Under review as a conference paper at ICLR 2026

FROM PSEUDO-BALANCING TO TRUE SPECIALIZA-
TION: MEMORY-AWARE ROUTING FOR MIXTURE-OF-
EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts(MoE) efficiently trains large models by using sparse activa-
tion to lower costs, selecting a few experts based on data characteristics. For
MoE, an unbalanced expert load will lead to routing collapse or increased com-
putational overhead. Existing methods commonly achieve an expert-centered bal-
ancing strategy to solve it, prioritizing equal utilization of experts over semantic
alignment between tokens and experts. However, this can lead to a pseudo-balance
phenomenon: To ensure expert load balancing, the same input is randomly routed
to different experts across training steps instead of the most matching one. It intro-
duces two critical issues: (1) Severe knowledge overlap among experts, resulting
in redundant representations and inefficient parameter utilization. (2) Difficulty
in forming and stabilizing expert specialization. These issues limit the scalability
of models, especially large language models(LLM). To address these limitations,
we introduce Memory-Aware Routing (MAR), a training-phase approach that en-
hances existing load-balancing strategies. By equipping each expert with a mem-
ory buffer, our method explicitly models their long-term preferences, allowing
historical experience to guide routing. This ensures that tokens are routed more
consistently to compatible experts, mitigating the pseudo-balance problem while
maintaining global load balance and fostering expert specialization. Experimental
results show that Memory-Aware Routing improves expert specialization by 35%
and downstream accuracy by 2%-25%, doubles parameter efficiency, and matches
baseline performance with only half the experts (one-quarter of the parameters)E]

1 INTRODUCTION

In the domain of large-scale deep learning, Mixture-of-Experts (MoE) models have emerged as
a powerful paradigm (Jacobs et al., [1991bj Roller et al., [2021} |Zhou et al.| 2022; Jordan & Jacobs,
1994b; |Lepikhin et al.,[2020). By leveraging a gating mechanism to dynamically route computations
to a subset of expert subnetworks (Fedus et al., 2022} Jiang et al.l |2024), MoE successfully scales
model capacity while maintaining a manageable computational cost (Dai et al., 2024; |Shen et al.,
2024; |Wei et al.l [2024; Jiang et al.l 2024). However, in the absence of explicit constraints, MoE
training often suffers from severe load imbalance, where a few experts are overly activated while
others remain underutilized (Lepikhin et al., 2020; Fedus et al., 2022} [Zoph et al., [2022; Qiu et al.}
2024). This imbalance leads to inefficient resource usage and hinders effective training of all experts.

To mitigate this issue, a variety of expert-centered balancing strategies have been proposed. GShard
(Lepikhin et al., 2020) improved upon earlier work (Shazeer et al.,2017b)) by introducing the differ-
entiable auxiliary loss L,,x, which has since been widely adopted (Fedus et al., 2022} [Jiang et al.,
2024; [Lieber et al.l [2024; Mosaic Research Team| 2024). On larger scales, Zoph et al.| (2022)) in-
troduced the z-loss L, to enhance training stability. Related methods (Shazeer et al., [2017aj |Dai
et al., [2024; |Q1u et al.| 2025)) advanced load-balancing with soft constraints, dynamic reallocation,
and multi-loss routing, while some explored auxiliary-loss-free strategies (DeepSeek-All 2024).

Although expert-centered load-balancing methods effectively equalize expert utilization, they over-
look semantic alignment between tokens and experts during routing. This oversight leads to the

'Our code is available atht tps: //anonymous . 4open.science/r/MAR-MoE-F7D1/

https://anonymous.4open.science/r/MAR-MoE-F7D1/

Under review as a conference paper at ICLR 2026

. , \ Baseline MoE vs MAR-MoE
Experts | BaselineMoE ! | MAR-MoE *

m - E[OOO]E E[OOO]E ﬁExpens, 600
888 [22]:(OO0)ivs {{elele)} o

Jq
o
o

o
o
o
KED (higher is better)

/g\ I

(o2}
(=]

(by 32.2%) o

PPL (lower is better)
S
o

> Router = 1 : v 1 X
OOO DII /?\3 :[OOO]I = :[OOO]: PPL-Baseline | 1400
O O O X : | a0 ° i:g-h;:iline
— LA :[OOO]I :[OOO]: | % KED-MAR 300
_______________ . ! e
Tokens: QOO0 ®) PseJd; EaTa;c?n; - © ;r;e_sse-cia_li;a;io 0Expert Num=4 Expert Num=8

Figure 1: Pseudo-Balancing Vs. True Specialization And Results. Left: Pseudo-balancing equalizes
load but misaligns semantics, causing expert overlap and impeding specialization; true specializa-
tion co-routes similar tokens, yielding distinct expertise and less redundancy. Right: MAR-MoE
augments load-balanced Llama-MoE (baseline MoE) with Memory-Aware Routing, achieving 50%
fewer experts (25% fewer parameters) without loss and a 35% increase in specialization (KED).

emergence of the pseudo-balance phenomenon. In practice, to maintain balanced usage, identical
tokens may be randomly routed to different experts across training steps, preventing their stable as-
signment to the most semantically appropriate expert. Figure [I] provides a high-level illustration of
this phenomenon, and we formally define it below.

Let X denote the input data space, and & = {E}, Fo, ..., Ex} the set of N experts. A standard
MoE model employs a routing function R(z) that assigns an input token x € X’ to one or more
experts. Formally, we define a pseudo-balanced routing function Rpseudo (z,t) which, for a token x
at the training step ¢, assigns it to an expert £; € £ primarily according to load-balancing constraints
rather than token content. Let p(E; | x,t) denote the probability of routing token z to expert E; at
step ¢. Under pseudo-balance, this probability satisfies

1
p(E1|{E,t)%N, VEZG(S, Vo € X.

As a result, the mapping between samples and experts remains unstable, preventing experts from
accumulating experience on consistent data distributions. This instability causes expert learning to
resemble enforced sharing rather than dedicated specialization, which in turn leads to substantial
functional overlap across experts and hinders the development of true specialization. Such redun-
dancy not only wastes parameters but also ultimately constrains the scalability of MoE models.

The core challenge in addressing this issue lies in the inherent trade-off between expert-centered load
balancing and expert specialization. Enforcing strict balancing introduces excessive randomness that
undermines specialization, whereas relaxing the balancing constraint risks expert collapse.

To address these limitations, we propose Memory-Aware Routing (MAR), a novel mechanism that
augments load balancing with memory-guided routing. The MAR introduces memory buffers to ex-
plicitly capture the long-term preferences of each expert, guiding the model to avoid assigning sim-
ilar information to different experts and effectively mitigating knowledge overlap. In addition, we
define an expert—token matching score, which quantifies the similarity between an input token and an
expert’s preference vector. This score promotes consistent routing of tokens to semantically aligned
experts, fostering the emergence and consolidation of expert specialization. By maintaining global
balance while transitioning from uniform allocation to differentiated routing, MAR mitigates the
pseudo-balance problem and encourages both functional diversity and stable specialization across
experts. The significant performance improvements achieved by MAR are highlighted in Figure [T}
Notably, MAR applied only during training without incurring extra overhead at inference time.

In summary, our main contributions are as follows:
* We first reveal the pseudo-balance phenomenon, where load-balancing mechanisms reas-

sign the same input to different experts across training steps, hindering specialization and
wasting parameters, and ultimately limiting model scalability.

Under review as a conference paper at ICLR 2026

* We propose Memory-Aware Routing, where expert-specific memory buffers model long-
term preferences to guide routing, ensuring consistent token-to-expert assignment, mitigat-
ing pseudo-balancing, and promoting functional diversity and stable specialization.

* We conduct extensive evaluations. The experiments illustrate our method reduces the num-
ber of experts by 50% and the total parameters by one quarter without sacrificing perfor-
mance, resulting in lower computational cost, and it enhances expert specialization by 35%
and yields 2%—-25% accuracy gains across multiple tasks.

