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ABSTRACT

Cryo-EM is a vital technique for determining 3D structure of biological molecules
such as proteins and viruses. The cryo-EM reconstruction problem is challeng-
ing due to the high noise levels, the missing poses of particles, and the computa-
tional demands of processing large datasets. A promising solution to these chal-
lenges lies in the use of amortized inference methods, which have shown particu-
lar efficacy in pose estimation for large datasets. However, these methods also en-
counter convergence issues, often necessitating sophisticated initialization strate-
gies or engineered solutions for effective convergence. Building upon the existing
cryoAI pipeline, which employs a symmetric loss function to address convergence
problems, this work explores the emergence and persistence of these issues within
the pipeline. Additionally, we explore the impact of equivariant amortized infer-
ence on enhancing convergence. Our investigations reveal that, when applied to
simulated data, a pipeline incorporating an equivariant encoder not only converges
faster and more frequently than the standard approach but also demonstrates supe-
rior performance in terms of pose estimation accuracy and the resolution of the re-
constructed volume. Notably, D4-equivariant encoders make the symmetric loss
superfluous and, therefore, allow for a more efficient reconstruction pipeline.

1 INTRODUCTION

Cryo-electron microscopy (cryo-EM) has emerged as an crucial technique in molecular biology and
chemistry, enabling the determination of macro-molecular structures such as proteins. In cryo-EM,
particle samples are frozen in a thin layer of vitreous ice and exposed to an electron beam. The
interaction between electrons and the sample’s electrostatic potential scatters electrons in patterns
that reflect the molecular structure. This results in multiple noisy two-dimensional projections of
the particles in random orientations, which are then used to reconstruct the molecular structure.

The reconstruction process presents significant challenges, including the estimation of unknown
poses and the high noise levels Singer & Shkolnisky (2011); Singer & Sigworth (2020). Traditional
methods employ iterative approaches that, in each step, require extensive searches over the space
of poses for each datapoint and a refinement of the molecular structure estimate (e.g. maximum-
likelihood expectation-maximization (ML-EM) implemented by SOTA softwares like RELION
Scheres (2012) and cryoSPARC Punjani et al. (2017)); however, this per-image search doesn’t scale
well with the increasing datasets sizes due its computational demand Levy et al. (2022a).

Recently, deep learning approaches have shown promise in addressing these challenges, giving rise
to a new category of reconstruction methods based on amortized inference Giri et al. (2023). These
methods learn a parametrized function, typically within a framework employing (variational) au-
toencoder architectures, to predict particle poses from images, shifting the computational burden to
the learning phase. Although this reduces the need for per-image pose estimation, these solutions
often face convergence issues, requiring careful engineering to achieve satisfactory performance.

∗Work done during internship at QUVA Lab.
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
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Contributions We introduce equivariant amortized inference of poses for cryo-EM. This method
uses the property that images that differ by some in-plane rotation or mirroring have associated poses
that undergo a similar transformation. In the amortized inference framework, we can exploit this
prior knowledge of the geometry of the problem by making the parameterized function equivariant
with respect to rotations and/or reflections. Using an equivariant function has the following benefits:

• faster generalization = faster reconstruction: once it learns to predict the pose of an image
correctly, it immediately generalizes to rotations and reflection of that particular image.
This typically also leads to faster convergence and, thus, to faster reconstruction here.

• geometrical consistency = reduced convergence issues: it is forced from the start to repre-
sent subsets of datapoints according to the correct underlying geometric structure, poten-
tially reducing or preventing the convergence issues discussed earlier.

2 IMAGE FORMATION MODEL

We can model the electrostatic potential of a molecule as a 3D density, V : R3 → R. Each molecule,
frozen in ice, assumes a random orientations represented by a rotation Ri ∈ SO(3). The image is
formed by electrons that are scattered by interacting with this potential, hitting a detector. This is
modeled as a projection:

PRi [V ] : (x, y) →
∫
z

V (R⊤
i (x, y, z)

⊤) dz. (1)

Before the electrons hit the detector, they interact with the lens system of the microscope, repre-
sented by a convolution with a Point Spread Function (PSF) kernel hi. Additionally, we account for
small translations ti ∈ R2 by convolving with the translation kernel Tti and add a Gaussian noise
variable ϵi to model various noise sources. The resulting image formation model is:

Ii = hi ∗ Tti ∗ PRi [V ] + ϵi, (2)

We assume square integrable functions, i.e. PRi [V ] and Ii ∈ L2(R2). The image formation model
is usually formulated and implemented in Fourier space, which we describe in Apx. A.

3 RELATED WORK

Amortized inference of poses for cryo-EM Recently, deep learning based methods have been
applied to the cryo-EM reconstruction problem (Donnat et al., 2022; Giri et al., 2023). With this,
a new approach has emerged: amortized inference over poses. Such methods learn a parametrized
function that estimates a pose given an image, as opposed to estimating the pose for each image
individually. Typically, (variational) autoencoder architectures are employed in this setting. For
example, Rosenbaum et al. (2021) use a variational autoencoder architecture in a heterogeneous
setting in which the encoder predicts both poses and conformations. CryoVAEGAN (Miolane et al.,
2020) is a pipeline in which an encoder estimates rotations as well as parameters of the contrast
transfer function (CTF). In the spatialVAE pipeline the encoder estimates translations and in-plane
rotations Bepler et al. (2019). CryoPoseNet (Nashed et al., 2021), cryoAI (Levy et al., 2022a) and
cryoFIRE (Levy et al., 2022b) demonstrate the efficacy of an autoencoder (AE) architecture in which
the encoder learns to estimate poses. While promising, amortized inference methods may suffer
from convergence issues. For example, in (Rosenbaum et al., 2021), a strong prior on the backbone
of the molecule is needed for the pipeline to converge. CryoPoseNet tends to get stuck in local
minima while cryoAI and cryoFIRE limit this issue by using an additional symmetric loss.

Homoemorphic Encoders and Equivariance Falorsi et al. (2018) introduced homeomorphic en-
coders to describe a setting where the input data has a geometric structure associated with a symme-
try group and the goal for the encoder is to learn a homeomorphic geometric representation of the
data in the latent space. This is analogous the amortized inference of poses in cryo-EM, as each im-
age is identified by an element of SO(3). Esmaeili et al. (2023) show that these models are prone
to optimization challenges due to topological defects at initialization that cannot be resolved con-
tinuously, partially explaining the convergence issues observed in previous works employing amor-
tized inference of poses. One can incorporate geometric inductive bias into neural networks via
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equivariance. For example, convolutional neural networks (CNNs) are translation-equivariant. This
idea is generalized via group convolution (GCNNs) (Cohen & Welling, 2016a) and Steerable CNNs
(Cohen & Welling, 2016b) to achieve equivariance with respect to more general symmetry groups.
Cryo-EM images possess a number of symmetries (Cesa et al., 2022a) which can be exploited via an
equivariant design. Previously, Nasiri & Bepler (2022); Cesa et al. (2023); Granberry et al. (2023)
leveraged some of these planar symmetries. To the best of our knowledge, this is the first work to
successfully leverage these symmetries in an end-to-end cryo-EM reconstruction pipeline.

