

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM PSEUDO-BALANCING TO TRUE SPECIALIZATION: MEMORY-AWARE ROUTING FOR MIXTURE-OF-EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Mixture-of-Experts(MoE) efficiently trains large models by using sparse activation to lower costs, selecting a few experts based on data characteristics. For MoE, an unbalanced expert load will lead to routing collapse or increased computational overhead. Existing methods commonly achieve an expert-centered balancing strategy to solve it, prioritizing equal utilization of experts over semantic alignment between tokens and experts. However, this can lead to a pseudo-balance phenomenon: To ensure expert load balancing, the same input is randomly routed to different experts across training steps instead of the most matching one. It introduces two critical issues: (1) Severe knowledge overlap among experts, resulting in redundant representations and inefficient parameter utilization. (2) Difficulty in forming and stabilizing expert specialization. These issues limit the scalability of models, especially large language models(LLM). To address these limitations, we introduce Memory-Aware Routing (MAR), a [training-phase](#) approach that enhances existing load-balancing strategies. By equipping each expert with a memory buffer, our method explicitly models their long-term preferences, allowing historical experience to guide routing. This ensures that tokens are routed more consistently to compatible experts, mitigating the pseudo-balance problem while maintaining global load balance and fostering expert specialization. Experimental results show that Memory-Aware Routing improves expert specialization by 35% and downstream accuracy by 2%-25%, doubles parameter efficiency, and matches baseline performance with only half the experts (one-quarter of the parameters).¹

1 INTRODUCTION

In the domain of large-scale deep learning, Mixture-of-Experts (MoE) models have emerged as a powerful paradigm (Jacobs et al., 1991b; Roller et al., 2021; Zhou et al., 2022; Jordan & Jacobs, 1994b; Lepikhin et al., 2020). By leveraging a gating mechanism to dynamically route computations to a subset of expert subnetworks (Fedus et al., 2022; Jiang et al., 2024), MoE successfully scales model capacity while maintaining a manageable computational cost (Dai et al., 2024; Shen et al., 2024; Wei et al., 2024; Jiang et al., 2024). However, in the absence of explicit constraints, MoE training often suffers from severe load imbalance, where a few experts are overly activated while others remain underutilized (Lepikhin et al., 2020; Fedus et al., 2022; Zoph et al., 2022; Qiu et al., 2024). This imbalance leads to inefficient resource usage and hinders effective training of all experts.

To mitigate this issue, a variety of expert-centered balancing strategies have been proposed. GShard (Lepikhin et al., 2020) improved upon earlier work (Shazeer et al., 2017b) by introducing the differentiable auxiliary loss L_{aux} , which has since been widely adopted (Fedus et al., 2022; Jiang et al., 2024; Lieber et al., 2024; Mosaic Research Team, 2024). On larger scales, Zoph et al. (2022) introduced the z-loss L_z to enhance training stability. Related methods (Shazeer et al., 2017a; Dai et al., 2024; Qiu et al., 2025) advanced load-balancing with soft constraints, dynamic reallocation, and multi-loss routing, while some explored auxiliary-loss-free strategies (DeepSeek-AI, 2024).

Although expert-centered load-balancing methods effectively equalize expert utilization, they overlook semantic alignment between tokens and experts during routing. This oversight leads to the

¹Our code is available at <https://anonymous.4open.science/r/MAR-MoE-F7D1/>

Figure 1: Pseudo-Balancing Vs. True Specialization And Results. Left: Pseudo-balancing equalizes load but misaligns semantics, causing expert overlap and impeding specialization; true specialization co-routes similar tokens, yielding distinct expertise and less redundancy. Right: MAR-MoE augments load-balanced Llama-MoE (baseline MoE) with Memory-Aware Routing, achieving 50% fewer experts (25% fewer parameters) without loss and a 35% increase in specialization (KED).

emergence of the **pseudo-balance phenomenon**. In practice, to maintain balanced usage, identical tokens may be randomly routed to different experts across training steps, preventing their stable assignment to the most semantically appropriate expert. Figure 1 provides a high-level illustration of this phenomenon, and we formally define it below.

Let \mathcal{X} denote the input data space, and $\mathcal{E} = \{E_1, E_2, \dots, E_N\}$ the set of N experts. A standard MoE model employs a routing function $R(x)$ that assigns an input token $x \in \mathcal{X}$ to one or more experts. Formally, we define a pseudo-balanced routing function $R_{\text{pseudo}}(x, t)$ which, for a token x at the training step t , assigns it to an expert $E_i \in \mathcal{E}$ primarily according to load-balancing constraints rather than token content. Let $p(E_i | x, t)$ denote the probability of routing token x to expert E_i at step t . Under pseudo-balance, this probability satisfies

$$p(E_i | x, t) \approx \frac{1}{N}, \quad \forall E_i \in \mathcal{E}, \forall x \in \mathcal{X}.$$

As a result, the mapping between samples and experts remains unstable, preventing experts from accumulating experience on consistent data distributions. This instability causes expert learning to resemble enforced sharing rather than dedicated specialization, which in turn leads to substantial functional overlap across experts and hinders the development of true specialization. Such redundancy not only wastes parameters but also ultimately constrains the scalability of MoE models.

The core challenge in addressing this issue lies in the inherent trade-off between expert-centered load balancing and expert specialization. Enforcing strict balancing introduces excessive randomness that undermines specialization, whereas relaxing the balancing constraint risks expert collapse.

To address these limitations, we propose Memory-Aware Routing (MAR), a novel mechanism that augments load balancing with memory-guided routing. The MAR introduces memory buffers to explicitly capture the long-term preferences of each expert, guiding the model to avoid assigning similar information to different experts and effectively mitigating knowledge overlap. In addition, we define an expert–token matching score, which quantifies the similarity between an input token and an expert’s preference vector. This score promotes consistent routing of tokens to semantically aligned experts, fostering the emergence and consolidation of expert specialization. By maintaining global balance while transitioning from uniform allocation to differentiated routing, MAR mitigates the pseudo-balance problem and encourages both functional diversity and stable specialization across experts. The significant performance improvements achieved by MAR are highlighted in Figure 1. **Notably, MAR applied only during training without incurring extra overhead at inference time.**

In summary, our main contributions are as follows:

- We first reveal the pseudo-balance phenomenon, where load-balancing mechanisms reassign the same input to different experts across training steps, hindering specialization and wasting parameters, and ultimately limiting model scalability.

- 108 • We propose Memory-Aware Routing, where expert-specific memory buffers model long-
109 term preferences to guide routing, ensuring consistent token-to-expert assignment, mitigat-
110 ing pseudo-balancing, and promoting functional diversity and stable specialization.
- 111 • We conduct extensive evaluations. The experiments illustrate our method reduces the num-
112 ber of experts by 50% and the total parameters by one quarter without sacrificing perfor-
113 mance, resulting in lower computational cost, and it enhances expert specialization by 35%
114 and yields 2%–25% accuracy gains across multiple tasks.