2 RELATED WORK

2.1 MIXTURE OF EXPERT

Mixture-of-Experts (MoE) traces back to the statistical learning literature, where Jacobs et al.
(1991a); Jordan & Jacobs| (19944a) introduced (hierarchical) mixtures trained with EM to encour-
age specialization among subnetworks. In modern deep learning, |Shazeer et al.| (2017c) revived
MOoE at scale with sparsely-gated layers that route each token to a small subset of experts, achiev-
ing large capacity without proportional compute. Building on this, |Du et al.| (2022) demonstrated
trillion-parameter MoE language models with strong few-shot performance at lower training en-
ergy than dense baselines. Recent open models also validate MoE’s quality/efficiency in practice.
Mixtral 8 x 7B |Jiang et al.|(2024)) attains strong results with two-expert routing per token; DBRX em-
ploys fine-grained MoE with smaller experts to improve Pareto efficiency Mosaic Research Team
(2024). DeepSeek-V2 DeepSeek-Al et al.| (2024) combines architectural changes (e.g., MLA) with
fine-grained MoE to reduce active parameters and KV cache costs while maintaining performance.

2.2 LOAD BALANCING

Unconstrained gating in MoE tends to overuse a few experts, leaving others idle. To counter this,
Shazeer et al.|(2017b) introduced the importance 10ss Limportance and load loss Ljgaq, Which [Lep-
1ikhin et al.| (2020) distilled into a differentiable auxiliary loss L,ux. Its effectiveness has been vali-
dated by |[Fedus et al.| (2022) and widely adopted in practice (Jiang et al.| 2024 |Lieber et al.| 2024;
Mosaic Research Team| 2024). Zoph et al.| (2022) identified limitations at larger scales, prompt-
ing the introduction of the z-loss L, to improve training stability. In related efforts, [Shazeer et al.
(2017a) applied soft constraints with auxiliary losses and stochastic smoothing for differentiable
load evaluation; Dai et al.| (2024) improved utilization via load-balancing losses, dynamic reallo-
cation, Residual-MoE, and cross-GPU parallelism; |Q1u et al.| (2025) introduced multiple auxiliary
losses to build balanced routing; and DeepSeek-All (2024) explored an auxiliary-loss-free strategy
with expert-specific biases. While these approaches mitigate imbalance, they still suffer from the
pseudo-balance problem, where identical inputs are inconsistently routed across steps, leading to
unstable mappings, knowledge redundancy, and limited specialization.

3 THE PSEUDO-BALANCE PHENOMENON

In Mixture-of-Experts (MoE) training, load-balancing strategies are commonly employed to prevent
overuse of certain experts while leaving others underutilized. However, these strategies often give
rise to the pseudo-balance phenomenon, wherein identical inputs are forced to be routed to differ-
ent experts rather than consistently assigned to the most semantically aligned ones. This effect is
inherent to the load-balancing loss itself:

N
Ebalance =« Z Load(l) DPis

i=1

where Load(7) denotes the proportion of tokens assigned to expert 4 in the current batch, and p; rep-
resents the average gating probability allocated to expert i. The gradients of this loss, 0L/0p; = af;
and OL/0f; = ap;, create a symmetric feedback mechanism that penalizes any expert receiving
more tokens or having a higher routing probability. The loss is minimized at the uniform fixed point
fi = pi = 1/E, analytically enforcing equal usage across experts. To rigorously examine the re-
sulting pseudo-balance phenomenon, we design experiments from two complementary perspectives:
training-time expert selection and post-training expert specialization.

Under review as a conference paper at ICLR 2026

MoE with Load Balancing MoE without Load Balancing

Token Index

Epoch 4 5 6 8 Epoch 4 5 6 7 8
[Expert 0 Expert 1 [Expert 2 W Expert 3 W9 Expert 4 Expert 5 Expert 6 [Expert 7
(a) (b)

= |- Avg Stability: 23.5% | 200] Avg Stability: 74.5% |

2 200 ' ‘ ' E

9] H

x~ H

K] .

° 100 100

)

a

S

=}

0 20 40 60 80 100 0 20 40 60 80 100

Stability (%) Stability (%)
(c) (d)

Figure 2: Experimental Validation of the Pseudo-Balance Phenomenon. Subfigures (a) and (b) show
expert assignments with and without load balancing: the balanced model keeps switching experts,
while the baseline stabilizes earlier. Subfigures (c) and (d) measure assignment consistency across
epochs, showing a 68% drop under load balancing.

3.1 EXPERT SELECTION DYNAMICS DURING TRAINING

To understand how load balancing impacts the routing process, we first analyzed the stability of
expert assignments throughout the training. Our hypothesis was that a lack of stable assignments
would prevent experts from specializing. We compared a model using a load-balancing strategy
with a baseline model without one. As shown in Figure(a) and (b), even in later stages of training,
when routing is expected to have converged, the model with load balancing still shows frequent
and random switching of the same inputs across different experts. In stark contrast, the baseline
model achieves a stable and consistent assignment for a given input much earlier in training. The
experimental setup details are provided in the Appendix [AT.1]

For a quantitative assessment of this instability, we measured the consistency of expert assignments
across different epochs for the same input samples. Our results, illustrated in Figure 2| (c) and (d),
reveal a dramatic 68% drop in assignment consistency for the load-balanced model compared to
the baseline. This shows that expert-centered load balancing methods significantly undermine the
determinism of routing decisions, preventing experts from accumulating consistent experience and
thereby hindering the emergence of stable specialization.

3.2 POST-TRAINING ANALYSIS OF EXPERT SPECIALIZATION

The routing instability we observed during training has a direct impact on the model’s final state: a
high degree of knowledge redundancy among experts. Since multiple experts are repeatedly forced
to handle the same type of input, their learned functional representations converge, leading to sig-
nificant overlap and reduced parameter efficiency.

To validate this redundancy, we adopt the “expert disabled” experiment proposed by
(2024). In this test, we progressively disabled a varying proportion of top-rank experts and mea-
sured the resulting change in perplexity (PPL). The core idea is that if the model performance re-
mains largely unaffected after disabling experts, it implies high functional redundancy. Conversely,
a steep drop in performance indicates clearer specialization, as removing a unique expert’s contri-
bution would have a greater impact.

As depicted in Appendix [A.21] the model with load balancing exhibits far less sensitivity to expert
masking. The perplexity remains relatively low even when a significant portion of its top experts
are disabled, demonstrating a high degree of redundancy. In contrast, the baseline model without

Under review as a conference paper at ICLR 2026

_____________ N
] v J + v
T Ly e Iy_2 Tn_1 Xy = Memory-aware
B = Adjustment
Router o -

1
1
1
1
Original Routing logits :
1
1
1
1
1

(21,22, Ty 2,2y —1,2]

|

Expert-Token Matching Scores
(Y1,Y25 YN —2,Yn —1,Yn]

- - —

1

1 [}

1 |

1 1

1 1

1 1

1 l 1

Expert-Token | 1
i 1 1
== o
é@ ______________________] ! !

1 |

] "’ 1 1

1 1

1 1

Figure 3: Overall framework of MAR. Unlike vanilla MoE, which relies solely on router logits and
Top-k selection, MAR introduces an expert—token matching step to better align tokens with suitable
experts during training. Each expert maintains a memory buffer that derives a preference vector
capturing long-term tendencies. Token representations are compared against these vectors, and the
resulting matching scores are fused with the original logits through an interest-aware adjustment to
form new routing logits. Final expert selection is determined by Top-k. This mechanism ensures
consistent and semantically aligned token assignments while preserving global balance.

load balancing shows a much steeper performance degradation, confirming that its experts have
successfully specialized and are not interchangeable. These results provide direct evidence that
balancing methods cause substantial knowledge overlap among experts.

Our findings indicate that although expert-centered balancing strategies achieve a superficial global
balance, they create a pseudo-balance phenomenon, which arises from the increased randomness in
routing. By forcing identical inputs to be assigned to different experts, this effect gives rise to two
critical problems: a high degree of knowledge overlap and a failure to achieve stable specializa-
tion. Consequently, the core advantages of MoE—parameter efficiency through specialization—are
diminished, fundamentally restricting the model’s scalability.

