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Abstract
We revisit the theoretical performances of Spectral Clustering, a classical al-
gorithm for graph partitioning that relies on the eigenvectors of a matrix repres-
entation of the graph. Informally, we show that Spectral Clustering works well
as long as the smallest eigenvalues appear in groups well separated from the rest
of the matrix representation’s spectrum. This arises, for example, whenever there
exists a hierarchy of clusters at different scales, a regime not captured by previous
analyses. Our results are very general and can be applied beyond the traditional
graph Laplacian. In particular, we study Hermitian representations of digraphs
and show Spectral Clustering can recover partitions where edges between clusters
are oriented mostly in the same direction. This has applications in, for example,
the analysis of trophic levels in ecological networks. We demonstrate that our
results accurately predict the performances of Spectral Clustering on synthetic
and real-world data sets.

1 Introduction
Spectral Clustering [1] is one of the most popular algorithms for clustering a graph. It exploits the
eigenvectors of a matrix representing the graph to compute a low-dimensional Euclidean embedding
of the vertices, which is then partitioned using geometric clustering algorithms, such as k-means.

While Spectral Clustering has been shown to work well in practice in a wide variety of settings, it
still lacks a complete theoretical understanding. Typically, analyses of Spectral Clustering work by
showing that the chosen eigenvectors are close to linear combinations of the indicator vectors of
the clusters. For example, the structure theorem of Peng et al. [2] informally says that the bottom k
eigenvectors of the graph Laplacian are close to linear combinations of the k “best” clusters whenever
two conditions are satisfied: (1) the k-way expansion constant1 of the optimal partition is small; (2)
the (k + 1)-st smallest eigenvalue of the Laplacian is large. However, the first condition is often not
satisfied in practice and, we argue, is actually not necessary for Spectral Clustering to perform well.

Our main contribution is a strengthening of the structure theorem: we show Spectral Clustering works
well whenever the informative eigenvalues are well-separated from the rest of the spectrum. This
not only allows us to recover known bounds achieved by either the structure theorem or by classical
perturbation arguments such as the Davis-Kahan theorem [5], but also to obtain new improved bounds
in many scenarios. In particular, our techniques are well-suited to deal with situations where there
exists a hierarchy of clusters at different scales. We believe our results are the first to correctly predict
the excellent performances of Spectral Clustering for a large class of real-world networks.

An additional advantage of our analysis is that it applies to any Hermitian positive semidefinite
representation of a graph, beyond the standard graph Laplacian. We showcase this strength by
analysing recently proposed Hermitian representations of digraphs [6]. In particular, we consider a
clustering problem in which we aim to partition the vertices of a digraph into subsets S1, . . . , Sk so
that most of the edges are from Si to Si+1 for any i ∈ {1, . . . , k − 1}. In other words, we would like

1The k-way expansion constant is a measure of quality of a partition [3] similar to the normalised cut [4].
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most of the edges to follow a directed path between the clusters. This has applications, for example,
in uncovering trophic levels in food chains or detecting patterns in trade networks [7]. We provide
a new cost function for this task and apply our structure theorem to obtain bounds that accurately
predict the performances of Spectral Clustering on both synthetic and real-world data sets.

1.1 Related work

There is a wealth of literature on Spectral Clustering; in this section we discuss only the most relevant
work on the subject and we refer the reader to the classical surveys [8, 9] for additional background.

In the case of random graphs, and specifically stochastic block models, analyses of Spectral Clustering
typically rely on the Davis-Kahan theorem [5] or similar tools [10]. Classical perturbation arguments,
however, are poorly suited to deal with non-random graphs in which “noise” might be localised in
relatively small regions of the graph [11]. For this reason, Peng et al. [2] introduced their structure
theorem, which states that the bottom k-eigenvectors of the normalised Laplacian of an undirected
graph are close to the indicator vectors of the “optimal” k clusters whenever the ratio k2 ·ρ(k)/λk+1 is
small, where ρ(k) is the k-way expansion constant [3], and λk+1 is the (k+1)-th smallest eigenvalue
of the Laplacian. A series of recent results [12, 13], culminating with [14], further simplified the
proof of the structure theorem, while improving the dependency on the number of clusters k.

All of these results, however, require ρ(k) to be small: this is often not satisfied in real-world networks
nor in stochastic block models, even for a range of parameters where Spectral Clustering is known
to work well. Consider for example a graph consisting of two cliques of 50 vertices connected by
a perfect matching in which each edge has weight 20. Spectral clustering perfectly partitions the
graph by dividing the two cliques. If we apply the structure theorem of Macgregor and Sun [14],
however, we obtain a bound on the distance between the eigenvector of the Laplacian associated
with λ2 and the closest linear combination of indicator vectors of the clusters equals to 0.28. This is
because, even though there exists a large gap in the Laplacian spectrum, the value of ρ(2) is relatively
large (≈ 0.28). In contrast, our Corollary 4 will show that this distance is actually zero, correctly
predicting the exact recovery of the clusters by spectral clustering.

Furthermore, our analysis is not restricted to the traditional (normalised) graph Laplacian and
undirected graphs, but it can handle any Hermitian and positive semidefinite representation of
undirected or directed graphs. Hermitian representations of digraphs were recently investigated for
clustering purposes by Cucuringu et al. [6], who proposed their use to recover clusters characterised by
a strong imbalance in the direction of the inter-cluster edges. They define a directed stochastic block
model that captures this problem and show Spectral Clustering is able to recover its communities.
Laenen and Sun [7] consider the specific instance of this clustering task in which the direction of
most edges is required to follow a directed path between the clusters. They apply the techniques of
Peng et al. [2] to obtain a structure theorem and an analysis of Spectral Clustering for appositely-
constructed Hermitian representations of digraphs. In our work, we revisit this task and argue that the
results of Laenen and Sun do not capture the practical performances of Spectral Clustering. Indeed,
we demonstrate simple examples where Spectral Clustering works very well, but Laenen and Sun’s
results are completely uninformative. Applying our improved structure theorem together with a
new cost function allows us to prove bounds that correctly predict Spectral Clustering’s practical
performances, vastly outperforming Laenen and Sun’s results.

1.2 Organisation

The paper is organised as follows: in Section 2, we cover the necessary background. In Section 3,
we state our main result, which is a generalised and improved structure theorem. We show how our
results allow us to obtain meaningful bounds for Spectral Clustering, even for graphs where the k-way
expansion constant is relatively large. In Section 4, we apply our generalised structure theorem to
analyse Spectral Clustering on Hermitian Laplacians for digraphs. Proofs, together with additional
experiments, are included in the Appendix. Code is available in a GitHub repository2.

2https://github.com/GeorgeRLTyler/Improved-and-Generalised-Analysis-for-Spectral-Clustering
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2 Background
Let G = (V,E,w) be a (possibly directed) graph with N vertices , M edges and weight function
w : V × V → R≥0. For any edge e = (u, v) ∈ E, we write the weight of e as wuv or we. For an
undirected graph G, we denote the degree of vertex u by d(u) =

∑
v∈V wuv. If G is directed, we

define the in-degree and out-degree of vertex u as din(u) =
∑

v∈V wvu and dout(u) =
∑

v∈V wuv.
The degree of vertex u in this case is d(u) = din(u) + dout(u). For any two sets S, T ∈ V , we define
the cut value w(S, T ) =

∑
(u,v)∈E
u∈S,v∈T

wuv and the volume of S ⊂ V as vol(S) =
∑

u∈S d(u).

We define the conductance of ∅ ≠ S ⊂ V as

Φ(S) =
w(S, V − S)

vol(S)
.

A k-way partition of V is a collection of k subsets S1, . . . , Sk ⊂ V where Si ∩ Sj = ∅ for i ̸= j and⋃k
i=1 Si = V . For undirected graphs, we measure the quality of a partition by the k-way expansion:

Φ(S1, . . . , Sk) = max
1≤i≤k

Φ(Si).

