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ABSTRACT

Parametric differential equations of the form ∂u/∂t = f(u, x, t,p), where p repre-
sents physical system parameters, are fundamental across scientific and engineering
disciplines. Recent advances in surrogate modeling, particularly deep learning
frameworks like the Fourier Neural Operator (FNO), have demonstrated significant
efficiency in approximating differential equation solution paths u. However, these
approximations result in inaccurate solutions to inverse problems (using neural
operators in an optimization routine for estimating physical system parameters),
provide inaccurate estimates of sensitivities (i.e., ∂u/∂p: the dependence of the
solution path on the physical parameters) needed for scenario analysis and opti-
mization, and are highly sensitive to concept drift. These issues are all related and
can be addressed by using a novel sensitivity loss regularizer that we propose in
this paper. This regularizer works with a wide range of neural operators, but for
concreteness, we focus on applying it to the popular FNO framework, resulting in
Sensitivity-Constrained Fourier Neural Operators (SC-FNO). SC-FNO ensures
accuracy in the solution paths, inverse problems, and sensitivity calculations, even
under sparse training data or concept drift scenarios. Our approach maintains
high accuracy for the solution paths u and significantly outperforms both the
original FNO and FNO combined with Physics-Informed Neural Network (PINN)
regularization on the remaining tasks.
Notably, in parameter inversion tasks from solution paths, SC-FNO exhibits
markedly superior accuracy, even when FNO breaks down, underscoring the crit-
ical role of sensitivity awareness. For cases with more parameters (82 tested),
SC-FNO can reduce training data demand, elevate the performance ceiling of
neural operators, and even reduce training time. These conclusions are robust for
various differential equations, neural operators, and different ways of supervis-
ing sensitivities for training. These improvements, without large computational
or memory costs, enhance the reliability and applicability of neural operators in
complex physical systems modeling and engineering analysis.

1 INTRODUCTION

Ordinary and Partial Differential Equations (ODEs and PDEs), which contain physically meaningful
parameters p, form the foundation of most modern engineering systems across diverse fields such
as fluid mechanics, medicine design, molecular dynamics, relativistic physics, climate, and environ-
mental sciences (Palais & Palais, 2009). These physical parameters p, whether describing fixed or
evolving system properties (Feng et al., 2022), physiological constants (Reichert & Omlin, 1997),
environmental characteristics (Tartakovsky et al., 2020), or serving as simplifications for subgrid-scale
processes (Yuval & O’Gorman, 2020; Watt-Meyer et al., 2024), significantly influence the behavior of
the equations. Neural Operators are neural networks whose inputs are initial conditions and physical
parameters, and whose output is a function u, also known as a solution path, that approximates
the solution to the ODE/PDE. When the values of p are known, neural operators can be used for
simulations (predicting system state u(t) at time t). However, in many cases, there is uncertainty
about the values of p, so they must be estimated from observations of u. This is known as (parameter)
inversion. The estimated p can then be used to simulate u beyond existing observations, or they may
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themselves be quantities of interest to scientists. Other potential uses of neural operators include
sensitivity analysis (i.e., estimating ∂u/∂p) and applying them in situations not covered by training
data. Even state-of-the-art neural operators struggle with these applications and this paper presents a
method to address this problem.
Fourier Neural Operators (FNOs). Introduced in 2021, FNOs (Li et al., 2021; 2024) leverage the
linear nature of differential operators in Fourier space, delivering orders of magnitude of computa-
tional efficiencies compared to traditional numerical solvers. They are currently the most popular type
of neural operator. FNOs are known for their meshless—or discretization-invariant—characteristics,
and some versions eliminate the need for time-stepping, allowing them to output solutions at any
spatiotemporal resolution. FNOs achieve these improvements over prior surrogate models (Audet
et al., 2000; Alizadeh et al., 2020; Song et al., 2023) by utilizing representations in the frequency
domain to efficiently learn time trajectories of the evolution of initial conditions. Learning the
trajectories in time domain would necessitate large amounts of weights and extensive training data.
While this method offers significant efficiency, prediction accuracy may decline for predictions far
into the future (Grady et al., 2023), prompting the use of additional constraints in some models (Jiang
et al., 2023; Bonev et al., 2023). FNO is so far mostly used in forward simulations and research; the
critical issues of parameter inversion have received much less attention by neural operator research
and estimating the parameter sensitivity ∂u/∂p has not been studied for neural operators (to the best
of our knowledge). Li et al. (2021) evaluate the use of FNO to run the differential equation backward
in time to recover initial conditions; although they name it Bayesian inversion, they did not recover
physical parameters. In follow-up work, (Li et al., 2023) also observed the problems of using FNO for
parameter inversion and proposed to add physics-informed neural network (PINN) regularization to
training. While it improves over vanilla FNO, we show that our approach can outperform FNO+PINN
by up to 30%. Furthermore, FNO+PINN still produces inaccurate sensitivity estimates.

An alternative to neural operators is learning direct inverse mapping (Vadeboncoeur et al., 2023; Li
et al., 2023), but then one still needs separate techniques for estimating solution paths and sensitivities.
In contrast, SC-FNO addresses all of these issues in one (convenient) framework.
Sensitivity awareness allows a model to adapt its predictions to different scenarios and respond
to input and parameter changes, thus reducing overfitting and improving robustness. In practical
applications, the ability to predict these Jacobians of the outputs with respect to physical parameters
p can also have significant value. In engineering design and control systems, knowing the sensitivity
of performance outputs relative to design parameters helps in optimizing design and improving
performance. Similarly, in financial modeling or resource management, sensitivity information allows
for better risk assessment and resource allocation decisions. Gradient-based optimization or data
assimilation (Barker et al., 2004), of course, is critically guided by gradients. In scenario analysis,
parameters or inputs are perturbed, often beyond the observed ranges, to assess the responses. Without
correctly capturing the sensitivity, the responses could be erroneous (Saltelli et al., 2019).
Gradient Computation for PDE Solvers: Gradient, or sensitivity computations, are widely used in
the analysis of partial differential equations (PDEs). Traditionally, methods like finite differences can
approximate gradients using existing numerical solvers and they remain relevant. Now we also have
the option of using automatic differentiation (AD) offered by differentiable-programming platforms
such as PyTorch, TensorFlow, Julia, or JAX, which enable efficient computation of gradients of
outputs with respect to inputs. While the main purpose of implementing solvers on these platforms is
often to train process-based equations together ("end-to-end") with NNs so that missing relationships
can be learned along with partial knowledge (Innes et al., 2019; Shen et al., 2023; Zhu et al., 2023;
Schoenholz & Cubuk, 2020; Tsai et al., 2021), these solvers can indeed provide rapid calculation of
gradients as a byproduct. Gradients can be also computed by adjoint methods, either "discretize-then-
optimize"(Onken & Ruthotto, 2020) or "optimize-then-discretize" (Chen et al., 2018). Differentiable
PDE solvers are rapidly increasing across numerous domains, demonstrating highly competitive
performance and presenting advantages in data-scarce situations (Feng et al., 2023). Our work is
compatible with either finite differences or AD.