4 MEMORY-AWARE ROUTING: TOWARDS TRUE SPECIALIZATION

In essence, the central question is how we can transition from pseudo-balance to true expert special-
ization without losing the benefits of load balancing? To tackle this challenge, we introduce a novel
approach: Memory-Aware Routing (MAR). The overall framework of Memory-Aware Routing is
illustrated in Figure [3] To address severe knowledge overlap among experts, MAR introduces a
memory buffer that stores representations of recently processed tokens. By aggregating these histor-
ical representations, each expert can maintain a long-term preference vector, which guides routing
decisions and prevents multiple experts from redundantly learning the same information. To form
and consolidate expert specialization, we propose the expert—token matching score, defined as the
similarity between an incoming token and an expert’s preference vector. During routing, this score
is combined with the original routing score through weighted fusion, encouraging input to be con-
sistently assigned to semantically aligned experts, therefore promoting expert specialization.

4.1 MEMORY BUFFER

In our framework, each expert is equipped with an independent memory buffer that stores the rep-
resentations of tokens it has recently processed. Let the number of experts be K and the hidden
dimension be d. The memory buffer of the i-th expert can be expressed as

B ={n",n? . nM}, i=1,... K,

where h,l(j) € R? denotes the representation of a token routed to the expert 4, and N is the buffer
capacity. To maintain its representational freshness, the buffer is updated with a FIFO strategy:
Each newly routed token is appended, and once the buffer is full, the earliest entry is discarded. This

Under review as a conference paper at ICLR 2026

mechanism ensures that the stored vectors consistently reflect the recent routing history of the expert,
while preventing outdated information from dominating. Also, FIFO is a straightforward queue
operation with negligible computational cost, enabling the model to update its memory efficiently
during training without becoming a performance bottleneck.

By aggregating the buffered feature vectors, we obtain a preference vector for expert ¢:

di:Bi > b, dieR%
| i|h€Bi

This preference vector is dynamically updated during training, effectively recording the types of
information the expert has processed and guiding future routing decisions. This ensures each expert
can specialize in the tasks its most proficient at, fundamentally reducing knowledge overlap among
experts and enhancing the overall specialization and performance of the entire multi-expert system.

4.2 EXPERT-TOKEN MATCHING SCORE

To promote expert specialization, we propose the Expert-Token Matching Score, which explicitly
measures the compatibility between each token and the long-term preferences of experts. Given an
input token representation 2 € R, the gating network first computes a base score for each expert:

base

5

= Router(z);, i=1,...,K,

To encourage experts to develop differentiated functional preferences, we define the Expert-Token
score as the cosine similarity between the token and the expert’s preference vector d;:

o Ted;

el

If d; is a zero vector, the similarity is defined as 0. The final routing score is then obtained by
combining the two components through weighted fusion:

s?‘mh = cos(x, d;)

base match
S; =8; ta-s; s

where the hyperparameter o € [0, 1] controls the relative influence of long-term preferences on
the routing decision. Based on the final scores s;, the model selects the top-k experts for forward
computation, and the corresponding token representations are subsequently written into their mem-
ory buffers to update the expert preference vectors. In this way, routing decisions no longer rely
solely on instantaneous token features but also incorporate historical preferences, ensuring that to-
kens are directed to semantically aligned and specialized experts. This design effectively alleviates
the pseudo-balance phenomenon and fosters functional diversity and stable expert specialization.

4.3 COMPLEXITY AND EFFICIENCY

MAR is applied only during training and does not introduce additional trainable parameters. Up-
dating each expert’s preference vector aggregates features from its buffer with complexity O(Nd)
(N buffer size, d: hidden dimension), and computing token—expert similarities during routing costs
O(Kd) per token (K: number of experts), preserving scalability without introducing training bot-
tlenecks. Moreover, a quantitative comparison of peak GPU memory usage and routing latency
between LBL and LBL+MAR (reported in Appendix indicates that the additional training-
time overhead introduced by MAR is minimal. At inference, expert—-token matching is disabled and
preference vectors are not used, so routing reverts to standard top-k selection based on gating logits
with identical FLOPs, memory and latency as a vanilla MoE. Crucially, smooth training-time up-
dates of the preference vectors stabilize routing and reduce token oscillation across experts, fostering
consistent specialization.

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUPS
5.1.1 MODEL ARCHITECTURE AND TRAINING SETTINGS

‘We conduct experiments on four representative MoE architectures: Mixtral-MoE (Jiang et al.|2024)),
LLaMA-MoE (Zhu et al.| [2024), GPT2-MoE (Lagler et al.;,2013)), and OLMoE (Muennighoft et al.,

Under review as a conference paper at ICLR 2026

17518 - LoadBalance % - LoadBalance 800", -=*- LoadBalance 800 § -~ Load Balance
‘\‘“\‘ —=— Load Balance + MAR } —=— Load Balance + MAR \% —*— Load Balance + MAR |\ —=— Load Balance + MAR
\‘ —— Convergence threshold "\ —— Convergence threshold ‘\\ Convergence threshold —— Convergence threshold
150{ | 1501 600| |} 600
- \ N ‘\‘\ \\\\ \y
125 |\ Iy \\ \
o \ R 400 \ 4001 \}
*+14.3% faster \\\ +40.0% faster W% +20.0% faster \& +11.1% faster
100 100\ ‘/ \\ N,
\‘:;-;x& Ll 200 \\.\: / 2000w l
75 Ty i s i S — Y
123456738 2 4 6 8101214 2 4 6 8 1012 2 4 8 10 12
Epoch Epoch Epoch Epoch

(a) (b) (c) (d)

Figure 4: Perplexity convergence of Mixtral-MoE and Mixtral-MoE+MAR during training. Experi-
ments are conducted on PTB with 4 experts (a) and 8 experts (b), and on WikiText-2 with 4 experts
(c) and 8 experts (d). Models with MAR achieve faster PPL reduction within the same number
of training steps and reach stable performance in fewer iterations, demonstrating that MAR lowers
training cost and accelerates convergence.

30 Epoch 1 s Epoch 2 N Epoch 3 s Epoch 4

X X X X

2 2 2 2

@ 20 © © ©

14 o 14 14

c c c c

€10 2 2 B

o o O o

[[[} [

© o © ©

23 %] %] %]

E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8

Expert Expert Expert Expert

30 Epoch 5 . Epoch 6 s Epoch 7 . Epoch 8

X X X X

2 2 2 2

© 20 © © ©

14 o 14 14

c c c c

€10 2 2 2

o o O o

< 2 Q2 <

[[[[

23 %] %]]

E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8

Expert Expert Expert Expert

Figure 5: Expert load distribution across training epochs in the Mixtral-MoE+MAR model. Models
with MAR exhibit stable and balanced utilization of experts, indicating the effectiveness of Memory-
Aware Routing in mitigating expert collapse.

2024). For GPT2-MOoE, all FFN layers in Transformers (Vaswani et all, [2017) are replaced with
MoE layers. To comprehensively evaluate the effectiveness of the Memory-Aware Routing,we con-
duct experiments from two perspectives: the pretrain phase and the fine-tuning phase. In the pretrain
phase, we evaluate whether MAR could overcome parameter redundancy caused by the expert re-
dundancy. In the fine-tuning phase, we further verify the performance of the downstream tasks.

