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Figure 1. Examples of synthetic video frames showing 12 distinct human actions, generated using our method as extensions to the Toyota
Smarthome (above) and the NTU RGB+D (below) datasets. The presented identities are from our RANDOM People dataset.

Abstract

In video understanding tasks, particularly those involv-001
ing human motion, synthetic data generation often suf-002
fers from uncanny features, diminishing its effectiveness for003
training. Tasks such as sign language translation, ges-004
ture recognition, and human motion understanding in au-005
tonomous driving have thus been unable to exploit the006
full potential of synthetic data. This paper proposes a007
method for generating synthetic human action video data008
using pose transfer (specifically, controllable 3D Gaussian009
avatar models). We evaluate this method on the Toyota010
Smarthome and NTU RGB+D datasets and show that it011
improves performance in action recognition tasks. More-012
over, we demonstrate that the method can effectively scale013
few-shot datasets, making up for groups underrepresented014
in the real training data and adding diverse backgrounds.015
We open-source the method along with RANDOM People,016
a dataset with videos and avatars of novel human identities017
for pose transfer crowd-sourced from the internet.018

1. Introduction 019

As large-scale training datasets proved essential for gener- 020
alization in AI models [49]—be it for language, image, or 021
video tasks—many internet-scraped datasets emerged. In 022
domains where data at such a scale is unavailable, data aug- 023
mentation and synthetic data stepped in to fill the gap [46]. 024
The recent advent of generative AI models has only ac- 025
celerated this trend [50]. However, in video understand- 026
ing tasks, data augmentation offers only limited gains, and 027
so far, approaches to whole-cloth synthetic data generation 028
have fallen short of quality and overall usability [25]. As a 029
result, synthetic data is not widely used to train video clas- 030
sification or understanding models [20]. 031

Much of the recent work in synthetic video data gener- 032
ation has focused on videos with human actions [54]. This 033
restricts the problem scope while still offering many use 034
cases to downstream applications involving human action 035
understanding and generation (e.g., sign language transla- 036
tion, gesture recognition, and human motion understanding 037
in autonomous driving). In particular, two lines of work 038
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have prevailed in the literature over recent years: (1) ap-039
proaches based on classic computer graphics, often using040
simulated rendering, and (2) generative AI models [27].041
While the first approach preserves semantic attributes of the042
action (in that, the pose of protagonist in the video is fully043
controlled, and so the desired action is, too), it has not yet044
passed the uncanny valley [21]. The second approach, on045
the other hand, can generate photorealistic human videos046
but is unstable in that it lacks full pose control and still con-047
tains physical errors as well as artifacts [51]. Therefore,048
neither of these approaches has been widely adopted as a049
source of synthetic data for training video classification or050
understanding models.051

Recent work has, however, focused on bridging these052
two approaches by leveraging the versatility and ability053
to generate photorealistic content that comes with gener-054
ative AI while grounding it in a physical model of the055
human body that gives one full control over the resulting056
action [26, 34]. While these models still have some is-057
sues (namely, high demands for reference identity videos058
and computational demands, as further discussed in Sec-059
tion 2.2), we found them to be effective enough to open the060
inquiry into using such models for synthetic video genera-061
tion of human action for model training.062

In particular, we devise a method that, given reference063
videos, reenacts the human actions shown in these refer-064
ence videos using novel human identities in novel settings.065
To do so, we employ a modified ExAvatar [34] 3D Gaus-066
sian framework as our avatar animation backbone. We eval-067
uate this method on action recognition using the Toyota068
Smarthome [8] and NTU RGB+D [43] datasets, improv-069
ing the performance of two baseline models while proving070
particularly efficient for few-shot learning.071

The primary contributions of this paper include:072

1. proposing a method for synthetic human action video073
data generation using pose transfer;074

2. open-sourcing this method with ExAvatar [34] as the075
avatar animation backbone;076

3. collecting and open-sourcing the RANDOM People077
dataset with (a) novel human identity videos, (b) their078
avatars for pose reenactment, and (c) background im-079
ages.080

2. Related Work081

We open this section by reviewing the existing scholarship082
on synthetic data generation for action recognition model083
training. We continue with an overview of pose transfer084
methods for generating novel images and videos of people085
reenacting reference poses. We also enumerate the most086
prominent datasets for video action recognition. We close087
with a broader discussion of video classification models.088

2.1. Synthetic data for Action Recognition 089

Early work on synthetic video data generation for action 090
recognition model training exploited fully simulated envi- 091
ronments powered by classic CGI methods. One of these 092
methods is ElderSim [19], specifically designed to generate 093
videos of elderly individuals performing day-to-day tasks. 094
Due to the uncanny features of the simulation, the resulting 095
videos lacked photorealism and detail. Moreover, as these 096
are fully simulated actions, they lack much of the imperfec- 097
tions of real-world human motion. 098

Another approach built around CGI simulation was 099
employed in the creation of the Robot Control Gestures 100
(RoCoG-v2) dataset [39]. This dataset comprises both real 101
and synthetic videos of seven gesture classes for human- 102
robot teaming. Similar to ElderSim, the method behind this 103
dataset lacks options for adding external identities or match- 104
ing real-world human actions, as it is powered by a CGI 105
simulator. 106

Over time, methods based on classic CGI technologies 107
have been extended and combined with AI techniques. This 108
was the case with SURREACT [48], a model for generating 109
synthetic videos from unseen viewpoints. While this ap- 110
proach has been shown to improve the robustness of action 111
recognition models to diverse viewpoints, the method can- 112
not generate completely new renditions of the actions. The 113
target identities match those from the videos, but additional 114
external identities are not supported. 115