The k-way expansion constant of G [3] is defined as

ρ(k) = min
partition S1,...Sk

Φ(S1, . . . , Sk).

Spectral clustering leverages eigenvalues and eigenvectors of Hermitian matrices associated with
the graph. The adjacency matrix A ∈ RN×N of an undirected graph G = (V,E,w) is defined
as Auv = wuv if (u, v) ∈ E and zero otherwise. When G is directed, we will use the Hermitian
adjacency matrix as defined in [6]:

Auv =


wuv exp

(
2πi/k̃

)
if u→ v,

wuv exp
(
−2πi/k̃

)
if u← v,

0 otherwise

(1)

where i is the imaginary unit and the value k̃ must be prescribed. Throughout our paper we will
assume for simplicity that, for a directed graph, (u, v) ∈ E =⇒ (v, u) ̸∈ E. The following
definitions all apply to both undirected and directed graphs using each respective adjacency matrix.

The degree matrix D ∈ RN×N is a diagonal matrix where each diagonal entry equals the degree
of a vertex: Duu = d(u). The Laplacian matrix L ∈ RN×N is defined as L = D − A, while the
normalized Laplacian matrix L ∈ RN×N is defined as L = D−1/2LD−1/2 = I −D−1/2AD−1/2.

We will use M ∈ CN×N to denote any Hermitian positive semidefinite matrix representation of a
graph. We will denote its eigenvectors by f1, . . . , fN ∈ CN with corresponding eigenvalues λ1 ≤
. . . ≤ λN . We will write the eigendecomposition of M as M = F∆F ∗ with F = (f1 f2 · · · fN )
and ∆ = diag(λ1, . . . , λN ).

Given a basis of orthonormal vectors g1, . . . , gN ∈ CN , we denote their Rayleigh quotients by
γi = g∗i Mgi, with γ1 ≤ . . . ≤ γN . We assemble these vectors in a matrix G ∈ CN×N .

There are many variants of Spectral Clustering in the literature. Our results are quite general and will
apply to most of these variants. For simplicity, we will consider the variant defined in Algorithm 1,
which is the one considered in [2]. For undirected graphs, we typically choose k̃ = k and M = L,
which has real eigenvectors. The third step of Algorithm 1 is optional and typically depends on the
matrix representation used; for example, it is needed when M is the normalised Laplacian L, but not
when M is the combinatorial Laplacian L.

3 A generalised Structure Theorem
Our first main result is an improved and generalised structure theorem. It shows that, for any matrix
M , as long as λk+1 ≫ λ1, any set of k orthonormal vectors with Rayleigh quotient close to the
smallest eigenvalue of M must be close to linear combinations of the bottom k eigenvectors of M .
Furthermore, the bottom k eigenvectors of M will be close to linear combinations of these vectors.
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Algorithm 1 Spectral Clustering

1: Input: G = (V,E,w),M ∈ C|V |×|V |, k ≥ 2, k̃ ≤ k

2: Compute the matrix F ∈ C|V |×k̃ whose columns are the orthonormal eigenvectors f1, . . . , fk̃
associated to λ1 ≤ · · · ≤ λk̃.

3: F̃ ← D1/2F
4: Minimise the following k-means objective:

min
c1,...,ck∈Ck̃

∑
u∈V

d(u)∥F̃u, : − ci∥22

5: Output: partition A1, . . . , Ak corresponding to the solution of the above k-means problem.

Theorem 1. Let M ∈ CN×N be Hermitian and positive semidefinite with eigenvalues 0 ≤ λ1 ≤
· · · ≤ λN and corresponding orthonormal basis of eigenvectors f1, . . . , fN . Let g1, . . . , gk ∈ CN be
orthonormal and let γi := g∗i Mgi (1 ≤ i ≤ k < N). Then, if λk+1 > λ1,there exist ĝ1, . . . , ĝk ∈
span{g1, . . . , gk}, such that

k∑
i=1

∥fi − ĝi∥2 ≤
∑k

i=1 γi − kλ1

λk+1 − λ1
.

We observe we can simply recover the structure theorem - Theorem 1 of Macgregor and Sun [14] -
by choosing M = L, the normalised Laplacian of an undirected graph G = (V,E,w), and letting
g1, . . . , gk be the (normalised) indicator vectors of the clusters achieving the minimum ρ(k).
Corollary 2. Let G be undirected and connected with normalized Laplacian L. Let {Si}ki=1 be any
optimal k-way partition that achieves ρ(k). For any 1 ≤ i ≤ k, define χi ∈ RN as χi(u) = 1 if u ∈
Si and χi(u) = 0 otherwise. Let gi = D1/2χi

∥D1/2χi∥
. Then, There exist ĝ1, . . . , ĝk ∈ span{g1, . . . , gk},

such that k∑
i=1

∥fi − ĝi∥2 ≤
kρ(k)

λk+1
.

Informally, Theorem 1 states that if we choose a matrix representation M of a graph and g1, . . . , gk
indicator vectors of some clusters, then the bottom k eigenvectors of M must be close to linear
combinations of these indicator vectors as long as the Rayleigh quotients of the indicator vectors
are significantly smaller than λk+1. This is crucial to show that Spectral Clustering works well: in
Appendix A, we show how Theorem 1 can be used to obtain a bound on the volume of the symmetric
difference between the partition output by spectral clustering and the one achieving ρ(k).

Besides recovering the original structure theorem, Theorem 1 is not confined to the normalised
Laplacian of undirected graphs. In Section 4 we will show how to apply Theorem 1 to Hermitian
representations of digraphs. In particular, we do not necessarily need each gi to be a classical indicator
vector: in certain cases (as in digraph clustering) it might be beneficial to choose a different set of
“indicator vectors”. Moreover, in digraphs, λ1 might not necessarily be zero: subtracting λ1 from
both numerator and denominator on the RHS of our bounds can improve them substantially.

The main limitation of Theorem 1 and Corollary 2 is that they both rely on the gap γi − λ1 being
significantly smaller than λk+1 − λ1. This, in practice, is not always satisfied. For example, when
using M = L, we often see multiple gaps in the eigenvalues (which might result in some γi
being considerably larger than λ1 = 0), with Spectral Clustering still working effectively (see, e.g.,
Figure 1). To overcome this obstacle, we can recursively apply the following result to show that, as
long as these gaps in the spectrum are large enough, Spectral Clustering can still be effective.
Theorem 3 (Recursive Structure Theorem). Let q < k and ĝ1, . . . , ĝq ∈ span{g1, . . . , gq}. Then,
there exist ĝq+1, . . . , ĝk ∈ span{g1, . . . , gk} and f̂q+1, . . . , f̂k ∈ span{f1, . . . , fk} such that

k∑
i=q+1

∥fi − ĝi∥2 ≤

k∑
i=q+1

(γi − λq+1) + λk+1

q∑
i=1

∥fi − ĝi∥2

λk+1 − λq+1

The same bound also applies to
∑k

i=q+1 ∥f̂i − gi∥2
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(a) Geometric graph (b) Smallest eigenvalues of the normalised Laplacian

Figure 1: Four clusters generated by sampling points from a mixture of 4 Gaussians and the
corresponding geometric graph (1a). Notice how the smallest four eigenvalues come in pairs (1b).

The idea behind Theorem 3 is that, if the indicator vectors can be expressed mostly by the eigenvectors
fq+1, . . . , fk, then by the orthonormality of both sets of vectors, the indicator vectors of g1, . . . , gq
can be expressed mostly by f1, . . . , fq , so the error term λk+1

∑q
i=1 ∥fi − ĝi∥2 will be small and in

exchange we have an improved ratio to that of Theorem 1 provided γi < λk+1 for i = q + 1, . . . , k.