Unless noted, all MoE models with load balancing follow the predominant entropy-based load-
balancing strategy (Lepikhin et al., 2020} [Fedus et all, [2022). Each MoE layer has 8 experts (hid-
den size 512) with top-2 routing (Jiang et al.l [2024); the load-balancing loss weight is 0.4. In
MAR models, each expert keeps a memory buffer of 128 with a memory coefficient 0.5. We use
GPT2Tokenizer (max length 2048), AdamW (Loshchilov & Hutter, 2017) with gradient accumula-
tion and a linear schedule, and early stopping on validation loss. Experiments run on 5xRTX 4090
and 2xL20 GPUs. Full architectural and hyperparameter details are in the Appendix [AT]

For the pre-training stage, we adopt different datasets for different models. Mixtral-MoE, LLaMA-
MoE and GPT2-MoE (with 3 MoE layers) are trained on PTB (Marcinkiewicz},[1994), and Wikitext-
2 2016), while GPT2-MoE (with 12 MoE layers) is pre-trained on OpenWebText
(Gokaslan et al. [2019). For fine-tuning, we use the OLMoE 1B-7B model (Muennighoff et al.,
2024])) and evaluate it on a suite of downstream datasets covering language modeling, commonsense
reasoning, and mathematical reasoning.

5.1.2 EVALUATION

Under review as a conference paper at ICLR 2026

Table 1: Perplexity (PPL) and Key Expert Dependency (KED) of Mixtral-MoE, Llama-MoE, and
GPT2-MoE with 3 MoE layers across different datasets and expert numbers. Memory-Aware Rout-
ing (MAR) consistently reduces PPL and improves KED compared to vanilla load balancing loss
(LBL), highlighting both parameter efficiency and scalability.

PTB dataset WikiText-2 dataset
Model
Num=4 Num=8 Num=4 Num=8
PPL(}) KED(t) PPL(}) KED(t) PPL(}) KED() PPL(]) KED(1)
Mixtral-MoE Model
LBL 74.48 105.32 72.33 129.24 81.37 91.89 78.25 137.64
LBL+MAR 69.68 152.95 69.43 186.72 72.96 143.31 72.18 172.30
Gain (%) -6.37% +45.11% -4.03% +44.48% -1033% +5598% -1.78% +25.17%
Llama-MoE Model
LBL 59.34 103.86 56.88 157.31 76.50 242.97 67.38 510.45

LBL+MAR 45.18 168.08 44.81 205.29 51.86 289.20 50.97 662.53
Gain (%) -23.85% +61.82% -21.23% +30.54% -32.20% +19.03% -2435% +29.81%

GPT2-MoE Model

LBL 62.10 98.45 58.75 145.60 80.25 210.33 70.10 450.12
LBL+MAR 54.88 140.72 51.23 195.87 68.90 265.44 62.15 620.50
Gain (%) -11.63% +4290% -12.81% +34.59% -14.14% +26.17% -11.29% +37.87%

We assess our method using perplexity P for pre-training and task-specific metrics (e.g., accuracy)
for downstream tasks. We further introduce Key Expert Dependency (KED) to quantify expert spe-
cialization. Following |Dai et al.| (2024), models with lower expert redundancy are more sensitive
to disabling their most-routed experts. Let IV denote the total number of experts and n the mini-
mum number of experts that must remain active during routing (e.g., n = 2 for top-2). For each
k=1,..., N —n, we sequentially disable the k top-routed experts and record the resulting perplex-
ity P(k), with P(0) denoting the original perplexity. We then define

N—n

_ 1 P(k) — P(0)
KED_N_n kZ:l - .

Higher KED indicates stronger reliance on a small subset of experts, whereas lower KED suggests
more complementary specialization across experts. Baselines use standard load-balancing routing,
while our method applies MAR. All runs use identical hyperparameters and optimization.

5.2 MAIN RESULTS
5.2.1 PRE-TRAINING STAGE

On the base models Mixtral-MoE, LLaMA-MoE and GPT2-MoE (with 3 MoE layers), we conduct
comparative experiments with and without MAR. We record the expert selections for each training
epoch. As shown in Appendix in models with standard load balancing, the same inputs
continue to oscillate between different experts even in the later stages of training, whereas models
with MAR exhibit stable expert assignments. This indicates that MAR effectively alleviates the
pseudo-balance phenomenon during training. See Appendix [A.1.2]for experimental settings.

We further compare convergence speed between the two settings. As illustrated in Figure @] our
MAR models achieve an average PPL reduction of 5% to 20% greater than the baseline model over
the same number of training steps. It also reached stable performance in approximately 20% fewer
iterations. This demonstrates that MAR lowers training cost and accelerates convergence.

We additionally investigated the effectiveness of MAR in preserving expert load balance during
training. To this end, we visualize the distribution of expert load across epochs, as shown in Figure[5
The results demonstrate MAR effectively supports a balanced use of experts, avoiding the collapse
observed in the absence of load balancing methods. More detalis are presented in Appendix

Under review as a conference paper at ICLR 2026

Table 2: Performance of applying MAR on top of different load-balancing strategies. ‘Global Batch
LBL’ refers to Qiu et al.| (2025). ‘Aux Free’ refers toWang et al|(2024). ‘Lo+Lv’ refers to |Guo
et al.[(2025). ‘SimBal’ refers to [Omi et al.| (2025). MAR consistently reduces PPL and improves
KED compared to each original load-balancing loss. Gains indicate improvement of MAR over the
baseline: PPL decrease or KED increase are shown in red; deterioration would be shown in blue.

PTB dataset WikiText-2 dataset
Mixtral LLaMA Mixtral LLaMA
PPL(}) KED(1) PPL(}) KED(1) PPL(]) KED() PPL(l) KED(T)
Global Batch LBL ~ 70.42 160.51 4225 188.37 73.34 168.32 55.03 535.21

Method

+ MAR (Ours) 67.79 217.05 40.74 236.91 70.44 192.23 49.66 688.33
Gain (%) -3.63% +56.54% -1.51% +4854% -290% +2391% -537% +153.12%
Aux Free 70.83 154.03 42.21 189.41 73.56 166.73 54.06 601.54
+ MAR (Ours) 67.52 22598 41.28 243.24 70.01 198.24 50.56 669.29
Gain (%) -331% +71.95% -093% +53.83% -3.55% +31.51% -3.50% +67.75%
Lo+Lv 71.95 141.48 42.11 167.55 76.12 149.13 54.44 595.21
+ MAR (Ours) 68.98 198.67 41.77 214.43 71.97 183.66 50.07 674.86
Gain (%) 297% +57.19% -034% +46.88% -4.15% +34.53% -437% +79.65%
SimBal 72.30 139.59 42.02 176.87 77.07 145.75 54.31 595.95
+ MAR (Ours) 69.01 191.88 40.54 22192 71.24 188.50 50.03 679.04
Gain (%) -3.29% +5229% -148% +45.05% -5.83% +42.775% -4.28% +83.09%
Shared Experts 71.64 159.29 36.72 23524 73.98 172.64 40.32 710.32
+ MAR (Ours) 69.32 205.31 36.25 254.57 69.96 212.39 39.50 714.82
Gain (%) -2.32% +46.02% -047% +1933% -4.02% +39.75% -0.82% +4.50%

Table 3: Perplexity (PPL) and Key Expert Dependency (KED) of GPT2-MoE with 12 MoE layers
using 8 and 16 experts. Incorporating MAR on top of the load balance loss (LBL) consistently
reduces PPL by 8.6%-9.4% and improves KED by 31.2%-47.1% compared to the vanilla LBL.

Num=8 Num=16
Model
PPL({) KED(1) PPL(}) KED(1)
GPT2-MoE +LBL 52.45 91.89 48.24 124.26

GPT2-MoE +LBL+MAR 47.94 (-8.6%) 135.14 (+47.1%) 43.71(-9.4%) 163.05 (+31.2%)

For model performance, we evaluate perplexity (PPL) as the primary metric and Key Expert De-
pendency (KED) to measure expert specialization. Table [T|shows that MAR substantially improves
expert specialization, resulting in an average gain of 35% in KED. In both base models, MAR
achieves superior performance while using only half the number of experts (reducing total param-
eters by 25%). This highlights simultaneous gains in parameter efficiency and training efficiency.
Furthermore, we compare MAR with other load-balancing strategies (Q1u et al.l 2025; Wang et al.,
2024;|Guo et al.l [2025;|Omi et al.| [2025)), including shared-expert architectures (DeepSeek-Al et al.,
2024), and Table [2|demonstrates that MAR provides consistent improvements across all baselines.

