
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Thinformer: Guaranteed Attention Approximation via Low-Rank Thinning

Anonymous Authors1

Abstract

The goal in thinning is to summarize a dataset
using a small set of representative points. Re-
markably, sub-Gaussian thinning algorithms can
match the quality of uniform subsampling while
substantially reducing the number of summary
points. However, existing guarantees cover only
a restricted range of distributions and kernel-
based quality measures and suffer from pes-
simistic dimension dependence. To address these
deficiencies, we introduce a new low-rank anal-
ysis of sub-Gaussian thinning that applies to any
distribution and any kernel, guaranteeing high-
quality compression whenever the kernel or data
matrix is approximately low-rank. To demon-
strate the broad applicability of the techniques,
we design practical sub-Gaussian thinning ap-
proaches that improve upon the best known guar-
antees for approximating attention in transform-
ers.

1. Introduction
This work is about thinning, finding a small set of repre-
sentative points to summarize a larger dataset. State-of-
the-art thinning techniques provably improve upon uniform
subsampling but only for restricted classes of kernel-based
quality measures and with pessimistic dependence on the
data dimension (see, e.g., Harvey & Samadi, 2014; Phillips
& Tai, 2020; Alweiss et al., 2021; Dwivedi & Mackey,
2024; 2022; Shetty et al., 2022; Li et al., 2024). We intro-
duce a new analysis for sub-Gaussian thinning algorithms
that applies to any kernel and shows that one can efficiently
identify a better-than-uniform set of representative points
whenever the kernel or data matrix is nearly low-rank. This
opens the door to a variety of impactful applications, in-
cluding approximate dot-product attention in transformers.

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Notation. For each n ∈ N and a, b ∈ R, we define
[n] ≜ {1, . . . , n}, a∧b ≜ min(a, b), and a∨b ≜ max(a, b).
We let ∥A∥op, ∥A∥max, and ∥A∥2,∞ respectively repre-
sent the maximum singular value, absolute entry, and row
Euclidean norm of a matrix A. We also define the Eu-
clidean norm balls Bm ≜ {u ∈ Rm : ∥u∥2 ≤ 1} and
Bm(R) ≜ RBm for each m ∈ N and R > 0. For an
event E and an integrable random variable X , we define
EE [X] ≜ E[X · 1[E]]. We write an ≤ Õ(bn) to mean
an ≤ bn polylog(n).

2. Sub-Gaussian Thinning
Consider a fixed collection of nin input points Xin belong-
ing to a potentially larger universe of datapoints X ≜
{x1, . . . ,xn}. The aim of a thinning algorithm is to se-
lect nout points from Xin that together accurately summa-
rize Xin. This is formalized by the following definition.

Definition 1 (Thinning algorithms). A thinning algorithm
ALG takes as input Xin and returns a possibly random
subset Xout of size nout. We denote the input and out-
put empirical distributions by Pin ≜ 1

nin

∑
x∈Xin

δx and
Pout ≜ 1

nout

∑
x∈Xout

δx and define the induced probability
vectors pin,pout ∈∆n−1 over the indices [n] by

pin,i =
1[xi∈Xin]

nin
and pout,i =

1[xi∈Xout]
nout

for all i ∈ [n].

When X ⊂ Rd, we use X ≜ [x1, . . . ,xn]
⊤ ∈ Rn×d to

denote the input point matrix so that

Ex∼Pin [x] = X⊤pin and Ex∼Pout [x] = X⊤pout.

We will use the following measure of summarization qual-
ity.

Definition 2 (Kernel max seminorm). Given two distribu-
tions µ, ν and a reproducing kernel k (Steinwart & Christ-
mann, 2008, Def. 4.18), and any indices I ⊆ [n], we fur-
ther define the kernel max seminorm (KMS)

∥K(pin − pout)∥I ≜ maxi∈I |e⊤i K(pin − pout)|. (1)

A common strategy for bounding the error of a thinning
algorithm is to establish its sub-Gaussianity.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Table 1: Examples of (K, ν, δ)-sub-Gaussian thinning algorithms. For input size nin, output size nout ≥
√
nin, and

∥K∥max = 1 we report each sub-Gaussian parameter ν and runtime up to constants independent of (nin, nout, δ,K).

Algorithm
Prop. B.1

SUBSAMPLING
Prop. B.2

KH(δ)
Prop. B.5

KH-COMPRESS(δ)
Prop. B.6

GS-THIN
Prop. B.10

GS-COMPRESS

parameter ν
Sub-Gaussian 1√

nout

√
log(nout/δ)

nout

√
log(nout) log(nout/δ)

nout

1
nout

√
log(nout)

nout

Runtime nout n2in n2out n3in n3out

Definition 3 (Sub-Gaussian thinning algorithm). We
write ALG ∈ Gν,δ(K) and say ALG is (K, ν, δ)-sub-
Gaussian, if ALG is a thinning algorithm, K is a symmetric
positive semidefinite (SPSD) matrix, ν > 0, δ ∈ [0, 1), and
there exists an event E with probability at least 1−δ/2 such
that, the input and output probability vectors satisfy

EE [exp(⟨u,K(pin − pout)⟩)] ≤ exp
(
ν2

2 u⊤Ku
)
,∀u ∈ Rn.

Here, the sub-Gaussian parameter ν controls the summa-
rization quality of the thinning algorithm, and we see from
Tab. 1 that a variety of practical thinning algorithms are
(K, ν, δ)-sub-Gaussian for varying levels of ν.

2.1. Examples of sub-Gaussian thinning algorithms

Perhaps the simplest sub-Gaussian thinning algorithm is
uniform subsampling: by Prop. B.1, selecting nout points
from Xin uniformly at random (without replacement) is
(K, ν, 0)-sub-Gaussian with ν =

√
∥K∥max/

√
nout. Un-

fortunately, uniform subsampling suffers from relatively
poor summarization quality. As we prove in App. B.1.1,
its KMS is Ω(1/

√
nout) meaning that nout = 10000 points

are needed to achieve 1% relative error.

Proposition 1 (Quality of uniform subsampling). For
any I ⊆ [n], a uniformly subsampled thinning satisfies

E[∥K(pin − pout)∥
2
I ] ≥

1
nout

nin−nout
nin−1 maxi∈I CKeie⊤

i K

for any SPSD K with CK ≜
∑n

i=1 pin,iKii − p⊤
inKpin.

Fortunately, uniform subsampling is not the only sub-
Gaussian thinning algorithm available. For example,
the Kernel Halving (KH(δ)) algorithm of Dwivedi &
Mackey (2024) provides a substantially smaller sub-
Gaussian parameter, ν = O(

√
log(nout/δ)/nout), at the

cost of n2in runtime, while the KH-COMPRESS(δ) al-
gorithm of Shetty et al. (2022, Ex. 3) delivers ν =
O(

√
log(nout) log(nout/δ)/nout) in only n2out time. We de-

rive simplified versions of these algorithms with identical
sub-Gaussian constants in Apps. B.2 and B.5 and a linear-
kernel variant (LKH(δ)) with nind runtime in App. B.3. To
round out our set of examples, we show in App. B.6.1 that

two new thinning algorithms based on the Gram-Schmidt
walk of Bansal et al. (2018) yield even smaller ν at the
cost of increased runtime. We call these algorithms Gram-
Schmidt Thinning (GS-THIN) and GS-COMPRESS.

3. Low-rank Sub-Gaussian Thinning
One might hope that the improved sub-Gaussian constants
of Tab. 1 would also translate into improved quality met-
rics. Our main result, proved in App. C, shows that this is
indeed the case if the inputs are approximately low-rank.

Theorem 1 (Low-rank sub-Gaussian thinning). Fix any
δ′ ∈ (0, 1), r ≤ n, and I ⊆ [n]. If ALG ∈ Gν,δ(K), then,
with probability at least 1− δ/2− δ′:

∥K(pin − pout)∥I ≤ νDI

√
2 log(2|I|δ′ ). (2)

for DI ≜ maxi∈I
√
Kii.

Suppose that, in addition, X ⊂ Rd and |Kil − Kjl| ≤
LK∥xi − xj∥2 for some LK > 0 and all i, j ∈ I and
l ∈ supp(pin). Then, with probability at least 1− δ/2− δ′,

∥K(pin − pout)∥I ≤ νDI
√
2 log(4/δ′)(1 + 32√

3
)

+ νDI 32
√

2
3 rank(XI) log(

3e2RILK

D2
I∧(RILK)

) (3)

for RI ≜ maxi∈I ∥xi∥2 and XI ≜ [xi]
⊤
i∈I .

Let us unpack the two components of this result. First,
Thm. 1 provides a high-probability O(ν

√
log(|I|)) bound

(2) on the KMS for any kernel and any sub-Gaussian thin-
ning algorithm on any space. In particular, the non-uniform
algorithms of Tab. 1 all enjoy O(log(nout)

√
log(|I|)/nout)

KMS, a significant improvement over the Ω(1/
√
nout)

KMS of uniform subsampling. Second, Thm. 1 provides a
refined O(ν

√
rank(XI) log(RILK)) bound (3) on KMS

for datapoints in Rd. For bounded data, this trades an ex-
plicit dependence on the number of query points |I| for a
rank factor that is never larger (and sometimes significantly
smaller) than d. We will make use of these results when ap-
proximating dot-product attention in Sec. 4.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

4. Approximating Attention
Dot-product attention lies at the heart of the transformer
neural network architecture that has revolutionized natural
language processing, computer vision, and speech recog-
nition over the last decade (Vaswani et al., 2017; Dosovit-
skiy et al., 2021; Dong et al., 2018). Given a collection
of query, key, and value vectors (qi,ki,vi)

n
i=1 each in Rd,

dot-product attention computes the softmax matrix

T ≜ ATTENTION((qi)
n
i=1, (kj ,vj)

n
j=1) ≜ D−1AV (4)

for Aij ≜ exp(
⟨qi,kj⟩√

d
),D = diag(A1n), and Vij ≜ vij .

While attention has enjoyed unprecedented success in cap-
turing long-range dependencies amongst datapoints, its
computation is expensive, requiring Θ(dn2) time to con-
struct and multiply the matrix A. This bottleneck has in-
spired many practical approximate attention mechanisms
(e.g., Kitaev et al., 2020; Choromanski et al., 2021; Chen
et al., 2021), but, to our knowledge, only two guarantee
accurate reconstruction of the softmax matrix T (Zandieh
et al., 2023; Han et al., 2024). In this section, we design
a new fast attention approximation based on sub-Gaussian
thinning and derive guarantees that improve upon prior art.

4.1. Thinning attention in theory

Algorithm 1: Thinformer
Input: Queries, keys, and values (qi,ki,vi)

n
i=1 in Rd, nout

// Define key-value attention kernel

katt((k̃, ṽ), (k̃
′
, ṽ′)) ≜ exp

(
⟨k̃, k̃′⟩

)
⟨ṽ, ṽ′⟩

// Thin augmented key-value pairs using katt

vmax ← max
i∈[n]
∥vi∥∞; (k̃i, ṽi)

n
i=1 ← (ki/d

1
4 , (vi, vmax))

n
i=1

Xout ← KH-COMPRESS(0.5)(Xin = (k̃i, ṽi)
n
i=1,katt, nout)

// Return exact attention on selected key-value subset

return T̂ ≜ ATTENTION
(
(qi)

n
i=1, {(k,v) : (k̃, ṽ) ∈ Xout}

)
Alg. 1 summarizes our new Thinformer module. At its
heart is a new key-value attention kernel katt that mim-
ics the special structure of the softmax matrix T. Alg. 1
uses the attention kernel and a high-quality thinning algo-
rithm, KH-COMPRESS(0.5), to subselect key-value pairs
and then computes exact attention (4) for the key-value
subset. In total, this requires only O(dn2out) time to
run KH-COMPRESS(0.5) and O(dnnout) time to compute
ATTENTION with n queries and nout key-value pairs. In
contrast, computing the exact softmax matrix T with stan-
dard matrix multiplication requires Θ(dn2) time. Our next
result, proved in App. D, shows that Alg. 1 also admits a
strong quality guarantee for approximating T.