More recently, BEDLAM [3] showed that a purely syn- 116
thetic dataset built using SMPL-X [36] can be used to 117
achieve state-of-the-art performance on human pose esti- 118
mation. SynthAct [42] further showed how Unity can be 119
leveraged to create synthetic human action video data suit- 120
able for robotics applications. 121

While these recent advancements highlight the potential 122
of synthetic data for certain computer vision tasks, most ex- 123
isting methods that generate synthetic data for action recog- 124
nition still struggle with photorealism and generalization to 125
new target identities. Although they have been shown to 126
enhance human action video classifiers in some scenarios 127
(e.g., handling novel viewpoints), achieving this often re- 128
quires substantial adaptation to the task at hand. As de- 129
scribed Section 3, our method overcomes many of these 130
shortcomings while utilizing the advantages of explicit hu- 131
man models, which ensure full control of the generated hu- 132
man motion. Furthermore, it is versatile and can be applied 133
to many contexts without modifications. 134

2.2. Pose Transfer 135

The task of pose transfer entails generating images or videos 136
of a given human identity (target) in new poses (source). 137
Formulations of this task differ in the input (target identity 138
and source pose) and output modality. 139

Earlier approaches focused only on generating static im- 140
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ages. The first successful works in this domain broke141
ground around 2017 when a two-stage neural network for142
generating images of people conditioned on pose was intro-143
duced [31]. From then on, the task has been approached by144
emerging neural network architectures, as seen in other ar-145
eas of computer vision: most prominently, GANs [28, 32,146
44] and attention-equipped methods [40, 55].147

Recent approaches focused on generating videos. These148
include Magic Animate [52], Animate Anyone [18], Champ149
[56], and ExAvatar [34], which we review in more detail.150

Magic Animate extracts a DensePose [16] representation151
of each frame in the source video. The target identity is152
provided as a single image. To generate novel videos of the153
target identity in the source poses, Magic Animate employs154
a video diffusion model with an appearance encoder.155

Animate Anyone extracts body keypoints of each frame156
in the source video. The target identity is provided as a sin-157
gle image. To generate novel videos of the target identity in158
the source poses, Animate Anyone trains a 3D U-Net model159
for video denoising and incorporates an additional reference160
network to extract features from the reference image.161

Champ extracts an SMPL model [29] (a parametric 3D162
pose representation) from each frame in the source video.163
The target identity is provided as a single image. To gen-164
erate novel videos of the target identity in the source poses,165
Champ leverages SMPL as a latent representation within a166
custom-trained diffusion model.167

ExAvatar extracts an expressive whole-body 3D Gaus-168
sian representation of each frame in the source video, which169
is obtained through an ensemble of other body representa-170
tions, from body keypoints to SMPL-X [37] to expressive171
head models. The target identity is provided as a video of172
the person performing a specific set of actions; from this173
video, the same ensemble of body representations is ex-174
tracted. Once the avatar and source pose representations are175
extracted, 3D Gaussian Splatting allows ExAvatar to ani-176
mate the target identity according to the source poses. In a177
recent study, human evaluators found ExAvatar to produce178
human motion that is more consistent with the reference and179
overall more coherent than its diffusion-based counterparts180
Magic Animate and Animate Anyone [23].181

On the one hand, Magic Animate, Animate Anyone, and182
Champ are easier to scale because they only analyze a sin-183
gle format of input representations and require only a single184
image of the target identity, unlike ExAvatar, which ana-185
lyzes an ensemble of features and requires a specific kind186
of video of the target. However, constructing 3D Gaussian187
avatars gives ExAvatar full, guaranteed control of the pose,188
while Magic Animate, Animate Anyone, and Champ rely189
on generative approaches like diffusion where the control is190
not guaranteed. Moreover, these diffusion-based methods191
often suffer from artifacts, hallucinations, and other defi-192
ciencies.193

2.3. Video Datasets for Action Recognition 194

There are multiple popular video datasets for action recog- 195
nition in the literature. We highlight four most prominent 196
ones, in chronological order of their release. 197

HMDB51 [24] contains a total of 6,766 videos across 51 198
classes, collected from YouTube. The actions in this dataset 199
are diverse, including sports, musical instrument playing, 200
and close-up interactions with objects. 201

UCF101 [45] contains a total of 13,320 videos across 202
101 classes, from various online sources. Similar to 203
HMDB51, UCF101 also includes a wide range of actions. 204

NTU RGB+D [43] contains a total of 56,880 videos 205
across 60 classes recorded by the dataset authors with con- 206
senting protagonists. The protagonists are shown perform- 207
ing a wide range of regular daily actions (e.g., walking and 208
drinking). 209

SSV2 [15] contains a total of 220,847 videos across 174 210
classes. The dataset contains videos of many fine-grained 211
interactions between humans and objects (e.g., pushing, 212
pulling, and sliding). 213

Toyota Smarthome [8] contains a total of 16,115 videos 214
across 31 classes, with 18 unique participants. This dataset 215
shows mostly senior citizens perform daily activities inside 216
of their homes. This dataset is distinct for its notable intra- 217
class variation and class imbalance. 218

In our experiments, we chose to use Toyota Smarthome 219
and NTU RGB+D because they include only consenting 220
participants and do not rely on object interactions. 221