In this paper, we propose a new type of loss term that can be used while training neural operators.
Although we focus attention on FNOs here, our experiments show the approach generalizes to
many other neural operators (see Appendix D.1). We call the result the Sensitivity-Constrained
Fourier Neural Operator (SC-FNO). It overcomes the problems with the estimation of parametric
sensitivity, allowing better inversion while maintaining FNO-level computational efficiency for
solving differential equations. The SC-FNO can provide highly accurate parameter sensitivities with
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less training data, ensuring that solution accuracy is maintained even under input perturbations and
even concept drift (physical parameters in testing exceed ranges encountered during training).

2 METHODOLOGY

Training data for Neural Operators are obtained by running physics-based model simulations multiple
times with different initial conditions and physical parameters. We note that for differentiable physics-
based models, the sensitivities ∂u/∂p can also be computed. For non-differentiable models, they
can be approximated with finite differences. The training of SC-FNO uses a loss function Lu over
the solution paths (as with FNO) and also adds a loss Ls over the parameter sensitivities. One can
optionally add a PINN equation loss LEq (resulting in SC-FNO-PINN). This framework can be used
with other neural operators as well (see Appendix D.1).

2.1 SC-FNO: ENHANCING FNO WITH SENSITIVITY

Original Fourier Neural Operators (Li et al., 2021): FNOs represent a class of learning architec-
tures designed to model mappings between infinite-dimensional function spaces, thereby providing
efficient solutions to complex parametric PDEs. Mathematically, FNOs operate within a defined
domain D ⊂ Rd. The function spaces, denoted as A(D;R

da) for inputs and U(D;R
du) for outputs,

encapsulate the functional domains of the inputs and outputs respectively. The goal of an FNO is to
approximate the operator G : A×Θ → U, which ideally maps each input function aj in A to an
output function uj in U. Formally, the FNO framework is expressed as:

G̃ : A×Θ → U, (1)

where Θ represents the space of parameters that the FNO optimizes to reduce the discrepancy between
predicted and true outputs. The Fourier transformation, essential in the operation of FNOs, is applied
to transform function data into the frequency domain, facilitating the application of linear operators:

(Ff)j(k) =

∫
D

fj(x)e
−2πi⟨x,k⟩ dx and (F−1f)j(x) =

∫
D

fj(k)e
2πi⟨x,k⟩ dk. (2)

This representation utilizes the convolution theorem to model complex nonlinear behaviors efficiently:
K(ϕ)vt(x) = F−1(Rϕ · (Fvt))(x), (3)

where Rϕ represents a learnable parameterized function within the Fourier domain, allowing FNOs to
encode and decode information effectively. While FNOs offer significant computational advantages,
they necessitate extensive training data (Kovachki et al., 2021; Li et al., 2021). Moreover, generalizing
beyond the training datasets remains a challenge.

Our Contribution: We introduce sensitivity-based loss terms to Neural Operators, resulting in a novel
framework we call Sensitivity-Constrained Neural Operators (SC-NO) (Figure A.7 in Appendix
A). For clarity, we demonstrate this concept primarily through its application to Fourier Neural
Operators (FNO), yielding SC-FNO. However, we also show that the framework is generalizable to
various types of neural operators, such as Wavelet Neural Operators (Tripura & Chakraborty, 2023),
Multiwavelet Neural Operators (Gupta et al., 2021), and DeepONets (Wang et al., 2021) (descriptions
and results are in Appendix D.1). The current neural operator training never harnessed sensitivity
information (such as Jacobians) and never explicitly guaranteed how the inputs should be used in the
model. However, our approach leverages either finite difference or a differentiable solver to compute
these sensitivities. This development improves the robustness of prediction of both u and ∂u/∂p
by ensuring that input variables are utilized correctly by the FNO — we dictate the sensitivity of
the predicted outcomes with respect to input parameters and initial conditions, while in the future
boundary conditions can also be incorporated. The model is expressed concisely as:

u(x, t) = FSC-FNO(u0, x, t,p), (4)
where FSC-FNO denotes the SC-FNO mapping, u0 are the initial conditions, x represents spatial
coordinates, t is time. The output u is governed by the differential equation:

∂u

∂t
= f(u, x, t,p), (5)
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with f defining the dynamics of the system. In this formulation, p encapsulates parameters that
critically modulate, influence, or characterize the system, including physical constants, material
properties, or scale-dependent parameterizations. SC-FNO incorporates a sensitivity loss to enforce
the accuracy of the predicted sensitivities (Jacobians) against those computed from the differentiable
numerical solver. The SC-FNO model computes the solution u across all time and space in a single
execution. The mathematical definition of sensitivity loss Ls is as follows:

Ls =
1

M

M∑
j=1

∥∥∥∥∂û(xj , tj ;p)∂p
− ∂u(xj , tj ;p)

∂p

∥∥∥∥2 . (6)

where xj and tj represent the spatial and temporal coordinates of the sampled points at which the
Jacobians are evaluated. ∂û/∂p is the Jacobian of the predicted outputs with respect to the input
parameters, obtained through AD applied to the SC-FNO. ∂u/∂p is the true Jacobian derived from
precise differentiable numerical solvers or known analytical solutions. M denotes the number of
evaluation points across the domain, including points used to impose boundary and initial conditions.

2.2 THE PINN-LOSS EQUATION AS AN OPTIONAL REGULARIZER

Physics-Informed Neural Networks (PINNs) regularize the gradients of the neural networks using the
governing differential equations at collocation points and boundary conditions Raissi et al. (2019);
Karniadakis et al. (2021); He et al. (2022). The core PDE constraint in PINNs is represented as:

N [u(x, t);p] = 0

The PINN loss function, LEq, incorporates the discrepancy from the PDE with terms for initial and
boundary conditions (LIC and LBC):

LEq = LPDE + α(LIC + LBC) =
1

N

N∑
i=1

|N [u(xi, ti);p]|2 + α(LIC + LBC),

where α is a weighting factor, and N denotes the number of collocation points in the computational
domain. PINNs trained for specific conditions often cannot predict general evolutionary trajectories
or guarantee accurate parameter sensitivity Jin et al. (2021); Ren et al. (2022). Additionally, PINNs
can be computationally slower than traditional numerical solvers. In this work, we evaluate the ability
of PINN-type loss to improve prediction accuracy along with sensitivities. In a broadened sense,
SC-FNO can be considered a novel type of PINN as it also regularizes the gradient of the neural
networks, but their procedures are fundamentally different. PINNs do not have access to sensitivity,
as usual PDEs do not contain ∂u/∂p. SC-FNO prepares gradient data to supervise ∂u/∂p but do
not require optimization during forward simulation, whereas PINNs rely on collocation points for
equation-based loss optimization to supervise (∂u/∂x, ∂u/∂t), but not ∂u/∂p.

2.3 GRADIENT COMPUTATION METHODS FOR DIFFERENTIAL EQUATIONS

To prepare training and validation datasets containing true solution paths along with their sensitivity
(gradients with respect to parameters), we developed and implemented two distinct approaches:

1. A differentiable numerical solver based on the torchdiffeq package. We extended this
ODE-oriented framework to handle PDEs by reformulating them in the form du

dt = RHS(x),
where RHS(x) encapsulates terms related to spatial derivatives. This solver leverages
PyTorch’s AD capability, although adjoint methods can also be used. The computation time
for preparing datasets with and without Jacobian computation is presented in Table D.12.