To examine scalability, we further apply MAR to GPT2-MoE with 12 MoE layers, whose param-
eter count is four times that of GPT2-MoE with 3 MoE layers, pre-trained on the OpenWebText
dataset (Gokaslan et al., 2019). Table [3|confirm the same trends, suggesting that MAR consistently
enhances expert specialization and parameter utilization across different model scales.

5.2.2 FINE-TUNING STAGE

For fine-tuning, we initialize with the open-source OLMoE 1B-7B model (Muennighoff et al.|[2024)
and conduct experiments with and without MAR across four representative downstream tasks: lan-
guage modeling, knowledge application, commonsense reasoning, and mathematical reasoning.
Specifically, language modeling is evaluated on the PTB dataset (Marcinkiewicz, [1994) using per-
plexity (PPL) as the metric. Knowledge application is measured on MMLU (Hendrycks et al.|

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of OLMoE 1B-7B with and without Memory-Aware Routing
(MAR) on PTB, MMLU, SVAMP, BBH, and GSM8K. With MAR, PPL decreases by 8.9% and ac-
curacy improves by 2.2%-25.4% over load balance, demonstrating consistent and substantial gains
across diverse benchmarks.

Model PTB MMLU SVAMP BBH GSMB8K
PPL({) Acc(T) Acc(T) Acc(T) Acc(T)
LBL 17.02 43.06 10.60 17.12 7.66

LBL+MAR 1549 (-8.9%) 44.08 (+2.2%) 13.30 (+25.4%) 18.16 (+6.07%) 8.26 (+7.8%)

2021), while commonsense reasoning is assessed with BBH (Suzgun et al., [2022)). For mathemati-
cal reasoning, we adopt GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al.| 2021) as evaluation
benchmarks. Further details are provided in Appendix [A.T.3]

Table |4| demonstrate that models with MAR consistently outperform their counterparts, achieving
performance improvements of 2%-25% across all task, further validating the effectiveness of the
proposed method in practical applications.

5.3 ABLATION STUDY

To further analyze the key design choices of Memory Aware Routing, we conduct ablation exper-
iments from two perspectives: the influence factor of memory « and the memory buffer size. The
results, presented in Appendix [A.T.4] demonstrate that setting the influence factor of memory o to
0.5 optimally combines current and long-term preferences, effectively breaking pseudo-balance and
accelerating expert specialization. However, an excessively high « leads to a decline in performance
due to “path dependence” and overfitting to past data. Similarly, an optimal buffer size of 128 is cru-
cial; a buffer that is too small leads to instability, while a buffer that is too large introduces outdated
information, ultimately degrading the model’s generalization ability. These findings validate that
achieving a proper balance is key to efficient expert specialization and stable model convergence.

In addition, we perform a more detailed comparison of different memory—buffer update strate-
gies and alternative formulations of the expert—token matching score (results provided in Ap-
pendix [A.2.5). The analysis demonstrates that FIFO achieves an optimal balance between effec-
tiveness and computational efficiency.

6 CONCLUSION

In this work, we first reveal a key limitation of expert-centered load balancing in MoE models: the
pseudo-balance phenomenon, where the same input is routed to different experts across training
steps for global balancing, rather than consistently to the most semantically aligned expert. This
leads to high functional overlap among experts and hinders the formation of distinct specialization,
thereby limiting the scalability of MoE models. To address this, we propose Memory-Aware Rout-
ing (MAR), which augments traditional load balancing with memory-guided routing. MAR ensures
that tokens are consistently assigned to the most compatible experts, maintaining balanced usage
while improving assignment stability and rationality, effectively mitigating the pseudo-balance is-
sue. MAR increases expert differentiation by 35%, allows halving the number of experts without
performance loss (improving parameter utilization by 25%), and achieves 2%-25% performance
gains across downstream tasks. Our findings show that effective routing is the key to promoting
true expert specialization. A promising area for future research is to explore how to amplify this
specialization through improved routing, ultimately leveraging the core benefits of MoE models.
Moreover, MAR can facilitate MoE compression and expert pruning by stabilizing token-to-expert
assignments and promoting expert differentiation, enabling more efficient model reduction.

7 REPRODUCIBILITY STATEMENT

To support reproducibility, we document architectures, hyperparameters, and training procedures in
the main text and Appendix [A.1.2} preprocessing steps, evaluation metrics, and additional results
are provided in Appendices[A.2.3]and[A.T.3] An anonymous code and configuration repository is
linked in the main text to enable exact replication.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

DeepSeek-Al. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Deng, Chong Ruan, Damai Dai, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Kevin Robinson, Kathleen Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu, Zhifeng Chen, and
Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts. In Proceedings
of the 39th International Conference on Machine Learning (ICML), volume 162 of Proceedings
of Machine Learning Research, pp. 5547-5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022. URL https://jmlr.org/papers/v23/21-0998.htmll

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Hongcan Guo, Haolang Lu, Guoshun Nan, Bolun Chu, Jialin Zhuang, Yuan Yang, Wenhao Che,
Sicong Leng, Qimei Cui, and Xudong Jiang. Advancing expert specialization for better moe.
arXiv preprint arXiv:2505.22323, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79-87, 1991a.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991b.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6(2):181-214, 1994a.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181-214, 1994b.

Klemens Lagler, Michael Schindelegger, Johannes Bohm, Hana Krasna, and Tobias Nilsson. Gpt2:
Empirical slant delay model for radio space geodetic techniques. Geophysical research letters,
40(6):1069-1073, 2013.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://jmlr.org/papers/v23/21-0998.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Under review as a conference paper at ICLR 2026

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.
16668.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024. URL https://arxiv.org/abs/2403.19887,

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. Using
Large Corpora, 273:31, 1994.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Mosaic Research Team. Introducing dbrx: A new state-of-the-art open LLM.
Databricks Blog, March 2024. URL https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-11lm. Fine-grained MoE architecture
and efficiency details.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Nabil Omi, Siddhartha Sen, and Ali Farhadi. Load balancing mixture of experts with similarity
preserving routers. arXiv preprint arXiv:2506.14038, 2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080—
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Zihan Qiu, Zeyu Huang, Shuang Cheng, Yizhi Zhou, Zili Wang, Ivan Titov, and Jie Fu. Layerwise
recurrent router for mixture-of-experts. arXiv preprint arXiv:2408.06793, 2024.

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
training specialized mixture-of-expert models. arXiv preprint arXiv:2501.11873, 2025.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
advances in neural information processing systems, 34:17555-17566, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017a.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017b. URL https://arxiv.org/abs/1701.06538.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017c.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

12

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2403.19887
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/1701.06538

Under review as a conference paper at ICLR 2026

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts. arXiv preprint arXiv:2408.15664, 2024.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lii, Peng Cheng, Jianhao Zhang,
Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-
of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

Yangqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103-7114, 2022.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-MoE: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

A APPENDIX

A.1 IMPLEMENTATION DETAILS
A.1.1 DEMONSTRATION OF A PSEUDO-BALANCE PHENOMENON

We build our model upon a lightweight Mixture-of-Experts Transformer that follows the design
paradigm of Mixtral-MoE (Jiang et al.l 2024). Specifically, the architecture, extends a Transformer
backbone by replacing the standard feed-forward sublayer with a Mixture-of-Experts (MoE) mod-
ule. Each Transformer block first applies multi-head self-attention with a hidden dimension of
1024 and 8 attention heads, followed by the MoE sublayer. The MoE module consists of eight
experts, where each expert is implemented as a two-layer feed-forward network of dimension
512 — 512 — 512 with GELU activation. A learned router assigns tokens to experts using top-2
gating, and the final output is obtained by weighting the selected experts with softmax-normalized
routing scores and combining their outputs. Residual connections and layer normalization are ap-
plied after both the attention and MoE sublayers.