Theorem 3 is most appropriate when there are multiple gaps in the eigenvalues of M : we split the
spectrum into groups of eigenvalues of similar magnitude, with a large gap between each group; we
then recursively reapply Theorem 3 for each group λq+1, . . . , λk as long as γi−λq+1 ≪ λk+1−λq+1.

Sketch Proof. The optimal choice of ĝi for i = q, . . . , k is the projection of the indicator vectors onto
the first k eigenvectors. Extending the normalised indicator vectors to an orthonormal basis forming or-
thogonal matrix G, we obtain a orthogonal projection matrix Q where F = GQ∗. The rows/columns
of Q have unit length so

∑k
i=q+1 ∥fi − ĝi∥2 can be bounded by (k − q)−

∑k
i=q+1

∑k
j=q+1 |Qij |2.

The sum in this expression can then be bounded below as follows where we have again exploited the
unit length rows of Q:

γi = g∗i Mgi =

N∑
j=1

λj |Qij |2 ≥ (λq+1 − λk+1)

k∑
j=q+1

|Qij |2 + λk+1

1−
q∑

j=1

|Qij |2


Rearranging for
∑k

j=q+1 |Qij |2 and summing over i = q + 1, . . . , k provides us with with a

lower bound on
∑k

i=q+1

∑k
j=q+1 |Qij |2. Consequently, this is gives an upper bound on (k − q)−∑k

i=q+1

∑k
j=q+1 |Qij |2 as required.

Typically, the choice for the indicator vectors g1, . . . , gk is gi = D1/2χi

∥D1/2χi∥
where χi(u) = 1 if u ∈ Si

and χi(u) = 0 otherwise. The only real restrictions on our choice of indicator vectors, however,
are that they are orthonormal and that {D−1/2gi}ki=1 are constant on the clusters. Since the first
eigenvector f1 of L (or L) is the uninformative vector f1 = D1/21

∥D1/21∥ (or f1 = 1
∥1∥ ), we can choose

g1 = f1 and then re-orthogonalise g2, . . . , gk. This allows us to prove the following corollary.
Corollary 4. Let G be an undirected graph and M = L. Let g1, . . . , gk ∈ RN be orthonormal such
that g1 = f1. Let γi = g∗i Mgi (i = 1, . . . , k). Suppose λk+1 > λ2. Then, for i = 1, . . . , k, there
exists ĝi ∈ span{g1, . . . , gk} such that

k∑
i=1

∥fi − ĝi∥2 ≤
∑k

i=2(γi − λ2)

λk+1 − λ2
.
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Corollary 4 essentially states that if the indicator vectors have Rayleigh quotient close to λ2 ≪ λk+1,
then the bottom k eigenvectors of M must be very close to linear combinations of the indicator
vectors. In contrast with the original structure theorem, this does not require λ2 to be small.

Corollary 4 can be used to analyse Spectral Clustering on stochastic block models. While such
an analysis can be obtained using standard perturbation arguments, stochastic block models are an
egregious instance where the structure theorem of Corollary 2 fails. We illustrate the performance of
Corollary 4 on SBMs in the appendix.

3.1 Experimental results

To illustrate the impact of Theorem 3, we consider synthetic graphs with a hierarchical structure and
show the improved performance the theorem provides. We then consider some real-world networks
to show that this hierarchical structure is naturally occurring and can be exploited to get a better
bound on the performance of Spectral Clustering.

Geometric random graphs. We sample 100 points each from four two-dimensional Gaussians
centred, respectively, (0, 0), (0, 5), (d, 0), (d, 5) where d is a parameter we vary. A graph is construc-
ted by assigning an edge between any two points if the Euclidean distance between them is less than a
threshold, which we choose in this case to be 4. In Figure 2a we compare our bounds on the distance
between indicator vectors of the clusters and the eigenvectors of the Laplacian with the results of
Macgregor and Sun [14] and the actual distances. Results are averaged over 10 realisations.

(a) (b)
Figure 2: (a) Geometric random graph from Gaussian mixture model with varying distance between
centres. (b) Stochastic block model with 4 blocks where two pairs have a higher affinity to each other.
In both cases, the Error refers the bound given by Theorem 1 and 3, and by Macgregor and Sun [14]
on 1

k

∑k
i=1 ∥fi − ĝi∥2, together to its actual value. Standard deviation is included as filled error bars.

Notice that, as the distance parameter d increases, drawing two pairs of clusters further apart from
each other, Theorem 3 drastically outperforms Corollary 2 and Theorem 1.

Stochastic block models. We consider an SBM with 4 equal-sized clusters S1, . . . , S4. Let Pij

be the probability that, for any u ∈ Si, v ∈ Sj there exists an edge between u and v. We set
Pii = 0.5 (i = 1, . . . , 4) and P12 = P21 = P34 = P43 = 0.4. All other values are set equal to 0.1.
We effectively divide the vertices into two pairs of clusters which are more strongly connected to
one another. In Figure 2b, we compare our results with [14] and the true distances between indicator
vectors of the optimal clusters and the eigenvectors of the Laplacian. Notice that Theorem 3 greatly
outperforms Corollary 2 and Theorem 1. Further experiments (such as when the parameters of the
stochastic block model are close to the detectability threshold) are available in the Appendix.

Real-world networks. In Table 1, we illustrate the improvement Theorem 3 provides over the
results of Macgregor and Sun [14] on a variety of real-world networks. For MNIST [15], Fashion
MNIST [16] and the Air Quality dataset [17], we constructed a graph from the data by computing a
correlation matrix from its data points and assigning edges based on whether the correlation exceeded
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a pre-defined threshold. Twitch [18], LastFM [19], Athletes [20] and CA-CondMat [21] are all
network datasets available at SNAP [22]. N (resp. M ) refers to the number of nodes (resp. edges).
The number of clusters k has been chosen so that a relatively large gap between λk and λk+1 exists.
We include The improvements given by Theorem 1 over [14] are due to the fact that we sum over the
Rayleigh quotients of the k indicator vectors, rather than simply upper-bound this value by kρ(k) as
done in [14]. More interesting is, arguably, the improvement of Theorem 3, which is due to many
networks having clustered eigenvalues and/or large λ2. Notice how Theorem 3 is able to certify that,
in these examples, the output of spectral clustering is well-correlated with the partition of minimum
conductance, something not achievable with previous structure theorems.

Table 1: Comparison on the bounds on 1
k

∑k
i=1 ∥fi − ĝi∥2 given by Theorem 1 and 3, and by Mac-

gregor and Sun [14] on real-world networks. We take a sample for MNIST and Fashion MNIST.

Dataset k N M [14] Theorem 1 Theorem 3 ρ̃(k) λk+1

MNIST* 5 2348 140018 0.4395 0.1915 0.1744 0.021 0.048
Fash. MNIST* 6 2872 1711206 0.5614 0.3761 0.3225 0.200 0.35
Air Quality 3 4942 2784780 0.6234 0.2883 0.2350 0.332 0.533
Twitch 2 168114 6797557 0.9567 0.4793 0.3937 0.128 0.133
LastFM 2 7622 27800 0.8373 0.4221 0.3123 0.013 0.016
Athletes 3 13866 86852 0.6951 0.4033 0.2427 0.053 0.037
CA-CondMat 3 21363 91342 0.7806 0.4818 0.3370 0.012 0.016

4 Digraph clustering
We now apply our techniques to Hermitian representations of digraphs, where the adjacency matrix is
specified as in Equation 1. Cucuringu et al. [6] have shown experimentally that Spectral Clustering
on these matrix representations is able to recover clusters characterised by large imbalances in the
direction of inter-cluster edges, in the sense that most edges between two clusters Si and Sj follow
the same direction. This is a higher-order clustering problem, since clusters are defined according to
their inter-cluster relations [23]. This is in contrast with traditional undirected graph clustering, in
which a cluster is usually defined only according to its inner and outer density.