116 2 RELATED WORK

117 2.1 MIXTURE OF EXPERT

118 Mixture-of-Experts (MoE) traces back to the statistical learning literature, where Jacobs et al.
119 (1991a); Jordan & Jacobs (1994a) introduced (hierarchical) mixtures trained with EM to encour-
120 age specialization among subnetworks. In modern deep learning, Shazeer et al. (2017c) revived
121 MoE at scale with sparsely-gated layers that route each token to a small subset of experts, achiev-
122 ing large capacity without proportional compute. Building on this, Du et al. (2022) demonstrated
123 trillion-parameter MoE language models with strong few-shot performance at lower training en-
124 ergy than dense baselines. Recent open models also validate MoE’s quality/efficiency in practice.
125 Mixtral 8×7B Jiang et al. (2024) attains strong results with two-expert routing per token; DBRX em-
126 ploys fine-grained MoE with smaller experts to improve Pareto efficiency Mosaic Research Team
127 (2024). DeepSeek-V2 DeepSeek-AI et al. (2024) combines architectural changes (e.g., MLA) with
128 fine-grained MoE to reduce active parameters and KV cache costs while maintaining performance.
129

131 2.2 LOAD BALANCING

132 Unconstrained gating in MoE tends to overuse a few experts, leaving others idle. To counter this,
133 Shazeer et al. (2017b) introduced the importance loss $L_{\text{importance}}$ and load loss L_{load} , which Lep-
134 ikhin et al. (2020) distilled into a differentiable auxiliary loss L_{aux} . Its effectiveness has been vali-
135 dated by Fedus et al. (2022) and widely adopted in practice (Jiang et al., 2024; Lieber et al., 2024;
136 Mosaic Research Team, 2024). Zoph et al. (2022) identified limitations at larger scales, prompt-
137 ing the introduction of the z -loss L_z to improve training stability. In related efforts, Shazeer et al.
138 (2017a) applied soft constraints with auxiliary losses and stochastic smoothing for differentiable
139 load evaluation; Dai et al. (2024) improved utilization via load-balancing losses, dynamic reallo-
140 cation, Residual-MoE, and cross-GPU parallelism; Qiu et al. (2025) introduced multiple auxiliary
141 losses to build balanced routing; and DeepSeek-AI (2024) explored an auxiliary-loss-free strategy
142 with expert-specific biases. While these approaches mitigate imbalance, they still suffer from the
143 pseudo-balance problem, where identical inputs are inconsistently routed across steps, leading to
144 unstable mappings, knowledge redundancy, and limited specialization.

145 3 THE PSEUDO-BALANCE PHENOMENON

146 In Mixture-of-Experts (MoE) training, load-balancing strategies are commonly employed to prevent
147 overuse of certain experts while leaving others underutilized. However, these strategies often give
148 rise to the pseudo-balance phenomenon, wherein identical inputs are forced to be routed to differ-
149 ent experts rather than consistently assigned to the most semantically aligned ones. **This effect is**
150 **inherent to the load-balancing loss itself:**

$$152 \quad \mathcal{L}_{\text{balance}} = \alpha \sum_{i=1}^N \text{Load}(i) p_i,$$

153 where $\text{Load}(i)$ denotes the proportion of tokens assigned to expert i in the current batch, and p_i rep-
154 presents the average gating probability allocated to expert i . The gradients of this loss, $\partial \mathcal{L} / \partial p_i = \alpha f_i$
155 and $\partial \mathcal{L} / \partial f_i = \alpha p_i$, create a symmetric feedback mechanism that penalizes any expert receiving
156 more tokens or having a higher routing probability. The loss is minimized at the uniform fixed point
157 $f_i = p_i = 1/E$, analytically enforcing equal usage across experts. To rigorously examine the re-
158 sulting pseudo-balance phenomenon, we design experiments from two complementary perspectives:
159 training-time expert selection and post-training expert specialization.

Figure 2: Experimental Validation of the Pseudo-Balance Phenomenon. Subfigures (a) and (b) show expert assignments with and without load balancing: the balanced model keeps switching experts, while the baseline stabilizes earlier. Subfigures (c) and (d) measure assignment consistency across epochs, showing a 68% drop under load balancing.

3.1 EXPERT SELECTION DYNAMICS DURING TRAINING

To understand how load balancing impacts the routing process, we first analyzed the stability of expert assignments throughout the training. Our hypothesis was that a lack of stable assignments would prevent experts from specializing. We compared a model using a load-balancing strategy with a baseline model without one. As shown in Figure 2 (a) and (b), even in later stages of training, when routing is expected to have converged, the model with load balancing still shows frequent and random switching of the same inputs across different experts. In stark contrast, the baseline model achieves a stable and consistent assignment for a given input much earlier in training. The experimental setup details are provided in the Appendix A.1.1.

For a quantitative assessment of this instability, we measured the consistency of expert assignments across different epochs for the same input samples. Our results, illustrated in Figure 2 (c) and (d), reveal a dramatic 68% drop in assignment consistency for the load-balanced model compared to the baseline. This shows that expert-centered load balancing methods significantly undermine the determinism of routing decisions, preventing experts from accumulating consistent experience and thereby hindering the emergence of stable specialization.

3.2 POST-TRAINING ANALYSIS OF EXPERT SPECIALIZATION

The routing instability we observed during training has a direct impact on the model’s final state: a high degree of knowledge redundancy among experts. Since multiple experts are repeatedly forced to handle the same type of input, their learned functional representations converge, leading to significant overlap and reduced parameter efficiency.

To validate this redundancy, we adopt the “expert disabled” experiment proposed by Dai et al. (2024). In this test, we progressively disabled a varying proportion of top-rank experts and measured the resulting change in perplexity (PPL). The core idea is that if the model performance remains largely unaffected after disabling experts, it implies high functional redundancy. Conversely, a steep drop in performance indicates clearer specialization, as removing a unique expert’s contribution would have a greater impact.

As depicted in Appendix A.2.1, the model with load balancing exhibits far less sensitivity to expert masking. The perplexity remains relatively low even when a significant portion of its top experts are disabled, demonstrating a high degree of redundancy. In contrast, the baseline model without

Figure 3: Overall framework of MAR. Unlike vanilla MoE, which relies solely on router logits and Top-k selection, MAR introduces an expert–token matching step to better align tokens with suitable experts during training. Each expert maintains a memory buffer that derives a preference vector capturing long-term tendencies. Token representations are compared against these vectors, and the resulting matching scores are fused with the original logits through an interest-aware adjustment to form new routing logits. Final expert selection is determined by Top-k. This mechanism ensures consistent and semantically aligned token assignments while preserving global balance.

load balancing shows a much steeper performance degradation, confirming that its experts have successfully specialized and are not interchangeable. These results provide direct evidence that balancing methods cause substantial knowledge overlap among experts.

Our findings indicate that although expert-centered balancing strategies achieve a superficial global balance, they create a pseudo-balance phenomenon, which arises from the increased randomness in routing. By forcing identical inputs to be assigned to different experts, this effect gives rise to two critical problems: a high degree of knowledge overlap and a failure to achieve stable specialization. Consequently, the core advantages of MoE—parameter efficiency through specialization—are diminished, fundamentally restricting the model’s scalability.

4 MEMORY-AWARE ROUTING: TOWARDS TRUE SPECIALIZATION

In essence, the central question is how we can transition from pseudo-balance to true expert specialization without losing the benefits of load balancing? To tackle this challenge, we introduce a novel approach: Memory-Aware Routing (MAR). The overall framework of Memory-Aware Routing is illustrated in Figure 3. To address severe knowledge overlap among experts, MAR introduces a memory buffer that stores representations of recently processed tokens. By aggregating these historical representations, each expert can maintain a long-term preference vector, which guides routing decisions and prevents multiple experts from redundantly learning the same information. To form and consolidate expert specialization, we propose the expert–token matching score, defined as the similarity between an incoming token and an expert’s preference vector. During routing, this score is combined with the original routing score through weighted fusion, encouraging input to be consistently assigned to semantically aligned experts, therefore promoting expert specialization.