4 METHOD

4.1 EQUIVARIANT AMORTIZED INFERENCE OF POSES

We can think of a 3D rotation as an element Ri = (xi, yi, zi) ∈ SO(3), where xi, yi and zi ∈ R3 are
the columns of the matrix Ri associated to the rotation. The vectors xi, yi and zi form an orthonor-
mal basis of R3. The operator PRi

defined in Eq. 1 first rotates the volume V and then performs a

Figure 1: Images in the
same equivalence class
differ only by an in-
plane rotation and/or re-
flection. Source: Cesa
et al. (2022a).

projection along the z-axis. Rotating the volume V by Ri can be seen as
transforming V with the transformation that would align xi, yi and zi with
the standard basis vectors of R3. Therefore, alternatively, we can see the
axis zi as the ‘direction’ along which the projection is performed. We shall
call the axis zi the viewing direction. Note that two images Ii, Ij ∈ L2(R2)
that are generated by projecting along the same viewing direction z can
only differ by an in-plane rotation rθ ∈ SO(2), whereas if they differ by a
rotation and a reflection f ·rθ ∈ O(2), they are obtained by projecting along
opposite viewing directions z and −z, see Fig. 1. In fact, given an element

g = f c · rθ =

[
1 0
0 −1

]c [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ O(2) (3)

with c ∈ {0, 1} and θ ∈ [0, 2π), if two images Ii and Ij are related such
that1 Ij = Lg[Ii], then we know that their associated poses Ri, Rj ∈
SO(3) are related by the following identity:

Rj = φ(g)Ri =

[−1 0 0
0 1 0
0 0 −1

]c [
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
Ri. (4)

where φ : O(2) → R3×3 is a three-dimensional representation of O(2);
see Apx. D. Poses typically include also planar translations in R2, which
follow an analogous equivariance rule; see Apx. E.1 for more details. In
Sec. 4.3, we will exploit this knowledge in the amortized inference frame-
work by restricting the parameterized function mapping images to their as-
sociated poses to be equivariant to a subgroup H ⊆ O(2).

4.2 PIPELINE OVERVIEW

We build on the work by Levy et al. (2022a), adapting their autoencoder pipeline by incorporating an
equivariant encoder. Given an input image Y , the encoder E : L2(R2) → R2×SO(3) predicts a pose
existing of a translation t ∈ R2 and a rotation R ∈ SO(3). The decoder maintains an estimate of the
reconstructed volume via an implicit neural representation V̂ : R3 → C, which models the Fourier
transform of V . The decoder simulates the image formation model in Fourier space by leveraging the
Fourier Slice Theorem as in Apx. A. : it rotates a slice of three-dimensional coordinates [kx, ky, 0]⊤

by the rotation R and, then, feeds them into V̂ . The result is translated by t, convoluted with the
contrast transfer function; see Apx. B for more details about the decoder. Finally, the output X is
compared to the input Y via a mean-squared error loss (L2 loss).

4.3 EQUIVARIANT ENCODER

We replicate the architecture of the original encoder of cryoAI (see Apx. B of Levy et al. (2022a))
using the escnn Python library Cesa et al. (2022b) to incorporate equivariance to a subgroup H ⊂

1 The left action of g ∈ O(2) on an image f ∈ L2(R2) yields a new image given by [Lg[f ]](x) = f(g−1x).
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O(2); see Apx. E for more details. We can interpret the encoder E as two separate functions:
Er : L2(R2) → SO(3) that outputs a rotation, and Et : L2(R2) → R2 that outputs a translation.
Equivariance ensures that, for any element g ∈ H and image I:

Er(Lg[I]) = φ(g)Er(I), and Et(Lg[I]) = g · Et(I). (5)

In particular, we experimented with equivariance to the H = C4 and H = D4 subgroups of O(2).
C4 contains the rotations by 0, π

2 , π,
3π
2 , while D4 contains these rotations, and their combinations

with a reflection. Note that these groups model the exact rotational symmetries of a pixel grid.

4.4 SYMMETRIC LOSS FUNCTION

The original pipeline is optimized using a symmetric loss function to reduce convergence issues
Levy et al. (2022a). This loss function augments a batch with a duplicate of each image rotated by
π. For each image and its rotated duplicate, the model is only supervised on the one it reconstructs
best. Formally, the symmetric loss Lsym is defined as follows:

Lsym =
∑
i∈B

min{||Ŷi − Γ(Yi)||2, ||Lπ[Ŷi]− Γ(Lπ[Yi])||2}, (6)

where Γ is the whole cryoAI pipeline, interpreted as a function and Lπ is the left action1 of the
rotation by π. In the equivariant pipeline, the loss function in Eq. 6 becomes trivial, as both C4

and D4 include the rotation by π, and thus ||Ŷi − Γ(Yi)|| = ||Rπ[Ŷi] − Γ(Rπ[Yi])||. When we use
H = C4, which includes rotations but no reflections, we adapt the symmetric loss above by replacing
Lπ by Lf , where f is the reflection in Eq. 3. If Lf is used, we refer to the loss as ‘mirror loss’ Lmir.

5 EXPERIMENTS

Figure 2: The MSE and MedSE over time
for each of the five runs on the noiseless
spliceosome dataset.

Simulated datasets with varying noise levels were
generated as in Levy et al. (2022a) from the fol-
lowing Protein Data Bank structures: plasmodium
falciparum 80S ribosome (PDB: 3J79 and 3J7A)
Wong et al. (2014) (80S), and the pre-catalytic
spliceosome (PDB: 5NRL) Plaschka et al. (2017)
(spliceosome). See Apx. C for more details.

5.1 CONVERGENCE OF ORIGINAL PIPELINE

To examine the convergence progress of the original
pipeline, cryoAI was trained with a non-equivariant
encoder and Lsym across datasets for two structures
- each with a noiseless and an SNR = 1 version -
using 5 different seeds for 6000 seconds. Fig. 2 il-
lustrates the trends of Mean Squared Error (MSE)
and Median Squared Error (MedSE) for 5 runs using
a noiseless spliceosome dataset. The observed
pattern shows an initial decline in both MedSE and
MSE, with MedSE approaching zero fast and MSE
plateauing, then sharply decreasing. This behavior,
further analyzed in Apx. G, correlates with transient
spurious planar symmetries in volume reconstruc-
tions, which resolve as MSE improves. While Lsym
reduces the duration of such states, they still occur.