Theorem 2 (Quality of Thinformer). With probability at

Table 2: Practical approximations with guarantees. For
each approximation T̂ ∈ Rn×d to the softmax matrix T
(4), we report, up to a constant factor, the best worst-case
error guarantee for ∥T̂−T∥max given O(dn1+a) running
time and γ-bounded (5) queries and keys. Here, the ratio
∥V∥op/∥V∥2,∞ lies in [1,

√
n] and τ = 0.173 + o(1).

Approximation Guarantee

Thinformer n2γ
√

d log(n∥V∥max) logn

na · ∥V∥2,∞

KDEformer n2γ+ τ
2
(1+

γ
2
)

na/2 · ∥V∥op

HyperAttention n
17γ
3 (logn)

1
6

na/6 · ∥V∥op

least 1
2 , Thinformer (Alg. 1) yields

∥T̂−T∥max ≤
c exp( 2R2

√
d
)∥V∥2,∞

√
log2(nout) log(12nout log2

nin
nout

)

nout

for c ≜ 128√
3

√
(d+ 1) log(3e2(R

2√
d
+ 2)∥V∥max) +√

log(8)(4 + 128√
3
) and R ≜ maxi∈[n] max(∥ki∥2, ∥qi∥2).

To put this result into context, let us compare with the exist-
ing guarantees for practical attention approximation, sum-
marized in Tab. 2. Under the γ-boundedness assumption,

maxi∈[n] max(∥ki∥22, ∥qi∥22) ≤ γ
√
d log n, (5)

the KDEformer approximation T̂kde (Zandieh et al., 2023,
Cor. 3.6) with τ = 0.173 + o(1), the HyperAttention ap-
proximation T̂hyp (Han et al., 2024, Thm. 1) with no mask-
ing, and the Thinformer approximation T̂thin guarantee

∥T̂kde −T∥max ≤ O(n
2γ+ τ

2
(1+

γ
2
)

na/2 · ∥V∥op)

∥T̂hyp −T∥max ≤ O
(n

17γ
3 (logn)

1
6

na/6 · ∥V∥op
)

∥T̂thin −T∥max ≤ O
(n2γ
√

d log(n∥V∥max) logn

na · ∥V∥2,∞)

with O(dn1+a) runtime and probability at least 1
2 . The

Thinformer guarantee exhibits four improvements over its
predecessors. First, it establishes a significantly faster er-
ror decay rate (n−a versus n−a/2 or n−a/6) for a given
subquadratic runtime n1+a. Second, it reduces the depen-
dence on the error inflation factor γ. Third, like the Hy-
perAttention guarantee, it eliminates all dependence on the
KDEformer penalty parameter τ . Finally, it reduces depen-
dence on the value matrix by a factor of ∥V∥op

∥V∥2,∞
∈ [1,

√
n].

Put otherwise, with bounded ∥V∥2,∞, T̂thin can provide
consistent (i.e., ∥T̂thin −T∥max → 0 as n → ∞) sub-
quadratic estimation whenever γ is bounded away from 1/2

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Table 3: Quality of T2T-ViT attention approximations on ImageNet. We report mean Top-1 accuracy ±1 standard
deviation across five random seeds and mean forward pass runtime ±1 standard deviation across 50 batches of 64 images.

Attention Algorithm Top-1 Accuracy (%) Layer 1 Runtime (ms) Layer 2 Runtime (ms)

Exact 82.55 ± 0.00 18.48 ± 0.12 1.40 ± 0.01
Performer 80.56 ± 0.30 2.54 ± 0.01 0.60 ± 0.01
Reformer 81.47 ± 0.06 7.84 ± 0.03 1.53 ± 0.01

KDEformer 82.00 ± 0.07 5.39 ± 0.03 2.28 ± 0.03
Scatterbrain 82.05 ± 0.08 6.86 ± 0.02 1.55 ± 0.03

Thinformer (Ours) 82.18 ± 0.05 2.06 ± 0.01 0.54 ± 0.00

Table 4: Quality of BigGAN attention approximations for image generation. We report Frechet Inception Distance
(FID) with the ImageNet validation set, Inception Scores (IS), and forward pass runtime for computing the approximate
softmax matrix (4) on an NVIDIA A100 GPU. A lower FID or higher IS indicates better image generation quality.

Method FID (↓) IS (↑) Runtime (ms)

Exact 23.86 50.30 ± 3.94 5.61
Reformer 75.19 13.14 ± 1.66 7.98
Performer 29.68 29.30 ± 2.18 1.58

KDEformer 21.86 48.82 ± 3.85 6.87
Thinformer (Ours) 21.70 48.96 ± 3.65 2.37

and guarantee, for example, O( 1√
n
) error in Õ(dn

3
2+2γ)

time. In contrast, the T̂kde and T̂hyp bounds require
quadratic runtime to guarantee O( 1√

n
) error in the best

case (∥V∥op = O(1)) and cannot guarantee consistent sub-
quadratic estimation in the worst case (∥V∥op = Ω(

√
n)).

4.2. Thinning attention in practice

To gauge the practical effectiveness of Alg. 1, we recre-
ate the benchmark Tokens-To-Token Vision Transformer
(T2T-ViT) and BigGAN image generation experiments of
Zandieh et al. (2023). In the T2T-ViT experiment, attention
approximations are scored on their ImageNet classification
accuracy and computational expense when used as drop-in
replacements for the two most expensive attention layers in
a pretrained T2T-ViT neural network (Yuan et al., 2021).
In the BigGAN experiment, approximations are scored on
their computational expense and two popular measures of
image generation quality, the Frechet Inception Distance
(FID, Heusel et al., 2017) and Inception Score (IS, Sali-
mans et al., 2016). Using the exact implementations and
settings provided by Zandieh et al. (2023), we benchmark
our PyTorch implementation of Thinformer against exact
attention and four leading attention approximations: Per-
former (Choromanski et al., 2021), Reformer (Kitaev et al.,
2020), ScatterBrain (Chen et al., 2021), and KDEformer.

In Tab. 3, we find that Thinformer provides the highest
Top-1 accuracy on the ImageNet 2012 validation set (Rus-

sakovsky et al., 2015), while running faster than all of the
alternatives. In Tab. 4, Thinformer (g = 2) yields better
FID and IS than all of the alternatives while running signif-
icantly faster than exact, KDEformer, and Reformer. Per-
former runs faster still but at the expense of substantially
worse FID and IS. The final attention call of Thinformer
can also be combined with optimized attention implemen-
tations like FlashAttention (Dao et al., 2022; Dao, 2024) to
further reduce the time and memory footprint. See supple-
mentary experiment details in App. E.

5. Conclusion
This work introduced a new analysis of thinning algo-
rithms that adapts to low-rank structures. We exploited
this adaptivity to design fast algorithms with strong qual-
ity guarantees for dot-product attention in Transformers.
More broadly, our techniques provide a general framework
for reducing computational resource use in machine learn-
ing. Such tools have the potential to reduce energy costs
and environmental harms from model training, inference,
and evaluation and to improve accessibility in resource-
constrained settings, all while provably maintaining high
quality.

References
Alweiss, R., Liu, Y. P., and Sawhney, M. Discrepancy minimiza-

tion via a self-balancing walk. In Proceedings of the 53rd An-

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

nual ACM SIGACT Symposium on Theory of Computing, pp.
14–20, 2021. (Cited on page 1.)

Bansal, N., Dadush, D., Garg, S., and Lovett, S. The gram-
schmidt walk: a cure for the banaszczyk blues. In Proceedings
of the 50th annual acm sigact symposium on theory of comput-
ing, pp. 587–597, 2018. (Cited on pages 2, 13, and 17.)

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., and Ré,
C. Scatterbrain: unifying sparse and low-rank attention ap-
proximation. In Proceedings of the 35th International Con-
ference on Neural Information Processing Systems, NeurIPS
’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN
9781713845393. (Cited on pages 3 and 4.)

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mohiuddin,
A., Kaiser, L., Belanger, D. B., Colwell, L. J., and Weller, A.
Rethinking attention with performers. In International Con-
ference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk0WRH. (Cited
on pages 3 and 4.)

Dao, T. Flashattention-2: Faster attention with better parallelism
and work partitioning. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=mZn2Xyh9Ec. (Cited
on page 4.)

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with io-
awareness. Advances in Neural Information Processing Sys-
tems, 35:16344–16359, 2022. (Cited on page 4.)

Dong, L., Xu, S., and Xu, B. Speech-transformer: A no-
recurrence sequence-to-sequence model for speech recogni-
tion. In 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 5884–5888,
2018. doi: 10.1109/ICASSP.2018.8462506. (Cited on page 3.)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An im-
age is worth 16x16 words: Transformers for image recognition
at scale. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy. (Cited on page 3.)

Dwivedi, R. and Mackey, L. Generalized kernel thinning. In
International Conference on Learning Representations, 2022.
(Cited on page 1.)

Dwivedi, R. and Mackey, L. Kernel thinning. Journal of Machine
Learning Research, 25(152):1–77, 2024. (Cited on pages 1, 2,
9, 10, 11, 12, and 13.)

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff, D., and
Zandieh, A. Hyperattention: Long-context attention in near-
linear time. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.
net/forum?id=Eh0Od2BJIM. (Cited on page 3.)

Harshaw, C., Sävje, F., Spielman, D. A., and Zhang, P. Balancing
covariates in randomized experiments with the gram–schmidt
walk design. Journal of the American Statistical Association,
pp. 1–13, 2024. (Cited on page 16.)

Harvey, N. and Samadi, S. Near-Optimal Herding. In Proceedings
of The 27th Conference on Learning Theory, volume 35, pp.
1165–1182, 2014. (Cited on page 1.)

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural in-
formation processing systems, 30, 2017. (Cited on page 4.)

Hoeffding, W. Probability inequalities for sums of bounded ran-
dom variables. The collected works of Wassily Hoeffding, pp.
409–426, 1994. (Cited on page 9.)

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The efficient
transformer. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/
forum?id=rkgNKkHtvB. (Cited on pages 3 and 4.)

Li, L., Dwivedi, R., and Mackey, L. Debiased distribution com-
pression. In Proceedings of the 41st International Conference
on Machine Learning, volume 203 of Proceedings of Machine
Learning Research. PMLR, 21–27 Jul 2024. (Cited on page 1.)

Markov, A. On certain applications of algebraic continued frac-
tions. Unpublished Ph. D. thesis, St Petersburg, 1884. (Cited
on page 19.)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Py-
torch: An imperative style, high-performance deep learning li-
brary. Advances in Neural Information Processing Systems, 32,
2019. (Cited on page 24.)

Phillips, J. M. and Tai, W. M. Near-optimal coresets of kernel
density estimates. Discrete & Computational Geometry, 63
(4):867–887, 2020. (Cited on page 1.)