Cucuringu et al. [6] have proposed an analysis of Spectral Clustering on a directed analogue of the
classical stochastic block model, while Laenen and Sun [7] have attempted to provide an analysis for
more general graphs. In Section 4.1, however, we will argue that Laenen and Sun’s results fail to
explain the practical performances of Spectral Clustering on digraphs. Here we attempt to remedy
this gap in the literature. We begin by defining a cost function for the task.
Definition 1. Let G = (V,E,w) be a digraph and let k ≥ 2. Let S1, . . . , Sk be a k-way partition of
V . We define the cyclic expansion of S1, . . . , Sk as

Ψ(S1, . . . , Sk) =
1

vol(V )

∑
(i,j)/∈Ck

w(Si, Sj),

where Ck = {(i, j) | j ≡ i+ 1 mod k, 1 ≤ i, j ≤ k}, and the cyclic k-way expansion of G as

Ψk(G) = min
partition{Si}k

i=1

Ψ(S1, . . . , Sk).

We want to find clusters S1, . . . , Sk so that most of the out-going edges from Si are connected to
vertices in Si+1 mod k. When k = 2, our problem simply becomes finding disassortative clusters.
Indeed, the Hermitian Laplacian for k = 2 is just the signless Laplacian, whose bottom eigenvectors
are known to contain information about disassortative clusters [24, 25]. The next lemma clarifies the
connection between this cost function and Hermitian Laplacians for digraphs.
Lemma 5. Let G be a connected digraph. Then, λ1(L) = 0 if and only if Ψk(G) = 0.

As observed in [26], the bottom eigenvector of a Hermitian Laplacian already contains information
about all k clusters. For this reason, given a k-way partition S = {S1, . . . , Sk}, we define χS ∈ CN
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as follows. For any j = 1, . . . , k,

χS(u) =

√
d(u)

vol(V )
· e

2πij
k for u ∈ Sj ,

where i is the imaginary unit. Fundamentally, χS maps each cluster to a power of the k-th root of
unity. The following simple but crucial lemma relates the Rayleigh quotient of χS to Ψ(S1, . . . , Sk).
Lemma 6. Let k ≥ 2. It holds that 16k−2Ψ(S1, . . . , Sk) ≤ χ∗

SLχS ≤ 4Ψ(S1, . . . , Sk).

We are now ready to state our structure theorem for digraphs.
Theorem 7 (Structure Theorem for Digraphs). Let G be a digraph with Hermitian Laplacian L.
Assume λ2 > λ1. Given any k-way partition S = {S1, . . . , Sk}, there exists α ∈ C such that

∥f1 − αχS∥2 ≤
χ∗
SLχS − λ1

λ2 − λ1
. (2)

Furthermore, if S achieves Ψk(G), then

∥f1 − αχS∥2 ≤
4Ψk(G)− λ1

λ2 − λ1
. (3)

We observe that χ∗
SLχS =

4

vol(V )

k∑
i=1

k∑
j=1

w(Si, Sj) sin
2

(
(i− (j + 1))π

k

)
. Therefore, inequality

(2) is generally stronger than (3) because it assigns a smaller penalty to edges from Si to Sj when
i− (j + 1) is small.

4.1 Comparison with previous work

We now compare our structure theorem for digraphs to the one of Laenen and Sun [7]. They consider
the following alternative to our cyclic expansion:

θk(G) ≜ max
{Si}k

i=1 partition

k−1∑
i=1

w(Si, Si+1)

vol(Si) + vol(Si+1)
.

There are two differences compared with our definition of cyclic expansion. First, θk penalises edges
from Sk to S1, i.e. it tries to fit a path rather than a directed cycle between clusters. While reasonable,
we argue this is not what Spectral Clustering on Hermitian Laplacians is actually doing. Secondly,
and more importantly, the two cost functions differ in the normalisation based on the volume of the
graph. We believe the normalisation chosen by [7] is poorly suited to analyse Spectral Clustering.

To motivate our assertions, let us delve deeper into their results. We first remark they choose a
Hermitian Laplacian constructed with the ⌈2πk⌉-th root of unity. They also construct a different
“indicator” vector χ̃S for a k-way partition S . This choice is not overly important, so we refer to their
paper for further details. Their main result is as follows.
Theorem 8 ([7]). Let f1 be the bottom eigenvector of the Hermitian Laplacian constructed with
the ⌈2πk⌉-th root of unity. Let ηk(G) ≜ λ2

1−(4/k)θk(G) and assume ηk(G) > 1. Let S be a partition
maximising θk(G). There exists β ∈ C such that ∥f1 − βχ̃S∥2 ≤ (ηk(G)− 1)−1.

We now compare Theorem 7 with Theorem 8 on the two very simple digraphs of Figure 3,

in which we have five clusters perfectly arranged on a directed cycle (Figure 3a) and on a directed
path (Figure 3b). Clearly, in both cases, Ψk = 0. Applying our structure theorem, this implies that,
in both cases, the first eigenvector is exactly a multiple of the indicator vector χS . Therefore, the
clusters are embedded in k distinct and well-separated points, which are just the k powers of the k-th
root of unity rotated by some α ∈ C. Our structure theorem correctly predicts that spectral clustering
will recover the clusters perfectly.

If we apply Theorem 8 instead, we obtain that, for the digraph of Figure 3a, ∥f1 − βχ̃S∥2 ≤
(ηk(G)− 1)−1 ≈ 0.642 which is not informative at all. If we consider the digraph of Figure 3b, we
obtain a slightly better bound: ∥f1− βχ̃S∥2 ≤ (ηk(G)− 1)−1 ≈ 0.294. This is still far from the true
value, which is equal to zero.
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(a) Cycle. (b) Path.
Figure 3: Examples of directed
cluster structures.

Figure 4: Comparison of the results given by Theorem 7
(green for (2) and orange for (3)) and by [7] (red) for a
cyclic DSBM at varying level of noise. The actual values are
reported in blue. Averaged over 10 realisations.

4.2 Experimental results

Directed stochastic block models. We now apply our results to the Directed Stochastic Block
Model of [6]. Given parameters k ≥ 2, n ≥ 1, P ∈ [0, 1]k×k, F ∈ [0, 1]k×k, a directed stochastic
block model G ∼ DSBM(k, n, P, F ) is a random graph of N = kn vertices constructed as follows:
each vertex belongs to one of k communities S1, . . . , Sk of n vertices each. We place an edge
independently at random between any two vertices u ∈ Si, v ∈ Sj with probability Pij = Pji.
Furthermore, we orient the edge between u and v from u to v with probability Fij , from v to u with
probability Fji = 1− Fij .

We consider a model G ∼ DSBM(k, n, P, F ) for k = 4 and n = 100 with P, F specified as follows.

F =

 .5 1 .5 .5
0 .5 1 .5
.5 0 .5 1
.5 .5 0 .5

 , P =

 ϵ 1 ϵ ϵ
1 ϵ 1 ϵ
ϵ 1 ϵ 1
ϵ ϵ 1 ϵ


F represents a path structure, while this choice of P means the path structure is very pronounced. ϵ is a
noise parameter: the smaller ϵ is, the closer the graph will be to having a perfect path cluster-structure.

In Figure 4, we compare the bounds of Theorem 7 with the results of [7], and with the true distance
between the bottom eigenvector of the Hermitian Laplacian and the indicator vector of the clusters.
Our results predict the true values exceptionally well and correctly imply Spectral Clustering will
work almost perfectly for all noise levels considered. On the contrary, Laenen and Sun’s result
becomes non-informative even for small noise parameters. We provide a similar experiment for a
DSBM with a cyclic cluster structure in the Appendix.