5.2 IMPACT OF EQUIVARIANCE ON CONVERGENCE OF PIPELINE

We evaluated H =C4- and D4-equivariant encoders against a standard model using Lmir or an L2
loss across four simulated datasets (each for two structures, with and without noise), with 8 seeds per
dataset and a 6000-second training limit. Performance metrics including MSE, convergence rates,
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and volume resolution are summarized in Tab. 1, with metric definitions in Apx. F. Convergence is
defined as MSE < 0.1 based on experiments with the standard pipeline that showed that the vol-
ume escapes symmetric states after the MSE has decreased sufficiently. Our findings reveal that C4

equivariance with L2 loss rarely converges, but it significantly enhances convergence speed and ac-
curacy when paired with Lmir. D4-equivariant encoders reliably converge without Lmir, outperform-
ing all other models in speed of convergence and metric performance, as highlighted by the superior
resolution and pose estimation accuracy. Moreover, we compare both the Fourier Shell Correlation
(FSC) curves and the 3D reconstructions of some of the models in Fig. 3. The D4-equivariant mod-
els consistently yield higher FSC curves, indicating improved reconstruction quality. However, we
note that the improved reconstruction quality might still not be enough to provide additional biolog-
ical insights. Since we are not sufficiently expert to judge this aspect, we leave it for future explo-
ration but emphasize the computational benefits of our method with respect to the standard cryoAI
pipeline, particularly in terms of faster reconstruction.

Table 1: Average values for the MSE, MedSE, convergence time in seconds, number of iterations until conver-
gence, resolution in Angstrom and the percentage of runs that converged. The average is taken over the three
best runs in terms of final MSE. The resolution is reported using the FSC = 0.5 criterion. For each metric, the
best value is indicated in bold. A dash (-) indicates that at least one of the three best runs did not converge.

Dataset Model MSE MedSE Conv.
time (s)

Steps
until
conv.

Resolution
(Å)

Conv.
Runs
%

Spliceosome
noiseless

Standard (Lsym) 0.0040 ± 0.0002 0.0030 ± 0.0001 2818 ± 286 5800 ± 589 11.26 ± 0.11 62.5
C4 (L2) 2.5893 ± 0.0322 0.0166 ± 0.0090 - - 12.18 ± 0.13 0
C4 (Lmir) 0.0008 ± 0.0001 0.0005 ± 0.0000 1457 ± 1001 1967 ± 1347 11.11 ± 0.19 100
D4 (L2) 0.0004 ± 0.0000 0.0003 ± 0.0000 1239 ± 782 2800 ± 1766 10.88 ± 0.18 87.5

80S
noiseless

Standard (Lsym) 0.0041 ± 0.0001 0.0030 ± 0.0001 2564 ± 394 5300 ± 804 10.20 ± 0.10 100
C4 (L2) 0.8160 ± 1.1520 0.0020 ± 0.0016 - - 10.35 ± 0.28 25
C4 (Lmir) 0.0010 ± 0.0000 0.0006 ± 0.0000 791 ± 195 1067 ± 262 10.05 ± 0.00 100
D4 (L2) 0.0005 ± 0.0001 0.0004 ± 0.0000 774 ± 143 1767 ± 330 9.72 ± 0.09 87.5

Spliceosome
SNR 1

Standard (Lsym) 0.3232 ± 0.3384 0.0077 ± 0.0031 - - 12.72 ± 0.97 12.5
C4 (L2) 2.6525 ± 0.0104 0.0308 ± 0.0273 - - 13.06 ± 0.15 0
C4 (Lmir) 0.0014 ± 0.0001 0.0010 ± 0.0001 1181 ± 312 1600 ± 432 11.33 ± 0.00 87.5
D4 (L2) 0.0010 ± 0.0000 0.0007 ± 0.0000 1624 ± 426 3333 ± 998 11.03 ± 0.10 50

80S
SNR 1

Standard (Lsym) 0.0102 ± 0.0003 0.0070 ± 0.0009 3093 ± 418 6400 ± 909 11.22 ± 0.00 75
C4 (L2) 0.0055 ± 0.0014 0.0037 ± 0.0009 4080 ± 999 10100 ± 2491 10.97 ± 0.20 37.5
C4 (Lmir) 0.0038 ± 0.0002 0.0027 ± 0.0001 1386 ± 808 1867 ± 1087 10.97 ± 0.00 100
D4 (L2) 0.0032 ± 0.0001 0.0023 ± 0.0000 1071 ± 135 2433 ± 309 10.65 ± 0.22 100

Higher noise levels To investigate if the convergence benefits of equivariance are maintained un-
der higher noise conditions, we conducted an experiment focusing on the standard model and the
D4-equivariant model. These models were trained on datasets generated using the 80S ribosome
structure at various noise levels; see Apx. C. Each model is trained for 6 hours. We recorded the
metrics for the best run out of 5 for each model and dataset. The results in Tab. 2 show that the ben-
efits of equivariance hold at higher noise levels. The equivariant encoder outperforms the standard
encoder on all metrics for each noise level, except the highest (SNR = 0.25), although it should be
noted that all seeds of both models didn’t converge at that noise level.

6 FINAL DISCUSSIONS

Our experiments demonstrate the benefits of incorporating geometric priors in the Cryo-EM amor-
tized inference framework. Indeed, equivariant models consistently show drastic improvements in
convergence speed, convergence ratio and final resolution. In particular, D4-equivariance makes the
expensive symmetric loss superfluous. These results indicate that apart from the symmetric loss,
equivariant amortized inference can be a viable alternative solution to the convergence issues as-
sociated with symmetric reconstructions. Still, some runs with equivariant encoder did not conver-
gence; in this context, Esmaeili et al. (2023) suggested that, while inductive biases like equivariance
can guide models towards learning homeomorphic representations, they might also complicate the
training process in practice. Inspired by their solution, we find encoders modeling a multimodal
distribution, as opposed to our single-pose encoders, to be a promising direction of research.
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GT D4 Standard

GT D4 Standard

GT D4 Standard

GT D4 Standard

Figure 3: Fourier Shell Correlation (FSC) curves and reconstruction visualizations comparing the
reconstruction to the ground truth (GT) for the top-performing seeds in 6000-second runs across four
simulated datasets. Each dataset is represented by two curves and two visualizations: one from the
best run using the D4-equivariant model and one from the best run with the standard cryoAI pipeline.
The volume visualisations were made with software ChimeraX (Meng et al. (2023)). The D4-
equivariant model consistently improves the FSC score over the non-equivariant cryoAI baseline.

Table 2: Pose estimation error, convergence time, and final resolution of the best model across 5 seeds for both
model types for each of the noise levels. Resolution is reported using the FSC = 0.5 criterion.