2. Finite difference methods for gradient computation with a traditional solver. The method
approximates gradients by solving the PDE multiple times with slightly perturbed parameter
values and computing the differences between the solutions. This process offers a non-
intrusive means of gradient estimation for any existing numerical solvers.

We implemented efficient functions to compute the sensitivities. These solution paths and sensitivities
are computed once and archived for later use, though they could also be generated on the fly if
desired. This represents a one-time cost per equation, and since input impacts are resolved upfront,
no repeated preparation is needed for different parameters. We assessed the effectiveness of both
gradient computation methods and compared their accuracies.
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2.4 IMPLEMENTATION DETAILS

The SC-FNO architecture processes parameters (p) alongside spatial coordinates and initial conditions
through the lifting layer as function inputs. This layer reshapes and repeats parameters to match
the problem’s spatial-temporal dimensions, then concatenates them with other inputs before neural
network processing. Notably, both FNO and SC-FNO share identical neural network architectures
and inputs, differing only in their loss configurations. After computing true gradients (∂u/∂p) once
during dataset preparation (Section 2.3), our training procedure contains several efficiency-focused
steps. Instead of computing gradients at all points, we randomly select a subset of spatial-temporal
points in each epoch (n < N spatial points × t < T time points) where n < N and t < T . The
neural operator’s predicted gradients at these points are computed using AD and compared with
the pre-computed true gradients. This sampling varies between epochs to eventually cover the full
solution space. This procedure eliminates the need for additional solver runs during training while
maintaining effective sensitivity supervision. Each minibatch requires only one forward pass before
applying AD, adding minimal computational overhead. The pre-computed gradients are stored and
reused throughout training, making the approach efficient as parameter dimensionality increases.

3 EXPERIMENTS

We evaluated four different configurations of the FNO models, each defined by a unique combination
of loss functions. The first configuration uses only the data loss Lu (FNO), which matches predicted
state variables with the solution paths; The second, Lu +LEq (FNO-PINN), incorporates the equation
loss; The third, Lu + LEq + Ls (SC-FNO-PINN), combining both sensitivity and equation losses;
and finally, Lu + Ls (SC-FNO), which adds only sensitivity loss to data loss. Pseudocodes for these
models can be found in the Appendix A. We evaluated the competing methods on the following
well-known differential equations.

ODE1: Composite Harmonic Oscillator and ODE2: Duffing Oscillator Equation each
operate within a temporal domain of t ∈ [0, 1], where was discretized into N = 100 equal
time steps. Our goal was to learn the operator that maps the first M time steps of solutions u,
alongside parameters p, to the solutions at the next N −M subsequent time steps, formulated as
u : [0 :M ] ∪ p → u : [M : N ].

PDE1: Generalized Nonlinear Damped Wave Equation is explored within both a temporal domain
t ∈ [0, 1] and a spatial domain x ∈ [0, 1]. The temporal domain was discretized into N = 30 equal
time steps and the spatial domain was discretized into Sx = 20. We aim to learn the operator that
maps from the first M initial time steps of u, alongside parameters p, to the next N −M subsequent
time steps, expressed as u : [0, Sx]

1 × [0,M ] ∪ p → u : [0, Sx]
1 × [M,N ].

PDE2: Forced Burgers’ Equation is analyzed across a time interval t ∈ [0, π] and a spatial
domain x ∈ [0, 1]. The temporal domain is segmented into N = 30 equal parts, and the spa-
tial domain into Sx = 40 parts. The aim is to identify the operator that maps the first M time
steps of u, in conjunction with parameters p, to the remaining N −M time steps, formulated as
u : [0, Sx]

1 × [0,M ] ∪ p → u : [0, Sx]
1 × [M,N ].

PDE3: Stream Function-Vorticity Formulation of the Navier-Stokes Equations spans the tem-
poral domain t ∈ [0, 3] and spatial domains x, y ∈ [0, 1]. The spatial domain and the temporal
domain are [0, 1] and [0, 3], respectively. The 2D spatial domain was discretized into Sx = Sy = 64
equal spatial divisions. Here, our goal is to learn an operator that takes initial conditions of u along
with parameters p, and directly maps them to the solution of vorticity at the final time step t = 3s,
formulated as u : [0, Sx]× [0, Sy]× [t = 0(s)] ∪ p → u : [0, Sx]× [0, Sy]× [t = 3(s)].

PDE4: Allen-Cahn equation is analyzed within temporal domain t ∈ [0, 1.0] and spatial domain
x ∈ [0, 1], discretized into N = 30 and Sx = 40 parts respectively. We aim to learn the operator that
maps from first M time steps of u and parameters p to the next N −M time steps, formulated as
u : [0, Sx]

1 × [0,M ] ∪ p → u : [0, Sx]
1 × [M,N ].

Detailed specifications of the differential equations and the ranges of their parameters are provided in
Table B.6 in Appendix B. The architectural details, hyperparameters and training time information
are comprehensively presented in Tables C.7 and C.8 in Appendix C.
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In the following, we first demonstrate the superior performance of SC-FNO in inversion (or op-
timization) tasks compared to FNO alone. Then we explain such outperformance using several
experiments: we show how trained FNOs alone captured the gradients poorly and thus fared worse
than SC-FNOs when inputs are perturbed, which often occurs during inversion. Then, we show
that SC-FNO requires fewer training samples to reach higher quality, particularly when the input
dimension is higher. Finally, we show that finite difference can also be functional. Experiments were
run with various neural operators and PDEs to ensure the generality of the conclusions.

3.1 PARAMETER INVERSION FROM SOLUTION PATHS

Parameter inversion with PDEs plays a pivotal role in system identification, calibration, and op-
timization, and serves as a primary area benefiting from the efficiency of surrogate models. Our
inversion experiments utilized FNO and SC-FNO surrogate models, which were trained and rigor-
ously evaluated on synthetic datasets as described in Section 3.2 for PDE1-PDE3. These datasets,
containing 2× 103 training samples, were generated using the differentiable numerical solver. They
feature randomly generated initial conditions and parameter values, alongside their corresponding
solutions at multiple time points (Table B.6 in Appendix B) and Jacobians. We used 70% of the data
for training, 15% for validation, and 15% for testing, and ensured that the validation and test sets
contained parameter values not encountered during training. The first experiment inverted the models
to infer the α parameter alone while treating others as known. We then used backpropagation to
optimize the parameter by minimizing the discrepancy between the synthetic data and PDE solutions.
The second task simultaneously inverted all parameters of either PDE1 or PDE2.
SC-FNO demonstrates notably superior performance over FNO and FNO-PINN in simple inversion
tasks, achieving nearly perfect inversion while the latter two showed significantly more scattering
(Figure 1). In the single-parameter inversion, SC-FNO achieves less than 1/5 and 1/4 the inversion
errors of FNO and FNO-PINN, respectively (Figure 1a). Multi-parameter inversion incurs larger
uncertainty and thus greater contrasts — SC-FNO has 1/6 and 1/2.8 the relative L2 inversion errors of
FNO and FNO-PINN, respectively (Figures 1b and 2). Retrieving the same parameter α in the multi-
parameter case results in large heteroscedastic scattering with FNO (R2 = 0.635), whereas SC-FNO
remains highly accurate (Figure 1b). For PDE2 with four parameters, SC-FNO’s R2 values are above
0.96, while those of FNO hover around 0.85. For PDE1 with five parameters, SC-FNO maintains
R2 above 0.94 for all parameters, while those of FNO drop below 0.64, suggesting overfitting and a
breakdown of the surrogate model. Similar contrasts are found with PDE3 (Navier Stokes) (Figure
D.10 in Appendix D). This performance gap may widen further with increased parameter dimensions.
FNO-PINN shows only slightly better inversion performance than FNO (Figures 1 and 2) and lags
much behind SC-FNO. Additional scatter plots for parameter inversion are available in Figures D.8
and D.9 in Appendix D. The introduction of the sensitivity regularizer led to consistent enhancements
across other neural operators like WNO, MWNO, and DeepONet, with uniform conclusions reflected
in Table D.11 in Appendix D. This enhancement is larger than the differences between different
neural operators. By training on both solution data and their gradients, SC-FNO builds a more robust
internal representation of the PDE dynamics, particularly regarding the roles of inputs. The next
sections explore in more depth the advantages of gradient-aware surrogate models.
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Figure 1: Inversion of the parameter α in PDE1 using FNO and SC-FNO models
(a) single parameter inversion, (b) simultaneous multi-parameter inversion.
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Figure 2: Simultaneous multi-parameter
inversion accuracy for PDEs 1 and 2 using