Rudin, W. Functional Analysis. International series in
pure and applied mathematics. McGraw-Hill, 1991. ISBN
9780070542365. URL https://books.google.com/
books?id=Sh_vAAAAMAAJ. (Cited on page 8.)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y. (Cited on page 4.)

Saadetoglu, M. and Dinsev, S. M. Inverses and determinants
of n × n block matrices. Mathematics, 11(17), 2023. ISSN
2227-7390. doi: 10.3390/math11173784. URL https://
www.mdpi.com/2227-7390/11/17/3784. (Cited on
page 17.)

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford,
A., and Chen, X. Improved techniques for training gans. Ad-
vances in neural information processing systems, 29, 2016.
(Cited on page 4.)

Sherman, J. and Morrison, W. J. Adjustment of an Inverse Ma-
trix Corresponding to a Change in One Element of a Given
Matrix. The Annals of Mathematical Statistics, 21(1):124 –
127, 1950. doi: 10.1214/aoms/1177729893. URL https:
//doi.org/10.1214/aoms/1177729893. (Cited on
page 17.)

5

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://books.google.com/books?id=Sh_vAAAAMAAJ
https://books.google.com/books?id=Sh_vAAAAMAAJ
https://www.mdpi.com/2227-7390/11/17/3784
https://www.mdpi.com/2227-7390/11/17/3784
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1214/aoms/1177729893


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Shetty, A., Dwivedi, R., and Mackey, L. Distribution compres-
sion in near-linear time. In International Conference on Learn-
ing Representations, 2022. (Cited on pages 1, 2, 12, 13, 18,
and 19.)

Steinwart, I. and Christmann, A. Support vector machines.
Wiley Interdisciplinary Reviews: Computational Statistics, 1,
2008. URL https://api.semanticscholar.org/
CorpusID:661123. (Cited on page 1.)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is
all you need. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, NIPS’17,
pp. 6000–6010, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964. (Cited on page 3.)

Wainwright, M. J. High-dimensional statistics: A non-asymptotic
viewpoint, volume 48. Cambridge University Press, 2019.
(Cited on pages 20 and 21.)

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay,
F. E., Feng, J., and Yan, S. Tokens-to-token vit: Training vision
transformers from scratch on imagenet. In Proceedings of the
IEEE/CVF international conference on computer vision, pp.
558–567, 2021. (Cited on page 4.)

Zandieh, A., Han, I., Daliri, M., and Karbasi, A. Kdeformer: Ac-
celerating transformers via kernel density estimation. In Inter-
national Conference on Machine Learning, pp. 40605–40623.
PMLR, 2023. (Cited on pages 3, 4, and 24.)

6

https://api.semanticscholar.org/CorpusID:661123
https://api.semanticscholar.org/CorpusID:661123


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Appendix Contents

A Appendix Notation and Definitions 7

B Proof of Tab. 1: Sub-Gaussian Thinning Examples 9

B.1 SUBSAMPLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.2 KH(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.3 LKH(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B.4 RKH(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B.5 KH-COMPRESS(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B.6 GS-THIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B.7 GS-COMPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C Proof of Thm. 1: Low-rank sub-Gaussian thinning 19

C.1 Proof of kernel max seminorm bound (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.2 Proof of Lipschitz kernel max seminorm bound (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.3 Proof of Lem. C.2: Bounded-Hölder sub-Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . 21

D Proof of Thm. 2: Quality of Thinformer 22

D.1 Proof of Lem. D.1: Decomposing attention approximation error . . . . . . . . . . . . . . . . . . . . . . 23

D.2 Proof of Lem. D.2: KMS bound on attention approximation error . . . . . . . . . . . . . . . . . . . . . . 23

D.3 Proof of Lem. D.3: Thinned attention problem parameters . . . . . . . . . . . . . . . . . . . . . . . . . 23

E Supplementary Experiment Details 24

A. Appendix Notation and Definitions
We often use the shorthand (a)+ ≜ max(a, 0) as well as the shorthand k(X ,X ) to represent the matrix (k(xi,xj))

n
i,j=1.

In addition, for each kernel k, we let Hk and ∥·∥k represent the associated reproducing kernel Hilbert space (RKHS) and
RKHS norm, so that Bk = {f ∈ Hk : ∥f∥k ≤ 1} and define

(Pin − Pout)k ≜ 1
nin

∑
x∈Xin

k(x, ·)− 1
nout

∑
x∈Xout

k(x, ·).

We also relate our definition of a sub-Gaussian thinning algorithm (Def. 3) to several useful notions of sub-Gaussianity.

Definition A.1 (Sub-Gaussian vector). We say that a random vector w ∈ Rn is (K, ν)-sub-Gaussian on an event E if K
is SPSD and ν > 0 satisfies

EE
[
exp(u⊤Kw)

]
≤ exp(ν

2

2 · u
⊤Ku) for all u ∈ Rn. (6)

If, in addition, the event has probability 1, we say that w is (K, ν)-sub-Gaussian.

Notably, a thinning algorithm is (K, ν, δ)-sub-Gaussian if and only if its associated vector pin−pout is (K, ν)-sub-Gaussian
on an event E of probability at least 1− δ/2.

Definition A.2 (Sub-Gaussian function). For a kernel k, we say that a random function ϕ ∈ Hk is (k, ν)-sub-Gaussian
on an event E if ν > 0 satisfies

EE [exp(⟨f, ϕ⟩k)] ≤ exp(ν
2

2 · ∥f∥
2
k) for all f ∈ Hk. (7)

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

If, in addition, the event has probability 1, we say that ϕ is (k, ν)-sub-Gaussian.

Our next two lemmas show that for finitely-supported signed measures like Pin − Pout, this notion of functional sub-
Gaussianity is equivalent to the prior notion of vector sub-Gaussianity, allowing us to use the two notions interchangeably.
Hereafter, we say that k generates a SPSD matrix K if k(X ,X ) = K.
Lemma A.1 (Functional sub-Gaussianity implies vector sub-Gaussianity). In the notation of Def. 3, if (Pin − Pout)k is
(k, ν)-sub-Gaussian on an event E and k generates K, then the vector pin − pout is (K, ν)-sub-Gaussian on E.

Proof. Suppose (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E, fix a vector u ∈ Rn, and define the function

fu ≜
∑n

i=1 uik(·, xi) ∈ Hk.

By the reproducing property,

u⊤K(pin − pout) = ⟨fu, (Pin − Pout)k⟩k and ∥fu∥2k = u⊤Ku. (8)

Invoking the representations (8) and the functional sub-Gaussianity condition (7) we therefore obtain

EE
[
exp(u⊤K(pin − pout)

]
= EE [exp(⟨fu, (Pin − Pout)k⟩k)] ≤ exp(∥fu∥2k · ν

2

2 ) = exp(u⊤Ku · ν
2

2 ),

so that pin − pout is (K, ν)-sub-Gaussian on the event E as claimed.

Lemma A.2 (Vector sub-Gaussianity implies functional sub-Gaussianity). In the notation of Def. 3, if pin − pout is
(K, ν)-sub-Gaussian on an event E and k generates K, then (Pin − Pout)k is (k, ν)-sub-Gaussian on E.

Proof. Suppose pin − pout is (K, ν)-sub-Gaussian on an event E, fix a function f ∈ Hk, and consider the set

L ≜
{
fu ≜

∑n
i=1 uik(·, xi) : u ∈ Rn

}
.

Since L is a closed linear subspace of Hk, we can decompose f as f = fu + f⊥, where u ∈ Rn and f⊥ is orthogonal to
L (Rudin, 1991, Theorem 12.4), so that

∥f∥2k = ∥fu∥2k + ∥f⊥∥2k and ∥fu∥2k = u⊤Ku. (9)

Invoking the orthogonality of f⊥ and (Pin − Pout)k ∈ L, the reproducing property representations (8), and the vector
sub-Gaussianity condition (6), we find that

EE [exp(⟨f, (Pin − Pout)k⟩k)] = EE [exp(⟨fu + f⊥, (Pin − Pout)k⟩k)] = EE
[
exp(u⊤K(pin − pout)

]
)

≤ exp(u⊤Ku · ν
2

2 )
(9)
≤ exp(∥f∥2k · ν

2

2 ),

so that (Pin − Pout)k is (k, ν)-sub-Gaussian on the event E as claimed.

We end our discussion about the versions of sub-Gaussianity considered above by presenting the standard fact about the
additivity of sub-Gaussianity parameters under summation of independent sub-Gaussian random vectors, adapted to our
setting.
Lemma A.3 (Vector sub-Gaussian additivity). Suppose that, for each j ∈ [m], ∆j ∈ Rn is (K, νj) on an event Ej given
∆1:(j−1) ≜ (∆1, . . . ,∆j−1) and E≤j−1 ≜

⋂j−1
i=1 Ei. Then

∑m
j=1 ∆j is (K, (

∑m
j=1 ν

2
j )

1/2)-sub-Gaussian on E≤m.

Proof. Let E≤s =
⋂s

j=1 Ej for each s ∈ [m]. We prove the result for Zs =
∑s

i=1 ∆j by induction on s ∈ [m]. The result
holds for the base case of s = 1 by assumption. For the inductive case, suppose the result holds for s ∈ [m − 1]. Fixing
u ∈ Rn, we may apply the tower property, our conditional sub-Gaussianity assumption, and our inductive hypothesis in
turn to conclude

E
[
exp(⟨u,K

∑s+1
j=1 ∆j⟩)1[E≤s+1]

]
= E

[
exp(⟨u,K

∑s
j=1 ∆j⟩)1[E≤s]E[exp(⟨u,∆s+1⟩)1[Es+1] | ∆1:s, E≤s]

]
≤ E

[
exp(⟨u,K

∑s
j=1 ∆j⟩)1[E≤s]

]
exp

(
ν2
s+1

2 · u⊤Ku
)
≤ exp

(∑s+1
j=1 ν2

j

2 · u⊤Ku
)
.

Hence, Zs+1 is (K, (
∑s+1

j=1 ν
2
j )

1/2)-sub-Gaussian on E≤s+1, and the proof is complete.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

B. Proof of Tab. 1: Sub-Gaussian Thinning Examples
This section provides supplementary details for each of the sub-Gaussian thinning algorithms of Tab. 1.

B.1. SUBSAMPLING

B.1.1. PROOF OF PROP. 1: QUALITY OF UNIFORM SUBSAMPLING

We begin by computing the first and second moments of pout: E[pout] = pin and

E[poutp
⊤
out] =

1
nout

diag(pin) +
nin(nout−1)
nout(nin−1) (pinp

⊤
in − 1

nin
diag(pin)) =

1
nout

(nin−nout
nin−1 ) diag(pin) +

nin(nout−1)
nout(nin−1)pinp

⊤
in .

Hence,

E[MMD2
K(pin,pout)] = p⊤

inKpin − 2p⊤
inKE[pout] + E[p⊤

outKpout] = tr(KE[poutp
⊤
out])− p⊤

inKpin

= 1
nout

(nin−nout
nin−1 )(tr(Kdiag(pin))− p⊤

inKpin) =
1

nout
(nin−nout

nin−1 )CK. (10)

To derive the second advertised result, we note that

E[∥K(pin − pout)∥
2
I ] ≥ maxi∈I E[(e⊤i K(pin − pout))

2] = maxi∈I E[MMD2
Keie⊤

i K(pin,pout)]

and invoke the initial result (10) to conclude.