4.1 MEMORY BUFFER

In our framework, each expert is equipped with an independent memory buffer that stores the representations of tokens it has recently processed. Let the number of experts be K and the hidden dimension be d . The memory buffer of the i -th expert can be expressed as

$$\mathcal{B}_i = \{h_i^{(1)}, h_i^{(2)}, \dots, h_i^{(N)}\}, \quad i = 1, \dots, K,$$

where $h_i^{(j)} \in \mathbb{R}^d$ denotes the representation of a token routed to the expert i , and N is the buffer capacity. To maintain its representational freshness, the buffer is updated with a FIFO strategy: Each newly routed token is appended, and once the buffer is full, the earliest entry is discarded. This

270 mechanism ensures that the stored vectors consistently reflect the recent routing history of the expert,
 271 while preventing outdated information from dominating. Also, FIFO is a straightforward queue
 272 operation with negligible computational cost, enabling the model to update its memory efficiently
 273 during training without becoming a performance bottleneck.

274 By aggregating the buffered feature vectors, we obtain a preference vector for expert i :

$$276 \quad d_i = \frac{1}{|\mathcal{B}_i|} \sum_{h \in \mathcal{B}_i} h, \quad d_i \in \mathbb{R}^d.$$

279 This preference vector is dynamically updated during training, effectively recording the types of
 280 information the expert has processed and guiding future routing decisions. This ensures each expert
 281 can specialize in the tasks its most proficient at, fundamentally reducing knowledge overlap among
 282 experts and enhancing the overall specialization and performance of the entire multi-expert system.

283 4.2 EXPERT-TOKEN MATCHING SCORE

285 To promote expert specialization, we propose the Expert-Token Matching Score, which explicitly
 286 measures the compatibility between each token and the long-term preferences of experts. Given an
 287 input token representation $x \in \mathbb{R}^d$, the gating network first computes a base score for each expert:

$$288 \quad s_i^{\text{base}} = \text{Router}(x)_i, \quad i = 1, \dots, K,$$

290 To encourage experts to develop differentiated functional preferences, we define the Expert-Token
 291 score as the cosine similarity between the token and the expert's preference vector d_i :

$$293 \quad s_i^{\text{match}} = \cos(x, d_i) = \frac{x \cdot d_i}{\|x\| \|d_i\|}.$$

295 If d_i is a zero vector, the similarity is defined as 0. The final routing score is then obtained by
 296 combining the two components through weighted fusion:

$$297 \quad s_i = s_i^{\text{base}} + \alpha \cdot s_i^{\text{match}},$$

299 where the hyperparameter $\alpha \in [0, 1]$ controls the relative influence of long-term preferences on
 300 the routing decision. Based on the final scores s_i , the model selects the top- k experts for forward
 301 computation, and the corresponding token representations are subsequently written into their mem-
 302 ory buffers to update the expert preference vectors. In this way, routing decisions no longer rely
 303 solely on instantaneous token features but also incorporate historical preferences, ensuring that to-
 304 kens are directed to semantically aligned and specialized experts. This design effectively alleviates
 305 the pseudo-balance phenomenon and fosters functional diversity and stable expert specialization.

306 4.3 COMPLEXITY AND EFFICIENCY

307 MAR is applied only during training and does not introduce additional trainable parameters. Up-
 308 dating each expert's preference vector aggregates features from its buffer with complexity $\mathcal{O}(Nd)$
 309 (N : buffer size, d : hidden dimension), and computing token-expert similarities during routing costs
 310 $\mathcal{O}(Kd)$ per token (K : number of experts), preserving scalability without introducing training bot-
 311 necks. [312 Moreover, a quantitative comparison of peak GPU memory usage and routing latency](#)
 313 [314 between LBL and LBL+MAR \(reported in Appendix A.2.4\) indicates that the additional training-](#)
 315 [316 time overhead introduced by MAR is minimal.](#) At inference, expert-token matching is disabled and
 317 preference vectors are not used, so routing reverts to standard top- k selection based on gating logits
 318 with identical FLOPs, memory and latency as a vanilla MoE. Crucially, smooth training-time up-
 319 dates of the preference vectors stabilize routing and reduce token oscillation across experts, fostering
 320 consistent specialization.

321 5 EXPERIMENTS

322 5.1 EXPERIMENTAL SETUPS

323 5.1.1 MODEL ARCHITECTURE AND TRAINING SETTINGS

324 We conduct experiments on four representative MoE architectures: Mixtral-MoE (Jiang et al., 2024),
 325 LLaMA-MoE (Zhu et al., 2024), GPT2-MoE (Lagler et al., 2013), and OLMoE (Muennighoff et al.,

Figure 4: Perplexity convergence of Mixtral-MoE and Mixtral-MoE+MAR during training. Experiments are conducted on PTB with 4 experts (a) and 8 experts (b), and on WikiText-2 with 4 experts (c) and 8 experts (d). Models with MAR achieve faster PPL reduction within the same number of training steps and reach stable performance in fewer iterations, demonstrating that MAR lowers training cost and accelerates convergence.

Figure 5: Expert load distribution across training epochs in the Mixtral-MoE+MAR model. Models with MAR exhibit stable and balanced utilization of experts, indicating the effectiveness of Memory-Aware Routing in mitigating expert collapse.

2024). For GPT2-MoE, all FFN layers in Transformers (Vaswani et al., 2017) are replaced with MoE layers. To comprehensively evaluate the effectiveness of the Memory-Aware Routing, we conduct experiments from two perspectives: the pretrain phase and the fine-tuning phase. In the pretrain phase, we evaluate whether MAR could overcome parameter redundancy caused by the expert redundancy. In the fine-tuning phase, we further verify the performance of the downstream tasks.

Unless noted, all MoE models with load balancing follow the predominant entropy-based load-balancing strategy (Lepikhin et al., 2020; Fedus et al., 2022). Each MoE layer has 8 experts (hidden size 512) with top-2 routing (Jiang et al., 2024); the load-balancing loss weight is 0.4. In MAR models, each expert keeps a memory buffer of 128 with a memory coefficient 0.5. We use GPT2Tokenizer (max length 2048), AdamW (Loshchilov & Hutter, 2017) with gradient accumulation and a linear schedule, and early stopping on validation loss. Experiments run on 5×RTX 4090 and 2×L20 GPUs. Full architectural and hyperparameter details are in the Appendix A.1.

For the pre-training stage, we adopt different datasets for different models. Mixtral-MoE, LLaMA-MoE and GPT2-MoE (with 3 MoE layers) are trained on PTB (Marcinkiewicz, 1994), and WikiText-2 (Merity et al., 2016), while GPT2-MoE (with 12 MoE layers) is pre-trained on OpenWebText (Gokaslan et al., 2019). For fine-tuning, we use the OLMoE 1B-7B model (Muennighoff et al., 2024) and evaluate it on a suite of downstream datasets covering language modeling, commonsense reasoning, and mathematical reasoning.

5.1.2 EVALUATION

378
 379
 380
 381
 382
 383 Table 1: Perplexity (PPL) and Key Expert Dependency (KED) of Mixtral-MoE, Llama-MoE, and
 384 GPT2-MoE with 3 MoE layers across different datasets and expert numbers. Memory-Aware Rout-
 385 ing (MAR) consistently reduces PPL and improves KED compared to vanilla load balancing loss
 386 (LBL), highlighting both parameter efficiency and scalability.