Table 2: Comparison on the bounds on ∥f1 −αχS∥2 given by Theorem 7 (2) (Ours) and Laenen and
Sun [7] (LS) on real-world networks.

Network k N M Ψ Ours LS

Yellowstone 4 15 37 0.027 0.086 0.662
COVID-19 4 67 66 0.000 0.000 N/D
St. Marks 5 49 226 0.154 0.324 N/D
St. Martin 4 45 224 0.118 0.352 N/D
Ythan 4 135 601 0.101 0.399 N/D

Real-world directed networks. We apply our results to real-world directed networks and summar-
ise our findings in Table 2: for each network considered, we compare our bounds from Theorem 7
with Laenen and Sun’s Theorem 8.

9
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We first consider the directed graph analysed in [7] made from the Data Science for COVID-19
Dataset [27], where an edge from u to v exists if u has infected v. This graph has many disconnected
components so we consider its largest weakly connected component. Spectral Clustering finds
clusters fitting perfectly to a directed 4-cycle; therefore, Ψ4 = 0 and our bound in Theorem 7 is
∥f1 − βχS∥2 = 0. On the other hand, since η4 < 1, Laenen and Sun’s result is not applicable. Both
this and the previous data set are characterised by unbalanced clusters, which results in a small θ4
and makes Laenen and Sun’s results uninformative.

The Yellowstone [28] data set a small digraph representing a food web for Yellowstone National Park
[28], where vertices represent animal species and there is an edge from u to v if u is predated by v.
As shown in Figure 5, this network can be partitioned into four clusters exhibiting an almost perfect
directed path structure: only the outgoing edges for Mule deer are not consistent with this structure.
Indeed, Ψ4 = 0.027 and Spectral Clustering using the Hermitian Laplacian perfectly recovers these
clusters. Theorem 7 suggests an error bound less than 0.086, which is close to the actual bound
∥f1 − βχS∥2 = 0.039. On the other hand, Laenen and Sun’s result can only obtain an upper bound
of 0.662, which is not indicative of the actual performance of Spectral Clustering.

St. Marks Seagrass, St. Martin Island, and Ythan Estuary data sets [29] are networks representing
other food webs. While these data sets do not present a cluster structure as obvious as the COVID-19
or Yellowstone data sets, our results imply there exists a nontrivial correlation between the indicator
vector of the clusters and the bottom eigenvector of the Hermitian Laplacian. Notice that in all these
three cases, η < 1, making Laenen and Sun’s bounds uninformative.

Figure 5: A directed graph illustrating a food web for Yellowstone National Park, United States.

5 Conclusion
We have presented a generalised framework for analysing the performance of Spectral Clustering.
Our work generalises and improve upon the line of work based on the structure theorem of Peng
et al. [2]. In particular, we have shown that spectral clustering works well as long as the bottom
eigenvalues of the Laplacian matrix of an undirected graph can be divided in well-separated groups.
Experimental results show that our bounds accurately predict the performance of spectral clustering
on a wide range of both synthetic and real-world networks where previous analyses failed.

Furthermore, we have applied our techniques to analyse spectral clustering on Hermitian Laplacians
for digraphs, as defined by Cucuringu et al. [6]. By exploiting a new cost function, which we call the
cyclic k-way expansion, we are able to analyse the performances of spectral clustering on digraphs,
vastly outperforming previous analyses.
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A Theoretical guarantees for spectral clustering
In this appendix we discuss how we can turn a structure theorem, like Theorem 1 and Corollary 2,
into bounds on the symmetric difference between the clusters output by spectral clustering and the
optimal ones. This is done by applying the following Lemma, whose proof is essentially adapted
from Cucuringu et al. [6].
Lemma 9. Assume the partition A1, . . . , Ak output by Algorithm 1 is computed by a (1 + α)-
approximation algorithm for k-means, with k̃ = k. Let {S1, . . . , Sk} be any k-way partition of V
achieving ρ(k). Let G ∈ C|V |×k̃ be such that (D−1/2G)u, : = (D−1/2G)v, : if u, v ∈ Si for some i.
Let F, F̃ be defined as in Algorithm 1. For any i = 1, . . . , k, let µi = vol(Si)

−1 ·
∑

u∈Si
d(u)F̃u, : .

Define D := mini,j ∥µi − µj∥ and U :=
∑

u∈V ∥Fu, : − Gu, : ∥2. Assume U ≤ (1/5)D−1(2 +

α)−1 ·mini=1,...,k vol(Si). Then, the volume of the symmetric difference between {S1, . . . , Sk} and
{A1, . . . , Ak} (up to a permutation of the indices) is at most O( (1+α)U

D2 ).

Proof. Let ci =
∑

u∈Ai
d(u)F̃ (u, .) be the centroid of Ai for i = 1, . . . , k. Let c : V → Rk be a

map from a vertex to its corresponding centroid, i.e., c(u) = ci if u ∈ Ai.

Since A1, . . . , Ak is a (1 + α) approximation of the optimal k-means partition, we have that

k∑
j=1

∑
u∈Aj

d(u)∥F̃ (u, .)− cj∥2 =

k∑
j=1

∑
u∈Sj

d(u)∥F̃ (u, .)− c(u)∥2

≤ (1 + α)

k∑
j=1

∑
u∈Sj

d(u)∥F̃ (u, .)− µj∥2

≤ (1 + α)

k∑
j=1

∑
u∈Sj

∥F (u, .)−G(u, .)∥2 ≤ (1 + α)U. (4)
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By applying the triangle inequality and the simple inequality (x − y)2 ≥ x2

2 − y2, we obtain the
following:

k∑
j=1

∑
u∈Sj

d(u)∥F̃ (u, .)− c(u)∥2 ≥
k∑

j=1

∑
u∈Sj

d(u)(∥µj − c(u)∥ − ∥F̃ (u, .)− µj∥)2

≥
k∑

j=1

∑
u∈Sj

1

2
d(u)∥µj − c(u)∥2 −

k∑
j=1

∑
u∈Sj

d(u)∥F̃ (u, .)− µj∥2

≥
k∑

j=1

∑
u∈Sj

1

2
d(u)∥µj − c(u)∥2 − U,

where the last inequality follows from Equation 4.

By the assumption ∥µi − µj∥ ≥ D for all i ̸= j, it holds that ∥ci − cj∥ ≥ D/2. Otherwise, there
would be µℓ such that ∥µℓ − ci∥ ≥ D/2 for any i, but this would violate our assumption on U .
Indeed, assume by contradiction ∥µl − ci∥ ≥ D/2 for any i. Then,

(1 + α)U ≥
k∑

j=1

∑
u∈Sj

d(u)∥F̃ (u, .)− c(u)∥2

≥ 1

2

∑
u∈Sℓ

d(u)∥µℓ − c(u)∥2 − U

≥ 1

4
· D · vol(Sℓ)− U.

Therefore, U ≥ D·vol(Sℓ)
4(2+α) , contradicting our assumption on U .

We say that a vertex u ∈ Sj is misclassified if ∥c(u) − µj∥ ≥ D/2. Let σ : [k] → [k] be the
permutation of the indices minimising the volume of the symmetric difference

∑k
i=1 vol(Si \Aσ(i) ∪

Aσ(i) \ Si). Notice that we can obtain an upper bound to this volume by bounding the volume of
misclassified vertices. We can upper bound the latter by noticing that, whenever we misclassify a
vertex, we pay a price of Ω(D2) in the k-means cost. Noting this, we obtain the following bound:

k∑
j=1

∑
u∈Sj

d(u)∥F̃ (u, .)− c(u)∥2 ≥
k∑

j=1

∑
u∈Sj

1

2
d(u)∥µj − c(u)∥2 − U

≥ D
2

8
vol(misclassified vertices)− U,

Together with Equation 4, this implies that

min
σ

k∑
i=1

vol(Si \Aσ(i) ∪Aσ(i) \ Si) ≤ vol(misclassified vertices) ≤ 8(2 + α)U

D2
.