SNR Model MSE MedSE Convergence time (s) Final resolution (Å)

0.75 D4 (L2) 0.0012 0.0009 1238.04 9.46
Standard (Lsym) 0.0027 0.0021 3065.58 9.65

0.625 D4 (L2) 0.0013 0.0011 1136.72 9.56
Standard (Lsym) 0.0036 0.0025 2722.84 9.85

0.5 D4 (L2) 0.0021 0.0014 1850.60 9.75
Standard (Lsym) 0.0057 0.0039 3885.72 10.72

0.375 D4 (L2) 0.0057 0.0033 6263.10 10.97
Standard (Lsym) 0.0780 0.0096 12741.46 12.37

0.25 D4 (L2) 1.4671 0.1627 - 22.98
Standard (Lsym) 0.7455 0.0546 - 16.09
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A IMAGE FORMATION MODEL IN FOURIER SPACE

Implementing the image formation model in reconstruction algorithms can become computationally
expensive due to the rotation of the volume V and the integral in equation 1. Formulating the image
formation in Fourier space allows for the application of the Fourier Slice Theorem, which makes
rotating and integrating the volume redundant.

The theorem states that evaluating a volume on a plane (‘a slice of coordinates’) in Fourier space
gives the Fourier transform of a projection of that volume along an axis perpendicular to that plane.
In mathematical terms, this means that

SR[F3(V )] = F2(PR[V ]) (7)

where F2 and F3 are the two- and three dimensional Fourier transforms, and SR is an operator that
performs the operation of evaluating a volume on a plane, and is defined such that

SR[V ] : (k1, k2) → V (R⊤ · (k1, k2, 0)⊤). (8)

Using the Fourier Slice Theorem, we can formulate the entire image formation model in Fourier
space as follows:

Îi = ĥi ⊙ T̂ti ⊙ SRi [F3(V )] + ϵ̂i (9)

Here ĥi is the Fourier transform of the hi kernel, called the Contrast Transfer Function (CTF),
T̂ti is the translation operator performing ti in Fourier space (which corresponds to a phase shift)
and ϵ̂i is i.i.d. complex Gaussian noise at each frequency. The symbol ⊙ stands for element-wise
multiplication that replaces convolution in the real formulation, which follows from the Convolution
Theorem.

B DECODER ARCHITECTURE

The decoder takes the rotation Ri and the translation ti outputted by the encoder as an input. An
array of L2 three-dimensional coordinates [kx, ky, 0]⊤ ∈ R3 is generated that represent the Fourier
frequencies corresponding to a grid of L2 coordinates on the xy−plane. Each coordinate in this
slice is then rotated by R⊤

i and fed into a neural network V̂ : R3 → C. The network V̂ , called
FourierNet, represents the Fourier transform of the electrostatic potential of the molecule that we
wish to reconstruct.

FourierNet consists of two SIREN models that take a coordinate [kx, ky, kz] ∈ R3 and output a vec-
tor in R2. SIREN (Sinusoidal Representation) networks are fully connected feed-forward neural
networks that utilize sinusoidal activation functions. SIREN networks have been shown to be suc-
cessful in representing complex signals defined on real space. (Sitzmann et al. (2020)) The Fourier
transform of an electrostatic of a molecule is known to vary in magnitude over several orders of
magnitude. (Levy et al. (2022a)) To allow FourierNet to represent a function that varies several or-
ders of magnitude in value, one of the two SIRENs has the property that the exponential function is
applied element-wise on its output.

To ensure that the network V̂ actually represents a Fourier transform, the following property is
enforced

V̂ (k) = V̂ (−k)∗ if kx < 0 (10)
simply by following this as a definition. The two output vectors of the networks are multiplied
element-wise and the result is interpreted as an element of C via the mapping

[v1, v2]
⊤ 7→ v1 + v2i.

Since the input to FourierNet was a slice of three-dimensional coordinates, the output represents a
slice of a Fourier transform SRi

[F3(V )] ∈ CL×L as defined in Eq. 7. The final output Xi of the
decoder is obtained as follows:

X̂i = ĥi ⊙ T̂ti ⊙ SRi
[F3(V )], (11)

where ĥi is the CTF, and T̂ti is the translation operator performing the translation ti predicted by
the encoder in Fourier space. The CTF is a function of parameters that can be estimated from the
dataset and are assumed to be known. For more details about the pipeline architecture, see Levy
et al. (2022a).

9



Published at the GEM workshop, ICLR 2024

C DATA

The data was synthesized with structures from the Protein Data Bank. The two structures that were
used were the plasmodium falciparum 80S ribosome structure (PDB: 3J79 and 3J7A) Wong et al.
(2014) and the pre-catalytic spliceosome structure (PDB: 5NRL) Plaschka et al. (2017).

The plasmodium
falciparum 80S ribosome

volume.

The pre-catalytic
spliceosome volume.

Figure 4: Visualization of the two volumes that were
used to generate the datasets. The visualisations were
made with software ChimeraX Meng et al. (2023)

The datasets were generated by simulat-
ing the image formation model described
in Sec. 2 using ground-truth volume repre-
sented as a three-dimensional voxel grid,
as in Levy et al. (2022a). The volume
data for the ground truth volumes was gen-
erated in ChimeraX Meng et al. (2023)
as described in Apx. A.1 of Levy et al.
(2022a). See Fig. 4 for a visualization of
the volumes.

Each dataset contains 100 000 images of
dimension 128 × 128. The simulator uses
poses Ri ∈ SO(3) randomly sampled
from a uniform distribution over SO(3),
and translations ti ∈ R2 sampled from a
Gaussian distribution with mean zero and
a standard deviation of 20Å.

For both the pre-catalytic spliceosome and the plasmodium falciparum 80S ribosome structures,
one noisless dataset was generated, and one with signal-to-noise ratio (SNR) equal to 1. For
the plasmodium falciparum 80S ribosome structure, additional datasets were generated with SNR
0.75, 0.625, 0.5, 0.375 and 0.25, in Fig. 5 we show examples of images from each of the datasets
generated with the plasmodium falciparum 80S ribosome.

Noiseless SNR 1 SNR 0.75 SNR 0.625 SNR 0.5 SNR 0.375 SNR 0.25

Figure 5: Examples of images from our datasets generated with the plasmodium falciparum 80S
ribosome volume with different noise levels.

D BACKGROUND ON GROUP AND GROUP REPRESENTATION THEORY

Group theory, and specifically group representation theory, are important building blocks in the the-
ory about equivariant neural networks, such as steerable networks that are applied in this work. In
this Section we provide some important definitions and preliminaries that are useful for understand-
ing the method presented in this work.

