 1.07 1.10 1.10
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Table 21: Performance of the evaluated CP algorithms on the Air Quality (25PM) dataset for the
miscoverage levels α ∈ {0.05, 0.10, 0.15}. The column FC specifies the prediction algorithm used
for the experiment (Forest: Random Forest, LGBM: LightGBM, Ridge: Ridge Regression, LSTM:
LSTM neural network). Bold numbers correspond to the best result for the respective metric in the
experiment (PI-Width and Winkler score), given that ∆Cov ≥ −0.25α, i.e., the specific algorithm
reached at least approximate coverage (the result is grayed out otherwise). The error term represents
the standard deviation over repeated runs (results without an error term are from deterministic
models).
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0.
05

∆ Cov -0.033±0.013 -0.015±0.000 -0.065 -0.009 -0.018 -0.031
PI-Width 58.7±6.9 102.6±0.1 211.3 283.9 271.4 249.8
Winkler 1.51±0.04 2.67±0.00 5.01 4.71 6.47 6.59

0.
10

∆ Cov -0.024±0.017 -0.009±0.000 -0.079 -0.007 -0.025 -0.042
PI-Width 48.1±5.6 81.5±0.0 177.3 235.6 212.6 203.5
Winkler 1.12±0.05 2.02±0.00 4.31 4.05 4.94 4.98

0.
15

∆ Cov -0.014±0.019 -0.000±0.001 -0.084 -0.005 -0.029 -0.045
PI-Width 41.4±4.9 70.8±0.0 153.0 206.9 185.5 179.0
Winkler 0.94±0.05 1.71±0.00 3.88 3.67 4.23 4.25

L
G

B
M

0.
05

∆ Cov -0.031±0.014 -0.007±0.000 -0.054 -0.006 -0.020 -0.032 -0.001
PI-Width 57.2±7.8 93.5±0.1 176.4 239.5 212.7 196.0 208.8
Winkler 1.48±0.05 2.45±0.00 4.30 4.35 5.47 5.58 3.99

0.
10

∆ Cov -0.021±0.019 0.002±0.000 -0.063 -0.007 -0.027 -0.042 -0.001
PI-Width 46.8±6.0 73.3±0.0 142.1 182.2 154.5 143.9 163.3
Winkler 1.10±0.05 1.83±0.00 3.54 3.55 4.09 4.14 3.35

0.
15

∆ Cov -0.010±0.022 0.010±0.001 -0.066 -0.006 -0.029 -0.045 -0.001
PI-Width 40.2±5.1 62.4±0.0 118.8 147.6 124.2 117.1 133.3
Winkler 0.92±0.05 1.55±0.00 3.07 3.08 3.41 3.43 2.99

R
id

ge

0.
05

∆ Cov -0.018±0.018 -0.001±0.000 -0.043 -0.005 -0.002 -0.004
PI-Width 60.2±13.1 84.0±0.1 132.5 177.6 180.5 177.1
Winkler 1.35±0.12 1.82±0.00 3.11 3.31 3.82 3.85

0.
10

∆ Cov -0.005±0.026 0.011±0.000 -0.051 -0.006 -0.002 -0.004
PI-Width 49.3±10.6 65.5±0.0 106.2 134.3 127.4 125.3
Winkler 1.04±0.11 1.40±0.00 2.54 2.66 2.92 2.93

0.
15

∆ Cov 0.008±0.032 0.021±0.000 -0.053 -0.007 -0.001 -0.003
PI-Width 42.6±9.3 55.6±0.0 88.7 109.7 102.5 101.6
Winkler 0.89±0.10 1.20±0.00 2.21 2.30 2.46 2.46

L
ST

M

0.
05

∆ Cov 0.005±0.005 -0.015±0.000 -0.023 -0.003 -0.015 -0.021
PI-Width 57.1±5.6 44.9±0.0 50.8 56.0 48.4 46.1
Winkler 1.19±0.08 1.29±0.00 1.33 1.27 1.39 1.40

0.
10

∆ Cov 0.007±0.008 -0.017±0.000 -0.028 -0.003 -0.019 -0.025
PI-Width 40.7±4.3 32.4±0.0 35.9 38.6 34.0 32.8
Winkler 0.88±0.05 0.93±0.00 0.97 0.94 0.99 0.99

0.
15

∆ Cov 0.005±0.011 -0.016±0.000 -0.029 -0.003 -0.019 -0.025
PI-Width 32.5±3.7 26.1±0.0 28.4 30.2 26.8 26.1
Winkler 0.74±0.04 0.76±0.00 0.79 0.77 0.80 0.81
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Table 22: Performance of the evaluated CP algorithms on the Sap flow dataset for the miscoverage
levels α ∈ {0.05, 0.10, 0.15}. The column FC specifies the prediction algorithm used for the
experiment (Forest: Random Forest, LGBM: LightGBM, Ridge: Ridge Regression, LSTM: LSTM
neural network). Bold numbers correspond to the best result for the respective metric in the experiment
(PI-Width and Winkler score), given that ∆Cov ≥ −0.25α, i.e. the specific algorithm reached at least
approximate coverage (the result is grayed out otherwise). The error term represents the standard
deviation over repeated runs (results without an error term are from deterministic models).
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FC α

Fo
re

st

0.
05

∆ Cov -0.001±0.014 -0.002±0.000 -0.047 -0.003 0.010 0.003
PI-Width 1333.2±93.3 2193.8±2.1 4264.1 7290.8 8805.8 8970.9
Winkler 0.38±0.01 0.74±0.00 1.42 1.75 2.04 2.12