B.1.2. SUB-GAUSSIANITY OF SUBSAMPLING

Proposition B.1 (Sub-Gaussianity of uniform subsampling). For any SPSD K ∈ Rn×n, uniform subsampling (without
replacement) is a (K, ν, 0)-sub-Gaussian thinning algorithm with

ν ≜
√

∥K∥max√
nout

.

Proof. Fix any vector u ∈ Rn, and let J1, . . . , Jnout be the random indices in [n] selected by uniform subsampling. Since
u⊤K(pin − pout) = 1

nout

∑nout
i=1 u

⊤K(pin − eJi
) is an average of mean-centered scalars drawn without replacement and

satisfying

|u⊤KeJi | ≤
√
u⊤Ku

√
e⊤Ji

KeJi ≤
√
∥K∥max

√
u⊤Ku with probability 1

by Cauchy-Schwarz, Thm. 4 and equations (1.8) and (4.16) of Hoeffding (1994) imply that

E[exp(u⊤K(pin − pout))] ≤ exp(∥K∥max

2nout
u⊤Ku).

B.2. KH(δ)

In this section, we analyze KH(δ) (Alg. B.1), a variant of the Kernel Halving algorithm (Dwivedi & Mackey, 2024, Alg. 2)
with simplified swapping thresholds. Prop. B.2, proved in App. B.2.1, establishes the sub-Gaussianity of KH(δ) and its
intermediate iterates.
Proposition B.2 (Sub-Gaussianity of KH(δ)). Suppose nin ≥ 2. In the notation of Alg. B.1, on a common event E of
probability at least 1− δ/2, for all i ∈ [nin/2], 1

2i ψ̃i is (k, νi)-sub-Gaussian with

νi = bmax,i

√
log(2nin/δ)

2i =

√
log(2nin/δ)

2i maxj∈[i] MMDk(δx2j−1
, δx2j

) ≤
√

log(2nin/δ)

2i maxj∈[i] MMDk(δx2j−1
, δx2j

)

≤
√

log(2nin/δ)

2i 2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)).

Prop. B.2 and the triangle inequality imply that (Pin − Pout)k = 1
nin
ψnin/2 is (k, ν)-sub-Gaussian on E with

ν = bmax,nin/2

√
log(2nin/δ)

nin
≤
√

log(2nin/δ)

nin
2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)).

By Lem. A.1, we thus have that the KH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that
KH(δ) ∈ Gν,δ(K).

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Algorithm B.1: KH(δ): Kernel Halving with simplified swapping thresholds and failure probability δ/2
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k

S(1),S(2) ← {}; ψ̃0 ← 0 ∈ Hk // Initialize empty coresets: S(1),S(2) have size i after round i
bmax,i ← 0 // Max function norm so far
for i = 1, 2, . . . , nin/2 do

// Construct kernel difference function using next two points
(x,x′)← (x2i−1,x2i); fi ← k(x2i−1, ·)− k(x2i, ·); ηi ← −1
// Compute swapping threshold ai
b2i =∥fi∥2k=k(x,x)+k(x′,x′)−2k(x, x′); bmax,i = max(bi, bmax,i−1)

ai ← bibmax,i(
1
2
+ log(2nin/δ))

// Compute RKHS inner product
〈
ψ̃i−1, fi

〉
k

, which has a simple form

αi ←
∑2i−2

j=1 (k(xj ,x)− k(xj ,x
′))− 2

∑
z∈S(1)(k(z,x)− k(z,x′))

// Assign one point to each coreset after probabilistic swapping
(x, x′)← (x′, x) and ηi ← 1 with probability min(1, 1

2
(1− αi

ai
)+)

S(1).append(x); S(2).append(x′); ψ̃i ← ψ̃i−1 + ηifi // ψ̃i =
∑

x′∈S(2)k(x
′, ·)−

∑
x∈S(1)k(x, ·)

end
return Xout ≜ S(1), coreset of size nout = nin/2

B.2.1. PROOF OF PROP. B.2: SUB-GAUSSIANITY OF KH(δ)

We begin by studying the sub-Gaussian properties of a related algorithm, the self-balancing Hilbert walk (SBHW) of
Dwivedi & Mackey (2024, Alg. 3). By Dwivedi & Mackey (2024, Thm. 3(i)), when the SBHW is run on the RKHS Hk

with the same fi and ai sequences employed in KH(δ), the output ψi of each round is (k, σi)-sub-Gaussian for

σ2
0 ≜ 0 and σ2

i ≜ σ2
i−1 + ∥fi∥2k

(
1 +

σ2
i−1

a2
i
(∥fi∥2k − 2ai)

)
+
∀i ≥ 1. (11)

The following lemma bounds the growth of the sub-Gaussian constants σi in terms of the swapping thresholds ai.

Lemma B.1 (Growth of SBHW sub-Gaussian constants). For each i, the SBHW sub-Gaussian constants (11) satisfy

σ2
i ≤ ci for ci ≜ maxj∈[i] max(b2j , rj) and ri ≜

a2
i

2ai−b2
i
≤ a2

i

2ai−bibmax,i
.

Proof. We will prove the result by induction on i.

Base case. σ2
1 = b21 ≤ c1 as desired.

Inductive case. Suppose σ2
i−1 ≤ ci−1. Then σ2

i = g(σ2
i−1) for g(x) = x + b2i (1 − x/ri)+. Note that the slope of g is

1− b2i /ri for x < ri and 1 for x > ri. If 1− b2i /ri ≥ 0, then g is increasing and its maximum value over [0, ci] is at ci. If,
on the other hand, 1− b2i /ri < 0, then g first decreases and then increases so its maximum value over [0, ci] is either at 0
or at c. Since ci ≥ max(ri, ci−1), σ2

i ≤ max(g(0), g(ci)) = max(b2i , ci) = ci. The proof is complete.

Invoking Lem. B.1, the assumption nin ≥ 2, and the fact that δ 7→
1
2+log(2/δ)

log(2/δ) is increasing on (0, 1], we find that

σ2
i ≤ b2max,i log(2nin/δ)

( 1
2+log(2nin/δ))

2

2(log(2nin/δ))2
≤ b2max,i log(2nin/δ)

( 1
2+log(4))2

2(log(4))2 ≤ b2max,i log(2nin/δ). (12)

The first inequality in (12) and the definition (11) further imply that

ai = bibmax,i(
1
2 + log(2nin/δ)) ≥ σibi

√
2 log(2nin/δ) ≥ σi−1bi

√
2 log(2nin/δ).

Hence, by Dwivedi & Mackey (2024, Thm. 3(iii)), for each i ∈ [nin/2], the vector ψ̃i of KH(δ) coincides with the vector
ψi of SBHW on a common event E of probability at least 1 − δ/2. Therefore, each 1

2i ψ̃i is (k, 1
2iσi)-sub-Gaussian on E,

implying the result.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Algorithm B.2: LKH(δ): Kernel Halving with linear kernel and failure probability δ/2

Input: point sequence Xin = (xi)
nin
i=1 with even nin and xi ∈ Rd

S(1),S(2) ← {}; ψ0 ← 0 ∈ Rd // Initialize empty coresets: S(1),S(2) have size i after round i
σ0 ← 0 // Keep track of sub-Gaussian constant
for i = 1, 2, . . . , nin/2 do

// Consider two points
(x,x′)← (x2i−1,x2i); ηi ← −1
// Compute swapping threshold ai
b2i = ⟨x− x′,x− x′⟩; δi =

δ
2i(log(nin/2)+1)

(ai, σi)← get swap params(σi−1, bi, δi)

// Compute inner product
αi ← ⟨ψi−1,x− x′⟩
// Assign one point to each coreset after probabilistic swapping
(x,x′)← (x′,x) and ηi ← 1 with probability min(1, 1

2
(1− αi

ai
)+)

S(1).append(x); S(2).append(x′); ψ̃i ← ψ̃i−1 + ηifi
end
return Xout ≜ S(1), coreset of size nout = nin/2

function get swap params(σ, b, δ):
a ← max(bσ

√
2 log(2/δ), b2)

σ2 ← σ2+b2(1+(b2−2a)σ2/a2)+
return (a, σ);

B.3. LKH(δ)

In this section, we analyze LKH(δ) (Alg. B.2), the Kernel Halving algorithm of (Dwivedi & Mackey, 2024, Alg. 2) with
a linear kernel, k(x,y) = ⟨x,y⟩, on Rd and failure probability δ/2. Notably, Alg. B.2 can be carried out in only O(nd)
time thanks to the linear kernel structure. Prop. B.3, proved in App. B.3.1, establishes the sub-Gaussianity of LKH(δ) and
its intermediate iterates.

Proposition B.3 (Sub-Gaussianity of LKH(δ)). Suppose nin ≥ 2. In the notation of Alg. B.2, on a common event E of
probability at least 1− δ/2, for all i ∈ [nin/2], 1

2i ψ̃i is (k, νi)-sub-Gaussian with k(x,y) = ⟨x,y⟩ and

νi =

√
log(2nin(log(nin/2)+1)/δ)

2i maxj∈[i] ∥x2j−1 − x2j∥2

≤
√

log(2nin(log(nin/2)+1)/δ)

2i 2min(maxx∈Xin

√
∥x∥2,maxx∈Xin ∥x− x̄∥2) for x̄ = 1

nin

∑
x∈Xin

δx.

Prop. B.3 and the triangle inequality imply that (Pin − Pout)k = 1
nin
ψnin/2 is (k, ν)-sub-Gaussian on E with

ν =

√
log(2nin(log(nin/2)+1)/δ)

nin
maxj∈[nin/2] ∥x2j−1 − x2j∥2

≤
√

log(2nin(log(nin/2)+1)/δ)

nin
2min(maxx∈Xin

√
∥x∥2,maxx∈Xin ∥x− x̄∥2) for x̄ = 1

nin

∑
x∈Xin

δx.

By Lem. A.1, we thus have that the LKH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that
LKH(δ) ∈ Gν,δ(K).

B.3.1. PROOF OF PROP. B.3: SUB-GAUSSIANITY OF LKH(δ)

We begin by studying the sub-Gaussian properties of a related algorithm, the self-balancing Hilbert walk (SBHW) of
Dwivedi & Mackey (2024, Alg. 3). By Dwivedi & Mackey (2024, Thm. 3(i)), when the SBHW is run on the RKHS Hk

with the same fi and ai sequences employed in LKH(δ), the output ψi of each round is (k, σi)-sub-Gaussian. Moreover,
since

ai ≥ σi−1bi
√
2 log(2/δi) for each i ∈ [nin/2],

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Dwivedi & Mackey (2024, Thm. 3(iii)) implies that, for each i ∈ [nin/2], the vector ψ̃i of LKH(δ) coincides with the
vector ψi of SBHW on a common event E of probability at least 1− δ/2. Therefore, each 1

2i ψ̃i is (k, 1
2iσi)-sub-Gaussian

on E. Finally, Dwivedi & Mackey (2024, (46)) shows that σi ≤ νi for each i ∈ [nin/2], yielding the result.

B.4. RKH(δ)

Algorithm B.3: RKH(δ): Repeated KH(δ)

Input: point sequence Xin = (xi)
nin
i=1, kernel k, output size nout ∈ nin/2

N

// Repeatedly divide coreset size in half
m← log2(nin/nout)
for ℓ = 1, 2, . . . ,m do Xin ← KH(δ/m)(Xin,k) ;
return Xout ≜ Xin, coreset of size nout = nin/2

m

In this section, we analyze repeated KH(δ) (RKH(δ), Alg. B.3), a variant of the KT-SPLIT algorithm (Dwivedi & Mackey,
2024, Alg. 1a) with simplified swapping thresholds. Our next result, proved in App. B.4.1, establishes the sub-Gaussianity
of RKH(δ).