Groups can be useful to describe the structure of sets of geometrical transformations, such as rota-
tions and translations. We start by giving the definition of a group.

10
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Definition A group is a set G equipped with a group product · satisfying the following
properties:

• Closure: If g, h ∈ G, then also g · h ∈ G.
• Associativity: For g, h, i ∈ G, (g · h) · i = g · (h · i).
• Identity: There exists an element e ∈ G such that e · g = g · e = g for all g ∈ G.
• Inverse element: for all g ∈ G, there exists an element g−1 ∈ G such that g ·g−1 =
g−1 · g = e.

Example The circle group is the set of all elements of C with absolute value equal to one,
denoted

S1 = {z ∈ C | |z| = 1}
with as group product multiplication of complex numbers and as identity element 1.

Another important definition in group theory is that of a group homomorphism. Intuitively, group
homomorphisms are functions between groups that preserve algebraic structure shared by these
groups.

Definition If G1 and G2 are groups, then a function f : G1 → G2 is a group homomor-
phism if for all g, h ∈ G1

f(g · h) = f(g) ⋆ f(h).

Here · is used to denote the group product of G1 and ⋆ for the group product of G2.

If G1 = G2, f is called an automorphism. If f is bijective, it is called a group isomorphism.
If there is a group isomorphism between G1 and G2, we call G1 and G2 isomorphic and we
write G1

∼= G2.

The set of all automorphisms of a group G is again a group with map composition as a
group product. It is denoted by Aut(G).

It can be useful to ‘combine’ several groups into one. In this way we can represent different types
of transformations (e.g. translation and rotation) as elements of a single group. One way to do this
is via semi-direct products.

Definition Let H and N be groups. Let τ : H → Aut(N) be a group homomorphism. We
define the semi-direct product of H with N with respect to τ , written N ⋊τ H , as the set
N ×H with the following group operation

(n1, h1) · (n2, h2) = (n1τ(h1)(n2), h1h2).

As mentioned, some groups describe the structure of sets of geometrical transformations, such as
rotations and translations. Such groups have actions on other spaces. Group representations are one
way to describe the actions of certain groups (linear transformations) on vector spaces. To define
group representations, we first give the definition of the general linear group:

Definition The general linear group of a vector space V , denoted GL(V ), is the set of all
invertible linear maps from V to V with as a group product composition of maps.

Since in deep learning we are often working with real-valued vectors, when we refer to the general
linear group, we are usually talking about GL(Rn). This is the group of all invertible n×n matrices.

Using the definition of the general linear group, we can define group representations.

11
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Definition A representation of a group G is a homomorphism φ : G → GL(V ) for some
vector space V . We can write φ(g) or φg for φ evaluated at g.
We write dφ to denote the dimension of the representation, which is equal to the dimension
of the vector space V .

Some examples of representations follow below.

Example For any group G we can define the representation φ : G → GL(R) as φ(g) = 1
for all g ∈ G. This is called the trivial representation.

By looking at a representation of the circle group S1 that we defined before, we see that the circle
group is actually also a group that describes a specific type of transformation on R2: rotations.

Example We can define a representation φ : S1 → GL(R2) as follows:

φ(eiθ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Every element of S1 is mapped onto a rotation matrix by this representation, which shows
us that S1 has an action on R2 corresponding to planar rotation around the origin.

The group formed by all 2× 2 rotation matrices is called SO(2). One can verify that φ is a
isomorphism between S1 and SO(2), which means that S1 ∼= SO(2).

We can combine multiple representations together into a single representation via the direct sum.
This concept is important in the theory of steerable CNNs.

Definition Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two representations of G.
Then (ρ1 ⊕ ρ2) : G → GL(V1 ⊕ V2), given by

(ρ1 ⊕ ρ2)(g) =

[
ρ1(g) 0
0 ρ2(g)

]
(12)

is called their direct sum. The direct sum (ρ1 ⊕ ρ2) is again a representation. Since it is a
diagonal matrix with ρ1 and ρ2 on the diagonals, it works on the vector space (V1 ⊕ V2) by
letting ρ1 work on the subspace V1, and ρ2 on the subspace V2.

An important representation in the theory of steerable CNNs is the regular representation.

Example Let G be a finite group. If f : G → R is a function over G and g ∈ G, then

[g.f ](h) = f(g−1h)

describes an action of G on the vector space of functions over G. The regular representation
ρreg of G is the representation that describes this action.

The vector space of functions over G is equivalent to R|G|, since we can interpret a function
f : G → R as a vector where the ith element represents the function value assigned to the ith
group element gi. For an element g ∈ G and f ∈ R|G|, ρreg associates to g the permutation
matrix that sends element i to the element j such that g−1 · gi = gj .

We finish this section with some important groups that we regularly refer to in this work. The first
group, SO(3), contains all three-dimensional rotation matrices.

12
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Example The special orthogonal group SO(3) consists of all 3×3 real orthogonal matrices
R with a determinant of +1, representing three-dimensional rotation matrices. Specifically,

SO(3) = {R ∈ R3×3 | RTR = I and det(R) = 1}.
Here, RT denotes the transpose of R, I is the 3× 3 identity matrix, and the group operation
is matrix multiplication.

Another important group, O(2), contains two-dimensional rotations and reflections.

Example The orthogonal group O(2) consists of all 2 × 2 real orthogonal matrices A,
which includes both rotations and reflections in two-dimensional space. It is defined as:

O(2) = {A ∈ R2×2 | ATA = I},
where AT is the transpose of A, and I is the 2 × 2 identity matrix. The group operation is
matrix multiplication.

Finally, the groups C4 and D4 are both subgroups of O(2).

Example The cyclic group C4 consists of the set of rotational symmetries of a square,
containing four elements corresponding to rotations by multiples of 90 degrees. It is defined
as:

C4 = {e, r, r2, r3},
where e is the identity element (no rotation), and r is a 90-degree rotation. The group
operation is the composition of rotations.

Example The dihedral group D4, representing the symmetries of a square, consists of
eight elements: four rotations and four reflections. It can be described as:

D4 = {r, s | r4 = s2 = 1, srs = r−1},
here r represents a 90-degree rotation, s represents a reflection, and r−1 is the inverse of r.

E EQUIVARIANT ENCODER ARCHITECTURE

A high-level overview of the equivariant encoder is shown in Figure 6. As mentioned in Section 4.2,
the architecture was kept as similar as possible to the standard pipeline in Levy et al. (2022a). The
encoders were implemented as steerable CNNs Cohen & Welling (2016b) with the escnn Python
library Weiler & Cesa (2019); Cesa et al. (2022b)

If a symmetric- or mirror loss function (see Section 4.4) is used, the input Yi is fed into a sym layer.
This layer performs the operation of duplicating the batch of images and then rotating it by π or
mirroring it with respect to the x-axis (depending on the type of loss). The transformed images are
concatenated batch-wise. If an L2 loss function is used, this process is skipped. The batch then goes
into a GaussianPyramid layer with five Gaussian filters of size 11 with cutoff frequencies that are
geometrically distributed between 0.1 and 10 pix−1 (as in Levy et al. (2022a)), that filter each image.