2.4. Video Classification Models 222

Popular baseline models for video classification include 223
I3D [4], ResNet adapted for video processing [17], Slow- 224
Fast [13], and, more recently, architectures derived from the 225
Vision Transformer (ViT) [1, 2, 10, 47]. Many ViT-based 226
models are pre-trained on the Kinetics dataset [4] for action 227
recognition, facilitating downstream training on datasets 228
such as Toyota Smarthome and NTU RGB+D. Given this, 229
we opt for older baselines—ResNet and SlowFast—and 230
train them from randomly initialized weights. 231

3. Methods 232

In this section, we describe our method for synthetic data 233
generation of human action videos. The method extends 234
existing datasets by using real videos as reference human 235
action that is reenacted by novel identities in new settings. 236

237
An overview diagram of the method is shown in Fig- 238

ure 2. At the input, the method receives T , a set of nT real 239
reference videos with human actions, as well as I , a set of 240
nI videos with novel human identities for action reenact- 241
ment. The videos in I show people performing a sequence 242
of actions that was found to be effective for avatar genera- 243
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Figure 2. Overview of our method for synthetic human action video data generation. See Section 3 for details.

tion in [34]. Optionally, the method also receives a set of244
background scene images B. It then generates new videos245
in which identities in I are animated to reenact the same246
actions as shown in the real reference videos T , optionally247
with varying background settings B. The method consists248
of three main stages: (1) avatar creation, (2) reference video249
preparation, and (3) animation.250

3.1. Avatar Creation251

For each novel human identity Ii in I1 . . . InI
, an expressive252

whole-body avatar Ai is made using ExAvatar [34], which253
we use as our avatar animation backbone. This yields fully254
controllable 3D Gaussian avatars.255

To that end, the video Ii is normalized to a constant256
length and frame rate. Select frames within the normalized257
video are then used to extract the following features (the258
frames selection follows ExAvatar’s original implementa-259
tion [34]):260

1. 3D pose meshes (SMPL-X [37]);261
2. depth maps (DepthAnythingv2 [53]);262
3. body keypoints (133 · 3, MMPose [6]);263
4. identity segmentation masks (Segment Anything [22]);264
5. facial expressions (DECA [14]);265
6. hand poses (Hand4Whole [33]).266

With these features extracted, we train Ai, an animatable267
3D Gaussian avatar that preserves the unique identity char-268
acteristics of the novel human identity in Ii. In doing so,269
we follow the implementation of ExAvatar [34] with default270
parameters unless specified above.271

3.2. Reference Video Preparation272

Each reference video Ti in T0 . . . TnT
is normalized to a273

constant length and frame rate. Select frames within the274
normalized video are then used to extract the same set of275
features as used for avatar creation (described above in Sec-276
tion 3.1) with the exception of identity segmentation masks277

and depth maps, which are not extracted. These features are 278
packaged into Fi. 279

3.3. Animation 280

With the set of novel identity avatars A and the set of ref- 281
erence video features F representing training videos T , we 282
proceed with the animation stage. 283

White-Background Videos. For each training video Ti 284
in T1 . . . TnT

, represented by its features Fi, and each novel 285
identity avatar Aj in A1 . . . AnA

, we generate a synthetic 286
video S(i,j). This results in nA synthetic videos per training 287
video, totaling nT · nA synthesized videos. These interme- 288
diate videos will be superimposed onto image backgrounds 289
in the next step. 290

Image-Background Videos. As a final step, image 291
backgrounds are added to the white-background videos. For 292
each training video Ti in T1 . . . TnT

, represented by its fea- 293
tures Fi, and each novel identity avatar Aj in A1 . . . AnA

, 294
we randomly select g image backgrounds from a back- 295
ground pool B, denoted as Bk. For each combination of 296
Ti, Aj , and Bk, we synthesize the video S(i,j,k). This re- 297
sults in g ·nA synthetic videos per training video, for a total 298
of nT · g · nA synthesized videos. 299

4. Data 300

In this section, we describe the data used in our experi- 301
ments. We first detail the data collection process of novel 302
human identity videos I . We then describe the selection of 303
reference videos T . Finally, we cover the selection of back- 304
ground scene images B. 305

4.1. Novel Human Identity Videos 306

Recordings of 188 participants were crowd-sourced through 307
Prolific. These participants were informed about the in- 308
tended use of their recordings and asked to consent to their 309
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Figure 3. Representative frames from the novel human identity videos I in the RANDOM People dataset.

Figure 4. Representative frames from the reference videos T in the RANDOM People dataset. These videos, sourced from the Toyota
Smarthome dataset, were manually selected following suitability criteria in Section 4.2.

video—as well as a 3D Gaussian model and other derived310
artifacts—made publicly available for research purposes311
prior to entering our interface. The average completion time312
was 8 minutes, and participants were compensated at a rate313
of above 8 USD. This data collection was consulted with314
the (name anonymized) IRB office, which concluded that315
an IRB review is not required.316

The participants were instructed to record themselves317
performing three slow 360 rotations, with a mix of raised318
and lowered hands. Representative examples of frames319
from these videos are shown in Figure 3. See Ap-320
pendix 1 for full recording instructions and acceptance cri-321
teria. Based on these criteria, we filtered the 188 collected322
videos to a set of 100 videos that met our criteria, used as323
novel human identity videos I .324

The participants were chosen from a stratified sample of325
residents of the United States. Based on self-reported de-326
mographics, the dataset (after filtering) contains 41 people327
who identity as male and 59 people who identify as female.328
11 participants are Asian, 10 participants are Black, 11 par-329
ticipants are of mixed race, 66 participants are white, and 2330
participants reported a different race. The median age is 38,331
with a minimum age of 19 and a maximum age of 64. The332
average response time was 10 minutes.333