Model	PTB dataset				WikiText-2 dataset			
	Num=4		Num=8		Num=4		Num=8	
	PPL(\downarrow)	KED(\uparrow)						
Mixtral-MoE Model								
LBL	74.48	105.32	72.33	129.24	81.37	91.89	78.25	137.64
LBL+MAR	69.68	152.95	69.43	186.72	72.96	143.31	72.18	172.30
Gain (%)	-6.37%	+45.11%	-4.03%	+44.48%	-10.33%	+55.98%	-7.78%	+25.17%
Llama-MoE Model								
LBL	59.34	103.86	56.88	157.31	76.50	242.97	67.38	510.45
LBL+MAR	45.18	168.08	44.81	205.29	51.86	289.20	50.97	662.53
Gain (%)	-23.85%	+61.82%	-21.23%	+30.54%	-32.20%	+19.03%	-24.35%	+29.81%
GPT2-MoE Model								
LBL	62.10	98.45	58.75	145.60	80.25	210.33	70.10	450.12
LBL+MAR	54.88	140.72	51.23	195.87	68.90	265.44	62.15	620.50
Gain (%)	-11.63%	+42.90%	-12.81%	+34.59%	-14.14%	+26.17%	-11.29%	+37.87%

402
 403 We assess our method using perplexity P for pre-training and task-specific metrics (e.g., accuracy)
 404 for downstream tasks. We further introduce *Key Expert Dependency* (KED) to quantify expert spe-
 405 cialization. Following Dai et al. (2024), models with lower expert redundancy are more sensitive
 406 to disabling their most-routed experts. Let N denote the total number of experts and n the mini-
 407 mum number of experts that must remain active during routing (e.g., $n = 2$ for top-2). For each
 408 $k = 1, \dots, N - n$, we sequentially disable the k top-routed experts and record the resulting perplex-
 409 ity $P(k)$, with $P(0)$ denoting the original perplexity. We then define

$$410 \quad \text{KED} = \frac{1}{N - n} \sum_{k=1}^{N-n} \frac{P(k) - P(0)}{k}.$$

411
 412 Higher KED indicates stronger reliance on a small subset of experts, whereas lower KED suggests
 413 more complementary specialization across experts. Baselines use standard load-balancing routing,
 414 while our method applies MAR. All runs use identical hyperparameters and optimization.

415 5.2 MAIN RESULTS

416 5.2.1 PRE-TRAINING STAGE

417
 418 On the base models Mixtral-MoE, LLaMA-MoE and GPT2-MoE (with 3 MoE layers), we conduct
 419 comparative experiments with and without MAR. We record the expert selections for each training
 420 epoch. As shown in Appendix A.2.2, in models with standard load balancing, the same inputs
 421 continue to oscillate between different experts even in the later stages of training, whereas models
 422 with MAR exhibit stable expert assignments. This indicates that MAR effectively alleviates the
 423 pseudo-balance phenomenon during training. See Appendix A.1.2 for experimental settings.

424
 425 We further compare convergence speed between the two settings. As illustrated in Figure 4, our
 426 MAR models achieve an average PPL reduction of 5% to 20% greater than the baseline model over
 427 the same number of training steps. It also reached stable performance in approximately 20% fewer
 428 iterations. This demonstrates that MAR lowers training cost and accelerates convergence.

429
 430 We additionally investigated the effectiveness of MAR in preserving expert load balance during
 431 training. To this end, we visualize the distribution of expert load across epochs, as shown in Figure 5.
 The results demonstrate MAR effectively supports a balanced use of experts, avoiding the collapse
 432 observed in the absence of load balancing methods. More details are presented in Appendix A.2.3.

432
 433 Table 2: Performance of applying MAR on top of different load-balancing strategies. ‘Global Batch
 434 LBL’ refers to Qiu et al. (2025). ‘Aux Free’ refers to Wang et al. (2024). ‘Lo+Lv’ refers to Guo
 435 et al. (2025). ‘SimBal’ refers to Omi et al. (2025). MAR consistently reduces PPL and improves
 436 KED compared to each original load-balancing loss. Gains indicate improvement of MAR over the
 437 baseline: PPL decrease or KED increase are shown in red; deterioration would be shown in blue.

Method	PTB dataset				WikiText-2 dataset			
	Mixtral		LLaMA		Mixtral		LLaMA	
	PPL(\downarrow)	KED(\uparrow)						
Global Batch LBL	70.42	160.51	42.25	188.37	73.34	168.32	55.03	535.21
+ MAR (Ours)	67.79	217.05	40.74	236.91	70.44	192.23	49.66	688.33
Gain (%)	-3.63%	+56.54%	-1.51%	+48.54%	-2.90%	+23.91%	-5.37%	+153.12%
Aux Free	70.83	154.03	42.21	189.41	73.56	166.73	54.06	601.54
+ MAR (Ours)	67.52	225.98	41.28	243.24	70.01	198.24	50.56	669.29
Gain (%)	-3.31%	+71.95%	-0.93%	+53.83%	-3.55%	+31.51%	-3.50%	+67.75%
Lo+Lv	71.95	141.48	42.11	167.55	76.12	149.13	54.44	595.21
+ MAR (Ours)	68.98	198.67	41.77	214.43	71.97	183.66	50.07	674.86
Gain (%)	-2.97%	+57.19%	-0.34%	+46.88%	-4.15%	+34.53%	-4.37%	+79.65%
SimBal	72.30	139.59	42.02	176.87	77.07	145.75	54.31	595.95
+ MAR (Ours)	69.01	191.88	40.54	221.92	71.24	188.50	50.03	679.04
Gain (%)	-3.29%	+52.29%	-1.48%	+45.05%	-5.83%	+42.75%	-4.28%	+83.09%
Shared Experts	71.64	159.29	36.72	235.24	73.98	172.64	40.32	710.32
+ MAR (Ours)	69.32	205.31	36.25	254.57	69.96	212.39	39.50	714.82
Gain (%)	-2.32%	+46.02%	-0.47%	+19.33%	-4.02%	+39.75%	-0.82%	+4.50%

458
 459 Table 3: Perplexity (PPL) and Key Expert Dependency (KED) of GPT2-MoE with 12 MoE layers
 460 using 8 and 16 experts. Incorporating MAR on top of the load balance loss (LBL) consistently
 461 reduces PPL by 8.6%–9.4% and improves KED by 31.2%–47.1% compared to the vanilla LBL.

Model	Num=8		Num=16	
	PPL(\downarrow)	KED(\uparrow)	PPL(\downarrow)	KED(\uparrow)
GPT2-MoE +LBL	52.45	91.89	48.24	124.26
GPT2-MoE +LBL+MAR	47.94 (-8.6%)	135.14 (+47.1%)	43.71 (-9.4%)	163.05 (+31.2%)

462
 463 For model performance, we evaluate perplexity (PPL) as the primary metric and Key Expert De-
 464 pendency (KED) to measure expert specialization. Table 1 shows that MAR substantially improves
 465 expert specialization, resulting in an average gain of 35% in KED. In both base models, MAR
 466 achieves superior performance while using only half the number of experts (reducing total par-
 467 ameters by 25%). This highlights simultaneous gains in parameter efficiency and training efficiency.
 468 Furthermore, we compare MAR with other load-balancing strategies (Qiu et al., 2025; Wang et al.,
 469 2024; Guo et al., 2025; Omi et al., 2025), including shared-expert architectures (DeepSeek-AI et al.,
 470 2024), and Table 2 demonstrates that MAR provides consistent improvements across all baselines.

471
 472 To examine scalability, we further apply MAR to GPT2-MoE with 12 MoE layers, whose par-
 473 ameter count is four times that of GPT2-MoE with 3 MoE layers, pre-trained on the OpenWebText
 474 dataset (Gokaslan et al., 2019). Table 3 confirm the same trends, suggesting that MAR consistently
 475 enhances expert specialization and parameter utilization across different model scales.