The filtered images are fed into five consecutive EquivariantDoubleConvBlock networks. Each
EquivariantDoubleConvBlock layer is made up of two convolutional layers with steerable kernels
(R2Conv) and a PointwiseMaxPool layer. Each of the R2Conv layers is followed by a pointwise
ReLU activation function and an InnerBatchNorm layer.

After passing through each of the EquivariantDoubleConvBlock blocks, the batch passes through a
PointwiseMaxPool layer and a single R2Conv layer with a kernel of size 2. This results in an output
with a width and height of 1, with overal shape (batch size)× (number of feature fields · |G|)× (1)×
(1). This output is fed into two separate equivariant fully connected networks (EquivariantFCBlock).
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GaussianPyramid

EquivariantDoubleConvBlock

EquivariantDoubleConvBlock

EquivariantDoubleConvBlock

EquivariantDoubleConvBlock

EquivariantDoubleConvBlock

PointwiseMaxPool

R2Conv

EquivariantFCBlock EquivariantFCBlock

ti ∈ R2

VRi
∈ R6

Ri ∈ SO(3)

Yi

(rotation/mirroring)

PointwiseMaxPool
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PointwiseAvgPool

InnerBatchNorm

ReLU

R2Conv

InnerBatchNorm

ReLU
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Linear

ReLU

Linear

IIDBatchNorm1d
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Figure 6: Visualization of our architecture of the equivariant encoder.
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The first EquivariantFCBlock outputs a vector ti ∈ R2, which is directly interpreted as a translation.
The second EquivariantFCBlock outputs a vector VRi

∈ R6, which is then mapped to Ri ∈ SO(3)
and interpreted as a rotation matrix as explained in Apx. E.1.

E.1 TECHNICAL DETAILS

In this section we present some technical details related to the implementation of the encoder. We
start with some very brief theory.

Recall that in regular CNNs, layers are convolution operators that, when applied to an input, yield
a feature map. A key difference between steerable CNNs and regular CNNs is that in the former,
feature maps are replaced by steerable feature fields:

Definition A steerable feature field is a vector field f : R2 → Rc defined on the base space
R2, together with a transformation law that defines how the group G = R2 ⋊H acts on the
field f as a whole.
The transformation law given an element g = (t, h) ∈ G has the following form:

[g.f ](x) = ρ(h)f(g−1x). (13)

where ρ : H → GL(Rc) is a representation of the group H . It defines how H acts on Rc.
The representation ρ is called the type of this particular feature field.

Layers in steerable CNNs are equivariant, meaning that if a feature field is transformed by a group
element according to its transformation law and then passes through a layer, we want this to give the
same output as the feature field first passing through that layer and then transforming the generated
feature field by the same group elements according to its own transformation law. Mathematically,
we can write this as:

(k ⋆ tl(g)[f ]) = tl+1(g)[(k ⋆ f)] (14)

for all g ∈ G. Here tn is the transformation law of the feature field in layer n (defined as in equation
13), and ⋆ is the convolution operator.

Implementation As mentioned, the equivariant encoder was implemented using steerable CNNs.
As part of the implementation of networks with the escnn library, one specifies both an input type
and an output type for each layer, which together define the type of equivariance of the layer exhibits
(as explained above).

The input type of the first DoubleConv block is a direct sum of five trivial representations, since its
input is a stack of five filtered images that transform separately. The input type of each consecutive
DoubleConv block is a direct sum of multiple regular representations. The number of regular repre-
sentations in the direct sum is a hyperparameter that is different for each of the encoders. The fea-
tures in each layer in the EquivariantFCBlock also transform according to a direct sum of multiple
regular representations.

The output types of both EquivariantFCBlocks are especially important, since they determine the
overall type of equivariance the encoder exhibits. Recall that we want the encoder to satisfy the
following equations:

Er(Lg[I]) = φr(g)Er(I), (15)

and
Et(Lg[I]) = φt(g) · Et(I). (16)

where φt(g) : G → GL(R2) and φr(g) : G → GL(R3) are two representations of G such that for
g = f c · rθ ∈ G,

φt(g) =

[
1 0
0 −1

]c [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(17)

and

φr(g) =

[−1 0 0
0 1 0
0 0 −1

]c [
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
(18)
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Et satisfies equation 16 if the output type ρout
Et

of the first EquivariantFCBlock is equal to φt, since
Et directly outputs ti.

For the second EquivariantFCBlock we choose output type ρout
Er

= φr⊕φr. Recall that the output of
this EquivariantFCBlock is a vector VRi

∈ R6, which is then mapped to Ri ∈ SO(3) and interpreted
as a rotation matrix (see Figure 6). Therefore, we also have to define a mapping VRi

7→ Ri in such
a way that equation 15 is satisfied. This is done as follows:

Let VRi
= [v1 . . . v6]

⊤, V1 = [v1 v2 v3]
⊤, V2 = [v4 v5 v6]

⊤ and V3 = V1×V2, where × indicates
the cross product2. We define

M =

[ | | |
V1 V2 V3

| | |

]
(19)

Let UM , SM , VM be the Singular Value Decomposition (SVD) of M , and define DM as the diagonal
matrix where Dii = 1 for i = 1, 2 and D33 = det(UV ⊤). Then we define a mapping O : M 7→ Ri

such that it performs the orthogonalization of the matrix M :

Ri = UMDMV ⊤
M (20)

The orthogonalisation of a matrix M is an operation that projects it to the nearest element in SO(3)
in the least-squares sense (Levinson et al. (2020)).

The cross-product has the following general property. If R is an orthogonal matrix in R3×3, then we
have the identity:

(RV1)× (RV2) = R(V1 × V2) (21)

Note that since VRi
transforms according to ρout

Er
= φr ⊕ φr, a block-diagonal matrix where the

blocks are two copies of the three-dimensional representation φr, V1 and V2, and according to the
identity in equation 21 also V3 transform according to φr (φr is orthogonal). Since V1, V2 and V3

are the columns of M , all the columns of the matrix M transform according to φr.