4.2. Reference Human Action Videos334

The following procedure was performed with each evalu-335
ated dataset (Toyota Smarthome [7] and NTU RGB+D [43])336
individually. To curate a set of reference videos T , we man-337
ually selected a subset of 16 human action classes from338
the dataset (see Appendix 2 for the complete list). The se-339
lected classes met criteria outlined in Appendix 2. For each340
class, we then manually selected 5 videos, yielding a total341

of nT = 16 · 5 = 80 videos. Representative examples of 342
frames from these videos are shown in Figure 4. 343

4.3. Background Images 344

The pool of background images B was created to match 345
typical environments for actions present in each of the eval- 346
uated datasets. In total, nB = 20 images were scraped from 347
the internet for each evaluated dataset. Representative ex- 348
amples of background images in B are shown in Figure 5. 349

4.4. Synthetic Human Action Videos 350

Using nI = 15 novel human identity videos I , nT = 80 351
reference human action videos T , and nB = 40 background 352
image pool, sampled at g = 3 per video, we applied our 353
synthetic data generation method to produce S: a set of nT · 354
g ·nA = 3, 600 image-background synthetic videos for each 355
evaluated dataset. Representative frames from these videos 356
are shown in Figure 1. 357

Upon manual review, we found that most synthetic 358
videos were consistent with the source videos in terms of 359
pose and scene placement, as illustrated in Figure 10 (Ap- 360
pendix 4). However, in some cases, the generated videos de- 361
viated from the source poses and scene alignment, as shown 362
in Figure 11 (Appendix 4). 363

We used the smaller RANDOM People 15 subset due to 364
computational constraints. See Appendix 3 for further de- 365
tails on compute considerations. 366

4.5. Open-sourcing 367

We call our dataset RANDOM People, abbreviation for Re- 368
constructed AI-generated Neural Dataset Of Motion, and 369
open-source it for research purposes at anonymized. This 370
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Figure 5. Representative background images from B in the RANDOM People dataset.
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Toyota NTU RGB+D

ResNet ✓ 20.46 8.66
✓ ✓ 51.15 42.98

SlowFast ✓ 38.35 26.75
✓ ✓ 55.64 36.29

Table 1. Testing accuracy of ResNet and SlowFast on the Toyota
and NTU RGB+D subsets trained in two configurations: with only
the original data and both the original and synthetic data.

data release includes the synthesized videos S, the underly-371
ing novel human identity videos I along with their avatars372
A, and the scene background images B. We designate two373
subsets of the dataset: RANDOM People 15 with 15 iden-374
tities, intended for small-scale experiments, and RANDOM375
People 100 with 100 identities, intended for large-scale ex-376
periments. The dataset is made available under the CC BY-377
NC 4.0 license1.378

5. Experiments379

We conducted three sets of experiments—baseline, one-380
shot, and few-shot—on both Toyota Smarthome and NTU381
RGB+D.382

5.1. Baseline Experiments383

We performed the baseline experiments on two standard384
video classification architectures: ResNet adapted for video385
processing [17] and SlowFast [13]. In one case, the model386
was trained only on the original data from the respective387
dataset; in the other, it was trained on both the original388
data and our synthetic data. The training set consisted of389
nreal = nbackground = 225 videos per class2. The testing390

1This license allows use, adaptation, and sharing of the dataset provided
the use is non-commercial and appropriate credit is given. See https:
//creativecommons.org/licenses/by-nc/4.0/deed.en
for details.

2We capped the number of samples across data sources at 225 (i.e.,
nreal = nbackground = 225), despite having more synthetic samples, to
match the minimum per-class repetition count in the Toyota Smarthome
dataset. This ensured that the ablation compared the contributions of each

set, composed only of original videos, included ntest = 50 391
videos per class. 392

The model was trained for 5 epochs with a learning rate 393
of 1 × 10−4 and a batch size of 4. The input frames were 394
resized to 224× 224. The ResNet model had a depth of 50, 395
with the number of frames set to 16. For SlowFast, the num- 396
ber of frames was set to 32. If not otherwise specified, de- 397
fault hyperparameter values from PyTorchVideo [12] were 398
used (a snapshot is included in the open-source release). 399

5.2. One-shot Experiments 400

We further evaluated the effectiveness of our synthetic 401
data generation method in a one-shot learning scenario on 402
ResNet. With nreal = 1, we trained five models while in- 403
creasing the sample of synthetic videos from nbackground = 0 404
to nbackground = 200 by 50 videos at a time. The testing set 405
was the same as in the baseline configuration; the one-shot 406
example was selected at random. 407

5.3. Few-shot Experiments 408

Finally, we evaluated the effectiveness of our synthetic data 409
generation method in a few-shot learning scenario. The 410
setup is identical as in the previous one-shot experimental 411
setup, except nreal = 5. These few-shot samples, too, are 412
selected at random. 413

6. Results 414

In this section, we report the results of our experi- 415
ments, implemented using the PyTorch [35] and Py- 416
TorchVideo [12] libraries. The source code is open-sourced 417
at anonymized. 418

6.1. Baseline Experiments 419

Table 1 presents the classification accuracy for each model 420
when trained with only original data and with original plus 421
synthetic data. 422

When trained solely on the original data, ResNet 423
achieved an accuracy of 20% on Toyota and 9% on NTU 424
RGB+D.3 When synthetic data was added, the accuracy in- 425
creased to 51% and 43%, respectively. 426

component rather than reflecting imbalanced data source ratios.
3We investigated this performance outside of the baseline methodology

to understand why it was below chance (6.25% for this 16-class task). We
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Figure 6. Testing accuracy on real videos from the Toyota
Smarthome of two ResNet models trained in a one-shot (green)
and few-shot (red) manner with an increasing amount of synthetic
samples per class nbackground = 0 . . . 200 by steps of 50.