In models augmented with load balancing, we incorporate an entropy-based regularization term
into our training objective. This term, Lyyiance, encourages the model to distribute tokens uniformly
across all experts. Let Load (i) denote the empirical load of the i-th expert, calculated as the fraction
of tokens assigned to it within a batch. The load-balancing loss is then formulated as a scaled entropy

term:
N

»Cbalance =« Z LOEld(’L) Dis
i=1

where N = 8 is the number of experts and o« = 0.4. Here, Load(¢) denotes the proportion of
tokens assigned to expert ¢ in the current batch, and p, represents the average gating probability
allocated to expert 7. Minimizing this loss encourages the distribution of expert loads to approach a
uniform distribution, thus preventing a few experts from being overutilized while others remain idle.
The hyperparameter « is used to balance the importance of the load-balancing objective against the
primary task loss.

13

Under review as a conference paper at ICLR 2026

The model employs a vocabulary size of 50,257 (for GPT-2 tokenizer compatibility), a maximum se-
quence length of 2,048, three Transformer layers, and a final linear projection that maps hidden states
to vocabulary logits. Training is conducted on the Penn Treebank (PTB) dataset (Marcinkiewicz,
1994), where the corpus is tokenized using the GPT-2 tokenizer and sequences are padded or trun-
cated to 2,048 tokens. Optimization is performed with AdamW at a learning rate of 5x 10, using a
linear warm-up of 1,000 steps. To stabilize training, gradient clipping with a maximum norm of 1.0
and gradient accumulation over four steps are employed. The effective batch size is four sequences
per step, and models are trained for up to 100 epochs with early stopping based on validation loss,
using a patience of three epochs.

During training, we jointly monitor the cross-entropy loss and the load-balancing term, while also
analyzing expert routing behavior. In particular, we record the routing distributions across experts,
the per-layer utilization statistics, and the temporal dynamics of load balancing. These analyses pro-
vide insights into the specialization stability of experts and the overall effectiveness of the proposed
routing mechanism.

A.1.2 EXPERIMENT ON THE PRE-TRAINING PHASE

We conduct pretraining experiments across multiple Mixture-of-Experts (MoE) architectures to sys-
tematically evaluate the effect of different model configurations on language modeling performance.
Specifically, we examine three backbone structures, Mixtral-MoE (Jiang et al., 2024), Llama-MoE
(Zhu et al.| 2024), and GPT-2-MoE (Lagler et al., 2013), each augmented with varying numbers of
experts and layers.

For the Mixtral-MoE and the Llama-MoE configuration, we train models with three MoE layers and
either 4 or 8 experts per layer. These models contain 150M and 200M total parameters, respectively,
with approximately 135M active parameters during inference. The detailed architectural and training
settings follow those outlined in Appendix

Our GPT2-MoE model builds upon the GPT-2 architecture by incorporating Mixture-of-Experts
(MoE) layers into the Transformer blocks. Each block consists of LayerNorm, causal self-attention,
and an MoE feed-forward subnetwork, where the conventional MLP is replaced with eight experts,
each implemented as a two-layer feed-forward network with GELU activation. For every token,
the router selects the top-2 experts and assigns normalized weights through a softmax function.
To ensure balanced utilization of experts, a load-balancing loss is added to the objective with a
coefficient of 0.4. The overall model follows an autoregressive design with twelve Transformer
layers, twelve attention heads, a hidden dimension of 768, and a maximum sequence length of 1024.
Token and positional embeddings are used at the input, while the output head is weight-tied with the
token embedding.

The training data is stored in memory-mapped binary format containing tokenized sequences for
both training and validation. Each batch is constructed by randomly slicing fixed-length sequences,
eliminating the need for padding or attention masks. The training objective combines the standard
language modeling cross-entropy loss with the auxiliary load-balancing loss, while validation is
performed solely on the language modeling component to provide a clean measure of generalization.
Optimization is carried out using AdamW, with weight decay applied to weight parameters but
excluded for biases and LayerNorm parameters. The learning rate starts from 6 x 10~%, warms up
for the first 2000 steps, and then decays following a cosine schedule to a minimum of 6 x 1075,
Gradient clipping at 1.0 is applied to stabilize training. To achieve larger effective batch sizes, we
adopt gradient accumulation over 40 steps by default, which scales automatically when distributed
training is enabled. Training supports both float16 and bfloat16 mixed precision with automatic
gradient scaling.

All Mixtral-MoE and Llama-MoE models are pretrained on the Penn Treebank (PTB)
(Marcinkiewicz, [1994) and WikiText-2 (Merity et al.l 2016) datasets. For the GPT-2-MoE models,
we pretrain on OpenWebText (Gokaslan et al.,[2019), a large-scale corpus designed to approximate
the distribution of the original GPT-2 training data, in order to assess scalability under web-scale
data. All pretraining experiments are conducted on the task of language modeling, where the objec-
tive is to minimize the token-level cross-entropy loss with an additional load-balancing regulariza-
tion term for MoE routing.

14

Under review as a conference paper at ICLR 2026

Table 5: Ablation study on memory-related hyperparameters. Moderate values of the memory im-
pact factor (o« = 0.5) and buffer size (128) yield the lowest PPL. Extremes at either end of these
hyperparameters result in degraded performance, highlighting the necessity of a balanced configu-
ration for optimal routing effectiveness.

Memory-related Memory Impact Factor « Buffer Size
hyperparameters

0 0.2 0.5 0.8 64 128 256

PPL 7448 73.82 69.68 74.02 75.64 69.68 71.32

The choice of datasets is aligned with the scale of the models under consideration. PTB and
WikiText-2 are relatively small dataset, which makes them suitable for medium-sized models, where
training efficiency and rapid experimentation are prioritized. In contrast, larger GPT-2-MoE models
require exposure to significantly more diverse linguistic patterns to realize their capacity. Therefore,
we employ OpenWebText, a 40 GB corpus with web-scale coverage, to ensure that these models can
fully exploit their parameterization and demonstrate scalability.

In the comparative experiments, both the baseline models and those enhanced with Memory-Aware
Routing (MAR) were trained under an identical load-balancing strategy, as specified in Appendix
[A.T.1] This ensures that any observed differences in performance can be attributed solely to the in-
troduction of MAR rather than variations in routing regularization. For all MAR-augmented models,
the buffer size was consistently fixed at 128, and the memory impact factor was set to 0.5, providing
a stable configuration for evaluating the effectiveness of memory-guided routing.

A.1.3 EXPERIMENT ON THE FINE-TUNING PHASE

For fine-tuning, we initialize with the open-source OLMoE 1B-7B model (Muennighoft et al., {2024
and conduct experiments with and without MAR across four representative downstream tasks. The
datasets used for each task are summarized below:

* Language Modeling: Penn Treebank (PTB) (Marcinkiewicz, |1994). PTB contains ap-
proximately one million words from the Wall Street Journal and is a widely used benchmark
for evaluating language modeling performance. We use perplexity (PPL) as the evaluation
metric.

* Knowledge Application: Massive Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021). MMLU covers multiple domains including humanities, science,
and professional knowledge, testing the model’s ability to recall and apply factual informa-
tion.

¢ Commonsense Reasoning: BIG-bench Hard (BBH) (Suzgun et al., 2022). BBH consists
of challenging problems that require multi-step reasoning and knowledge beyond memo-
rization, evaluating the model’s common-sense reasoning ability.

¢ Mathematical Reasoning: GSMS8K (Cobbe et al., 2021) and SVAMP (Patel et al.,[2021).
GSMSK is a collection of grade-school-level math word problems, while SVAMP evaluates
the robustness and generalization of arithmetic reasoning.

Each data set is pre-processed to be compatible with the OLMOoE tokenizer, and standard train-
validation splits are used. This setup allows us to systematically assess the impact of MAR on both
general language modeling and task-specific reasoning performance.