FNO and SC-FNO.
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3.2 SURROGATE MODEL QUALITY AND ROBUSTNESS TO INPUT PERTURBATION

Surrogate quality assessments indicate that the superior inversion performance of SC-FNO, even with
so few parameters, can be attributed to the model’s unique ability to accurately capture parameter
sensitivities and its robustness to input perturbations. As discussed earlier, the surrogate models
were trained on identical datasets uniformly prepared for each differential equation, containing both
solution paths and their parameter sensitivities. We first evaluated the models on test datasets with
parameters ranging from [a, b], the same as the training data, as detailed in Table B.6 in Appendix B.
Subsequently, to assess the models’ generalization capabilities, we perturbed the parameters beyond
their original ranges by applying various perturbation percentages, λ, resulting in a parameter range
of ([b, (1+λ)b]). By systematically increasing λ, we evaluated the models’ performance at various
levels of extrapolation, assessing their effectiveness in making predictions beyond the training dataset.

Table 1: Error metrics for PDE1 (5 parameters) and PDE2 (4 parameters) with 2×103 training samples. Both have low dimensional parameters.
(a) PDE1

Value Metric Original range of parameters Perturbed range (λ : 0.4)

FNO SC-FNO SC-FNO-PINN FNO-PINN FNO SC-FNO SC-FNO-PINN FNO-PINN

u(t)
R² 0.986 0.983 0.989 0.978 0.529 0.912 0.928 0.620

Relative L² 0.0146 0.0175 0.0112 0.0220 0.4716 0.0882 0.0721 0.3805

∂u
∂c

R² 0.723 0.924 0.943 0.801 0.515 0.901 0.915 0.605
Relative L² 0.2772 0.0761 0.0577 0.1992 0.4855 0.0993 0.0851 0.3953

∂u
∂α

R² 0.741 0.925 0.945 0.805 0.522 0.908 0.924 0.615
Relative L² 0.2590 0.0750 0.0552 0.1955 0.4780 0.0924 0.0767 0.3852

∂u
∂β

R² 0.763 0.930 0.956 0.817 0.530 0.914 0.930 0.622
Relative L² 0.2370 0.0700 0.0441 0.1834 0.4708 0.0862 0.0732 0.3781

∂u
∂γ

R² 0.772 0.931 0.955 0.815 0.539 0.920 0.936 0.630
Relative L² 0.2283 0.0696 0.0451 0.1858 0.4610 0.0801 0.0644 0.3706

∂u
∂ω

R² 0.781 0.932 0.963 0.825 0.545 0.924 0.937 0.632
Relative L² 0.2190 0.0682 0.0375 0.1752 0.4557 0.0761 0.0633 0.3687

(b) PDE2

Value Metric Original range of parameters Perturbed range (λ : 0.4)

FNO SC-FNO SC-FNO-PINN FNO-PINN FNO SC-FNO SC-FNO-PINN FNO-PINN

u(t)
R² 0.997 0.997 0.995 0.995 0.734 0.933 0.923 0.802

Relative L² 0.0029 0.0016 0.0065 0.0073 0.0325 0.0112 0.0124 0.0287

∂u
∂α

R² 0.206 0.987 0.907 0.137 0.152 0.904 0.830 0.113
Relative L² 0.2092 0.0135 0.0813 0.8545 1.1236 0.0755 0.0987 0.9865

∂u
∂γ

R² 0.423 0.986 0.991 0.519 0.311 0.903 0.904 0.429
Relative L² 0.8542 0.0540 0.0523 0.7566 0.9875 0.0767 0.0755 0.8244

∂u
∂δ

R² 0.821 0.912 0.957 0.871 0.604 0.835 0.876 0.719
Relative L² 0.1245 0.0756 0.0567 0.1023 0.2544 0.1023 0.0888 0.1567

∂u
∂ω

R² 0.321 0.982 0.912 0.427 0.236 0.912 0.834 0.353
Relative L² 0.8856 0.0567 0.0789 0.7899 1.0244 0.0722 0.0944 0.8878

For PDEs, when the test data originated from the same parameter ranges as the training data (Table
B.6 in Appendix B), the solution paths exhibit high quality, but the original FNO learns sensitivities
significantly poorer than those of SC-FNO (Table 1 left half). While the metrics for u are similarly
high among all models, the R2 values for FNO gradients range only from 0.72 to 0.78 (relative
L²: 0.28 to 0.22) for PDE1 and from 0.21 to 0.82 (relative L²: 0.21 to 0.12) for PDE2. In contrast,
SC-FNO and SC-FNO-PINN consistently achieve R2 values of 0.92-0.93 (relative L²: 0.08-0.07)
for PDE1 and 0.91-0.99 (relative L²: 0.09-0.1) for PDE2. The inclusion of a PINN-type equation
loss (LEq) in FNO-PINN provides only minor benefits for ∂u

∂p , with R2 values remaining below 0.52
(relative L²: above 0.48) for most gradients in PDE2. These improvements are not comparable to
those achieved by SC-FNO and SC-FNO-PINN, highlighting the predominant impact of Ls terms.
ODEs show a similar pattern where SC-FNO has much better sensitivity accuracy for both parameters
(Appendix Table D.14) and initial conditions (γ in Table D.14a and ζ in Table D.14b). In some
sample test predictions (Figure 3a-d), surprisingly large and unphysical oscillations are observed in
FNO-predicted sensitivities. Apparently, FNOs do not capture the dependence of solution paths on
the inputs as effectively as SC-FNO.