Similarly, when trained solely on the original data, Slow-427
Fast achieved an accuracy of 38% on Toyota and 27% on428
NTU RGB+D. With the addition of synthetic data, perfor-429
mance improved to 56% and 36%, respectively.430

These results demonstrate that incorporating our syn-431
thetic data enhances the performance of video classification432
models in action recognition.433

6.2. One-shot Experiments434

Shown in Figures 6 and 7 (red curves) are the testing accu-435
racy advantages gained when training one-shot models with436
our synthetic data on Toyota Smarthome and NTU RGB+D,437
respectively, plotted as a function of the number of synthetic438
samples.439

With Toyota Smarthome, shown as the red curve in Fig-440
ure 6, the model starts below the accuracy of chance (6.25%441
for this 16-class problem)4. Once more than 100 synthetic442
samples were included, the performance grew to 16%, 11%,443
and 21%, at nbackground = {100, 150, 200}.444

With NTU RGB+D, shown as the red curve in Figure 7,445
the performance improved from 7%, the chance of luck, to446
14%, doubling the original accuracy.447

These results suggest that our synthetic data can mean-448
ingfully improve the performance of one-shot action recog-449
nition models. The trend observed in Figures 6 and 7450
suggests that extending the synthetic data sample beyond451
nbackground = 200 may hold further improvement.452

6.3. Few-shot Experiments453

Shown in Figures 6 and 7 (green curves) are the testing454
accuracy advantages gained when training few-shot mod-455

found that the model struggled to converge, even with a hyperparameter
search. While the model occasionally exceeded 10% accuracy on the vali-
dation set after some epochs, it consistently regressed below this threshold.

4This was caused by a tendency for over-predicting one class. We re-
peated this experiment on different seeds but this phenomenon persisted.

Figure 7. Testing accuracy on real videos from the NTU RGB+D
of two ResNet models trained in a one-shot (green) and few-shot
(red) manner with an increasing amount of synthetic samples per
class nbackground = 0 . . . 200 by steps of 50.

els with our synthetic data on Toyota Smarthome and NTU 456
RGB+D, respectively, plotted as a function of the number 457
of synthetic samples. 458

With Toyota Smarthome, shown as the green curve 459
in Figure 6, the performance improved from 13% at 460
nbackground = 0 to 23% at nbackground = 200. 461

With NTU RGB+D, shown as the green curve in Fig- 462
ure 7, the performance improved from 7%, the chance of 463
luck, at nbackground = 0 to 23% at nbackground = 200. 464

These results indicate that our synthetic data can mean- 465
ingfully improve the performance of few-shot action recog- 466
nition models. The trend observed in Figure 6 suggests 467
that, for Toyota Smarthome, the performance gains saturate 468
around nbackground = 150. For NTU RGB+D, shown in Fig- 469
ure 7, there may be additional gains to be attained beyond 470
nbackground = 200. 471

7. Limitations 472

In this section, we enumerate the primary limitations of our 473
method for synthetic video data generation. These limita- 474
tions can be divided into two categories: those stemming 475
from the employed pose transfer framework (in our case, 476
ExAvatar) and those introduced directly by our method. 477

7.1. Introduced by the Pose Transfer Framework 478

The following limitations can be addressed in future work 479
by utilizing newer pose transfer frameworks, which, we ex- 480
pect, will focus on addressing these shortcomings: 481

L1. Videos with multiple people cannot be generated. 482
This is because ExAvatar only supports pose transfer of 483
videos with a single protagonist. 484

L2. Actions that involve interaction with objects cannot 485
be generated convincingly, as the interaction with the object 486
will not be transferred. This is because ExAvatar does not 487
support object interactions. 488
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7.2. Introduced by Our Method489

The following limitations can be addressed in future work490
by further improving our method (possible directions are491
discussed in Section 8):492

L3. In some videos generated with our method, the pose-493
transferred human action, superimposed atop the back-494
ground image, may not be physically plausible in space.495
This is because our method currently does not reflect the496
semantics and depth element of the scene depicted in the497
background image. See examples in Figure 12.498

L4. Action classes that are associated with a particular499
setting may be generated in unnatural scenes or parts of500
scenes. Consider, for example, any cooking-related action501
classes (Cook: cut or Cook: stir in Toyota Smarthome),502
which would usually occur in the kitchen. Our method may503
generate new videos of these actions in inappropriate set-504
tings (e.g., the living room). See examples in Figure 13.505

8. Discussion506

Our results demonstrate that the method presented in this507
paper enhances human action video classification model508
performance in both baseline, one-shot, and few-shot learn-509
ing scenarios. By providing additional training samples that510
increase the identity diversity of the training data, our ap-511
proach improves the model’s ability to generalize from lim-512
ited real data. Furthermore, it enhances background diver-513
sity, which proved particularly effective for NTU RGB+D,514
where all videos are captured in just two locations.515

We expect this to be especially beneficial in applica-516
tions where collecting large amounts of labeled video data517
is impractical or cost-prohibitive. Examples include sign518
language translation for low-resource sign languages and519
video processing for autonomous driving in challenging ar-520
eas—such as cities and countries that have not been exten-521
sively mapped or scanned.522