Proposition B.4 (Sub-Gaussianity of RKH(δ)). If nout ∈ nin/2
N then RKH(δ) (Alg. B.3) is (k, ν)-sub-Gaussian with

ν = 2
nout

√
3

√
log( 6nout log2(nin/nout)

δ )min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin))

on an event E of probability at least 1− δ/2.

By Lem. A.1, we thus have that the RKH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that

RKH(δ) ∈ Gν,δ(K). Finally, ν = O(

√
log(nout/δ)

nout
) when nout ≥

√
nin.

B.4.1. PROOF OF PROP. B.4: SUB-GAUSSIANITY OF RKH(δ)

Let c = 2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)), and, for each ℓ ∈ [m], let ψ̃(ℓ) represent the vector

ψ̃nin/2ℓ produced at the end of the ℓ-th call to KH(δ). By the proof of Prop. B.2 and the union bound, on an event E of

probability at least 1− δ/2, (ψ̃(ℓ))ℓ∈[m] = (ψ(ℓ))ℓ∈[m], where each 2ℓ−1

nin
ψ(ℓ) is (k, ν(ℓ))-sub-Gaussian given (ψ(j))j∈[ℓ−1]

for

ν(ℓ) = c

√
log(2ninm/(2ℓ−1δ))

nin/2ℓ−1 .

Hence, on E, the weighted sum

(Pin − Pout)k =
∑

ℓ∈[m]
2ℓ−1

nin
ψ̃(ℓ) =

∑
ℓ∈[m]

2ℓ−1

nin
ψ(ℓ)

is (k,
√∑

ℓ∈[m](ν
(ℓ))2)-sub-Gaussian by Dwivedi & Mackey (2024, Lem. 14). Finally, by Dwivedi & Mackey (2024,

Eq. (63)),
√∑

ℓ∈[m](ν
(ℓ))2 ≤ ν.

B.5. KH-COMPRESS(δ)

In this section, we analyze KH-COMPRESS(δ) (Alg. B.4), a variant of the KT-SPLIT-COMPRESS algorithm (Shetty et al.,
2022, Ex. 3) with simplified swapping thresholds.

Proposition B.5 (Sub-Gaussianity of KH-COMPRESS(δ)). If nout ∈
√
nin 2

N then KH-COMPRESS(δ) (Alg. B.4) is
(k, ν)-sub-Gaussian with

ν = 1
nout

√
log2(nout) log(

4nout log2(nin/nout)
δ )maxx∈Xin

√
k(x,x)

on an event E of probability at least 1− δ/2.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Algorithm B.4: KH-COMPRESS(δ): Compress with KH halving and failure probability δ

Input: point sequence Xin = (xi)
nin
i=1, kernel k, nout ∈

√
nin · 2N

g← log2(nout/
√
nin) // identify compression level

function compress(S):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size |S|/4
for i = 1, 2, 3, 4 do

S̃i ← compress(Si) // return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4); ℓ← 2 · 2g ·

√
|S| // coreset of size ℓ

return KH
(

ℓ2

nin4
g+1(log4 nin−g)

δ
)
(S̃,k) // coreset of size 2g

√
|S|

return compress(Xin) // coreset of size nout = 2g
√
nin

Proof. Since the original Kernel Halving algorithm of Dwivedi & Mackey (2024, Alg. 2) is equal to the KT-SPLIT al-
gorithm of Dwivedi & Mackey (2024, Alg. 1a) with m = 1 halving round, KH-COMPRESS(δ) is simply the KT-SPLIT-
COMPRESS algorithm of (Shetty et al., 2022, Ex. 3) with KH(δ) of Alg. B.1 substituted for KT-SPLIT(δ,m = 1). The
result now follows immediately from the KH(δ) sub-Gaussian constant of Prop. B.2 and the argument of Shetty et al.
(2022, Rem. 2, Ex. 3).

Now fix any SPSD K and any kernel k that generates K. By Lem. A.1, we have that pin − pout is (K, ν)-sub-Gaussian

on E and hence that KH-COMPRESS(δ) ∈ Gν,δ(K). In addition, ν = O(

√
log(nout) log(nout/δ)

nout
) when nout ≥

√
nin. Fur-

thermore, Shetty et al. (2022, Rem. 1) implies that KH-COMPRESS(δ) has a runtime less than 4g+1nin(log4(nin)− g) =
4n2out log2(nin/nout) = O(n2out) when nout ≥

√
nin.

B.6. GS-THIN

The section introduces and analyzes the Gram-Schmidt Thinning algorithm (GS-THIN, Alg. B.5). GS-THIN repeatedly
divides an input sequence in half using, GS-HALVE (Alg. B.6), a symmetrized and kernelized version of the Gram-
Schmidt (GS) Walk of Bansal et al. (2018). We will present two different implementations of GS-HALVE: a quartic-time
implementation (Alg. B.6) based on the GS Walk description of Bansal et al. (2018) and a cubic-time implementation
based on local updates to the matrix inverse (Alg. B.7). While both the algorithms lead to the same output given the same
source of randomness, we present the original implementation1 for conceptual clarity and the optimized implementation
for improved runtime. Throughout, for a matrix Q and vector u, we use the notation QI×J and uI to represent the
submatrix (Qij)i∈I,j∈J and subvector (ui)i∈I .

Algorithm B.5: GS-THIN: Gram-Schmidt Thinning
Input: point sequence Xin = (xi)

nin
i=1, kernel k, output size nout ∈ nin/2

N, HALVE ∈ {GS-HALVE,GS-HALVE-CUBIC}
// Repeatedly divide coreset size in half
m← log2(nin/nout)
for ℓ = 1, 2, . . . ,m do Xin ← HALVE(Xin,k) ;
return Xout ≜ Xin, coreset of size nout = nin/2

m

Our first result, proved in App. B.6.1, shows that GS-THIN is a sub-Gaussian thinning algorithm.

Proposition B.6 (GS-THIN sub-Gaussianity). For K generated by k, GS-THIN (Alg. B.5) is a (K, ν, 0)-sub-Gaussian
thinning algorithm with parameter

ν ≜ 2√
3

√
∥K∥max

nout
. (13)

1 Towards making this equivalence clear, Alg. B.6 has been expressed with the same variables that Alg. B.7 uses. Alg. B.6 can be
slightly simplified if it were to be considered independently.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Algorithm B.6: GS-HALVE: Gram-Schmidt Halving
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k

Xout ← {} // Initialize empty coreset
// Select one point to keep from each consecutive pair using kernelized GS Walk
z ← kernel gs walk(Xin)
for i = 1, . . . , nin/2 do

if zi = 1 then
Xout.append(x2i−1)

else
Xout.append(x2i)

end
end
return Xout, coreset of size nin/2

function kernel gs walk((xi)
nin
i=1):

t← 1; zt ← (0, 0, . . . , 0) ∈ Rnin/2 // Initialize fractional assignment vector
A ← [nin/2] // Initialize set of active coordinates
p ∼ A // Select a pivot uniformly at random
while zt /∈ {±1}nin/2 do
A′ ← A\

{
min

(
{i ∈ [nin/2] : |zti| = 1} \ ([nin/2] \A)

)}
// Update set of active coordinates by removing smallest index set to ±1
if p /∈ A′ then

p′ ∼ Unif(A′) // Select a new pivot from A′ uniformly at random
else

p′ ← p
end
// Compute step direction in which to update fractional assignment vector
ut ← argminu∈Rnin/2 u

⊤Qu subject to up′ = 1 and ui = 0 for all i /∈ A′,
where Q ∈ R(nin/2)×(nin/2) has entries Qij ≜ k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1)

δ+ ← |max∆| and δ− ← |min∆|, where ∆ =
{
δ ∈ R : zt + δut ∈ [−1,+1]nin/2

}
// Select candidate step sizes

δt ← δ+ with probability δ−/(δ+ + δ−); otherwise δt ← −δ− // Choose step size and sign at random
zt+1 ← zt + δtut // Update fractional assignments
t← t+ 1; A ← A′; p← p′

end
return zt, sign vector in {±1}nin/2

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Algorithm B.7: GS-HALVE-CUBIC: Gram-Schmidt Halving with cubic runtime
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k with positive definite k(Xin,Xin)

Xout ← {} // Initialize empty coreset
// Select one point to keep from each consecutive pair using kernelized GS Walk
z ← kernel gs walk cubic(Xin)
for i = 1, . . . , nin/2 do

if zi = 1 then
Xout.append(x2i−1)

else
Xout.append(x2i)

end
end
return Xout, coreset of size nin/2

function kernel gs walk cubic((xi)
nin
i=1):

t← 1; zt ← (0, 0, . . . , 0) ∈ Rnin/2 // Initialize fractional assignment vector
A ← [nin/2] // Initialize set of active coordinates
p ∼ A // Select pivot uniformly at random
Q← (k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1))

nin/2
i,j=1 // Form paired difference kernel matrix

C← (QA\{p}×A\{p})
−1

while zt /∈ {±1}nin/2 do
A′ ← A\

{
min

(
{i ∈ [nin/2] : |zti| = 1} \ ([nin/2] \A)

)}
// Update set of active coordinates by removing smallest index set to ±1
if p /∈ A′ then

p′ ∼ Unif(A′) // Select a new pivot from A′ uniformly at random
else

p′ ← p
end
A1 ← A\{p}
A2 ← A′ \ {p′}.
i← A1\A2 // Choose i as the (unique) index that was removed from the active coordinates
// Compute (QA2×A2)

−1 using block matrix inversion and the Sherman-Morrison formula
D← CA2×A2

C← D− DQA2×{i}Q{i}×A2
D

Qii+Q{i}×A2
DQA2×{i}

// Compute step direction in which to update fractional assignment vector
Compute ut as (ut)A2 = −CQA2×{p′} , utp′ = 1, and uti = 0 for i /∈ A′

δ+ ← |max∆| and δ− ← |min∆|, where ∆ =
{
δ ∈ R : zt + δut ∈ [−1,+1]nin/2

}
// Select candidate step sizes

δt ← δ+ with probability δ−/(δ+ + δ−); otherwise δt ← −δ− // Choose step size and sign at random
zt+1 ← zt + δtut // Update fractional assignments
t← t+ 1; A ← A′; p← p′

end
return zt, sign vector in {±1}nin/2

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Our second result, proved in App. B.6.2, shows that GS-THIN with the GS-HALVE implementation has O(n4in) runtime.
Proposition B.7 (Runtime of GS-THIN with GS-HALVE). The runtime of GS-THIN with implementation GS-HALVE
(Alg. B.6) is O(n4in).

Our third result, proved in App. B.6.3, establishes the equivalence between GS-HALVE and GS-HALVE-CUBIC. More
precisely, we show that the sequence of partial assignment vectors generated by kernel gs walk(·) of Alg. B.6 and
kernel gs walk cubic(·) of Alg. B.7 are identical given identical inputs, an invertible induced kernel matrix, and an
identical source of randomness.
Proposition B.8 (Agreement of GS-HALVE and GS-HALVE-CUBIC). Let z1, z2, . . . be the fractional assignment
sequence generated by kernel gs walk((xi)

nin
i=1) in Alg. B.6 and z′

1, z
′
2, . . . be the fractional assignment sequence

generated by kernel gs walk cubic((xi)
nin
i=1) in Alg. B.7 with an identical source of randomness. If the pairwise

difference matrix

Q ≜ (k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1))i,j∈[nin/2]

is positive definite, then zt = z′
t for all t.