Notice that, by choosing G:,i = ĝi for i = 1, . . . , k̃, we have U =
∑k̃

i=1 ∥fi − ĝi∥2. Thus D is
instead dependent on the choice of the indicator vectors. In the case of undirected graph clustering
with M = L and the traditional choice of indicator vectors, as long as U ≪ 1 (e.g., by Corollary
2, whenever kρ(k) ≪ λk+1), we have that D = Ω

(
mini=1,...,k vol(Si)

−1
)
[14]. Assuming a

constant-factor approximation algorithm for k-means is used, Lemma 9 guarantees that the symmetric
difference between the partition output by spectral clustering and the optimal partition is small.

Theorem 1 together with Lemma 9 give us a computable way to certify the quality of the partition
A1, . . . , Ak output by spectral clustering compared to the optimal partition S1, . . . , Sk . More
precisely, let g1, . . . , gk be a set of orthonormal indicator vectors for A1, . . . , Ak with Rayleigh
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quotients γi := g∗i Mgi. Compute the value 1
k

∑k
i=1 γi−kλ1

λk+1−λ1
. Theorem 1 and Lemma 9 ensure that,

if this value is small, then A1, . . . , Ak are close to S1, . . . , Sk (up to permutation of the indices).
Lemma 9 can also be used in conjunction with Theorem 3 by repeatedly applying Theorem 3 until a
bound on

∑k
i=1 ∥fi − ĝi∥2 is obtained.

B Omitted proofs and results
B.1 Section 3

In this section we prove the results from Section 3. For the following proofs, we must first define the
matrices Q,R ∈ CN×N which map between F and G. Precisely,

G = FQ

F = GR.

In the following lemma we prove some basic properties of Q and R.
Lemma 10. We have the following basic properties of Q:

1. Q is orthogonal.

2. R = Q∗.

Proof. As F is orthogonal, we have that Q = F ∗G. Noting that G is also orthogonal, we have that

Q∗Q = (F ∗G)∗(F ∗G) = G∗FF ∗G = I

and similarly, QQ∗ = I so Q is orthogonal.
For 2., Clearly,

R = G∗F = Q∗

as G is orthogonal.

B.1.1 Proof of Theorem 1 and Corollary 2

Below we use Lemma 10 to prove our Theorem 1.

Proof of Theorem 1. As G = FQ, this implies that gi =
∑N

j=1 Qijfj . We choose f̂i =
∑k

j=1 Qijfj .
Now notice that,

γi = ḡ∗i Mḡi =

N∑
j=1

|Qij |2λj .

As Q is orthogonal,
∑N

j=1 |Qij |2 = 1. This coupled with the assumption that λ1 ≤ λ2 ≤ . . . ≤ λN

provides the following bound:

γi =

N∑
j=1

|Qij |2λj ≥ λ1

k∑
j=1

|Qij |2 + λk+1(1−
k∑

j=1

|Qij |2)

⇒ γi ≥
k∑

j=1

|Qij |2(λ1 − λk+1) + λk+1

Rearranging for
∑k

j=1 |Qij |2, we get the following:

k∑
j=1

|Qij |2 ≥
λk+1 − γi
λk+1 − λ1
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It follows that

1−
k∑

j=1

|Qij |2 ≤
γi − λ1

λk+1 − λ1

. As F = GR, fi =
∑N

j=1 Rijgj . We choose ĝi =
∑k

j=1 Rijgj . Now notice that,

∥fi − ĝi∥2 = 1−
k∑

j=1

|Rij |2.

Summing over i = 1, . . . , k gives the following.

k∑
i=1

∥fi − ĝi∥2 = k −
k∑

i=1

k∑
j=1

|Rij |2

Recall from Lemma 10 that Q∗ = R so
∑k

i=1

∑k
j=1 |Rij |2 =

∑k
i=1

∑k
j=1 |Qij |2. So, it follows

that:
k∑

i=1

∥fi − ĝi∥2 ≤
k∑

i=1

γi − λ1

λk+1 − λ1
.

By a particular choice of {gi}ki=1 and M in Theorem 1, we obtain the structure theorem from [14].

Proof of Corollary 2. With the choice of gi = D1/2χi

∥D1/2χi∥
for i = 1, . . . , k, we have the following:

γi = g∗i Lgi

=
χ∗
i (D −A)χi

χ∗
iDχi

=
E(Si, V − Si)

vol(Si)

≤ max
i=1,...,k

E(Si, V − Si)

vol(Si)
= ρ(k)

Applying Theorem 1 with M = L and noting that λ1 = 0 completes the proof.

B.1.2 Proof of Theorem 3 and Corollary 4

Proof of Theorem 3. Since f1, . . . , fN form an orthonormal basis, we can write that gi =
N∑
j=1

Qijfj

and we choose f̂i =
q∑

j=1

Qijfj for i = 1, . . . , q (summing only up to q by assumption) and f̂i =

k∑
j=1

Qijfj for i = q + 1, . . . , k. Now let i be some index between q + 1 and k,

γi = g∗i Mgi =

N∑
j=1

λj |Qij |2 ≥ λ1

q∑
j=1

|Qij |2 + λq+1

k∑
j=q+1

|Qij |2 + λk+1

n∑
j=k+1

|Qij |2

= λ1

q∑
j=1

|Qij |2 + λq+1

k∑
j=q+1

|Qij |2 + λk+1

1−
k∑

j=q+1

|Qij |2 −
q∑

j=1

|Qij |2


Rearranging for
k∑

j=q+1

|Qij |2, we get:
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k∑
j=q+1

|Qij |2 ≥
λk+1

(
1−

q∑
j=1

|Qij |2
)
− γi + λ1

q∑
j=1

|Qij |2

λk+1 − λq+1

≥
λk+1

(
1−

q∑
j=1

|Qij |2
)
− γi

λk+1 − λq+1

Next, we sum over i = q + 1, . . . , k so we have that:

k∑
i=q+1

k∑
j=q+1

|Qij |2 ≥
λk+1

(
(k − q)−

k∑
i=q+1

q∑
j=1

|Qij |2
)
−

k∑
i=q+1

γi

λk+1 − λq+1
.

Since f̂i ∈ span{f1, . . . , fq} for i ∈ {1, . . . , q}, the sum in the brackets can be bounded as follows:

k∑
i=q+1

q∑
j=1

|Qij |2 ≤
N∑

i=q+1

q∑
j=1

|Qij |2 = q −
q∑

i=1

q∑
j=1

|Qij |2 =

q∑
i=1

∥f̂i − gi∥2

So,

k∑
i=q+1

k∑
j=q+1

|Qij |2 ≥
λk+1

(
(k − q)−

q∑
i=1

∥fi − ĝi∥2
)
−

k∑
i=q+1

γi

λk+1 − λq+1

Now, noting that Q is orthogonal and therefore its rows are unit length, it follows that:

k∑
i=q+1

∥f̂i − gi∥2 = (k − q)−
k∑

i=q+1

k∑
j=1

|Qij |2 ≤ (k − q)−
k∑

i=q+1

k∑
j=q+1

|Qij |2

Therefore,

k∑
i=q+1

∥f̂i − gi∥2 ≤

k∑
i=q+1

γi − (k − q)λq+1 − λk+1

q∑
i=1

∥f̂i − gi∥2

λk+1 − λq+1

Now, we show the same bound for
k∑

i=q+1

∥fi − ĝi∥2. Choosing ĝi =
q∑

j=1

Rijfj for i = 1, . . . , q,

Lemma 10 implies that
q∑

i=1

∥f̂i − gi∥2 =

q∑
i=1

∥fi − ĝi∥2

as Q = R∗. Similarly, choosing ĝi =
k∑

j=1

Rijfj for i = q + 1, . . . , k implies that

k∑
i=q+1

∥f̂i − gi∥2 =

k∑
i=q+1

∥fi − ĝi∥2

which completes the proof.