This pattern is reliably repeated for PDEs with a small number of parameters, e.g., for PDE3 (Navier
Stokes, 2 parameters), where models lacking the sensitivity loss well captures vorticity but falter
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Table 2: Error metrics for PDE3 with 1 × 103 training Samples. Both have

ω ∂ω/∂α ∂ω/∂β

Method Relative L² R2 Relative L² R2 Relative L² R2

FNO 0.0312 0.997 0.7230 0.036 0.9642 0.036
SC-FNO 0.0345 0.994 0.0112 0.986 0.0132 0.987

significantly in predicting its sensitivities (Table 2), missing both fine-scale features and large-scale
patterns (Figure 6). In contrast, SC-FNO accurately recreates patterns and even fine-scale details.
Given the diverse dynamics in the equations tested, the general absence of a mechanism in FNO
to capture sensitivity is evident. In the case of PDE4 (Allen Cahn), a particularly challenging test
case due to its bifurcation nature where small parameter changes can cause abrupt phase transitions
in solutions, SC-FNO already exhibits mildly better solution accuracy than FNO (Table 3). More
noticeably, SC-FNO generated 1/25 the Jacobian error as FNO, even with reduced samples near
critical parameter values where solution behavior changes sharply. This is all achieved without
excessive additional training cost (C.8). We also tested a broad range of other neural operators, all of
which exhibited a markedly improved ability to capture sensitivities upon introducing sensitivity loss
(Appendix Table D.9).
The difficulty FNO has in capturing parameter gradients leads to significantly degraded performance
under input perturbations, though SC-FNO remains robust and reliable. The R2 for the solution u at
40% perturbation decreases to 0.529 (relative L²: 0.471) for PDE1 and 0.734 (relative L²: 0.266) for
PDE2, compared to 0.912 (relative L²: 0.088) and 0.933 (relative L²: 0.067) for SC-FNO, respectively
(Table 1). As the perturbation ratio increases for PDE1, a stark decline in R2 is observed for FNO, in
contrast to the relatively stable SC-FNO (Figure 5). We argue that the large perturbation-induced
error is a primary reason for FNO’s poor performance in inversion tasks, during which the search
algorithm ventures into under-sampled regions of the parameter space, consistent with the arguments
in Li et al. (2023). At an accuracy level of R2 = 0.529 (relative L²: 0.471) (as illustrated in Figure 1b
by the scatter plot), the surrogate model loses its ability to guide the inversion. Even without straying
beyond the training parameter range, a mere change in the pattern of inter-parameter correlations
could cause a departure from the training conditions (concept drift). While increasing training data
can help, it becomes exponentially more difficult to adequately cover the parameter space for FNO
as the input dimension increases. This challenge is highlighted by the contrasts observed between
Figures 1a and 1b, as well as between Figures 2a and 2b. Additionally, SC-FNO-PINN only shows a
slight benefit in L² over SC-FNO in all of these tests (Table 1). The minimal impact of the equation
loss is both surprising and previously unexamined. This ineffectiveness likely stems from the absence
of terms related to (time-integrated) ∂u/∂p in the differential equations, which leaves this sensitivity
unconstrained even though p is in the equation. For coupled optimization tasks, it is imperative
that surrogate models not only reflect the physical phenomena accurately but also adapt to new,
unobserved conditions. SC-FNO thus provides an effective alternative solution. 

 

   

 

 
 

(a) ODE1  (c) ODE2  (e) PDE1 

(b) ODE1  (d) ODE2  (f) PDE1 

(g) PDE2 

(h) PDE2 

Figure 3: Sample prediction of models for ODEs and PDE1 and PDE2.
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Figure 4: Models’ performance on PDE1 across training sample
sizes, (a) ∂u

∂ω (b) u(t).
Figure 5: Performance of models for PDE1 for perturbed datasets, (a)

Standardized ∂û
∂p and (b) u(t).

Figure 6: Sample prediction of models for PDE 3

3.3 MODEL PERFORMANCE ACROSS VARYING TRAINING DATA VOLUMES

We explored how different models respond to varying amounts of training data. Specifically, we
aimed to investigate how the integration of different loss terms affects both the accuracy and the
generalization capabilities of the models under limited training data scenarios. The remaining portion
of the dataset, not used for training, served to test and measure the models’ performance.

Table 3: Performance comparison for PDE4

Metrics N=500 N=100

FNO SC-FNO FNO SC-FNO

State Value Metrics
R² 0.999 0.999 0.997 0.998
Relative L² 0.0110 0.0081 0.0205 0.0151

Mean Jacobian Metrics
R² -3.11 0.998 -5.8373 0.993
Relative L² 0.5212 0.0207 0.5830 0.0486

Table 4: Performance comparison for zoned PDE2

Metrics N=500 N=100

FNO SC-FNO FNO SC-FNO

State Value Metrics
R² 0.960 0.997 0.927 0.996
Relative L² 0.0282 0.0073 0.0387 0.0087

Mean Jacobian Metrics
R² -8.332 0.949 -14.012 0.927
Relative L² 1.9627 0.1770 2.4623 0.2134

The experiment demonstrates that FNO performance can rapidly degrade as the volume of training
data decreases, whereas SC-FNO can maintain higher accuracy and continue to function effectively
as a surrogate model (Figure 4). While all models exhibit a decrease in R2 scores for both state values
u(t) and gradients ∂û

∂p as training sizes diminish, SC-FNO and SC-FNO-PINN show a notably slower
rate of decline. With only 500 training samples, FNO’s R2 dropped to 0.8, displaying an acceleration
in degradation, while SC-FNO maintained an R2 around 0.9, comparable to FNO’s performance with
1,000 training samples. This advantage is attributed to the use of higher-order (gradient) information,
which, similar to traditional numerical methods such as spline interpolation or second-order finite
differences, typically results in a better rate of error convergence. This sensitivity to the volume
of training data contributed to FNO’s poor performance in inversion tasks (Section 3.1), indicating
that dense training data is necessary throughout the parameter search space to ensure accuracy. In
practical applications where comprehensive datasets are unattainable, the ability to maintain high
model performance with fewer examples is invaluable.

3.4 HANDLING FUNCTIONAL AND HIGH-DIMENSIONAL PARAMETER SPACE

All previous examples have small amount of scalar parameters. To evaluate SC-FNO’s effectiveness
with higher parameter dimensions, we modified PDE2 (Burger’s equation) with zoned parameters.
We divided the spatial domain into S = 40 segments with different advection α and forcing amplitude
δ in each zone, along with global parameters γ and ω, resulting in 2S + 2 = 82 total parameters.
Maintaining specifications from Section 3.2, we evaluated performance with different training sample
sizes (N = 500 and N = 100).
It is immediately clear from this case that SC-FNO’s advantages become more apparent with increas-
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ing parameter dimensions, even with the solution path u. At 500 samples, SC-FNO has only 1/4
the relative L² error (0.0073) as FNO (0.0282, Table 4). With N = 100 samples, SC-FNO maintains
high accuracy (relative L² = 0.0087) while FNO degrades significantly (relative L² = 0.039). In fact,
SC-FNO with 100 samples has less than 1/3 or the relative L² error of FNO with 500 samples, and
also requires less time to train (Table C.8). The contrast is more dramatic for Jacobian predictions
(SC-FNO: relative L² = 0.213; FNO: relative L² = 2.46), which, as we discussed earlier, has strong
implications for the success of inversion and sensitivity analysis. These results highlight SC-FNO’s
capability to handle high-dimensional parameter spaces efficiently, maintaining accuracy even with
limited training data. We can reasonably surmise that drastically increasing the number of parameters
will further highlight SC-FNO’s unique capability, which we reserve for future work.