A.1.4 ABLATION STUDY

To further analyze the key design choices of Memory Aware Routing, we conduct ablation experi-
ments from two perspectives: the influence parameter « of the interest distribution and the memory
buffer size. The results are shown in Table

The ablation study is conducted on the Mixtral-MoE model with three MoE layers, each containing
four experts. The experiments are performed on the PTB dataset (Marcinkiewicz,|1994), focusing on

15

Under review as a conference paper at ICLR 2026

language modeling. For consistency, the load balancing strategy and the load balancing weight are
set as in Appendix[A.T.1] All other model hyperparameters, such as hidden size, number of attention
heads, and maximum sequence length, are kept identical to the base configuration. Training is
performed on the same hardware setup as described in Appendix [A.1.T] ensuring that comparisons
reflect only the effect of the ablated components. This study aims to isolate the contribution of
individual mechanisms within the Mixtral-MoE architecture and to quantify their impact on model
performance.

We first examine the effect of o on model performance. When @ = 0, the model relies solely on
instantaneous features, leading to severe pseudo-balance and insufficient expert specialization. As
« increases from 0.2 to 0.5, the perplexity (PPL) decreases by 5%, indicating that incorporating
moderate historical interest effectively breaks pseudo-balance and accelerates the convergence of
expert specialization. The best performance is achieved at a = 0.5, where instantaneous features
and long-term preferences reach an optimal balance. However, further increasing « to 0.8 degrades
performance by 6%, suggesting that excessive reliance on historical interests introduces expert “path
dependence” and overfitting to past patterns, thereby weakening generalization ability.

Next, we investigate the impact of buffer size on modeling the interest distribution. With a small
buffer (64), too few historical samples are retained, making the interest distribution sensitive to
short-term fluctuations and leading to unstable expert specialization. At a buffer size of 128, his-
torical and instantaneous information are better balanced: short-term noise is suppressed without
introducing stale information, resulting in the best performance. When the buffer size increases to
256, although more history is preserved, the interest distribution is diluted by outdated samples,
reducing the model’s sensitivity to current inputs and ultimately degrading performance by approx-
imately 2%.

In summary, the combination of moderate historical memory and instantaneous features is crucial
for the effectiveness of MAR. In our experiments, the optimal configuration is achieved at o = 0.5
and a buffer size of 128. These findings validate the soundness of our design and further highlight
that a proper balance between short-term features and long-term preferences is key to efficient expert
specialization and stable model convergence.

A.2 MORE ANALYSIS

A.2.1 THE PSEUDO-BALANCE PHENOMENON

As depicted in Figure [6] the load-balanced model demonstrates significantly less sensitivity to ex-
pert masking. Its perplexity remains low even when a considerable portion of its top experts are
disabled, which indicates a high degree of redundancy. Conversely, the baseline model, which lacks
load balancing, experiences a much steeper decline in performance. This confirms the successful
specialization and non-interchangeability of its experts. Thus, these results provide direct evidence
that expert balancing methods lead to substantial knowledge overlap.

To investigate the pseudo-balancing phenomenon, we compared the training dynamics of models
with and without load balancing. Figure|/|indicates that without the load-balancing regularization,
the routing network tends to activate only a small subset of experts, leaving the majority largely un-
used and resulting in severe load imbalance. With the introduction of the load-balancing regularizer,
Figure [§]shows that expert activations become more uniform, achieving an apparent global balance.
However, this superficial balance impedes the formation of stable expert specialization, highlighting
the inherent tension between expert-centered load balancing and expert differentiation—a funda-
mental challenge in MoE training.

To quantify this effect, we measured the standard deviation of expert utilization rates, capturing the
uniformity of each expert’s activation across all training tokens. Table[6|shows that without load bal-
ancing, the expert utilization standard deviation is approximately 0.8, whereas adding the regularizer
reduces it to around 0.2, demonstrating a significant improvement in expert usage uniformity.

16

Under review as a conference paper at ICLR 2026

6.0/ —e— MoE without Load Balancing
MoE with Load Balancing

5.5

5.0

4.5

4.0

Loss

3.5

3.0

25

2.0

0 1/8 2/8 3/8 4/8 5/8 6/8
Ratio of Disabled Top Routed Experts

Figure 6: Loss across varying ratios of disabled top-routed experts. Models without load balancing
show greater sensitivity, suggesting that load balancing amplifies redundancy among routed experts.

Expert Selection Rates per Epoch (No Load Balancing)

Epoch 1 Epoch 2 Epoch 3
Seo g g S
o} o Q o
40 34.8 & 39.5 & &
c p 29.8 p c
S 196 24.7 S S S
S 20| s B[152 B e
© 4.7 5.1 5.0 ° 5.0 . ° °
3 0 20| (341] 34 06| 2342 @ o
E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8
Expert Expert Expert Expert
Epoch 5 Epoch 6 Epoch 7 65. OEpoch 8
560 50.4 5 5 5
& 40 & & &
8 s S kS
52 3 3 3
© © © ©
2 n »n »
E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8
Expert Expert Expert

Figure 7: Expert load distribution across training epochs in the model without LBL. Without LBL,
the model tends to activate only a small subset of experts, and this imbalance becomes progressively
more severe over the course of training.

A.2.2 EXPERT SELECTION OF MAR

Figure [9] illustrates that while standard load-balanced models show input assignments constantly
oscillating between experts even late in training, models with MAR maintain stable expert assign-
ments. This directly shows that MAR effectively solves the pseudo-balance problem.

A.2.3 EFFECTIVENESS OF MAR IN MAINTAINING BALANCE

We further analyzed the effectiveness of Memory-Aware Routing (MAR) in maintaining expert load
balance on two additional base models: Llama-MoE and GPT2-MoE. The results, shown in Figure
[I0] and Figure [T1] indicate that MAR also achieves stable and consistent expert utilization with a
low standard deviation on these models.

For the evaluation metric, we also adopt the standard deviation of expert utilization rates to measure
the degree of load balance across experts. As shown in Table[7] models with MAR maintain an expert
utilization standard deviation of approximately 2.57. Although this value is slightly higher than that
achieved by conventional load-balancing strategies, we argue that it more faithfully reflects the true
distribution of the data. Forcing expert utilization to be perfectly uniform would result in some
tokens being assigned to experts with inconsistent semantics, thereby introducing pseudo-balance.
In contrast, the moderate deviation observed under MAR indicates that experts are specializing

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Expert Selection Rates per Epoch (With Load Balancing)

20 Epoch 1 Epoch 2 Epoch 3 Epoch 4
S S S S
215 2 2 2
T T T T
o 10 o o o
c c f=4 f=4
8] k)]
S 5 kst kst kst
< Q@ Q@ Q@
Q [} [[}
2B »n »n »n

E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8

Expert Expert Expert Expert

20 Epoch 5 Epoch 6 Epoch 7 Epoch 8
215 2 2 2
T © I I
14 14 14 14
c 10 = f= =
o] k)]
B 5 B 3 B
2 2 <2 2
Q [[[
2 n » »n

E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8
Expert Expert Expert Expert

Figure 8: Expert load distribution across training epochs in the model with LBL. Under the con-
straint of LBL, the model successfully balances the utilization of experts, leading to a more even
load distribution.

Baseline MoE MAR MoE

3 |] [|
°

£

g I

5 []

= [|

Epoch 4 5 6 7 8 Epoch 4 5 6 7 8
[Expert 0 Expert 1 [0 Expert 2 B Expert 3 B Expert 4 Expert 5 Expert 6 [Expert 7

Figure 9: Expert routing stability comparison between baseline Mixtral-MoE and Mixtral-
MoE+MAR. This figure compares how tokens are routed to experts in the training epochs. The
Baseline MoE shows unstable routing, as the same tokens are sent to different experts. In contrast,
MAR MoE has a stable pattern, showing successful expert specialization.

according to the semantic characteristics of the data, which is essential for achieving meaningful
specialization and avoiding artificial pseudo-balance.

A.2.4 EVALUATION OF MAR OVERHEAD

To substantiate our claim that MAR introduces negligible overhead, we provide a quantitative com-
parison of GPU memory usage and routing latency between LBL and LBL+MAR, as summarized in
Table[8] The results indicate that MAR incurs only a minor increase in peak GPU memory (+0.3 GB)
and routing latency (+0.8 ms), confirming that its computational overhead is minimal.