476 5.2.2 FINE-TUNING STAGE

477
 478 For fine-tuning, we initialize with the open-source OLMoE 1B-7B model (Muennighoff et al., 2024)
 479 and conduct experiments with and without MAR across four representative downstream tasks: lan-
 480 guage modeling, knowledge application, commonsense reasoning, and mathematical reasoning.
 481 Specifically, language modeling is evaluated on the PTB dataset (Marcinkiewicz, 1994) using per-
 482 perplexity (PPL) as the metric. Knowledge application is measured on MMLU (Hendrycks et al.,

486
 487 Table 4: Performance comparison of OLMoE 1B-7B with and without Memory-Aware Routing
 488 (MAR) on PTB, MMLU, SVAMP, BBH, and GSM8K. With MAR, PPL decreases by 8.9% and
 489 accuracy improves by 2.2%–25.4% over load balance, demonstrating consistent and substantial gains
 490 across diverse benchmarks.

Model	PTB	MMLU	SVAMP	BBH	GSM8K
	PPL(\downarrow)	Acc(\uparrow)	Acc(\uparrow)	Acc(\uparrow)	Acc(\uparrow)
LBL	17.02	43.06	10.60	17.12	7.66
LBL+MAR	15.49 (-8.9%)	44.08 (+2.2%)	13.30 (+25.4%)	18.16 (+6.07%)	8.26 (+7.8%)

491
 492 2021), while commonsense reasoning is assessed with BBH (Suzgun et al., 2022). For mathematical
 493 reasoning, we adopt GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al., 2021) as evaluation
 494 benchmarks. Further details are provided in Appendix A.1.3.

495 Table 4 demonstrate that models with MAR consistently outperform their counterparts, achieving
 496 performance improvements of 2%–25% across all task, further validating the effectiveness of the
 497 proposed method in practical applications.

500 5.3 ABLATION STUDY

501 To further analyze the key design choices of Memory Aware Routing, we conduct ablation experiments
 502 from two perspectives: the influence factor of memory α and the memory buffer size. The
 503 results, presented in Appendix A.1.4, demonstrate that setting the influence factor of memory α to
 504 0.5 optimally combines current and long-term preferences, effectively breaking pseudo-balance and
 505 accelerating expert specialization. However, an excessively high α leads to a decline in performance
 506 due to “path dependence” and overfitting to past data. Similarly, an optimal buffer size of 128 is cru-
 507 cial; a buffer that is too small leads to instability, while a buffer that is too large introduces outdated
 508 information, ultimately degrading the model’s generalization ability. These findings validate that
 509 achieving a proper balance is key to efficient expert specialization and stable model convergence.

510 In addition, we perform a more detailed comparison of different memory–buffer update strate-
 511 gies and alternative formulations of the expert–token matching score (results provided in Ap-
 512 pendix A.2.5). The analysis demonstrates that FIFO achieves an optimal balance between effec-
 513 tiveness and computational efficiency.

514 6 CONCLUSION

515 In this work, we first reveal a key limitation of expert-centered load balancing in MoE models: the
 516 pseudo-balance phenomenon, where the same input is routed to different experts across training
 517 steps for global balancing, rather than consistently to the most semantically aligned expert. This
 518 leads to high functional overlap among experts and hinders the formation of distinct specialization,
 519 thereby limiting the scalability of MoE models. To address this, we propose Memory-Aware Rout-
 520 ing (MAR), which augments traditional load balancing with memory-guided routing. MAR ensures
 521 that tokens are consistently assigned to the most compatible experts, maintaining balanced usage
 522 while improving assignment stability and rationality, effectively mitigating the pseudo-balance is-
 523 sue. MAR increases expert differentiation by 35%, allows halving the number of experts without
 524 performance loss (improving parameter utilization by 25%), and achieves 2%–25% performance
 525 gains across downstream tasks. Our findings show that effective routing is the key to promoting
 526 true expert specialization. A promising area for future research is to explore how to amplify this
 527 specialization through improved routing, ultimately leveraging the core benefits of MoE models.
 528 **Moreover, MAR can facilitate MoE compression and expert pruning by stabilizing token-to-expert**
 529 **assignments and promoting expert differentiation, enabling more efficient model reduction.**

530 7 REPRODUCIBILITY STATEMENT

531 To support reproducibility, we document architectures, hyperparameters, and training procedures in
 532 the main text and Appendix A.1.2; preprocessing steps, evaluation metrics, and additional results
 533 are provided in Appendices A.2.3 and A.1.3. An anonymous code and configuration repository is
 534 linked in the main text to enable exact replication.

540 REFERENCES
541

542 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
543 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
544 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
545 2021.

546 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
547 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
548 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

549 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

550 DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
551 Deng, Chong Ruan, Damai Dai, et al. Deepseek-v2: A strong, economical, and efficient mixture-
552 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024.

553 Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
554 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
555 Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Kevin Robinson, Kathleen Meier-
556 Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu, Zhifeng Chen, and
557 Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts. In *Proceedings
558 of the 39th International Conference on Machine Learning (ICML)*, volume 162 of *Proceedings
559 of Machine Learning Research*, pp. 5547–5569. PMLR, 2022.

560 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
561 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
562 2022. URL <https://jmlr.org/papers/v23/21-0998.html>.

563 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. [http://Skylion007.github.io/OpenWebTextCorpus](https://Skylion007.github.io/OpenWebTextCorpus), 2019.

564 Hongcan Guo, Haolang Lu, Guoshun Nan, Bolun Chu, Jialin Zhuang, Yuan Yang, Wenhao Che,
565 Sicong Leng, Qimei Cui, and Xudong Jiang. Advancing expert specialization for better moe.
566 *arXiv preprint arXiv:2505.22323*, 2025.

567 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
568 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
569 tional Conference on Learning Representations (ICLR)*, 2021.

570 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
571 of local experts. *Neural Computation*, 3(1):79–87, 1991a.

572 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
573 local experts. *Neural computation*, 3(1):79–87, 1991b.

574 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
575 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
576 anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
577 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
578 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
579 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

580 Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
581 *Neural Computation*, 6(2):181–214, 1994a.

582 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
583 *Neural computation*, 6(2):181–214, 1994b.

584 Klemens Lagler, Michael Schindelegger, Johannes Böhm, Hana Krásná, and Tobias Nilsson. Gpt2:
585 Empirical slant delay model for radio space geodetic techniques. *Geophysical research letters*,
586 40(6):1069–1073, 2013.

594 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 595 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with
 596 conditional computation and automatic sharding, 2020. URL <https://arxiv.org/abs/2006.16668>.

598 Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
 599 Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
 600 Amir Bergman, Roman Glzman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
 601 Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
 602 language model, 2024. URL <https://arxiv.org/abs/2403.19887>.

603

604 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 605 *arXiv:1711.05101*, 2017.

606 Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. *Using*
 607 *Large Corpora*, 273:31, 1994.

608

609 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 610 models, 2016.

611

612 Mosaic Research Team. Introducing dbrx: A new state-of-the-art open LLM.
 613 Databricks Blog, March 2024. URL <https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm>. Fine-grained MoE architecture
 614 and efficiency details.

615

616 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
 617 jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
 618 language models. *arXiv preprint arXiv:2409.02060*, 2024.

619

620 Nabil Omi, Siddhartha Sen, and Ali Farhadi. Load balancing mixture of experts with similarity
 621 preserving routers. *arXiv preprint arXiv:2506.14038*, 2025.

622

623 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve simple
 624 math word problems? In *Proceedings of the 2021 Conference of the North American Chapter*
 625 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–
 626 2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 627 naacl-main.168. URL <https://aclanthology.org/2021.nacl-main.168>.