3.5 DIFFERENT GRADIENT CALCULATION METHODS

We tested gradients derived from both a differentiable solver with automatic differentiation (AD) and
a fourth-order finite difference solver (FD) using a traditional solver against the analytical solution
for gradients of ODE1. The results of this verification are presented in Table D.13 in Appendix
D.3. Following this validation, we used these methods to generate solution paths and sensitivities for
training and testing surrogate models. We trained SC-FNOs using 70% of the produced data, dividing
the remainder into 15% each for validation and testing. The validation and testing datasets included
parameter values not featured in the training data, testing the models’ generalization capabilities.
SC-FNOs trained with either AD- or FD-generated gradients proved effective, producing accurate
predictions for both solutions and their gradients, as shown in Table 5. These models both achieved
R² > 0.95 (relative L² < 0.05) for solution paths and R² > 0.9 (relative L² < 0.1) for sensitivities. While
AD provides higher accuracy and efficiency (Table D.13), FD remains effective and applicable to
any existing model code. This makes SC-FNO versatile while maintaining computational efficiency
comparable to traditional methods.

Table 5: Performance comparison of SC-FNO and SC-FNO-PINN using AD and FD solvers.

ODE1 PDE1

Value Metric SC-FNO
(AD)

SC-FNO
(FD)

SC-FNO-
PINN(AD)

SC-FNO-
PINN(FD)

SC-FNO
(AD)

SC-FNO
(FD)

SC-FNO-
PINN(AD)

SC-FNO-
PINN(FD)

u
R² 0.991 0.968 0.994 0.983 0.983 0.963 0.989 0.978
Relative L² 0.009 0.032 0.006 0.017 0.017 0.037 0.011 0.022

Avg. ∂u
∂P

R² 0.996 0.987 0.995 0.983 0.928 0.913 0.952 0.932
Relative L² 0.004 0.013 0.005 0.017 0.072 0.087 0.048 0.068

3.6 FURTHER DISCUSSION AND CONCLUSION

This work has demonstrated the powerful regularizing effect of sensitivities. The effectiveness of
SC-FNO stems from the explicit governance of input influence through time-integrated parameter
sensitivities (∂u/∂p). Unlike PINNs, which supervise spatial-temporal derivatives (∂u/∂x, ∂u/∂t)
through equation-based loss optimization, SC-FNO directly constrains parameter sensitivities typ-
ically absent in PDE formulations, using forward numerical models with differentiable solvers to
prepare sensitivity data. This fundamental difference enhances model interpretability and reliability,
making SC-FNO more suitable for coupled inversion or optimization tasks. Especially when input
parameters have a higher dimension, SC-FNO can reduce training data demand, maintain robustness
and generalizability, elevate the performance ceiling of neural operators, and even reduce training
time. Our innovations include employing differentiable numerical solvers—and alternatively, finite
differences—for computing (almost) exact gradients. Although differentiable programming is gaining
traction (Shen et al., 2023), few studies have leveraged computed gradients beyond backpropagation.
We have used these gradients to supervise FNOs, calculating second-order gradients during training.
The additional computational cost remains affordable—training the FNO on PDE1 used 722 MB
while training SC-FNO required 764 MB. We argue that sensitivity regularization and time-step-free
methods like FNO complement each other exceptionally well. SC-FNO’s programmatic differen-
tiability allows its seamless integration with neural networks (NNs), speeding up hybrid NN-based
learning and optimization. Accurate gradients are crucial for the effective training of coupled NNs,
thus opening up new avenues in the field of AI-enhanced solutions to differential equations.
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APPENDIX

A SC-FNO ARCHITECTURE AND SENSITIVITY INTEGRATION

Figure A.7 illustrates the schematic of the SC-FNO model architecture. In this framework, this
variation of the Fourier Neural Operator (FNO) integrates various inputs: parameters (P) that
influence the differential equation, spatial and temporal coordinates (X : [x, y, t]), and the function
a(x), which may represent different initial conditions. This setup enables comprehensive learning and
adaptation across different scenarios by leveraging both automatic differentiation for optimization and
multiple loss components tailored to the specific dynamics and constraints of the system. Furthermore,
in our framework, the FNO can be regularized by both a PINN-style differential equation (LEq)
as well as the sensitivities (gradients of the solution path of a differential equation with respect
to parameters contributing to the diff equation). These regularization terms ensure that the model
adheres to the underlying physical laws that reflect how the solution path is determined by a parameter
and how it changes when a parameter changes.

P

X

v(x)

... ...

Lifting
Layer

Input
Layer

Projection
Layer AutoDiff Loss

Components

EndNOYes

a(x)

LData

LEq

LS
u(x)

Fourier
Layers

F R F-1

W
+

Initial States

Parameters

Coordinates

Figure A.7: Schematic of SC-FNO architecture.

Pseudocode for different FNO models, each with various loss configuration settings, are presented as
follows. This section aims to highlight how different loss functions can be integrated and optimized
within these models to enhance their predictive accuracy and performance.

Algorithm 1 FNO Training Loop with Lu Loss Over Epochs
1: Initialize FNO model
2: for epoch = 1 to max_epochs do
3: Shuffle training data
4: for each batch P,utrue in training data do
5: Predict state values using FNO: û← FNO(P)
6: Calculate loss: Lu = loss(û,utrue)
7: Backpropagate loss and update FNO model
8: end for
9: Evaluate on validation set

10: Record training and validation loss
11: end for

14
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Algorithm 2 SC-FNO Training Loop with Lu and Ls Loss Over Epochs
1: Initialize FNO model
2: for epoch = 1 to max_epochs do
3: Shuffle training data
4: for each batch P,utrue,

∂utrue
∂P

in training data do
5: Predict state values using FNO: û← FNO(P)
6: Calculate primary loss: Lu = loss(û,utrue)

7: Predict Jacobian of state values using Auto Diff (AD): Ĵ← ∂û
∂P

8: Calculate sensitivity loss: Ls = loss(Ĵ, ∂utrue
∂P

)
9: Calculate total loss: Ltotal = c1 · Lu + c2 · Ls

10: Backpropagate total loss and update FNO model
11: end for
12: Eevaluate on validation set
13: Record training and validation loss
14: end for

▷ c1 and c2 are learnable coefficients

Algorithm 3 SC-FNO-PINN Training Loop with Lu, Ls, and Leq Loss Over Epochs

1: Initialize FNO model
2: for epoch = 1 to max_epochs do
3: Shuffle training data
4: for each batch P,utrue,

∂utrue
∂P

in training data do
5: Predict state values using FNO: û← FNO(P)
6: Calculate primary loss: Lu = loss(û,utrue)

7: Predict Jacobian of state values using Auto Diff (AD): Ĵ← ∂û
∂P

8: Calculate sensitivity loss: Ls = loss(Ĵ, ∂utrue
∂P

)
9: Calculate equation loss: Leq = residual(û)

10: Calculate total loss: Ltotal = c1 · Lu + c2 · Ls + c3 · Leq

11: Backpropagate total loss and update FNO model
12: end for
13: Evaluate on validation set
14: Record training and validation loss
15: end for

▷ c1, c2, and c3 are learnable coefficients Liebel & Körner (2018)

15
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B DIFFERENTIAL EQUATION DETAILS

In this section, the differential equations investigated in the work are detailed. This includes their
mathematical formulations, initial conditions, parameter setups.