A.2.5 MEMORY BUFFER UPDATE STRATEGIES

We conducted additional experiments comparing FIFO, LRU, LFU, and RAND. Table [9| indicates
that FIFO achieves nearly identical PPL to the strongest baselines and consistently ranks among
the top two across datasets, while being substantially more efficient—approximately 2-3 x faster
than LRU/LFU. These findings suggest that FIFO provides the most favorable quality—efficiency
trade-off in large-scale training.

Regarding the similarity metric, we adopt cosine similarity due to its scale-invariant property, which
ensures more stable behavior in high-dimensional embeddings. Additionally, it incurs lower com-
putational cost compared to Euclidean distance, aligning well with our efficiency-oriented setting.

EMA-based, attention-weighted, or representational update schemes introduce additional computa-
tions—such as similarity evaluation, ranking, or sampling—at every forward pass. At our training
scale, such complexity would substantially reduce throughput and is therefore impractical. Conse-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Expert Selection Rates per Epoch (Llama-MoE+MAR)

Epoch 1 Epoch 2 Epoch 3

Epoch 4

w
o

18.8

N
o

Selection Rate (%)
=
o

Selection Rate (%)
Selection Rate (%)
Selection Rate (%)

o

E1l E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8 E1l E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8
Expert Expert Expert Expert
Epoch 5 Epoch 6 Epoch 7 Epoch 8

w
o

18.6 18.3

N
o

16.5 16.1

=
o

Selection Rate (%)
Selection Rate (%)
Selection Rate (%)
Selection Rate (%)

o

E1 E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8

E1 E2 E3 E4 E5 E6 E7 E8
Expert Expert Expert Expert

El E2 E3 E4 E5 E6 E7 E8

Figure 10: Expert load distribution across training epochs in the Llama-MoE+MAR model. Models
with MAR exhibit stable and balanced utilization of experts, indicating the effectiveness of Memory-
Aware Routing in mitigating expert collapse.

Expert Selection Rates per Epoch (GPT2-MoE+MAR)

=30 Epoch 1 —_ Epoch 2 — Epoch 3 — Epoch 4

B B B 2

[[0) [[

<90 e} g 18.5 g

& & & 365 147 &

& s 5 . 5

= 10 b= = b=

9] 1%} 19) 19

Q < Q Q

[0 [0} () ()

Y UTEl E2 E3 E4 E5 E6 E7 E8) E1 E2 E3 E4 E5 E6 E7 E8) E1 E2 E3 E4 E5 E6 E7 E8) FEL E2 E3 E4 E5 E6 E7 E8
Expert Expert Expert Expert

=30 Epoch 5 — Epoch 6 — Epoch 7 — Epoch 8

X X X X

() [0} () ()

- = 18.2 = 19.0 =

8% & 368 149 8 16.1 351

5 5 < B W s

510 = = =

[9] %] |9} |9}

<@ <9 <Q Q

& o & & &

El E2 E3 E4 E5 E6 E7 E8 El E2 E3 E4 E5 E6 E7 E8 El E2 E3 E4 E5 E6 E7 E8 E1 E2 E3 E4 E5 E6 E7 E8

Expert Expert Expert Expert

Figure 11: Expert load distribution across training epochs in the GPT2-MoE+MAR model. Models
with MAR exhibit stable and balanced utilization of experts, indicating the effectiveness of Memory-
Aware Routing in mitigating expert collapse.

quently, we employ the lightweight and effective FIFO strategy, as validated by our experiments.

A.2.6 EFFICIENT IMPLEMENTATION OF MEMORY-AWARE ROUTING

In the main text, updating each expert’s preference vector by aggregating features from its buffer has
complexity O(Nd) per expert, where N is the buffer size and d is the hidden dimension. However,
this computation can be optimized to O(1) per update using a running sum. Specifically, for expert
1 with buffer B;, let the current preference vector be

1
di=—= Y h
1Bil iz,

When a new token representation Ay, is appended and the oldest entry hqq is evicted, the preference
vector can be updated incrementally as

1
dl‘ <« dl + _(hnew - hold)7
|Bil

19

Under review as a conference paper at ICLR 2026

Table 6: Expert load standard deviation of Mixtral-MoE with LBL and without LBL.

Method Epoch1l Epoch2 Epoch3 Epoch4 Epoch5 Epoch6 Epoch7 Epoch8 Avg

Load Balance 0.0857 0.0696 0.0331 0.0484 0.0829 0.0500 0.0866 0.0500 0.0633
No Balance 12.00 15.65 16.35 19.71 19.16 22.04 24.63 27.60 19.14

Table 7: Expert load standard deviation of Mixtral-MoE without LBL, with LBL and with MAR.
LBL is the standard load balancing loss, and MAR is our proposed Memory-Aware Routing. The
results show that MAR significantly decreases the load standard deviation, indicating more equal
expert utilization.

Method Epoch1l Epoch2 Epoch3 Epoch4 Epoch5 Epoch6 Epoch7 EpochS8 Avg

w/o LBL 12.00 15.65 16.35 19.71 19.16 22.04 24.63 27.60 19.14
LBL 0.0857 0.0696 0.0331 0.0484 0.0829 0.0500 0.0866 0.0500 0.0633
LBL+MAR 2.63 2.39 2.62 271 2.52 2.58 2.45 2.63 2.57

avoiding a full summation over the buffer. This ensures that each update has constant time com-
plexity O(d), independent of the buffer size N, enabling scalable training even with very large
memory buffers. Similarly, token—expert similarity computations remain O(Kd) per token, and no
additional memory beyond the buffer itself is required. This efficient implementation allows MAR
to be applied in large-scale experiments with long buffers without introducing significant training
overhead.

20

Under review as a conference paper at ICLR 2026

Table 8: Comparison of LBL and LBL+MAR in terms of GPU Memory Usage and Routing Latency.
Measured on NVIDIA RTX 4090, with batch size = 16. Peak GPU memory and average routing
latency (average time per forward pass, in ms) are taken at the same number of training steps.

Metric LBL LBL + MAR Absolute change
Peak GPU memory (GB) 12.3 12.6 +0.3
Training Routing latency (ms) 7.8 8.6 +0.8

Table 9: Comparison of memory buffer update strategies. FIFO ranks among the top two strategies
on both datasets while achieving substantially higher training efficiency (approximately 2—3x faster
than LRU/LFU). Time is measured under the same number of training steps.

Strategy Loss PPL Time (min)
Dataset

FIFO 3.7374 41.99 137.0

LRU 3.7371 41.98 313.8

PTB LFU 3.7601 42.95 302.0
RAND 3.7507 42.55 150.4

FIFO 3.8044 44.90 79.4
LRU 3.8123 45.26 169.1
LFU 3.8011 44.75 165.3
RAND 3.8157 45.41 81.6

WikiText-2

21

	Introduction
	Related Work
	Mixture of Expert
	Load Balancing

	The Pseudo-Balance Phenomenon
	Expert Selection Dynamics During Training
	Post-Training Analysis of Expert Specialization

	Memory-Aware Routing: Towards True Specialization
	Memory Buffer
	Expert-Token Matching Score
	Complexity and Efficiency

	Experiments
	Experimental Setups
	Model Architecture and Training Settings
	Evaluation

	Main Results
	Pre-training Stage
	Fine-tuning Stage

	Ablation Study

	Conclusion
	Reproducibility statement
	Appendix
	IMPLEMENTATION DETAILS
	Demonstration of a pseudo-balance phenomenon
	Experiment on the pre-training phase
	Experiment on the fine-tuning phase
	Ablation Study

	MORE ANALYSIS
	The Pseudo-balance Phenomenon
	Expert selection of MAR
	Effectiveness of MAR in Maintaining Balance
	Evaluation of MAR Overhead
	Memory Buffer Update Strategies
	Efficient Implementation of Memory-Aware Routing