To prove that equation 15 is satisfied, we need to prove that the orthogonalization mapping O :
M 7→ Ri is equivariant, that is

O(φrM) = φrO(M). (22)

We can prove this by using the previously mentioned property of orthogonalization of a matrix that
it is an operation that projects a matrix to the nearest element in SO(3) in the least-squares sense:

O(M) = argmin
R∈SO(3)

||R−M ||2F (23)

We assume that the singular values of M and are distinct, so that we can assume that the singular
value decomposition is unique. Then we can prove equation 22 via a proof by contradiction as
follows:

Suppose that O(M) = argminR∈SO(3) ||R−M ||2F = R and suppose that equation 22 does not hold,
that is O(φrM) = R′ ̸= φrR. Recall that we assumed that the singular value decomposition was
unique, thus we can assume that R′ and R are the unique elements of SO(3) minimizing the norm
in equation 22. Using that the Frobenius norm is invariant under multiplication with orthogonal
matrices, we can derive

||R′ − φM ||2F < ||φR− φM ||2F (24)

||φ⊤
r (R

′ − φM)||2F < ||φ⊤
r (φR− φM)||2F (25)

||φ⊤R′ − φ⊤φM ||2F < ||φ⊤φR− φ⊤φM ||2F (26)

||φ⊤R′ −M ||2F < ||R−M ||2F . (27)

This is a contradiction, since we assumed that R = argminR∈SO(3) ||R −M ||2F . So we must have
that equation 22 holds.

2The cross product V3 = V1 × V2 is given by [v2v6 − v3v5 v3v4 − v1v6 v1v5 − v2v4]
⊤. The direction of

V3 is perpendicular to the plane formed by V1 and V2, according to the right-hand rule
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F METRICS

Pose prediction error The reconstructed volume and therefore also the rotations predicted by the
encoder given images in the dataset differ from their ground truth (used for the simulation of the
data) by some global rotation RG ∈ SO(3). Therefore, before determining the pose prediction error
we first have to find an estimation for RG and use it to re-align the predicted poses to the ground
truth poses. We follow a method based on publicly available code provided by the authors of Levy
et al. (2022a). In this method, the mean squared error (MSE) and median squared error (MedSE)
for a given dataset D = {I1, . . . , IN} of N images are determined as follows. For every Ii ∈ D,
we write Rpred

i := Er(Ii) for the rotation predicted by the encoder, and Rgt
i for the rotation that

was used in the simulation of the dataset to generate Ii. Let REL be the set containing the relative
rotations that align each of the predicted rotations to their corresponding ground-truth rotation:

REL := {Rrel
i | for all 1 ≤ i ≤ N such that Rrel

i Rpred
i = Rgt

i }. (28)

We then choose the rotations in REL that minimize the mean squared Frobenius norm and the median
squared Frobenius norm between the aligned predicted rotations and the ground truth rotations to
calculate the MSE and MedSE:

MSE := min
R∈REL

1

N

N∑
i

∥RRpred
i −Rgt

i ∥2F, and (29)

MedSE := min
R∈REL

median
(
∥RRpred

1 −Rgt
1 ∥2F, . . . , ∥RRpred

N −Rgt
N∥2F

)
. (30)

Resolution The Fourier Shell Correlation (FSC) is a widely utilized method in cryo-EM to assess
the resolution of 3D reconstructions. It quantifies the degree of correlation between two independent
reconstructions obtained from different sets of data.

Let V1 and V2 represent two 3D reconstructed volumes in real space. The Fourier transforms of these
volumes are denoted as V̂1 and V̂2. The FSC is computed as a function of the spatial frequency, and
for a given shell in the Fourier space (defined by a specific frequency magnitude |k|), it is given by:

FSC(|k|) =
∑

|k| V̂1(k) · V̂2(k)√∑
|k| |V̂1(k)|2 ·

∑
|k| |V̂2(k)|2

(31)

where V̂2(k) denotes the complex conjugate of V̂2(k).

The FSC curve, plotted as a function of spatial frequency, provides insight into the consistency of
structural information between the two reconstructions at different resolutions. A higher FSC value
indicates a higher degree of correlation, suggesting better agreement between the reconstructions.
The resolution at which the FSC curve drops to a threshold value (commonly set to 0.143 or 0.5)
is typically taken as an indicator of the resolution of the reconstructed volume. In this work, we
determine the resolution by comparing the reconstructed volume with the corresponding ground
truth volume used to create the simulated data. We set the threshold to 0.5 to determine the resolution
of the volume.

G EXPLORATION OF CONVERGENCE PROCESS OF STANDARD PIPELINE

As described in Section 5.1, the standard cryoAI pipeline optimized with a symmetric loss function
shows a convergence pattern in which there is an initial decline in both MedSE and MSE, with
MedSE approaching zero fast and MSE plateauing, then sharply decreasing (Figure 2).

Given how we define the MSE and the MedSE (see Section F, Equation 29 and Equation 30), this
suggests that a subset of at least half of the predicted poses can be aligned to the ground truth with
a low error relatively quickly, while the the other subset of poses show a higher error with this
alignment.
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Internally consistent subsets Consider a subset of images S ⊆ D of the full dataset D. For any
image Ii in S and its corresponding predicted rotation Rpred

i , we define the relative rotation Rrel
i such

that Rrel
i Rpred

i = Rgt
i . This rotation aligns the predicted rotations with the ground truth rotation. If

the encoder of the model is consistent on the subset S, we expect Rrel
i to align the predicted rotations

of all images in S with their ground truths (Rrel
i Rpred

j = Rgt
j for all j where Ij is in S). Therefore,

if an image Ii is part of an internally consistent subset Si, counting the number of images Ij where
Rrel

i Rpred
j ≈ Rgt

j gives an approximate size of Si. In mathematical terms, for a given i, we can define
Si as follows:

Si = {Ij : ||Rrel
i Rpred

j −Rgt
j || < ϵ} ⊆ D. (32)

If the encoder makes prediction for all images in a dataset D with low error, each subset Si would
be equal to the entire dataset (|Si| = |D| for every Ii in D). Conversely, if the encoder is in a state
where it classifies half of the images into one internally consistent subset S and the other half into
another subset S′, then |S| = |S′| = 1

2 |D|. We found that in states where the MSE was high whereas
the MedSE had already decreased, the latter was the case.

Figure 7: Joy plot with on each horizontal line the distribution of the cardinalities of subsets |Si| for
the first 300 images in our dataset D at a given time step.

We show this in Figure 7, where we illustrate the distribution of |Si| for the first 300 images in the
training dataset D, observed over time in a run exhibiting the characteristic trajectory mentioned
earlier. We notice that after some time, every image belongs to a group of size 150, which is half
of the data points. This indicates the existence of two internally consistent subsets of images. This
state persists for a while, after which one subset starts shrinking while the other grows until it
encompasses all data points. The moment one subset begins to shrink and the other to grow coincides
with the decrease in MSE.

Projective plane visualization To explore the convergence process of the encoder, we developed
a way to visualize the way in which the encoder predicts poses on the projective plane.