ODE1: Composite Harmonic Oscillator We chose this ODE because it has an analytical solution,
allowing us to validate our differential equation solvers and sensitivity computations. The ODE is
defined as:

du

dt
= α sin(απt) + β cos(βπt) (7)

with the initial condition u(0) = sin(γπ). This oscillator’s behavior is modulated by the parameters α,
β, and γ, affecting the frequency and amplitude of oscillations within the temporal domain t ∈ [0, 1].
The analytical solution for u(t) is:

u(t) = − 1

π
cos(απt) +

1

π
sin(βπt) + sin(γπ) +

1

π
(8)

The sensitivities of u with respect to each parameter are:

∂u

∂α
= t sin(απt) (9)

∂u

∂β
= t cos(βπt) (10)

∂u

∂γ
= π cos(γπ) (11)

These analytical solutions provide a benchmark against which we can compare the accuracy of our
numerical solvers and sensitivity computations.

ODE2: Duffing Oscillator Equation

ẍ+ δẋ+ αt+ βt3 = γ cos(ωt), (12)

with initial conditions x(0) = ϵ, ẋ(0) = ζ. This equation describes a non-linear oscillator where
damping δ, stiffness α, non-linear stiffness β, driving amplitude γ, and frequency ω play crucial
roles.

PDE1: Generalized Nonlinear Damped Wave Equation

∂2u

∂t2
= c2

∂2u

∂x2
+ α

∂u

∂t
+ βu+ γ sin(ωu), (13)

with initial conditions u(x, 0) = u0, ∂u
∂t (x, 0) = u′0. This PDE extends over a spatial domain

x ∈ [0, 1] and temporal domain t ∈ [0, 1], exploring wave propagation influenced by damping α,
stiffness β, and external forcing γ and ω.

PDE2: Forced Burgers’ Equation

1

π

∂u

∂t
+ αu

∂u

∂x
= γ

∂2u

∂x2
+ δ sin(ωt), (14)

This equation is set within a spatial domain x ∈ [0, 1.0] and a temporal domain t ∈ [0, π]. It models
fluid dynamics phenomena such as velocity u(x, t), incorporating effects of advection α, viscosity γ,
and external periodic forcing characterized by amplitude δ and frequency ω. The initial state of the
system is defined as follows:

u(x, 0) = u0(x) =

(
e−

(x−x0)2

2σ2 + sin(0.5πx)

)
, (15)

where the Gaussian pulse is centered at x0 = 0.5 with a width σ = 0.3, combined with a sinusoidal
component. The model employs periodic boundary conditions, ensuring that u(0, t) = u(1.0, t)
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throughout the simulation, facilitating the study of continuous and cyclic phenomena in a finite spatial
interval.

PDE3: Stream Function-Vorticity Formulation of the Navier-Stokes Equations

∂ω

∂t
+ ψy

∂ω

∂x
− ψx

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (16)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (17)

with initial condition ω(x, y, 0) = f(x, y;α, β) where:

f(x, y;α, β) = sin(αx) cos(βy) + cos(αy) sin(βx) + sin(αx+ βy) cos(αy − βx), (18)

covering the spatial domain x, y ∈ [0, 1] and temporal domain tin[0, 3]. The Reynolds Number Re
for the Navier-Stokes equations is set to 1000 to simulate realistic fluid dynamics. This equation
captures the dynamics of fluid flow, with initial vorticity distribution determined by parameters α and
β.

PDE4: Allen-Cahn equation
∂u

∂t
= ϵ

∂2u

∂x2
+ αu− βu3, (19)

with initial condition u(x, 0) = c tanh(ωx) and periodic boundary conditions. This PDE, known for
exhibiting rich bifurcation behavior, explores phase transition phenomena influenced by diffusion
coefficient ϵ, linear term α, cubic term β, and initial condition parameters c and ω. The equation’s
solutions can undergo sharp qualitative changes with small parameter variations, making it an
excellent test case for sensitivity analysis.

The parameter ranges used in our simulations are detailed in Table B.6. Parameters for these simu-

Table B.6: Parameter values for different ODE and PDE cases.

Case c α β γ δ ω ϵ ζ M

ODE 1 - [1, 3] [1, 3] [0, 1] - - - - 10
ODE 2 - [0.02, 0.06] [0.01, 0.03] [20, 60] [0.5, 1.5] [0.2, 0.6] [0.0, 0.2] [0.0, 0.2] 10
PDE 1 [0.0, 0.25] [0.0, 0.1] [0.0, 0.25] [0.0, 0.25] - [0.0, 0.25] - - 5
PDE 2 - [0.1, 1.0] - [0.025, 0.25] [0.1, 0.5] [0.01, 0.1] - - 5
PDE 3 - [π, 5π] [π, 5π] - - - - - 1
PDE 4 [0.1,0.9] [0.01,1.0] [0.01,1.0] - - [5.0, 10.0] [0.01,1.0] - 5

lations were randomly generated using a uniform distribution. The uniform distribution is denoted
by U(a, b), where a is the lower bound and b is the upper bound of the distribution. This means that
any value within the range [a, b] has an equal probability of being selected. The uniform distribution
was chosen to ensure a balanced representation of parameter values across the entire specified range,
without favoring any particular subset of values. This approach allows for a comprehensive explo-
ration of the parameter space, providing a robust test of our models across a wide range of potential
input conditions.

17
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C FNOS HYPERPARAMETERS

Table C.7 presents the hyperparameters used for training the FNO models for each case study. In
the network architecture, "Mode" refers to the Fourier modes used in the neural network’s layers
for each dimension (t, x, and y), while "Width" denotes the number of channels or features in the
hidden layers of the neural network. The learning rate and number of epochs used for training are
also provided for each case. Additionally, Table C.8 compares training times per epoch for different
model configurations and batch sizes.

Table C.7: Hyperparameters for FNOs

Case Mode
for t

Mode
for x

Mode
for y Width Number of

Fourier Layers
Learning

Rate
Number of

Epochs
Number of

Learnable Parameters

ODE 1 8 8 - 20 4 0.001 500 17921
ODE 2 8 8 - 20 4 0.001 500 17921
PDE 1 8 8 - 20 4 0.001 500 107897
PDE 2 8 8 8 20 4 0.001 500 107897
PDE 3 - 8 8 20 4 0.001 500 209397
PDE 4 8 8 8 20 4 0.001 500 107897

Table C.8: Comparison of model configurations and training time

Case Batch size Number of Parameters (P) Number of training samples Average training time per epoch (s)

FNO SC-FNO FNO-PINN SC-FNO-PINN

ODE1 16 3 2000 1.10 1.94 1.53 2.46
ODE2 16 7 2000 1.58 2.13 1.76 2.86
PDE1 4 5 2000 35.24 53.32 52.13 82.13
PDE2 4 4 2000 32.66 44.92 39.11 73.06

PDE2 (Zoned) 1 82 100 5.37 7.23 - -
PDE2 (Zoned) 1 82 500 8.09 11.23 - -

PDE3 4 2 1000 47.16 109.43 - -
PDE4 1 5 100 11.54 19.12 - -
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D ADDITIONAL RESULTS

D.1 PERFORMANCE COMPARISON OF NEURAL OPERATORS

This appendix section presents a comprehensive comparison of the performance of various neural
operators, both in their original form and with our proposed sensitivity-constrained framework.
We evaluate these operators on four different systems, PDE1 and PDE2. The following tables
provide quantitative results for Fourier Neural Operators (FNO), Wavelet Neural Operators (WNO),
Multiwavelet Neural Operators (MWNO), and DeepONets, along with their sensitivity-constrained
counterparts.