628

629 Zihan Qiu, Zeyu Huang, Shuang Cheng, Yizhi Zhou, Zili Wang, Ivan Titov, and Jie Fu. Layerwise
 630 recurrent router for mixture-of-experts. *arXiv preprint arXiv:2408.06793*, 2024.

631

632 Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
 633 Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
 634 training specialized mixture-of-expert models. *arXiv preprint arXiv:2501.11873*, 2025.

635

636 Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
 637 *advances in neural information processing systems*, 34:17555–17566, 2021.

638

639 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 640 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 641 *arXiv preprint arXiv:1701.06538*, 2017a.

642

643 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 644 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
 645 2017b. URL <https://arxiv.org/abs/1701.06538>.

646

647 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
 648 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 649 *arXiv preprint arXiv:1701.06538*, 2017c.

650

651 Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
 652 0.1 m dollars. *arXiv preprint arXiv:2404.07413*, 2024.

648 Mirac Suzgun, Nathan Scales, Nathanael Schärl, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 649 Akanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
 650 bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 651 2022.

652 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 653 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 654 *tion processing systems*, 30, 2017.

655 Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
 656 balancing strategy for mixture-of-experts. *arXiv preprint arXiv:2408.15664*, 2024.

657 Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang,
 658 Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-
 659 of-experts language models. *arXiv preprint arXiv:2406.06563*, 2024.

660 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
 661 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural*
 662 *Information Processing Systems*, 35:7103–7114, 2022.

663 Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
 664 Llama-moe: Building mixture-of-experts from llama with continual pre-training. *arXiv preprint*
 665 *arXiv:2406.16554*, 2024.

666 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
 667 William Fedus. St-MoE: Designing stable and transferable sparse expert models. *arXiv preprint*
 668 *arXiv:2202.08906*, 2022.

669

670

671

672

673

674

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 DEMONSTRATION OF A PSEUDO-BALANCE PHENOMENON

680 We build our model upon a lightweight Mixture-of-Experts Transformer that follows the design
 681 paradigm of Mixtral-MoE (Jiang et al., 2024). Specifically, the architecture, extends a Transformer
 682 backbone by replacing the standard feed-forward sublayer with a Mixture-of-Experts (MoE) mod-
 683 ule. Each Transformer block first applies multi-head self-attention with a hidden dimension of
 684 1024 and 8 attention heads, followed by the MoE sublayer. The MoE module consists of eight
 685 experts, where each expert is implemented as a two-layer feed-forward network of dimension
 686 $512 \rightarrow 512 \rightarrow 512$ with GELU activation. A learned router assigns tokens to experts using top-2
 687 gating, and the final output is obtained by weighting the selected experts with softmax-normalized
 688 routing scores and combining their outputs. Residual connections and layer normalization are ap-
 689 plied after both the attention and MoE sublayers.

690 In models augmented with load balancing, we incorporate an entropy-based regularization term
 691 into our training objective. This term, $\mathcal{L}_{\text{balance}}$, encourages the model to distribute tokens uniformly
 692 across all experts. Let $\text{Load}(i)$ denote the empirical load of the i -th expert, calculated as the fraction
 693 of tokens assigned to it within a batch. The load-balancing loss is then formulated as a scaled entropy
 694 term:

$$695 \mathcal{L}_{\text{balance}} = \alpha \sum_{i=1}^N \text{Load}(i) p_i,$$

696 where $N = 8$ is the number of experts and $\alpha = 0.4$. Here, $\text{Load}(i)$ denotes the proportion of
 697 tokens assigned to expert i in the current batch, and p_i represents the average gating probability
 698 allocated to expert i . Minimizing this loss encourages the distribution of expert loads to approach a
 699 uniform distribution, thus preventing a few experts from being overutilized while others remain idle.
 700 The hyperparameter α is used to balance the importance of the load-balancing objective against the
 701 primary task loss.

702 The model employs a vocabulary size of 50,257 (for GPT-2 tokenizer compatibility), a maximum se-
 703 quence length of 2,048, three Transformer layers, and a final linear projection that maps hidden states
 704 to vocabulary logits. Training is conducted on the Penn Treebank (PTB) dataset (Marcinkiewicz,
 705 1994), where the corpus is tokenized using the GPT-2 tokenizer and sequences are padded or trun-
 706 cated to 2,048 tokens. Optimization is performed with AdamW at a learning rate of 5×10^{-5} , using a
 707 linear warm-up of 1,000 steps. To stabilize training, gradient clipping with a maximum norm of 1.0
 708 and gradient accumulation over four steps are employed. The effective batch size is four sequences
 709 per step, and models are trained for up to 100 epochs with early stopping based on validation loss,
 710 using a patience of three epochs.

711 During training, we jointly monitor the cross-entropy loss and the load-balancing term, while also
 712 analyzing expert routing behavior. In particular, we record the routing distributions across experts,
 713 the per-layer utilization statistics, and the temporal dynamics of load balancing. These analyses pro-
 714 vide insights into the specialization stability of experts and the overall effectiveness of the proposed
 715 routing mechanism.

716

717

718 A.1.2 EXPERIMENT ON THE PRE-TRAINING PHASE

719

720 We conduct pretraining experiments across multiple Mixture-of-Experts (MoE) architectures to sys-
 721 tematically evaluate the effect of different model configurations on language modeling performance.
 722 Specifically, we examine three backbone structures, Mixtral-MoE (Jiang et al., 2024), Llama-MoE
 723 (Zhu et al., 2024), and GPT-2-MoE (Lagler et al., 2013), each augmented with varying numbers of
 724 experts and layers.

725

726 For the Mixtral-MoE and the Llama-MoE configuration, we train models with three MoE layers and
 727 either 4 or 8 experts per layer. These models contain 150M and 200M total parameters, respectively,
 728 with approximately 135M active parameters during inference. The detailed architectural and training
 729 settings follow those outlined in Appendix A.1.1.

730

731 Our GPT2-MoE model builds upon the GPT-2 architecture by incorporating Mixture-of-Experts
 732 (MoE) layers into the Transformer blocks. Each block consists of LayerNorm, causal self-attention,
 733 and an MoE feed-forward subnetwork, where the conventional MLP is replaced with eight experts,
 734 each implemented as a two-layer feed-forward network with GELU activation. For every token,
 735 the router selects the top-2 experts and assigns normalized weights through a softmax function.
 736 To ensure balanced utilization of experts, a load-balancing loss is added to the objective with a
 737 coefficient of 0.4. The overall model follows an autoregressive design with twelve Transformer
 738 layers, twelve attention heads, a hidden dimension of 768, and a maximum sequence length of 1024.
 739 Token and positional embeddings are used at the input, while the output head is weight-tied with the
 740 token embedding.

741

742 The training data is stored in memory-mapped binary format containing tokenized sequences for
 743 both training and validation. Each batch is constructed by randomly slicing fixed-length sequences,
 744 eliminating the need for padding or attention masks. The training objective combines the standard
 745 language modeling cross-entropy loss with the auxiliary load-balancing loss, while validation is
 746 performed solely on the language modeling component to provide a clean measure of generalization.
 747 Optimization is carried out using AdamW, with weight decay applied to weight parameters but
 748 excluded for biases and LayerNorm parameters. The learning rate starts from 6×10^{-4} , warms up
 749 for the first 2000 steps, and then decays following a cosine schedule to a minimum of 6×10^{-5} .
 Gradient clipping at 1.0 is applied to stabilize training. To achieve larger effective batch sizes, we
 adopt gradient accumulation over 40 steps by default, which scales automatically when distributed
 training is enabled. Training supports both float16 and bfloat16 mixed precision with automatic
 gradient scaling.