Let D = {I1, I2, . . . , In} represent the set of images from a cryo-EM experiment. We define the
equivalence relation ∼ on D such that Ii ∼ Ij if and only if there exists some g ∈ O(2) where
Ij = Lg[Ii] (where Lg is the left action of g, see footnote 1). This relation leads to the formation of
the set of equivalence classes D/∼.

Since each image Ii in D corresponds to an element Ri in SO(3), each element in D/∼ can be
seen as part of the real projective plane PR2 ∼= SO(3)/O(2). The projective plane can be imagined
as the unit sphere S2 where each pair of opposite points is identified. Recall that each image has
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a corresponding pose Ri = (xi, yi, zi) in SO(3), with zi being the axis of projection in the image
formation process, also known as the ‘viewing direction’. Each equivalence class [Ii] in D/∼ then
corresponds to a point on the projective plane, where the viewing direction zi is one of such paired
points.

x

y

z

zi

Figure 8: We interpret a pose Ri = (xi, yi, zi) as
a point on the projective plane and visualize this
as depicted. If zi = (zi1, zi2, zi3), then we project
Ri to the point (sgn(zi3)zi1, sgn(zi3)zi1) on the
plane. Here sgn is the function that returns the
sign of its input.

We make the projective plane visualizations as
shown in Figure 8, by projecting poses onto
the xy-plane as shown after first aligning them
with the ground truth poses in the same way
as we would to to determine the MSE (see F).
We do this for both the ground truth poses and
the poses predicted by the encoder. To visu-
alize how the predicted poses differ from their
ground truth pose, we color each of the pre-
dicted poses with the color that their corre-
sponding ground truth pose has according to a
colormap on the xy-plane.

In Figure 10 and Figure 9 we show exam-
ples of patterns in the projective plane visual-
izations that occur for the different datasets in
states where the MSE is high, and the MedSE is
low. For both structures, a pattern is observable
where approximately half of the point are mir-
rored with respect to some line in the xy-plane.
From these patterns in the projective plane alone, interpreting how the encoder misclassifies subsets
of poses is challenging. However, the patterns indicate that the internally consistent subsets of data
points are sometimes distinguishable within the projective plane.

Ground truth poses Pattern 1 of predicted poses Pattern 2 of predicted poses

Figure 9: Patterns observed in projective plane visualisations for runs trained on datasets generated
with the 80S ribosome structure.

Ground truth poses Pattern of predicted poses

Figure 10: Patterns observed in projective plane visualisations for runs trained on datasets generated
with the spliceosome structure.
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Spurious planar symmetries In addition, the discussed states corresponded to the decoder recon-
structing volumes that have a spurious planar symmetry. In Figure 11 we show reconstructions with
such symmetries together with to their corresponding ground truth volumes. This phenomenon that
is also discussed in Levy et al. (2022a), in which it was shown that a symmetric loss function pre-
vents the model from getting stuck in states showing these symmetries. Our exploration shows that
even with a symmetric loss function, these states occur.

Spliceosome structure 80S ribosome structure

Figure 11: Visualization of ground truth volume and reconstructed volume showing spurious planar
symmetry for the spliceosome structure (left) and the 80S ribosome structure (right). For both
structures, the ground truth volume is shown on the left, and the reconstructed volume on the right.
Visualizations were made using ChimeraX Meng et al. (2023)

Upon comparing the reconstructions showing planar symmetry with the projective plane visualiza-
tions as shown in Figure 9 and Figure 10, we find that for the patterns in which a subset of points is
mirrored with respect to a line in the xy-plane, this line corresponds to the plane of symmetry of the
reconstructed volume.

We hypothesize that the patterns in the projective plane and the planar symmetry in the reconstructed
volume can be explained by the fact that for volumes that have a planar symmetry, some viewing
directions yield very similar projections, even though they would yield different projections in a
non-symmetric volume. We show an example of this in Figure 12. This enables the pipeline to
reconstruct images in the dataset with a low loss in two disctinct ways. The pipeline in stuck in a
state reconstructing a volume with planar symmetry when the encoder is equally likely to predict
each of these two. This explains the two equally sized internally consistent subsets of poses.

Interpretation of results The cryoAI authors (Levy et al. (2022a)) have noted that without a
symmetric loss function, the pipeline could remain in local minima featuring reconstruction showing
spurious planar symmetries for extended periods. We find that even with a symmetric loss function,
the standard model can temporarily get stuck in similar local minima. In these states, due to planar
symmetry, two distinct poses can generate the same projection, unlike in non-symmetric volumes.
The exploratory study also reveals that when the model is in a state reconstructing a symmetric
volume, the poses predicted by the encoder form two equally sized groups, each internally consistent
but inconsistent with each other. We hypothesize that these groups represent the two distinct ways
of generating the same projection in a volume showing spurious planar symmetry.

We hypothesize that the symmetric loss helps the model escape states in which it is reconstructing
volumes with spurious planar symmetries as follows. Utilizing a symmetric loss function involves
augmenting each batch with a rotated (or in the case of a mirror loss, mirrored) duplicate of each
image in the batch. Both versions of the image pass through the model, but the model is only
supervised on the best reconstruction. Recall that we observed that, when reconstructing a volume
showing a spurious planar symmetry, two distinct poses can generate the same projection. We
expect that at least sometimes, rotating (or mirroring) an image causes the encoder to switch from
predicting one pose to the other that can generate the same projection. If, by chance, one aspect of
the symmetry in the reconstructed volume provides marginally better reconstructions for a specific
image, the model may begin to prefer this aspect, and as such ‘escape’ the symmetric state.
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Reconstructed volume

Projection with viewing
direction (A).

Projection with viewing
direction (B).

Ground truth volume

Projection with viewing
direction (A).

Projection with viewing
direction (B).

Figure 12: A reconstructed volume showing planar symmetry with two viewing directions (A) and
(B) is shown on the top left. Viewing direction (B) is the viewing direction that is obtained if (A) is
mirrored along the plane of symmetry and multiplied by −1. On the top right, the ground truth vol-
ume is shown with the same viewing directions. For the volume showing planar symmetry, viewing
directions (A) and (B) generate projections that look almost identical due to planar symmetry. On the
other hand, the ground truth volume does not show planar symmetry and the projections generated by
both viewing directions look different. Visualizations were made with ChimeraX Meng et al. (2023).

21


	Introduction
	Image formation model
	Related work
	Method
	Equivariant amortized inference of poses
	Pipeline overview
	Equivariant encoder
	Symmetric loss function

	Experiments
	Convergence of original pipeline
	Impact of equivariance on convergence of pipeline

	Final Discussions
	Image formation model in Fourier space
	Decoder architecture
	Data
	Background on Group and Group Representation Theory
	Equivariant encoder architecture
	Technical details

	Metrics
	Exploration of convergence process of standard pipeline