0.
10

∆ Cov 0.009±0.019 0.007±0.000 -0.042 0.000 0.014 0.005
PI-Width 1078.7±73.7 1741.8±2.4 3671.6 6137.1 7131.1 7201.5
Winkler 0.30±0.01 0.59±0.00 1.24 1.56 1.76 1.80

0.
15

∆ Cov 0.017±0.024 0.014±0.001 -0.034 0.002 0.017 0.009
PI-Width 921.7±61.9 1456.7±2.2 3200.5 5261.8 5980.4 6062.0
Winkler 0.26±0.01 0.50±0.00 1.12 1.43 1.57 1.60

L
G

B
M

0.
05

∆ Cov -0.027±0.010 -0.006±0.000 -0.043 -0.006 0.006 -0.002 0.008
PI-Width 1072.4±65.8 1988.0±1.0 3453.3 5737.6 6929.6 7087.5 7160.4
Winkler 0.35±0.00 0.62±0.00 1.12 1.41 1.66 1.72 1.64

0.
10

∆ Cov -0.016±0.013 0.003±0.000 -0.040 -0.003 0.006 -0.007 0.010
PI-Width 875.5±49.8 1582.3±1.0 2924.1 4805.3 5588.5 5614.8 6273.5
Winkler 0.27±0.00 0.49±0.00 0.96 1.25 1.43 1.46 1.50

0.
15

∆ Cov -0.006±0.016 0.010±0.001 -0.036 -0.002 0.005 -0.012 0.010
PI-Width 751.7±41.8 1347.1±1.3 2531.2 4147.4 4586.3 4544.3 5564.7
Winkler 0.23±0.00 0.42±0.00 0.87 1.14 1.27 1.30 1.40

R
id

ge

0.
05

∆ Cov -0.021±0.014 -0.231±0.000 -0.040 -0.012 -0.174 -0.331
PI-Width 1971.3±115.4 2539.3±1.6 3595.3 11318.6 10230.3 8462.1
Winkler 0.54±0.05 3.97±0.01 1.04 2.54 3.53 8.20

0.
10

∆ Cov -0.025±0.023 -0.241±0.000 -0.041 -0.015 -0.251 -0.358
PI-Width 1639.6±93.2 2060.5±1.6 3117.5 10628.9 8943.3 7148.7
Winkler 0.46±0.05 2.52±0.00 0.92 2.42 3.31 5.85

0.
15

∆ Cov -0.026±0.031 -0.235±0.001 -0.042 -0.016 -0.292 -0.375
PI-Width 1427.1±80.7 1792.0±1.8 2775.8 10073.3 7959.3 6155.9
Winkler 0.42±0.05 1.93±0.00 0.85 2.34 3.17 4.89

L
ST

M

0.
05

∆ Cov 0.001±0.002 0.000±0.000 -0.018 -0.001 -0.012 -0.024
PI-Width 783.5±9.2 897.7±0.9 1020.5 1338.9 1300.1 1194.5
Winkler 0.25±0.01 0.33±0.00 0.36 0.40 0.45 0.47

0.
10

∆ Cov 0.004±0.004 0.004±0.000 -0.019 -0.000 -0.022 -0.042
PI-Width 594.3±7.7 628.2±0.9 768.0 990.0 903.9 817.2
Winkler 0.19±0.01 0.24±0.00 0.28 0.32 0.35 0.36

0.
15

∆ Cov 0.005±0.005 0.006±0.000 -0.019 0.002 -0.026 -0.048
PI-Width 489.9±7.0 493.2±0.5 618.2 780.6 681.5 620.4
Winkler 0.17±0.01 0.20±0.00 0.24 0.27 0.29 0.30
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Table 23: Performance of the evaluated CP algorithms and the CMAL baseline (see Appendix A.3) on
the Streamflow dataset for the miscoverage levels α ∈ {0.05, 0.10, 0.15}. Bold numbers correspond
to the best result for the respective metric in the experiment (PI-Width and Winkler score), given
that ∆Cov ≥ −0.25α, i.e. the specific algorithm reached at least approximate coverage (the result is
grayed out otherwise). The error term represents the standard deviation over repeated runs (results
without an error term are from deterministic models).
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0.
05

∆ Cov -0.002±0.022 0.013±0.000 -0.042 -0.001 0.003 0.006 -0.004±0.004

PI-Width 1.91±0.20 2.57±0.00 2.53 3.23 3.44 3.63 2.4±0.08

Winkler 1.05±0.03 1.38±0.00 1.91 1.80 1.93 1.94 0.78±0.01

0.
10

∆ Cov 0.001±0.041 0.027±0.000 -0.054 -0.000 0.005 0.009 -0.004±0.008

PI-Width 1.39±0.17 1.58±0.00 1.55 1.94 1.99 2.08 1.90±0.06

Winkler 0.79±0.03 0.91±0.00 1.27 1.21 1.28 1.29 0.63±0.01

0.
15

∆ Cov 0.003±0.056 0.038±0.000 -0.061 0.001 0.005 0.009 -0.006±0.011

PI-Width 1.11±0.15 1.17±0.00 1.12 1.39 1.39 1.45 1.60±0.05

Winkler 0.66±0.03 0.71±0.00 0.98 0.95 0.99 1.00 0.55±0.03
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