750

751 All Mixtral-MoE and Llama-MoE models are pretrained on the Penn Treebank (PTB)
 752 (Marcinkiewicz, 1994) and WikiText-2 (Merity et al., 2016) datasets. For the GPT-2-MoE models,
 753 we pretrain on OpenWebText (Gokaslan et al., 2019), a large-scale corpus designed to approximate
 754 the distribution of the original GPT-2 training data, in order to assess scalability under web-scale
 755 data. All pretraining experiments are conducted on the task of language modeling, where the objec-
 tive is to minimize the token-level cross-entropy loss with an additional load-balancing regularization
 term for MoE routing.

756
 757 Table 5: Ablation study on memory-related hyperparameters. Moderate values of the memory im-
 758 pact factor ($\alpha = 0.5$) and buffer size (128) yield the lowest PPL. Extremes at either end of these
 759 hyperparameters result in degraded performance, highlighting the necessity of a balanced configu-
 760 ration for optimal routing effectiveness.

Memory-related hyperparameters	Memory Impact Factor α				Buffer Size		
	0	0.2	0.5	0.8	64	128	256
PPL	74.48	73.82	69.68	74.02	75.64	69.68	71.32

761
 762 The choice of datasets is aligned with the scale of the models under consideration. PTB and
 763 WikiText-2 are relatively small dataset, which makes them suitable for medium-sized models, where
 764 training efficiency and rapid experimentation are prioritized. In contrast, larger GPT-2-MoE models
 765 require exposure to significantly more diverse linguistic patterns to realize their capacity. Therefore,
 766 we employ OpenWebText, a 40 GB corpus with web-scale coverage, to ensure that these models can
 767 fully exploit their parameterization and demonstrate scalability.

768
 769 In the comparative experiments, both the baseline models and those enhanced with Memory-Aware
 770 Routing (MAR) were trained under an identical load-balancing strategy, as specified in Appendix
 771 A.1.1. This ensures that any observed differences in performance can be attributed solely to the in-
 772 troduction of MAR rather than variations in routing regularization. For all MAR-augmented models,
 773 the buffer size was consistently fixed at 128, and the memory impact factor was set to 0.5, providing
 774 a stable configuration for evaluating the effectiveness of memory-guided routing.

775 A.1.3 EXPERIMENT ON THE FINE-TUNING PHASE

776
 777 For fine-tuning, we initialize with the open-source OLMoE 1B-7B model (Muennighoff et al., 2024)
 778 and conduct experiments with and without MAR across four representative downstream tasks. The
 779 datasets used for each task are summarized below:

- 780 • **Language Modeling:** Penn Treebank (PTB) (Marcinkiewicz, 1994). PTB contains ap-
 781 proximately one million words from the Wall Street Journal and is a widely used benchmark
 782 for evaluating language modeling performance. We use perplexity (PPL) as the evaluation
 783 metric.
- 784 • **Knowledge Application:** Massive Multitask Language Understanding (MMLU)
 785 (Hendrycks et al., 2021). MMLU covers multiple domains including humanities, science,
 786 and professional knowledge, testing the model’s ability to recall and apply factual information.
- 787 • **Commonsense Reasoning:** BIG-bench Hard (BBH) (Suzgun et al., 2022). BBH consists
 788 of challenging problems that require multi-step reasoning and knowledge beyond memo-
 789 rization, evaluating the model’s common-sense reasoning ability.
- 790 • **Mathematical Reasoning:** GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al., 2021).
 791 GSM8K is a collection of grade-school-level math word problems, while SVAMP evaluates
 792 the robustness and generalization of arithmetic reasoning.

793
 794 Each data set is pre-processed to be compatible with the OLMoE tokenizer, and standard train-
 795 validation splits are used. This setup allows us to systematically assess the impact of MAR on both
 796 general language modeling and task-specific reasoning performance.

797 A.1.4 ABLATION STUDY

798
 799 To further analyze the key design choices of Memory Aware Routing, we conduct ablation experi-
 800 ments from two perspectives: the influence parameter α of the interest distribution and the memory
 801 buffer size. The results are shown in Table 5.

802
 803 The ablation study is conducted on the Mixtral-MoE model with three MoE layers, each containing
 804 four experts. The experiments are performed on the PTB dataset (Marcinkiewicz, 1994), focusing on

810 language modeling. For consistency, the load balancing strategy and the load balancing weight are
 811 set as in Appendix A.1.1. All other model hyperparameters, such as hidden size, number of attention
 812 heads, and maximum sequence length, are kept identical to the base configuration. Training is
 813 performed on the same hardware setup as described in Appendix A.1.1, ensuring that comparisons
 814 reflect only the effect of the ablated components. This study aims to isolate the contribution of
 815 individual mechanisms within the Mixtral-MoE architecture and to quantify their impact on model
 816 performance.

817 We first examine the effect of α on model performance. When $\alpha = 0$, the model relies solely on
 818 instantaneous features, leading to severe pseudo-balance and insufficient expert specialization. As
 819 α increases from 0.2 to 0.5, the perplexity (PPL) decreases by 5%, indicating that incorporating
 820 moderate historical interest effectively breaks pseudo-balance and accelerates the convergence of
 821 expert specialization. The best performance is achieved at $\alpha = 0.5$, where instantaneous features
 822 and long-term preferences reach an optimal balance. However, further increasing α to 0.8 degrades
 823 performance by 6%, suggesting that excessive reliance on historical interests introduces expert “path
 824 dependence” and overfitting to past patterns, thereby weakening generalization ability.

825 Next, we investigate the impact of buffer size on modeling the interest distribution. With a small
 826 buffer (64), too few historical samples are retained, making the interest distribution sensitive to
 827 short-term fluctuations and leading to unstable expert specialization. At a buffer size of 128, his-
 828 torical and instantaneous information are better balanced: short-term noise is suppressed without
 829 introducing stale information, resulting in the best performance. When the buffer size increases to
 830 256, although more history is preserved, the interest distribution is diluted by outdated samples,
 831 reducing the model’s sensitivity to current inputs and ultimately degrading performance by approx-
 832 imately 2%.

833 In summary, the combination of moderate historical memory and instantaneous features is crucial
 834 for the effectiveness of MAR. In our experiments, the optimal configuration is achieved at $\alpha = 0.5$
 835 and a buffer size of 128. These findings validate the soundness of our design and further highlight
 836 that a proper balance between short-term features and long-term preferences is key to efficient expert
 837 specialization and stable model convergence.

838

839

840

841

A.2 MORE ANALYSIS

842

843

844

A.2.1 THE PSEUDO-BALANCE PHENOMENON

845

846

847 As depicted in Figure 6, the load-balanced model demonstrates significantly less sensitivity to ex-
 848 pert masking. Its perplexity remains low even when a considerable portion of its top experts are
 849 disabled, which indicates a high degree of redundancy. Conversely, the baseline model, which lacks
 850 load balancing, experiences a much steeper decline in performance. This confirms the successful
 851 specialization and non-interchangeability of its experts. Thus, these results provide direct evidence
 852 that expert balancing methods lead to substantial knowledge overlap.

853

854

855

856

857

858

859

860

To investigate the pseudo-balancing phenomenon, we compared the training dynamics of models
 with and without load balancing. Figure 7 indicates that without the load-balancing regularization,
 the routing network tends to activate only a small subset of experts, leaving the majority largely un-
 used and resulting in severe load imbalance. With the introduction of the load-balancing regularizer,
 Figure 8 shows that expert activations become more uniform, achieving an apparent global balance.
 However, this superficial balance impedes the formation of stable expert specialization, highlighting
 the inherent tension between expert-centered load balancing and expert differentiation—a funda-
 mental challenge in MoE training.