We believe that our method will play an important role523
in mitigating the bias of computer vision datasets and al-524
gorithms across various video understanding tasks. It has525
been shown that bias towards certain demographic groups526
in computer vision systems often lies in underrepresentation527
in the underlying training datasets [9, 11]. This is where528
our method steps in: by generating new videos with protag-529
onists of underrepresented demographic categories, it can530
balance such datasets.531

Bias in computer vision systems is not limited to demo-532
graphic groups, however. In the context of action recogni-533
tion, for example, methods may suffer from a background534
bias, where the background is learned as a more predictive535
signal, leading the systems to ignore the actual human ac-536
tion [5]. Our method can be used to generate new training537
samples with varying backgrounds to mitigate this bias.538

In terms of the employed pose transfer framework, we539

posit that methods combining 3D representations with re- 540
cent generative AI techniques, similar to ExAvatar, will 541
continue to be critical for synthetic video data generation. 542
These approaches can leverage the fine-grained control and 543
physical realism that come with 3D representations while 544
enjoying the improved photorealism and scale of generative 545
AI. 546

This, we believe, will also play an important role in ad- 547
dressing limitation L3: ensuring physical realism of the 548
generated action in the new scene. Recent advancements in 549
scene depth estimation [30, 38, 41] will allow one to place 550
the generated human motion (with a precise 3D representa- 551
tion) in a plausible part of the scene. 552

Limitation L4 may be addressed with image understand- 553
ing techniques such as multimodal large language models, 554
VQA models, or multimodal embeddings. These could 555
quantify the appropriateness of a scene for a particular ac- 556
tion. 557

9. Conclusion 558

In this paper, we introduce a novel framework for synthetic 559
data generation of human action video. By leveraging a 560
modified ExAvatar framework for 3D Gaussian avatar an- 561
imation, our method reenacts human actions from refer- 562
ence videos using novel human identities in varied settings. 563
By combining computer graphics and generative AI frame- 564
works, this approach addresses limitations in photorealism 565
and semantic control that have hindered previous synthetic 566
data generation methods for video understanding tasks. 567

We evaluate our method on a subset of the Toy- 568
ota Smarthome and NTU RGB+D dataset, demonstrating 569
notable improvements in action recognition performance 570
across two video classification architectures. In particu- 571
lar, our method yields significant improvements in baseline, 572
one-shot, and few-shot learning scenarios. The source code 573
for our experiments is available at anonymized. 574

Finally, we present the RANDOM People dataset, which 575
contains synthetic videos, novel human identity videos 576
along with their avatars, and scene background images. 577
This dataset is open-sourced for the research community at 578
anonymized. 579

In future work, we aim to extend our system’s ability 580
to capture and render human interactions with objects and 581
further improve the photorealism of the resulting videos. 582
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[16] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. 651
DensePose: Dense human pose estimation in the wild. In 652
Proceedings of the IEEE conference on computer vision and 653
pattern recognition, pages 7297–7306, 2018. 3 654

[17] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can 655
spatiotemporal 3d cnns retrace the history of 2d cnns and im- 656
agenet? In Proceedings of the IEEE conference on Computer 657
Vision and Pattern Recognition, pages 6546–6555, 2018. 3, 658
6 659

[18] Li Hu. Animate anyone: Consistent and controllable image- 660
to-video synthesis for character animation. In Proceedings of 661
the IEEE/CVF Conference on Computer Vision and Pattern 662
Recognition, pages 8153–8163, 2024. 3 663

[19] Hochul Hwang, Cheongjae Jang, Geonwoo Park, Junghyun 664
Cho, and Ig-Jae Kim. Eldersim: A synthetic data generation 665
platform for human action recognition in eldercare applica- 666
tions. IEEE Access, 11:9279–9294, 2021. 2 667

[20] Michael Jones and Neel Patel. Ai-generated images as 668
data sources: The dawn of synthetic era. arXiv preprint 669
arXiv:2310.01830, 2023. 1 670

[21] Michael Jones and Neel Patel. Ai-generated images as 671
data sources: The dawn of synthetic era. arXiv preprint 672
arXiv:2310.01830, 2023. 2 673

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, 674
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White- 675
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and 676
Ross Girshick. Segment anything. arXiv:2304.02643, 2023. 677
4 678

[23] Vaclav Knapp and Matyas Bohacek. Can pose transfer 679
models generate realistic human motion? arXiv preprint 680
arXiv:2501.15648, 2025. 3 681

[24] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, 682
Tomaso Poggio, and Thomas Serre. Hmdb: a large video 683
database for human motion recognition. In 2011 Inter- 684
national conference on computer vision, pages 2556–2563. 685
IEEE, 2011. 3 686

[25] Ziqi Li and Hao Chen. Data augmentation techniques 687
for the video question answering task. arXiv preprint 688
arXiv:2008.09849, 2020. 1 689

[26] Hao Liu and Ting Wu. Promptonomyvit: Multi-task prompt 690
learning improves video transformers using synthetic scene 691
data. arXiv preprint arXiv:2212.04821, 2022. 2 692

[27] Hao Liu and Ting Wu. Promptonomyvit: Multi-task prompt 693
learning improves video transformers using synthetic scene 694
data. arXiv preprint arXiv:2212.04821, 2022. 2 695