Proof of Corollary 4. Choosing g1 = f1 and remaining indicator vectors g2, . . . , gk all orthonormal
means the conditions for Theorem 3 are satisfied with q = 1. ĝ1 = g1 = f1 means that:

1. ∥ĝ1 − f1∥2 = 0

16



Proofs and Additional Experiments (Appendix)

2.
k∑

i=2

∥fi − ĝi∥2 ≤
∑k

i=2(γi−λ2)

λk+1−λ2

which completes the proof.

B.1.3 Spectral Clustering performance on SBMs

Using Corollary 4 we have a result regarding the performance of Spectral Clustering on SBMs.

We generate G ∼ SBM(n, k, p, q) as follows: we divide kn vertices into k communities S1, . . . , Sk

of equal size n. For any u ∈ Si, v ∈ Sj , we place an edge between u and v with probability p if
i = j, with probability q otherwise. We recover the following well-known result.

Corollary 11. Let G ∼ SBM(n, k, p, q) for some k ≥ 2. Choose M = L and let g1, . . . , gk ∈ Cnk

be the first k eigenvectors of EL. Assume p− q ≥ 40
√
pk log(kn)/n. Then, with high probability,

k∑
i=2

∥fi − ĝi∥2 = O

(
k

p− q

√
pk log(kn)

n

)
.

Corollary 11 together with Lemma 9 implies Spectral Clustering misclassifies vertices with a volume
of at most O

(
k2

p−q

√
p(kn) log(kn)

)
. We note that whilst this is not an improvement on what can be

achieved with results from perturbation analysis such as the Davis-Kahan theorem [5], the original
structure theorem achieves merely a constant bound for SBMs.

In order to prove Corollary 11, we require some prerequisite results.

Theorem 12 ([30]). Let X1, X2, . . . , Xm be independent random d×d Hermitian matrices. Moreover,
assume that ∥Xj − E(Xj)∥ ≤ M for all j, and let σ2 = ∥

∑m
j=1 E((Xj − E(Xj))

2)∥. Let
X =

∑m
j=1 Xj . Then, for any a > 0, it holds that:

P(∥X − E(X)∥ > a) < 2d exp

(
−a2

2σ2 + 2Ma/3

)
Theorem 13 (Courant-Fischer [31]). Let A be a Hermitian matrix in CN×N . The eigenvalues
λ1, λ2, . . . , λN of A, arranged in non-increasing order (λ1 ≥ λ2 ≥ . . . ≥ λN ), can be characterized
by the Courant-Fischer min-max principle as follows:

For k = 1, 2, . . . , N :

λk = max
S⊆CN

dim(S)=k

min
x∈S
x ̸=0

⟨x,Ax⟩
⟨x, x⟩

and

λk = min
T⊆CN

dim(T )=N−k+1

max
x∈T
x ̸=0

⟨x,Ax⟩
⟨x, x⟩

where ⟨·, ·⟩ denotes the standard inner product in CN .
Corollary 14 (Courant-Fischer Corollary). Let A and B be Hermitian matrices in CN×N , and let
λk(A) and λk(B) denote their k-th eigenvalues, respectively. Then

|λk(A)− λk(B)| ≤ ∥A−B∥.

In the following lemma, we apply Theorem 12 to obtain a bound on ∥L− E(L)∥ for SBMs.
Lemma 15. Suppose that G ∼ SBM(n, k, p, q) for some k ≥ 2. Let L be the Laplacian of G. Then,
with high probability,

∥L− E(L)∥ ≤ 18
√
pkn log(kn).
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Proof. Firstly, let
Muv = (eue

T
u + eve

T
v )− (eue

T
v + eve

T
u ),

which has precisely four non-zero entries: Muv(u, u) = Muv(v, v) = 1 and Muv(u, v) =
Muv(v, u) = −1. Now we define the random matrix

Xuv =

{
Muv if u ∼ v

0 otherwise.

Notice that L =
∑

(u,v)∈E Xuv . Moreover, we have that ∥Xuv − E(Xuv)∥ ≤ 2.

By the identity
E((Xuv − E(Xuv))

2) = E((Xuv)
2)− (E(Xuv))

2,

and the fact that M2
uv = 2Muv , we obtain that

E((Xuv)
2)− (E(Xuv))

2 =

{
2p(1− p)Muv if u and v are in the same block
2q(1− q)Muv otherwise.

Summing over all u, v ∈ V and taking the norm, we obtain the following:

σ2 = ∥
∑

{u,v}∈(V2)

E((Xuv)
2)− (E(Xuv))

2∥ ≤ 4(p+ (k − 1)q)n.

Applying Theorem 12 with a = 18
√
pkn log(kn) yields the statement.

The following result states the eigenvalues of the expected Laplacian in stochastic block models. Its
proof is by elementary calculations.
Lemma 16. Suppose that G ∼ SBM(n, k, p, q) for some k ≥ 2. Let L = D −A be the Laplacian
of G and let L = I −D−1/2AD−1/2 be the normalized Laplacian of G. Then, the first eigenvalue of
E(L) and E(L) are both 0. The next k−1 eigenvalues of E(L) and E(L) are knq and knq

(n−1)p+(k−1)nq

respectively and the (k + 1)st eigenvalues are np+ (k − 1)nq and np+(k−1)nq
(n−1)p+(k−1)nq .

We are now ready to prove Corollary 11.

Proof of Corollary 11. Firstly, let λ1(E(L)) ≤ · · · ≤ λN (E(L)) denote the eigenvalues of E(L) with
corresponding orthonormal eigenvectors g1, . . . , gk. Let γi =

g∗
i Lgi
g∗
i gi

. Notice that g1 = f1 = 1√
N
1.

By Corollary 4, we have that

k∑
i=2

∥f̂i − gi∥2 ≤
∑k

i=2(γi − λ2)

λk+1 − λ2
.

We will bound the numerator of the previous expression as follows:

|γi − λ2| = |γi − λi(E(L)) + λi(E(L))− λ2|
≤ |γi − λi(E(L))|+ |λi(E(L))− λ2|.

The first term can be bounded above as follows:

|γi − λi(E(L))| = ∥g∗i (L− E(L))gi∥ ≤ ∥L− E(L)∥.

By Lemma 15, with high probability, ∥L− E(L)∥ ≤ 18
√

(pkn) log(kn). By Corollary 14, for all i,
it holds that:

|λi − λi(E(L)| ≤ ∥L− E(L)∥ ≤ 18
√
(pkn) log(kn). (5)

Thus, by Lemma 16, for i = 1, . . . , k,

λi ∈
[
knq − 18

√
(pkn) log(kn), knq + 18

√
(pkn) log(kn)

]
18
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which implies
|λi(E(L))− λ2| = |knq − λ2| ≤ 18

√
(pkn) log(kn)

and
γi − λ2 ≤ 36

√
(pkn) log(kn).

On the other hand, Lemma 16 and (5) imply that

λk+1 ∈
[
np+ (k − 1)nq − 18

√
(pkn) log(kn), np+ (k − 1)nq + 18

√
(pkn) log(kn)

]
and, therefore,

λk+1 − λ2 ≥ (np+ (k − 1)nq − 18
√
(pkn) log(kn))− (knq + 18

√
(pkn) log(kn))

= n(p− q)− 36
√
(pkn) log(kn).

Finally, by our assumption that p− q ≥ 40
√
pk log(kn)/n, it holds that

k∑
i=2

∥f̂i − gi∥2 ≤
∑k

i=2(γi − λ2)

λk+1 − λ2

≤
36(k − 1)

√
(pkn) log(kn)

n(p− q)− 36
√
(pkn) log(kn)

= O

(
k

p− q

√
pk log(kn)

n

)
.