861

862

863

To quantify this effect, we measured the standard deviation of expert utilization rates, capturing the
 uniformity of each expert’s activation across all training tokens. Table 6 shows that without load bal-
 ancing, the expert utilization standard deviation is approximately 0.8, whereas adding the regularizer
 reduces it to around 0.2, demonstrating a significant improvement in expert usage uniformity.

Figure 6: Loss across varying ratios of disabled top-routed experts. Models without load balancing show greater sensitivity, suggesting that load balancing amplifies redundancy among routed experts.

Figure 7: Expert load distribution across training epochs in the model without LBL. Without LBL, the model tends to activate only a small subset of experts, and this imbalance becomes progressively more severe over the course of training.

A.2.2 EXPERT SELECTION OF MAR

Figure 9 illustrates that while standard load-balanced models show input assignments constantly oscillating between experts even late in training, models with MAR maintain stable expert assignments. This directly shows that MAR effectively solves the pseudo-balance problem.

A.2.3 EFFECTIVENESS OF MAR IN MAINTAINING BALANCE

We further analyzed the effectiveness of Memory-Aware Routing (MAR) in maintaining expert load balance on two additional base models: Llama-MoE and GPT2-MoE. The results, shown in Figure 10 and Figure 11, indicate that MAR also achieves stable and consistent expert utilization with a low standard deviation on these models.

For the evaluation metric, we also adopt the standard deviation of expert utilization rates to measure the degree of load balance across experts. As shown in Table 7, models with MAR maintain an expert utilization standard deviation of approximately 2.57. Although this value is slightly higher than that achieved by conventional load-balancing strategies, we argue that it more faithfully reflects the true distribution of the data. Forcing expert utilization to be perfectly uniform would result in some tokens being assigned to experts with inconsistent semantics, thereby introducing pseudo-balance. In contrast, the moderate deviation observed under MAR indicates that experts are specializing

Figure 8: Expert load distribution across training epochs in the model with LBL. Under the constraint of LBL, the model successfully balances the utilization of experts, leading to a more even load distribution.

Figure 9: Expert routing stability comparison between baseline Mixtral-MoE and Mixtral-MoE+MAR. This figure compares how tokens are routed to experts in the training epochs. The Baseline MoE shows unstable routing, as the same tokens are sent to different experts. In contrast, MAR MoE has a stable pattern, showing successful expert specialization.

according to the semantic characteristics of the data, which is essential for achieving meaningful specialization and avoiding artificial pseudo-balance.

A.2.4 EVALUATION OF MAR OVERHEAD

To substantiate our claim that MAR introduces negligible overhead, we provide a quantitative comparison of GPU memory usage and routing latency between LBL and LBL+MAR, as summarized in Table 8. The results indicate that MAR incurs only a minor increase in peak GPU memory (+0.3 GB) and routing latency (+0.8 ms), confirming that its computational overhead is minimal.

A.2.5 MEMORY BUFFER UPDATE STRATEGIES

We conducted additional experiments comparing FIFO, LRU, LFU, and RAND. Table 9 indicates that FIFO achieves nearly identical PPL to the strongest baselines and consistently ranks among the top two across datasets, while being substantially more efficient—approximately 2–3× faster than LRU/LFU. These findings suggest that FIFO provides the most favorable quality–efficiency trade-off in large-scale training.

Regarding the similarity metric, we adopt cosine similarity due to its scale-invariant property, which ensures more stable behavior in high-dimensional embeddings. Additionally, it incurs lower computational cost compared to Euclidean distance, aligning well with our efficiency-oriented setting. EMA-based, attention-weighted, or representational update schemes introduce additional computations—such as similarity evaluation, ranking, or sampling—at every forward pass. At our training scale, such complexity would substantially reduce throughput and is therefore impractical. Conse-

Figure 10: Expert load distribution across training epochs in the Llama-MoE+MAR model. Models with MAR exhibit stable and balanced utilization of experts, indicating the effectiveness of Memory-Aware Routing in mitigating expert collapse.

Figure 11: Expert load distribution across training epochs in the GPT2-MoE+MAR model. Models with MAR exhibit stable and balanced utilization of experts, indicating the effectiveness of Memory-Aware Routing in mitigating expert collapse.

quently, we employ the lightweight and effective FIFO strategy, as validated by our experiments.

A.2.6 EFFICIENT IMPLEMENTATION OF MEMORY-AWARE ROUTING

In the main text, updating each expert’s preference vector by aggregating features from its buffer has complexity $\mathcal{O}(Nd)$ per expert, where N is the buffer size and d is the hidden dimension. However, this computation can be optimized to $\mathcal{O}(1)$ per update using a running sum. Specifically, for expert i with buffer \mathcal{B}_i , let the current preference vector be

$$d_i = \frac{1}{|\mathcal{B}_i|} \sum_{h \in \mathcal{B}_i} h.$$

When a new token representation h_{new} is appended and the oldest entry h_{old} is evicted, the preference vector can be updated incrementally as

$$d_i \leftarrow d_i + \frac{1}{|\mathcal{B}_i|} (h_{\text{new}} - h_{\text{old}}),$$

1026

Table 6: Expert load standard deviation of Mixtral-MoE with LBL and without LBL.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

Method	Epoch 1	Epoch 2	Epoch 3	Epoch 4	Epoch 5	Epoch 6	Epoch 7	Epoch 8	Avg
Load Balance	0.0857	0.0696	0.0331	0.0484	0.0829	0.0500	0.0866	0.0500	0.0633
No Balance	12.00	15.65	16.35	19.71	19.16	22.04	24.63	27.60	19.14

Table 7: Expert load standard deviation of Mixtral-MoE without LBL, with LBL and with MAR. LBL is the standard load balancing loss, and MAR is our proposed Memory-Aware Routing. The results show that MAR significantly decreases the load standard deviation, indicating more equal expert utilization.

1038

1039

1040

1041

1042

1043

1044

1045

avoiding a full summation over the buffer. This ensures that each update has constant time complexity $\mathcal{O}(d)$, independent of the buffer size N , enabling scalable training even with very large memory buffers. Similarly, token-expert similarity computations remain $\mathcal{O}(Kd)$ per token, and no additional memory beyond the buffer itself is required. This efficient implementation allows MAR to be applied in large-scale experiments with long buffers without introducing significant training overhead.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081
1082
1083
1084
1085
10861087 Table 8: Comparison of LBL and LBL+MAR in terms of GPU Memory Usage and Routing Latency.
1088 Measured on NVIDIA RTX 4090, with batch size = 16. Peak GPU memory and average routing
1089 latency (average time per forward pass, in ms) are taken at the same number of training steps.1090
1091
1092
1093
1094
1095

Metric	LBL	LBL + MAR	Absolute change
Peak GPU memory (GB)	12.3	12.6	+0.3
Training Routing latency (ms)	7.8	8.6	+0.8

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
11091110 Table 9: Comparison of memory buffer update strategies. FIFO ranks among the top two strategies
1111 on both datasets while achieving substantially higher training efficiency (approximately 2–3× faster
1112 than LRU/LFU). Time is measured under the same number of training steps.1113
1114
1115
1116
1117
1118
1119
1120
1121

Dataset	Strategy	Loss	PPL	Time (min)
		FIFO	41.99	137.0
PTB	LRU	3.7371	41.98	313.8
	LFU	3.7601	42.95	302.0
	RAND	3.7507	42.55	150.4
WikiText-2	FIFO	3.8044	44.90	79.4
	LRU	3.8123	45.26	169.1
	LFU	3.8011	44.75	165.3
	RAND	3.8157	45.41	81.6

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133