[28] Wayne Wu Liu, Xian Zhang, Cheng Li, and Chen Change 696
Loy. Liquid warping gan: A unified framework for human 697
motion imitation, appearance transfer and novel view syn- 698
thesis. In Proceedings of the IEEE/CVF International Con- 699
ference on Computer Vision, pages 5904–5913, 2019. 3 700

[29] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard 701
Pons-Moll, and Michael J Black. Smpl: A skinned multi- 702
person linear model. In Seminal Graphics Papers: Pushing 703
the Boundaries, Volume 2, pages 851–866. 2023. 3 704

9

https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose


CVPR
#38

CVPR
#38

CVPR 2025 Submission #38. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[30] Zhengyang Lu and Ying Chen. Self-supervised monocu-705
lar depth estimation on water scenes via specular reflection706
prior. Digital Signal Processing, 149:104496, 2024. 8707

[31] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-708
laars, and Luc Van Gool. Pose guided person image genera-709
tion. In Advances in Neural Information Processing Systems,710
pages 406–416, 2017. 3711

[32] Yuming Men, Liming Jiang, Jianmin Zhang, Shuaicheng712
Liu, and Ming-Hsuan Yang. Controllable person image syn-713
thesis with attribute-decomposed gan. In Proceedings of714
the IEEE/CVF Conference on Computer Vision and Pattern715
Recognition, pages 5084–5093, 2020. 3716

[33] Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Ac-717
curate 3d hand pose estimation for whole-body 3d human718
mesh estimation, 2022. 4719

[34] Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito.720
Expressive whole-body 3d gaussian avatar, 2024. 2, 3, 4721

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,722
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming723
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-724
perative style, high-performance deep learning library. Ad-725
vances in neural information processing systems, 32, 2019.726
6727

[36] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,728
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and729
Michael J Black. Expressive body capture: 3D hands,730
face, and body from a single image. In Proceedings of731
the IEEE/CVF conference on computer vision and pattern732
recognition, pages 10975–10985, 2019. 2733

[37] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,734
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and735
Michael J. Black. Expressive body capture: 3d hands, face,736
and body from a single image, 2019. 3, 4737

[38] Zihan Qin, Jialei Xu, Wenbo Zhao, Junjun Jiang, and Xi-738
anming Liu. Adaptive stereo depth estimation with multi-739
spectral images across all lighting conditions. arXiv preprint740
arXiv:2411.03638, 2024. 8741

[39] Arun V Reddy, Ketul Shah, William Paul, Rohita Mocharla,742
Judy Hoffman, Kapil D Katyal, Dinesh Manocha, Celso M743
De Melo, and Rama Chellappa. Synthetic-to-real domain744
adaptation for action recognition: A dataset and baseline745
performances. In 2023 IEEE International Conference746
on Robotics and Automation (ICRA), pages 11374–11381.747
IEEE, 2023. 2748

[40] Prasun Roy, Saumik Bhattacharya, Subhankar Ghosh, and749
Umapada Pal. Multi-scale attention guided pose transfer.750
arXiv preprint arXiv:2202.06777, 2022. 3751

[41] Mohamed Sayed, Filippo Aleotti, Jamie Watson, Zawar752
Qureshi, Guillermo Garcia-Hernando, Gabriel Brostow, Sara753
Vicente, and Michael Firman. Doubletake: Geometry guided754
depth estimation. In European Conference on Computer Vi-755
sion, pages 121–138. Springer, 2025. 8756

[42] David Schneider, Marco Keller, Zeyun Zhong, Kunyu Peng,757
Alina Roitberg, Jürgen Beyerer, and Rainer Stiefelhagen.758
SynthAct: Towards generalizable human action recognition759
based on synthetic data. In 2024 IEEE International Con-760
ference on Robotics and Automation (ICRA), pages 13038–761
13045. IEEE, 2024. 2762

[43] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. 763
NTU RGB+D: A large scale dataset for 3d human activity 764
analysis. In Proceedings of the IEEE conference on computer 765
vision and pattern recognition, pages 1010–1019, 2016. 2, 766
3, 5, 1 767

[44] Aliaksandr Siarohin, Enver Sangineto, Stéphane Lathuilière, 768
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Synthetic Human Action Video Data Generation with Pose Transfer

Supplementary Material

1. Prolific Participant Instructions817

As described in Section 4.1, to create the RANDOM Peo-818
ple dataset, we crowd-sourced novel human identity videos819
using the Prolific data platform. Before entering the record-820
ing interface and seeing any instructions, the participants821
were informed about the intended use of the dataset, and822
asked whether they consent to their video—as well as a 3D823
Gaussian model and other derivate artifacts—being publicly824
available for research purposes.825

Once the users agreed, they advanced to the recording826
interface, where they were presented with a video showing827
the action to perform and the following instructions:828

Participant Instructions

Watch [this video] on YouTube. You will use your
phone or tablet to record yourself performing the
same sequence of actions.

First, prepare the recording. Place your phone or
tablet approximately 7-8 feet (2-2.5 meters) away
on an elevated surface. The phone should be posi-
tioned at a height above your waist level. Ensure
that you are fully visible and approximately in the
center of the frame.
Next, proceed with recording yourself while per-
forming the following sequence of actions:
1. a slow 360 rotation with your hands down;
2. a slow 360 rotation with your hands up in a dou-

ble L shape as shown below;
3. a slow 360 rotation with your hands down.
Importantly, the recording must meet the follow-
ing criteria:
• Your whole body, head to feet, is visible in the

video at all times.
• You must be well-lit.
• Besides you, no other people, animals, or moving

objects appear in the video. This includes statues,
posters, and TV.