B.2 Section 4

B.2.1 Proof of Lemma 6

Proof. Consider the rayleigh quotient of L with some vector x ∈ CN :

x∗Lx
x∗x

=
x∗(I −D−1/2AD−1/2)x

x∗x

=
y∗(D −A)y

y∗Dy
(where y = D−1/2x)

=

∑
u→v |yu|2 − ȳuyvωk − yuȳvω̄k + |yv|2∑

u→v |yu|2 + |yv|2

=

∑
u→v |yu − ωkyv|2∑
u→v |yu|2 + |yv|2

where ωk = exp( 2πik ). Selecting χS

χS(u) =

{√
d(u)

vol(V ) · e
2πij
k for u ∈ Sj ,

0 otherwise.
Then the expression resolves to

χ∗
SLχS

χ∗
SχS

=
1

vol(V )

k∑
i=1

k∑
j=1

2w(Si, Sj)(1− cos

(
(i− (j + 1))2π

k

)
)

=
4

vol(V )

k∑
i=1

k∑
j=1

w(Si, Sj) sin
2

(
(i− (j + 1))π

k

)

=
4

vol(V )

∑
(i,j)/∈C

w(Si, Sj) sin
2

(
(i− (j + 1))π

k

)
≤ 4

vol(V )

∑
(i,j)/∈C

w(Si, Sj)

= 4Ψ(S1, . . . , Sk)
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The second equality follows from the identity 1− cos(x) = 2 sin2(x/2), the third equality follows
as sin2

(
(i−(j+1))π

k

)
= 0 for (i, j) ∈ C, and the inequality holds because sin2(x) ≤ 1.

Now to prove the lower bound, consider the following function:

y(x) =


2
π (−x− π) for x ∈ [−π,−π/2)
2
πx for x ∈ [−π/2, π/2]
2
π (π − x) for x ∈ (π/2, π]

It can be easily verified that sin2(x) ≥ y(x)2. Considering only (i, j) /∈ C, the smallest values
of sin2

(
(i−(j+1))π

k

)
are attained when i − (j + 1) = ±1,±(k − 1). The resulting value of

y
(

(i−(j+1))π
k

)2
in all these instances is 4

k2 . The bound follows.

B.2.2 Proof of Lemma 5

Proof. Let us first assume Ψk(G) = 0. Let S be a k-way partitioning such that Ψ(S1, . . . , Sk) = 0.
Then, by 6, χ∗

SLχS = 0. This implies the if direction.

For the reverse direction, let y be an eigenvector of L with eigenvalue 0, i.e., y∗Ly = 0. Then,
as shown in the proof of 6, y∗Ly =

∑
u→v |yu − ωkyv|2 = 0. By the weak connectivity of

G, this implies there exists α ∈ C \ {0} such that, for any u, there exists i ∈ {0, . . . , k − 1}
such that yu = αωi

k. Let us fix such α and let S1, . . . , Sk be a partition of V defined as follows:
Si = {u ∈ V : yu = αωi−1

k } for i = 1, . . . , k. We have that Ψ(S1, . . . , Sk) = 0, which implies
Ψk(G) = 0.

B.2.3 Proof of Theorem 7

Proof. The first statement follows from Theorem 1 using k = 1 and g1 = χS . The second statement
then follows from directly applying Lemma 6 to the first statement.

C Omitted experiments
C.1 SBMs: Additional structure

In addition to our SBM experiment in Section 3, we have a similar experiment for an SBM with 8
clusters where one pair of clusters have a higher affinity for each other. More precisely, P is an 8
by 8 matrix with 0.5 along its diagonal, P12 = P21 = 0.3 and every other value is set to 0.05. The
bounds for this SBM for a varied cluster size n can be seen in Figure 6.

Figure 6: Stochastic block model with 8 blocks where one pair of blocks have a higher affinity to
each other. Each point is an average over 10 realisations and the standard deviation is included as
filled error bars.
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We also considered an SBM with multiple layers in its hierarchy of clusters. We took an SBM with
12 blocks that can be split into three sets of four. In each quartet, two pairs of the blocks have a higher
affinity for each other. Precisely, this was the 12× 12 probability matrix P that was used:

P =

[
Q .05 .05
.05 Q .05
.05 .05 Q

]
Where

Q =

 .9 .7 .2 .2
.7 .9 .2 .2
.2 .2 .9 .7
.2 .2 .7 .9


and .05 is a 4× 4 matrix of 0.05. The bounds for this SBM for varied cluster size n can be seen in
Figure 7.

Figure 7: Stochastic block model with 12 blocks where three sets of four blocks have a higher affinity
to blocks inside their quartet. Inside each quartet, two pairs of blocks have an even higher affinity
to each other. Each point is an average over 5 realisations and the standard deviation is included as
filled error bars.

In both experiments, we see that Theorem 3 greatly outperforms the other bounds.

C.2 SBMs: Close to the perfect recovery threshold

We now consider our bounds for an SBM with 2 blocks with probability matrix

P =

(
p q
q p

)
where p = α log(N)

N , q = β log(N)
N , with α and β taken at or close to the perfect recovery threshold√

α−
√
β ≥
√
2. Details of this threshold and its significance can be found in [32]. We study the

results of several experiments for different values of α and β. In Figure 8a, we try β = 20 with α
satisfying

√
α−
√
β = 2 and study the bounds for a varied cluster size n. In Figure 8b, we try the

same experiment with β = 1.

The bounds do not vary much for our choices of n, however we see that Theorem 3 provides a
tighter bound on the true value than the other results. We also considered varying β with α satisfying√
α−
√
β = 2 and cluster size fixed at n = 500. The results can be seen in Figure 9.

We notice a similar behaviour in that the bounds do not change much at all as we vary our parameter
β. Again, the bound from Theorem 3 is much closer to the true value. Finally, we consider varying
β for a fixed choice of α (α = 35). This will mean that as β is increased we will get closer to the
threshold and eventually will be in violation of it. The results are pictured in Figure 10.

In this experiment, we see that the true distance of the eigenvectors from the indicator vectors of the
clusters grows with β, and the bound from Theorem 3 stays relatively close to it. The other bounds
are rather poor and increase slightly.
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(a) β = 20 (b) β = 1

Figure 8: β = 20 (left) and β = 1 (right), α = (
√
β +
√
2)2, varying cluster size n. An average is

taken over 10 realisations for each value and the standard deviation is included as filled error bars.

Figure 9: cluster size n = 500; β is varied and α is parametrised by β with α = (
√
β +
√
2)2. Each

value is an average over 10 realisations and the standard deviation is included as filled error bars.

C.3 DSBMs: Cyclic cluster structure

Similar to our experiment in Section 4, we consider a graph G ∼ DSBM(k, n, P, F ) where k = 4,
n = 100 and P and F are defined as follows:

F =

 .5 1 .5 0
0 .5 1 .5
.5 0 .5 1
1 .5 0 .5

 , P =

 ϵ 1 ϵ 1
1 ϵ 1 ϵ
ϵ 1 ϵ 1
1 ϵ 1 ϵ

 .

As before, ϵ is a noise parameter that we vary. This results in a graph which has a distinct cyclic
cluster structure for small ϵ. The results of this experiment can be seen in Figure 11.

As one can see, our bounds significantly outperform the result of [7]. In particular our bound from 2
hugs the true value very tightly for all noise levels.
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Figure 10: n = 500; β is varied and α is fixed at α = 35. Each value is an average over 10
realisations and the standard deviation is included as filled error bars.

Figure 11: Comparison of the results given by the structure theorem of our paper (green for equation
2 and orange for equation 3) and by Laenen and Sun (red) for two DSBMs at varying level of noise.
The actual values are reported in blue. Each value is an average over 10 trials.
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