Table D.9: R2 for PDE1 with 2 × 103 training samples.

Value FNO SC-FNO WNO SC-WNO MWNO SC-MWNO DeepONet SC-DeepONet

u(t) 0.986 0.983 0.981 0.989 0.978 0.952 0.974 0.954
∂u
∂c 0.723 0.924 0.661 0.919 0.596 0.939 0.117 0.508
∂u
∂α 0.741 0.925 0.402 0.923 0.090 0.916 0.110 0.243
∂u
∂β 0.763 0.930 0.921 0.914 0.863 0.915 0.778 0.827
∂u
∂γ 0.772 0.931 0.572 0.834 0.531 0.659 0.483 0.572
∂u
∂ω 0.781 0.932 0.614 0.823 0.558 0.684 0.497 0.531

Table D.10: R2 for PDE2 with 2 × 103 training samples.

Value FNO SC-FNO WNO SC-WNO MWNO SC-MWNO DeepONet SC-DeepONet

u(t) 0.997 0.997 0.981 0.979 0.989 0.971 0.990 0.985
∂u
∂α 0.206 0.987 0.422 0.635 0.558 0.821 0.344 0.882
∂u
∂γ 0.423 0.986 0.432 0.562 0.387 0.905 0.511 0.873
∂u
∂δ 0.821 0.912 0.865 0.894 0.501 0.932 0.445 0.958
∂u
∂ω 0.321 0.982 0.425 0.542 0.214 0.952 0.363 0.806

D.2 ADDITIONAL RESULTS FOR THE INVERSION EXPERIMENTS

Figures D.8, D.9 and D.10 showcase parameter inversion results for parameters for PDE1, PDE2,
and PDE3, respectively. SC-FNO works significantly better than either FNO or FNO-PINN. Table
D.11 shows the comparison between various neural operators and their sensitivity-constrained (SC-)
versions in simultaneous parameter inversion. Note the uniform pattern that the sensitivity-constrained
versions have much higher inversion accuracy. Furthermore, the differences between different neural
operators are smaller than the difference between the versions with and without the sensitivity
constraint.

Table D.11: Multi-parameter inversion accuracy for PDEs 1 and 2 with and without gradient supervision.
(a) PDE1

Fourier Neural Operators Other Neural Operators

FNO SC-FNO Without gradient supervision. With gradient supervision.

Parameter R² Relative L² R² Relative L² WNO MWNO DeepONet SC-WNO SC-MWNO SC-DeepONet

c 0.657 0.212 0.987 0.035 0.636 0.614 0.538 0.984 0.981 0.977
α 0.642 0.222 0.986 0.036 0.621 0.598 0.519 0.984 0.980 0.977
β 0.753 0.183 0.974 0.042 0.738 0.723 0.668 0.969 0.963 0.956
γ 0.804 0.165 0.985 0.037 0.792 0.780 0.736 0.982 0.978 0.975
ω 0.750 0.186 0.916 0.075 0.735 0.719 0.663 0.901 0.879 0.859

(b) PDE2

Fourier Neural Operators Other Neural Operators

FNO SC-FNO Without Grad. Sup. With Grad. Sup.

Parameter R² Relative L² R² Relative L² WNO MWNO DeepONet SC-WNO SC-MWNO SC-DeepONet

α 0.954 0.078 0.982 0.045 0.951 0.949 0.938 0.979 0.974 0.970
γ 0.925 0.082 0.967 0.022 0.921 0.916 0.899 0.961 0.953 0.945
δ 0.842 0.145 0.970 0.051 0.832 0.822 0.787 0.964 0.956 0.949
ω 0.895 0.118 0.986 0.042 0.889 0.838 0.859 0.983 0.973 0.976
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Figure D.8: Individual parameter results for PDE1 in simultaneous multi-parameter recovery,
comparing FNO and SC-FNO performance. (α has been presented in Figure 1b)
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Figure D.9: Individual parameter results for PDE2 in simultaneous multi-parameter recovery,
comparing FNO and SC-FNO performance.

D.3 VERIFICATION OF DIFFERENTIABLE AND FINITE DIFFERENCE SOLVERS

Table D.13 presents a comparison of R2 values for both the solution path u(t) and the gradients of u
with respect to different parameters obtained from both differentiable solver (AD) and 4th order finite
difference solver (FD). The table includes runtime measurements for generating 2 × 103 samples
using both solvers, providing insight into their computational efficiency. These measurements were
obtained using a machine equipped with a V100 GPU and four Intel Xeon processors, offering a
standardized comparison of computational cost (The Wall Clock Times) between the two solvers.
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Figure D.10: Inversion of the parameter α in PDE3 using FNO and SC-FNO models.

Table D.12: Computation time for preparing datasets using AD solver
with and without Jacobian

Case Number of input
parameter (P) Computation time (s)

With jacobian Without jacobian

PDE1 5 1.852 0.932
PDE2 4 1.387 0.796
PDE3 2 6.205 2.762

Table D.13: Error metrics and runtime comparison for training data
preparation with AD and FD solvers on ODE1

FD solver AD solver

Value R2 Runtime R2 Runtime

u 0.9872

1907.32 s

0.9981

252.54 s
∂u
∂α 0.9712 0.9906
∂u
∂β 0.9885 0.9989
∂u
∂γ 0.9618 0.9890

D.4 SURROGATE MODEL QUALITY FOR THE ORDINARY DIFFERENTIAL EQUATIONS (ODES).

Table D.14: Test R2 values and Relative L² for the solution paths u and sensitivities ( ∂u
∂p ) of the surrogate models for ODE1 and ODE2 with

2 × 103 training samples. The train and test parameters are in the same range. ODEs are simpler to capture by surrogate models than PDEs.
(a) ODE1

Value Metric FNO SC-FNO SC-FNO-PINN FNO-PINN

u(t)
R² 0.996 0.991 0.994 0.991

Relative L² 0.004 0.009 0.006 0.009

∂u
∂α

R² 0.327 0.994 0.992 0.318
Relative L² 0.673 0.006 0.008 0.682

∂u
∂β

R² 0.415 0.995 0.995 0.462
Relative L² 0.585 0.005 0.005 0.538

∂u
∂γ

R² 0.028 0.998 0.998 0.131
Relative L² 0.972 0.002 0.002 0.869

(b) ODE2

Value Metric FNO SC-FNO SC-FNO-PINN FNO-PINN

u(t)
R² 0.998 0.995 0.997 0.997

Relative L² 0.002 0.005 0.003 0.003

∂u
∂α

R² 0.162 0.997 0.998 0.152
Relative L² 0.838 0.003 0.002 0.848

∂u
∂δ

R² 0.956 0.997 0.998 0.951
Relative L² 0.044 0.003 0.002 0.049

∂u
∂ζ

R² 0.135 0.996 0.997 0.147
Relative L² 0.865 0.004 0.003 0.853
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