• Your camera is positioned on an elevated surface,
such as a table or wardrobe—do not record with
a phone placed on the ground.

When you’re ready, upload the video below. By up-
loading, you agree to [these terms].
Thank you!

829

2. Selected Action Classes 830

As described in Section 4, we manually selected a subset 831
of 16 action classes within the Toyota Smarthome [7] and 832
NTU RGB-D [43] based on the following criteria: (1) Mini- 833
mal Use of External Objects, (2) Consistent Camera Angles, 834
and (3) Distinctive Actions. In particular, these subsets in- 835
clude: 836

Selected Action Classes: Toyota Smarthome

1. Cook.cut
2. Cook.stir
3. Cook.Usestove
4. Drink.Frombottle
5. Drink.Fromcan
6. Drink.Fromcup
7. Eat.snack
8. Getup
9. Laydown

10. Pour.Fromkettle
11. Pour.Frombottle
12. Sitdown
13. Walk
14. Usetelephone
15. Maketea.Insertteabag
16. Enter

837

Selected Action Classes: NTU RGB-D

1. drink water (A1)
2. eat meal (A2)
3. brush teeth (A3)
4. pick up (A6)
5. throw (A7)
6. sit down (A8)
7. stand up (A9)
8. clapping (A10)
9. hand waving (A23)

10. kicking something (A24)
11. jump up (A27)
12. point to something (A31)
13. nod head/bow (A35)
14. salute (A38)
15. put palms together (A39)
16. cross hands in front (A40)

838
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3. Compute Considerations839

This appendix section discusses compute considerations840
surrounding our experimental setup. Our aim is to provide841
an intuition for the computational demands of this process842
and to explain the parameters we chose, which were largely843
constrained by our computing capacity. Due to limited GPU844
access, we were only able to perform the experiments on the845
RANDOM People 15 subset with 15 novel human identities846
instead of the complete set of 100 novel human identities.847

These identity videos I were standardized to 18 sec-848
onds at 18 FPS; the reference videos T were normalized to849
20 seconds at 25 FPS. While the statistics reported below,850
which informed this parameter choice, have been measured851
precisely, this is not meant to constitute a formal analysis of852
the running time and optimization; rather, we aim to equip853
the reader with an understanding of the approximate com-854
puting complexity and the rationale behind our parameter855
decisions.856

Most identity videos in I collected for RANDOM Peo-857
ple were between 40 to 60 seconds in length, containing858
approximately 1, 200 frames. Creating an avatar (as de-859
scribed in Section 3) from a single identity video in I on an860
NVIDIA RTX 4090 GPU took approximately six hours. By861
normalizing the videos to 18 seconds at 18 FPS, the avatar862
creation time was reduced by a factor of four, down to ap-863
proximately 1.5 hours.864

We explored additional configurations as well. When865
normalizing to 20 seconds at 25 FPS, the processing time866
was approximately 2.5 hours. At 20 seconds and 20 FPS,867
the processing time was around 2.3 hours, and at 20 seconds868
and 18 FPS, it was roughly 1.8 hours.869

However, when reducing the frame count further, we ob-870
served a decline in the quality of the final avatar. Ultimately,871
we found that the optimal balance between model accuracy872
and processing time was achieved with approximately 320873
training frames per identity.874

4. Qualitative Evaluation 875

2
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t = 0 t = 1 t = 2 t = 3 t = 4

Figure 8. Examples of video frames at t = {0, 1, 2, 3, 4} seconds from the source video (top), taken from Toyota Smarthome, and the
target video (bottom), generated by our synthetic data generation method, where the pose alignment is consistent.
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t = 0 t = 1 t = 2 t = 3 t = 4

Figure 9. Examples of video frames at t = {0, 1, 2, 3, 4} seconds from the source video (top), taken from Toyota Smarthome, and the
target video (bottom), generated by our synthetic data generation method, where the pose alignment is inconsistent.
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t = 0 t = 1 t = 2 t = 3 t = 4

Figure 10. Examples of video frames at t = {0, 1, 2, 3, 4} seconds from the source video (top), taken from NTU RGB+D dataset, and the
target video (bottom), generated by our synthetic data generation method, where the pose alignment is consistent.
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t = 0 t = 1 t = 2 t = 3 t = 4

Figure 11. Examples of video frames at t = {0, 1, 2, 3, 4} seconds from the source video (top), taken from NTU RGB+D dataset, and the
target video (bottom), generated by our synthetic data generation method, where the pose alignment is inconsistent.
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Figure 12. Example video frames illustrating limitation L3 (see Section 7).

Cook.stir Cook.Usestove Laydown Cook.cut Maketea.Insertteabag

Figure 13. Example video frames illustrating limitation L4 (see Section 7). The shown action classes are from Toyota Smarthome.

7


	Introduction
	Related Work
	Synthetic data for Action Recognition
	Pose Transfer
	Video Datasets for Action Recognition
	Video Classification Models

	Methods
	Avatar Creation
	Reference Video Preparation
	Animation

	Data
	Novel Human Identity Videos
	Reference Human Action Videos
	Background Images
	Synthetic Human Action Videos
	Open-sourcing

	Experiments
	Baseline Experiments
	One-shot Experiments
	Few-shot Experiments

	Results
	Baseline Experiments
	One-shot Experiments
	Few-shot Experiments

	Limitations
	Introduced by the Pose Transfer Framework
	Introduced by Our Method

	Discussion
	Conclusion
	Prolific Participant Instructions
	Selected Action Classes
	Compute Considerations
	Qualitative Evaluation