Our fourth result, proved in App. B.6.4, shows that GS-THIN with the GS-HALVE-CUBIC implementation has O(n3in)
runtime.
Proposition B.9 (Runtime of GS-THIN with GS-HALVE-CUBIC). The runtime of GS-THIN with implementation GS-
HALVE-CUBIC (Alg. B.7) is O(n3in).

B.6.1. PROOF OF PROP. B.6: GS-THIN SUB-GAUSSIANITY

Our first lemma bounds the sub-Gaussian constant of GS-HALVE (Alg. B.6).
Lemma B.2 (GS-HALVE sub-Gaussianity). In the notation of Def. 1, consider the input and output vectors pin,pout ∈ Rn

of GS-HALVE (Alg. B.6) for X ⊇ Xin with |X | = n ≥ nin. If K = k(X ,X ), then pin − pout is (K, ν)-sub-Gaussian with

ν ≜ 2∥K∥1/2
max

nin
=

∥K∥1/2
max

nout
.

Proof. Since K is SPSD, there exists a matrix Φ ∈ Rn×d such that K = ΦΦ⊤. Let B ∈ Rd×(nin/2) be the matrix with
entries

Bj,i ≜ Φ2i−1,j −Φ2i,j for i ∈ [nin/2] and j ∈ [d].

Note that, for each i ∈ [nin/2],∑
j∈[d] B

2
j,i = K2i−1,2i−1 +K2i,2i −K2i−1,2i −K2i,2i−1 ≤ 4∥K∥max.

Hence, by Harshaw et al. (2024, Thm. 6.6), 1
nin

Bz is (I, ν)-sub-Gaussian where I is the identity matrix in Rd×d.

Now fix any u ∈ Rd. Since 1
nin

Bz = −Φ⊤(pin − pout) by construction,

E
[
exp

(
u⊤K(pin − pout)

)]
≤ E

[
exp

(
−⟨Φ⊤u, 1

nin
Bz⟩

)]
≤ exp

(
ν2

2 · ∥Φ
⊤u∥22

)
= exp

(
ν2

2 · u
⊤Ku

)
.

Now, for ℓ ∈ [m], let pℓ ∈ Rn denote the output probability vector produced by the ℓ-th call to GS-HALVE. Defining
p0 ≜ pin and pout ≜ pm, we have

pin − pout =
∑m

i=1 ∆i, for ∆i ≜ pi−1 − pi for i ∈ [m].

By Lem. B.2, each pi−1 − pi is (K, 2∥K∥1/2
max

nin/2i−1 )-sub-Gaussian conditional on (∆1, . . . ,∆i−1). Applying Lem. A.3 to the
sequence (∆j)

m
j=1, we find that pin − pout is (K, ν)-sub-Gaussian with parameter

ν =
(∑m

j=1
4∥K∥max

(nin/2j−1)2

)1/2

=
2∥K∥1/2

max

nin

(∑m
j=1 4

j
)1/2

≤ ∥K∥1/2
max

nin

√
4
34

m.

Simplifying the above using the fact that nout = nin/2
m yields our desired result (13).

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

B.6.2. PROOF OF PROP. B.7: RUNTIME OF GS-THIN WITH GS-HALVE

We essentially reproduce the argument from Bansal et al. (2018) for the runtime of the GS-HALVE algorithm in our
kernelized context.

The main computational cost of GS-HALVE is the execution of the kernel gs walk(·) subroutine in Alg. B.6. The
number of iterations in while loop for zt is at most nin/2. This is due to the fact that in each iteration, at least one new
variable is set to {±1}. Further, in each iteration, the main computational cost is the computation of

ut ← argminu∈Rnin/2 u
⊤Qu

under the constraints that up = 1 and ui = 0 for all i /∈ A. Since this can be implemented in O(n3in) time using standard
convex optimization techniques, GS-HALVE has total runtime

rH(ℓ) ≤ Cℓ4

for an input sequence of size ℓ and a constant C independent of ℓ. Now, note that GS-THIN calls GS-HALVE iteratively
on inputs of size nin2

−i for i = 0, 1, . . . ,m− 1 where m = log2(nin/nout). Thus, GS-THIN has runtime∑m−1
i=0 rH(nin/2

i) ≤
∑m−1

i=0 C(nin/2
i)4 = O(n4in).

B.6.3. PROOF OF PROP. B.8: AGREEMENT OF GS-HALVE AND GS-HALVE-CUBIC

We want to reason that any round of partial coloring leads to the same output across the two algorithms. Fix any fractional
assignment update round. Recall thatA1 = A\{p} andA2 = A′ \ {p′}. These represent the active set coordinates without
the pivot before and after the update respectively.

The main difference between Algs. B.6 and B.7 is in the computation of the step direction ut, which is the solution of the
program

ut ← argminu∈Rn u⊤Qu subject to up′ = 1 and ui = 0 for all i /∈ A′.

ut has a closed form with entries

(ut)A2 = −(QA2×A2)
−1 ·QA2×{p′}.

Note that the invertibility of QA2×A2
follows from the positive-definiteness of Q, as, for any w ∈ R|A2|,

w⊤QA2×A2
w = w̃⊤Qw̃ > 0

for a second vector w̃ with w̃A2
= w and all other entries equal to zero. Therefore, to compute ut, it suffices to keep track

of the inverse of QA2×A2 as A′ across iterations.

Let i be the unique element in A1\A2. Writing QA1×A1
in block form, we have

QA1×A1
=

[
QA2×A2

QA2×{i}
Q{i}×A2

Qii

]
.

By block matrix inversion (see, e.g., Saadetoglu & Dinsev, 2023, Thm. 2), the leading size |A2|× |A2| principal submatrix
of (QA1×A1

)−1 equals

D ≜
(
QA2×A2

− QA2×{i}Q{i}×A2

Qii

)−1

.

Thus, by the Sherman-Morrison formula (Sherman & Morrison, 1950),

(QA2×A2
)−1 =

(
D−1 +

QA2×{i}Q{i}×A2

Qii

)−1

= D− DQA2×{i}Q{i}×A2
D

Qii+Q{i}×A2
DQA2×{i}

. (14)

Hence, if we already have access to a matrix C = (QA1×A1
)−1, we can compute D by dropping the row and column

of C corresponding to i and then compute (QA2×A2
)−1 using (14). Since in Alg. B.7 we begin by explicitly computing

the inverse of QA′×A′ , the update step in Alg. B.7 maintains the required inverse and thus its partial assignment updates
match those of Alg. B.6.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Algorithm B.8: GS-COMPRESS: Compress with GS-HALVE-CUBIC halving
Input: point sequence Xin = (xi)

nin
i=1, kernel k, nout ∈

√
nin · 2N

g← log2(nout/
√
nin) // identify compression level

function compress(S):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size |S|/4
for i = 1, 2, 3, 4 do

S̃i ← compress(Si) // return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4); ℓ← 2 · 2g ·

√
|S| // coreset of size ℓ

return GS-HALVE-CUBIC(S̃,k) // coreset of size 2g
√
|S|

return compress(Xin) // coreset of size nout = 2g
√
nin

B.6.4. PROOF OF PROP. B.9: RUNTIME OF GS-THIN WITH GS-HALVE-CUBIC

We begin by establishing the runtime of kernel gs walk cubic(·).

Lemma B.3 (Running time of kernel gs walk cubic(·) ). The routine kernel gs walk cubic(·) runs in
O(ℓ3) time given a point sequence of size ℓ.

Proof. First, the initialization of C costs O(ℓ3) time using standard matrix inversion algorithms. Second, the number of
iterations in the while loop is at most ℓ/2 since, in each iteration, at least one new variable is assigned a permanent sign
in {±1}. In each while loop iteration, the main computational costs are the update of C and the computation of the step
direction ut, both of which cost O(ℓ2) time using standard matrix-vector multiplication. Hence, together, all while loop
iterations cost O(ℓ3) time.

Given the above lemma, we have that GS-HALVE-CUBIC, on input of size ℓ, has a running time

rH(ℓ) ≤ Cℓ3

for some C independent of ℓ. When used in GS-THIN this yields the runtime∑m−1
i=0 rH(nin/2

i) =
∑m−1

i=0 C(nin/2
i)3 = O(n3in).

B.7. GS-COMPRESS

This section introduces and analyzes the new GS-COMPRESS algorithm (Alg. B.8) which combines the COMPRESS meta-
algorithm of Shetty et al. (2022) with the GS-HALVE-CUBIC halving algorithm (Alg. B.7). The following result bounds
the sub-Gaussian constant and runtime of GS-COMPRESS.

Proposition B.10 (GS-COMPRESS sub-Gaussianity and runtime). If K is generated by k, then GS-COMPRESS is
(K, ν, 0)-sub-Gaussian with

ν ≜ 1
nout

√
log2(nout)∥K∥max.

Moreover, GS-COMPRESS has an O(n3out) runtime.

Proof. By Lem. B.2 and Prop. B.8, GS-HALVE-CUBIC is (K, νH(ℓ))-sub-Gaussian for an input point sequence of size ℓ
and νH(ℓ) = 2

√
∥K∥max/ℓ. Hence, by Lem. A.2, GS-HALVE-CUBIC is also νH(ℓ) f -sub-Gaussian in the sense of Shetty

et al. (2022, Def. 2) for each f ∈ Hk. By Shetty et al. (2022, Rmk. 2), GS-COMPRESS is therefore f -sub-Gaussian with
parameter

ν ≤
√
log2(nin/nout)νH(2nout) ≤

√
log2(nout)

∥K∥1/2
max

nout

for each f ∈ Hk. Hence, Lem. A.1 implies that GS-COMPRESS is a (K, ν, 0)-sub-Gaussian thinning algorithm.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Furthermore, Shetty et al. (2022, Thm. 1) implies that GS-COMPRESS has a runtime of∑log2(nin/(2nout))
i=0 4i · rH(2nout2

−i).

where the GS-HALVE-CUBIC runtime rH(ℓ) ≤ Cℓ3 for C independent of the input size ℓ by Lem. B.3. Therefore, the
GS-COMPRESS runtime is bounded by∑log2(nin/(2nout))

i=0 4i · (2nout)
32−3i = O(n3out).

Remark 1 (COMPRESS with GS-HALVE). If the GS-HALVE implementation were used in place of GS-HALVE-CUBIC,
parallel reasoning would yield an O(n4out) runtime for GS-COMPRESS.

C. Proof of Thm. 1: Low-rank sub-Gaussian thinning
We establish the first kernel max seminorm bound (2) in App. C.1 and the Lipschitz kernel max seminorm bound (3) in
App. C.2. Throughout, we use the notation PE(E ′) ≜ P(E, E ′) for events (E, E ′).

C.1. Proof of kernel max seminorm bound (2)

We begin by establishing a general bound on the maximum discrepancy between input and output expectations over a
collection of test functions admitting a finite cover.

Lemma C.1 (Discrepancy cover bound). Fix any kernel k, subset F ⊂ Hk, and scalars ε ≥ 0 and δ′ ∈ (0, 1). Define

a ≜ supf∈F ∥f∥k and BF ≜ {f ∈ Hk : ∥f∥k ≤ a},

and let Cϵ,F be a set of minimum cardinality satisfying

Cϵ,F ⊂ BF and supf∈F minf ′∈Cϵ,F maxx∈Xin |f(x)− f ′(x)| ≤ ε. (15)

If (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E (Def. A.2), then, on E,

∥Pin − Pout∥F ≜ supf∈F (Pin − Pout)f ≤ 2ϵ+ νa
√
2 log(|Cϵ,F |/δ′) with probability at least 1− δ′.

Proof. The triangle inequality and the covering property (15) together imply that, with probability 1,

(Pin − Pout)f ≤ minf ′∈Cϵ,F (Pin − Pout)f
′ + |(Pin − Pout)(f − f ′)|

≤ ∥Pin − Pout∥Cϵ,F
+minf ′∈Cϵ,F |Pin(f − f ′)|+ |Pout(f − f ′)|

≤ ∥Pin − Pout∥Cϵ,F
+ 2minf ′∈Cϵ,F maxx∈Xin |f(x)− f ′(x)|

≤ ∥Pin − Pout∥Cϵ,F
+ 2ε (16)

for each f ∈ F . Since s 7→ ets is increasing, the bound (16), the assumed sub-Gaussianity (Def. A.2), and the fact that
Cϵ,F belongs to BF imply that

EE [exp(t∥Pin − Pout∥F )] ≤ e2tεEE [exp(t∥Pin − Pout∥Cϵ,F
)]

≤
∑

f ′∈Cϵ,F
e2tεEE [exp(t(Pin − Pout)f

′)]

≤
∑

f ′∈Cϵ,F
exp(

t2ν2∥f ′∥2
k

2 + 2tϵ) ≤ |Cϵ,F | exp( t
2ν2a2

2 + 2tϵ).

Now, by Markov’s inequality (Markov, 1884), for any α > 0,

PE(supf∈F (Pin − Pout)f > α+ 2ϵ) ≤ inft>0 EE [exp(t∥Pin − Pout∥F )]/ exp(t(α+ 2ϵ))

≤ |Cϵ,F | inft>0 exp(
t2ν2a2

2 − tα) = |Cϵ,F | exp( −α2

2ν2a2 ).

Finally, choosing α = νa
√
2 log(|Cϵ,F |/δ′) yields the desired claim.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Now fix any ϵ ≥ 0, δ′ ∈ (0, 1), and kernel k that generates K, and consider the subset F = {±k(xi, ·) : i ∈ I}. Since
∥K(pin − pout)∥I = ∥Pin − Pout∥F and supf∈F ∥f∥k = DI , Lem. C.1 implies that, on the event E,

∥K(pin − pout)∥I ≤ 2ϵ+ νDI
√
2 log(|Cϵ,F |/δ′) with probability at least 1− δ′.

Since P(Ec) ≤ δ/2 and |F| ≤ 2|Z|, we use the estimate |C0,F | ≤ 2|I| with ϵ = 0 to obtain the advertised bound (2).

C.2. Proof of Lipschitz kernel max seminorm bound (3)

Introduce the query point set Z ≜ {xi : i ∈ I}, fix any δ′ ∈ (0, 1) and z0 ∈ Z , and define the symmetrized seminorm

∥(Pin − Pout)k∥Z,Z ≜ supz,z′∈Z |(Pin − Pout)k(z)− (Pin − Pout)k(z
′)|.

By the triangle inequality and the derivation of App. C.1, we have, on the event E,

∥K(pin − pout)∥I ≤ ∥(Pin − Pout)k∥Z,Z + |(Pin − Pout)k(z0)|

≤ ∥(Pin − Pout)k∥Z,Z + ν
√
k(z0, z0)

√
2 log(4/δ′) with probability at least 1− δ′/2. (17)

Since P(Ec) ≤ δ/2, it only remains to upper bound ∥(Pin − Pout)k∥Z,Z on E with probability at least 1− δ′/2.

To this end, we first establish that ((Pin − Pout)k(z))z∈Z is a sub-Gaussian process on E with respect to a particular
bounded-Hölder metric ρ.
Definition C.1 (Sub-Gaussian process on an event). We say an indexed collection of random variables (Xθ)θ∈Θ is a
sub-Gaussian process with respect to ρ on an event E if ρ is a metric on Θ and

EE

[
exp

( (Xθ−X′
θ)

2

ρ(θ,θ′)2

)]
≤ 2 for all θ, θ′ ∈ Θ.

Lemma C.2 (Bounded-Hölder sub-Gaussian process). Consider a kernel k on X = Rd satisfying |k(z,x)− k(z′,x)| ≤
Lk∥z − z′∥2 for all z, z′ ∈ Z ⊂ X and x ∈ Xin. If (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E (Def. A.2), then
((Pin − Pout)k(z))z∈Z is a sub-Gaussian process on E with respect to the metric

ρ(z, z′) ≜ ν
√

8/3min(2 supz∈Z
√
k(z, z),

√
2Lk∥z − z′∥2). (18)

The proof of Lem. C.2 can be found in App. C.3. Our next lemma, a slight modification of Wainwright (2019, Thm. 5.36),
bounds the suprema of symmetrized sub-Gaussian processes on an event in terms of covering numbers.
Lemma C.3 (Sub-Gaussian process tails). Suppose (Xθ)θ∈Θ is a sub-Gaussian process with respect to ρ on an event E,
and define the diameter diam(Θ, ρ) ≜ supθ,θ′∈Θ ρ(θ, θ

′), the covering number

N (u; Θ, ρ) ≜ min{|Cu| : Cu ⊆ Θ,maxθ∈Θ minθ′∈Cu
ρ(θ, θ′) ≤ u} for all u > 0,

and the entropy integral J (Θ, ρ) ≜
∫ diam(Θ,ρ)

0

√
log(1 +N (u; Θ, ρ)) du. Then,

PE(supθ,θ′∈Θ |Xθ −Xθ′ | ≥ 8(J (Θ, ρ) + t)) ≤ 2 exp(−t2/ diam(Θ, ρ)2) for all t > 0.

Proof. Since
√

log(1 + xy) ≤
√
log((1 + x)(1 + y)) ≤

√
log(1 + x) +

√
log(1 + y) for all x, y > 0, the proof is

identical to that of Wainwright (2019, Thm. 5.36) with c1 = 8 and (EE ,PE) substituted for (E,P).

Our final lemma bounds the diameter, covering numbers, and entropy integral of Z using the metric ρ.
Lemma C.4 (Covering properties of bounded-Hölder metric). Consider the bounded-Hölder metric ρ (18) for a kernel k
on X = Rd and a finite set Z ⊂ X . If Z is a matrix with one row corresponding to each element of Z , r = rank(Z), and
R = maxz∈Z ∥z∥2, then, in the notation of Lem. C.3,

N (u;Z, ρ) ≤ (1 + c2/u2)r for c ≜ ν
√

32
3 RLk and all u > 0, (19)

diam(Z, ρ) ≤ D ≜ min(c, ν
√

32
3 maxz∈Z

√
k(z, z)), and (20)

J (Z, ρ) ≤ D
√
2r log(

√
3ec/D).

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Proof. The diameter bound (20) follows directly from the definition of ρ (18) and the fact maxz,z′∈Z ∥z − z′∥2 ≤ 2R.

To establish the covering number bound (19), we let UΣV⊤ be a compact singular value decomposition of Z so that

V ∈ Rd×r, Z = ZVV⊤, and maxz∈Z ∥V⊤z∥2 = maxz∈Z ∥z∥2 = R.

Fix any ϵ > 0, and let C and Cext be a sets of minimum cardinality satisfying

C ⊂ Br(R), maxv∈Br(R) minv′∈C ∥v′ − v∥2 ≤ ϵ2/2,
Cext ⊂ Bd(R), and maxz∈Z minz′∈Cext ∥z′ − z∥2 ≤ ϵ2/2. (21)

Since V⊤z ∈ Br(R) for each z ∈ Z and Vv′ ∈ Bd for each v′ ∈ Br, we have

maxz∈Z minv′∈C ∥Vv′ − z∥2 = maxz∈Z minv′∈C ∥V(v′ −V⊤z)∥2
= maxz∈Z minv′∈C ∥v′ −V⊤z∥2 ≤ ϵ2/2,

so that VC satisfies the criteria of (21). Since |VC| ≤ |C| ≤ (1 + 4R/ϵ2)r by Wainwright (2019, Lem. 5.2), we must also
have |Cext| ≤ (1 + 4R/ϵ2)r.

Now, since Cext has minimum cardinality amongst sets satisfying (21), for each z′ ∈ Cext, there is some z ∈ Z satisfying
∥z′ − z∥2 ≤ ϵ2/2 (or else z′ would be superfluous). Hence, there exists a set Cint ⊆ Z satisfying

|Cint| ≤ |Cext| ≤ (1 + 4R/ϵ2)r and maxz∈Z minz′∈Cint ∥z′ − z∥2 ≤ ϵ2.

Moreover, by our metric definition (18),

maxz∈Z minz′∈Cint ρ(z, z
′) ≤ c

2
√
R
maxz∈Z minz′∈Cint

√
∥z − z′∥2 ≤ cϵ

2
√
R
.

Hence, for u = cϵ
2
√
R

, N (u;Z, ρ) ≤ |Cint| ≤ (1 + c2/u2)r. Since ϵ > 0 was arbitrary, we have established (19).

Finally, we bound the entropy integral using the inequality 1 ≤ c2/u2 for u ∈ [0, D], the concavity of the square-root
function, and Jensen’s inequality:

J (Z, ρ) ≤
∫D

0

√
log(1 + (1 + c2/u2)r) du ≤

∫D

0

√
log((3c2/u2)r) du =

∫D

0

√
2r log(

√
3c/u) du

≤ D
√

1
D

∫D

0
2r log(

√
3c/u) du = D

√
2r log(

√
3ec/D).

Together, Lems. C.2, C.3, and C.4 imply that, in the notation of Lem. C.4,

∥(Pin − Pout)k∥Z,Z ≤ 8D
√
2r log(

√
3ec/D) + 8D

√
log(4/δ′)

on E with probability at least 1− δ′/2. Combining this bound with the inequality (17) yields the result.

C.3. Proof of Lem. C.2: Bounded-Hölder sub-Gaussian process

Define Xz = (Pin − Pout)k(z) for each z ∈ Z , and fix any z, z′ ∈ Z . Our sub-Gaussianity assumption implies

EE [exp(λ(Xz −Xz′)] ≤ exp(ν
2λ2

2 ∥k(z, ·)− k(z′, ·)∥2k) for all λ ∈ R.

Moreover, by our Lipschitz assumption,

∥k(z, ·)− k(z′, ·)∥2k = k(z, z)− k(z, z′) + k(z′, z′)− k(z′, z) ≤ min(4maxz∈Z k(z, z), 2Lk∥z − z′∥2).

Finally, Lem. C.5 shows that EE [exp(
(Xz−Xz′ )2

ρ(z,z′)2 ] ≤ 2 so that (Xz)z∈Z is a sub-Gaussian process on E with respect to ρ.

Lemma C.5 (Squared exponential moment bound). If EE [exp(λX)] ≤ exp(ν
2λ2

2 ) for all λ ∈ R, then EE [exp(
3X2

8ν2 )] ≤ 2.

Proof. The proof is identical to that in Wainwright (2019, Sec. 2.4) with EE substituted for E.

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

D. Proof of Thm. 2: Quality of Thinformer
Throughout we will make use of the convenient representation

T̂ = D̂−1ÂV for Iout ≜ {i ∈ [n] : (k̃i, ṽi) ∈ Xout}, Â ≜ n
nout

(exp(
⟨qi,kj⟩√

d
)1[j ∈ Iout])

n
i,j=1, and D̂ ≜ Â1n. (22)

Our proof makes use of three lemmas. The first, proved in App. D.1, bounds the approximation error for the attention
matrix T in terms of the approximation error for AV and A1n.

Lemma D.1 (Decomposing attention approximation error). In the notation of Alg. 1 and (22),

∥D̂−1ÂV −D−1AV∥max ≤ min
(
∥( 1nD)−1∥max, ∥( 1nD̂)−1∥max

)
( 1n∥ÂV −AV∥max +

1
n∥A1n − Â1n∥∞∥V∥max).

The second, proved in App. D.2, bounds the approximation error for AV and A1n in terms of the KMS (1) for a specific
choice of attention kernel matrix.

Lemma D.2 (KMS bound on attention approximation error). Instantiate the notation of Alg. 1 and (22) and define the
query set

X ′ ≜ {xi+nj ≜ (q̃i, e
d+1
j ) : i ∈ [n], j ∈ [d+ 1]} where q̃i ≜ qi/d

1
4

and ed+1
j is the j-th standard basis vector in Rd+1. If Katt ≜ katt(X ,X ) for X ≜ X ′ ∪ Xin, then

max
(
1
n∥(Â−A)V∥max,

1
n∥(Â−A)1n∥∞∥V∥max

)
= ∥Katt(pin − pout)∥I for I ≜ [n(d+ 1)].

Our third lemma, proved in App. D.3, bounds the size of key parameters of the thinned attention problem.

Lemma D.3 (Thinned attention problem parameters). Instantiate the notation of Lem. D.2, and define R ≜
maxi∈[n] max(∥qi∥2, ∥ki∥2). Then, for all i, j ∈ I and l ∈ supp(pin),

∥( 1nD)−1∥max ≤ exp(R
2

√
d
), maxx∈Xin

√
katt(x,x) ≤ exp( R2

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max,

RI ≜ maxi∈I ∥xi∥2 ≤
√

R2√
d
+ 1, DI ≜ maxi∈I

√
Katt,ii ≤ exp( R2

2
√
d
),

rank(XI) ≤ d+ 1 for XI ≜ [xi]
⊤
i∈I , and

|Katt,il −Katt,jl| ≤ LKatt∥xi − xj∥2 for LKatt ≜ exp(R
2

√
d
)
√

R2√
d
+ 2∥V∥max.

Now instantiate the notation of Lem. D.2, and define the coefficient

c ≜ 2
√
2
(
32
√

2
3 (d+ 1) log(3e2(R

2√
d
+ 2)∥V∥max) +

√
2 log(8)(1 + 32√

3
)
)
.

Together, Lem. D.3, the KMS quality bound of Thm. 1, and the KH-COMPRESS(0.5) sub-Gaussian constant ν of Prop. B.5
imply that, with probability at least 1

2 ,

∥Katt(pin − pout)∥I ≤ c
2
√
2
exp(R

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max

√
log2(nout) log(8nout log2

nin
nout

)

nout
.

Hence, by Lems. D.1 and D.2, with probability at least 1
2 ,

∥D̂−1ÂV −D−1AV∥max ≤ c√
2
exp( 2R

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max

√
log2(nout) log(8nout log2

nin
nout

)

nout

≤ c exp( 2R
2

√
d
)∥V∥2,∞

√
log2(nout) log(8nout log2

nin
nout

)

nout
.

22



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

D.1. Proof of Lem. D.1: Decomposing attention approximation error

By the triangle inequality, we have

∥D̂−1ÂV −D−1AV∥max ≤ ∥D̂−1ÂV − D̂−1AV∥max + ∥D̂−1AV −D−1AV∥max.

We bound the first term on the right-hand side using the submultiplicativity of the max norm under diagonal rescaling:

∥D̂−1ÂV − D̂−1AV∥max ≤ ∥D̂−1∥max∥ÂV −AV∥max = ∥( 1nD̂)−1∥max
1
n∥ÂV −AV∥max.

To bound the second term we use the same submultiplicativity property and the fact that each entry of D−1AV is the
average of values in V:

∥D̂−1AV −D−1AV∥max = ∥D̂−1(D− D̂)D−1AV∥max ≤ ∥D̂−1∥max∥D− D̂∥max∥D−1AV∥max

= ∥( 1nD̂)−1∥max
1
n∥A1n − Â1n∥∞∥V∥max.

An identical argument reversing the roles of (D,A) and (D̂, Â) yields the second bound.

D.2. Proof of Lem. D.2: KMS bound on attention approximation error

Define the augmented value matrix Ṽ = [V, ∥V∥max1n] ∈ Rd+1. By the definition of Katt and Â,

∥Katt(pin − pout)∥I = maxi∈[n],j∈[d+1] |
∑

ℓ∈[n] AiℓṼℓj(pin − pout)ℓ| = 1
n∥(A− Â)Ṽedj∥∞ = 1

n∥(A− Â)Ṽ∥max.

D.3. Proof of Lem. D.3: Thinned attention problem parameters

First, by the Cauchy-Schwarz inequality and the nonnegativity of D = A1n we have

∥( 1nD)−1∥max = 1
mini∈[n]

1
n

∑
j∈[n] Aij

≤ 1

mini∈[n],j∈[n] exp(
⟨qi,kj⟩√

d
)
≤ 1

mini∈[n],j∈[n] exp(
−∥qi∥2∥kj∥2√

d
)
≤ exp(R

2
√
d
).

Second, the maxx∈Xin

√
katt(x,x) inequality follows as

katt((k̃i, ṽi), (k̃i, ṽi)) = exp(
∥ki∥2

2√
d

)(∥vi∥22 + ∥V∥2max) ≤ exp(R
2

√
d
)(∥V∥22,∞ + ∥V∥2max).

Third, the RI inequality follows as

∥(q̃i, e
d+1
j )∥2 =

√
∥q̃i∥22 + 1 ≤

√
R2√
d
+ 1 for all i ∈ [n], j ∈ [d+ 1].

Fourth, the DI inequality follows as

maxi∈I Katt,ii = maxi∈[n] exp(
∥qi∥

2
2√

d
) ≤ exp(R

2
√
d
).

Fifth, the rank inequality follows as xi ∈ Rd+1 for i ∈ I. Finally, the Lipschitz inequality follows as, for any i, k, l ∈ [n]
and j,m ∈ [d+ 1],

| exp( ⟨qi,kl⟩√
d

)⟨ed+1
j , ṽl⟩ − exp( ⟨qk,kl⟩√

d
)⟨ed+1

m , ṽl⟩|

≤ exp( ⟨qi,kl⟩√
d

)|ṽlj − ṽlm|+ | exp( ⟨qi,kl⟩√
d

)− exp( ⟨qk,kl⟩√
d

)||ṽlm|

≤ exp(∥qi∥2∥kl∥2√
d

)∥ed+1
j − ed+1

m ∥2 |ṽlj−ṽlm|√
2

+ exp(max(∥qi∥2,∥qk∥2)∥kl∥2√
d

)| ⟨qi−qk,kl⟩√
d
||ṽlm|

≤ exp(R
2

√
d
)∥ed+1

j − ed+1
m ∥2 |ṽlj−ṽlm|√

2
+ exp(R

2
√
d
)∥qi−qk∥2R√

d
|ṽlm|

≤ exp(R
2

√
d
)∥ed+1

j − ed+1
m ∥2

√
2∥V∥max + exp(R

2
√
d
)∥qi−qk∥2R√

d
∥V∥max

≤ exp(R
2

√
d
)
√

R2√
d
+ 2∥V∥max∥(q̃i, e

d+1
j )− (q̃k, e

d+1
m )∥2

by the triangle inequality, multiple applications of Cauchy-Schwarz, and the mean-value theorem applied to x 7→ ex.

23



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

E. Supplementary Experiment Details
The T2T-ViT experiment of Sec. 4.2 was carried out using Python 3.12.9, PyTorch 2.8.0.dev20250407+cu128 (Paszke
et al., 2019), and an Ubuntu 22.04.5 LTS server with an AMD EPYC 7V13 64-Core Processor, 220 GB RAM, and a
single NVIDIA A100 GPU (80 GB memory, CUDA 12.8, driver version 570.124.04). For reference, attention layer 1
has (n, d) = (3136, 64) and attention layer 2 has (n, d) = (784, 64). For each layer and each of the first 50 ImageNet
2012 validation set batches of size 64, we measured the time required to complete a forward pass through the layer using
CUDA events following 10 warm-up batches to initialize the GPU. Tab. E.1 provides the hyperparameter settings for each
attention approximation in Tab. 3. The settings and implementations for all methods other than Thinformer were provided
by Zandieh et al. (2023), and our experiment code builds on their open-source repository https://github.com/
majid-daliri/kdeformer.

Table E.1: Configurations for the attention approximation methods of Tab. 3.

Attention Algorithm Layer 1 Configuration Layer 2 Configuration

Performer num_features=49 num_features=12

Reformer bucket_size=49 bucket_size=12
n_hashes=2 n_hashes=2

ScatterBrain local_context=49 local_context=12
num_features=48 num_features=6

KDEformer sample_size=64 sample_size=56
bucket_size=32 bucket_size=32

Thinformer (Ours) g=2 g=4

24

https://github.com/majid-daliri/kdeformer
https://github.com/majid-daliri/kdeformer

	Introduction
	Sub-Gaussian Thinning
	Examples of sub-Gaussian thinning algorithms

	Low-rank Sub-Gaussian Thinning
	Approximating Attention
	Thinning attention in theory
	Thinning attention in practice

	Conclusion
	Appendix Notation and Definitions
	Proof of tab:subgthinningalgorithms: Sub-Gaussian Thinning Examples
	Subsampling
	Proof of prop:uniform-subsampling: Quality of uniform subsampling
	Sub-Gaussianity of subsampling

	[algo:khd]blackKH ()
	Proof of khd-sub-gaussian: Sub-Gaussianity of [algo:khd]blackKH ()

	[algo:khlin]blackLKH ()
	Proof of khlind-sub-gaussian: Sub-Gaussianity of [algo:khlin]blackLKH ()

	[algo:rkhd]blackRKH ()
	Proof of rkhd-sub-gaussian: Sub-Gaussianity of [algo:rkhd]blackRKH ()

	[algo:khcompressd]blackKH-Compress ()
	[algo:gsthin]blackGS-Thin
	Proof of prop:gsthin: [algo:gsthin]blackGS-Thin sub-Gaussianity
	Proof of prop:gsthinruntime1: Runtime of [algo:gsthin]blackGS-Thin with [algo:gshalve]blackGS-Halve
	Proof of lem:gshalveagreement: Agreement of [algo:gshalve]blackGS-Halve and [algo:gshalvecubic]blackGS-Halve-Cubic
	Proof of prop:gsthinruntime2: Runtime of [algo:gsthin]blackGS-Thin with [algo:gshalvecubic]blackGS-Halve-Cubic 

	[algo:gscompress]blackGS-Compress

	Proof of thm:subglowrankgenkernel: Low-rank sub-Gaussian thinning
	Proof of kernel max seminorm bound eq:indbound
	Proof of Lipschitz kernel max seminorm bound eq:indboundlipschitz
	Proof of boundedholdersubg: Bounded-Hölder sub-Gaussian process

	Proof of att-err: Quality of Thinformer
	Proof of att-err-decomposition: Decomposing attention approximation error
	Proof of kms-bounds-att: KMS bound on attention approximation error
	Proof of att-parameters: Thinned attention problem parameters

	Supplementary Experiment Details

