
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PILOT-BENCH: PROBABILISTIC INTERACTION FOR
LLM OPERATIONS IN TOOL-DRIVEN SCENARIOS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce PILOT-Bench, a benchmark that evaluates LLM workflow execution
under simulated realistic conditions of instruction quality variability and tool ex-
ecution uncertainty. Unlike existing benchmarks that encounter these challenges
incidentally, our work makes uncertainty the primary focus of systematic study.
The benchmark incorporates three key aspects: (1) modeling of probabilistic tool
behaviors through parameterized error models that simulate real-world API failure
patterns, (2) provision of MDP-derived workflows that maximize expected success
rates, and (3) systematic evaluation of model robustness through controlled pertur-
bations of workflow instruction quality. Our construction pipeline generates 5,040
tasks from a tool library of 30 APIs. The evaluation conducted across widely used
large language models under conditions of probabilistic tool failures and varying
instruction quality reveals notable performance differences. Specifically, MDP-
optimal workflow prompts achieve an average success rate of 62.1%, Chain-of-
Thought prompts yield an average success rate of 50.8%, and flawed workflow
prompts result in an average success rate of 54.3%. Our benchmark is available at
https://github.com/PilotBenchAnonymous/PilotBench.

1 INTRODUCTION

Large language models (LLMs) have shown capabilities in reasoning, planning, and tool utilization
across diverse domains (Brown et al., 2020; Achiam et al., 2023). These models have demon-
strated proficiency in applications that combine natural language understanding with tool orches-
tration (Schick et al., 2023; Qin et al., 2023; Parisi et al., 2022). Recent advances in agent-based
systems have further expanded the scope of tool-use applications (Wang et al., 2023; Xi et al., 2023;
Sumers et al., 2023). Workflow execution represents one area where LLMs must navigate sequences
of tool interactions while maintaining coherence and achieving specified objectives, with applica-
tions ranging from software development (Fried et al., 2023; Nijkamp et al., 2022) to scientific
computing (Lewkowycz et al., 2022).

When LLMs are deployed for workflow execution in production environments, they encounter three
primary categories of challenges: (1) Tool reliability issues, where APIs exhibit probabilistic fail-
ures including timeouts, service outages, validation errors, and resource limitations that require
adaptive error recovery strategies; and the model lacks higher-level information about tool reliabil-
ity, for example, an LLM may not know the specific cause of an API interruption. (2) Instruction
quality variations, where users provide instructions that may be incomplete, ambiguous, contra-
dictory, or contain logical inconsistencies due to limited domain knowledge or communication con-
straints; and (3) Complexity challenges, where processes involve intricate tool dependencies, dy-
namic multi-agent coordination, and other highly complex tasks, and the number of dialogue turns
or token limits restricts the model’s exploration behavior.

Recent research has produced various tool-use benchmarks that evaluate LLMs’ capacity for API
interaction, multi-step reasoning, and workflow execution (Zhuang et al., 2023; Qin et al., 2023; Li
et al., 2023; Patil et al., 2023), with specialized benchmarks emerging for mathematics (Hendrycks
et al., 2021; Cobbe et al., 2021), code generation (Chen et al., 2021; Austin et al., 2021), and multi-
modal reasoning (Lu et al., 2022). These frameworks have made significant contributions to under-
standing LLM capabilities (Zhou et al., 2022; Wei et al., 2022), establishing important baselines for
tool-use performance under controlled conditions.

1

https://github.com/PilotBenchAnonymous/PilotBench

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Task
Specification

- Objective: Process raw user
data from a csv file into a
validated and aggregated json
report
- Task Type: data_pipeline
- Required Tools:
[file_operations_reader,
data_processing_parser, ...]

Flawed
Workflow

Prompt

Workflow Execution Plan:
1. Execute file_operations_reader
2. Execute processing_validator
3. Execute data_processing_parser
4. Execute data_processing_aggregator
5. Execute file_operations_writer

Error Injected

 > ** Reasoning ** The validation failed because the
data was not parsed. The provided plan is incorrect. I
will correct the sequence by running the parser next.

 Failure: OPERATION_FAILED. Input data is not
in the expected parsed format.

> Executing: data_processing_parser

 Success. Data parsed.

......

> Executing Step 2 : data_processing_validator

> Executing Step 1 : file_operations_reader

 Success. Data loaded.

Figure 1: This figure demonstrates the PILOT-Bench setup. On the left, we provide task specifica-
tions, a tool library, and workflow prompts with injected errors. On the right, the LLM is expected
to identify errors in the provided workflow, and execute with correction.

We introduce PILOT-Bench, a benchmark that systematically evaluates LLM workflow execution
capabilities under realistic deployment conditions involving tool reliability issues and instruction
quality variations (Liu et al., 2023; Jimenez et al., 2023). While existing benchmarks (Qin et al.,
2023; Li et al., 2023; Huang et al., 2023) may encounter probabilistic tool failures and instruction
variability as natural consequences of working with real-world APIs and diverse instruction gen-
eration, these works typically filter and curate APIs or instructions to minimize such issues. Our
work makes two distinct contributions: Firstly, we make these uncertainties the primary focus of
systematic study rather than attempting to filter them out. We deliberately introduce controlled
perturbations through systematically generated flawed workflow instructions and probabilistic er-
ror models. This creates environments that require adaptive strategies, allowing us to measure the
model’s ability to recover from API errors and adaptively replan workflows to complete tasks.

Secondly, we provide analytically derived optimal workflows through MDP optimization. Under re-
alistic deployment constraints, there exist three theoretical upper bounds for success rates: (i) 100%
may not be achievable due to round/retry limits; (ii) the upper bound achieved by a policy know-
ing tool call procedures and able to anticipate tool errors (e.g., knowing the random seed of every
tool operation); (iii) the upper bound achieved by a policy knowing tool call procedures but only
aware of the probability of tool failure. Our MDP formulation provides a tractable approximation
to bound (iii), computing workflows that maximize expected success rates by reasoning over known
reliability statistics.

PILOT-Bench consists of three primary components: task specifications spanning multiple types
and complexity levels, a tool registry modeling 30 APIs with probabilistic error behaviors and de-
pendency constraints, and multi-variant workflow guidance including both optimal execution plans
and perturbed variants. Each task is accompanied by four distinct prompt types—baseline, Chain-
of-Thought, MDP-optimal workflow prompt, and flawed workflow prompt—designed to simulate
low-quality prompts in real scenarios.

Our evaluation framework shows model families and size exhibit performance differences in current
LLMs when confronted with realistic workflow environments. Assessments suggest performance

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

changes when models encounter flawed instructions and probabilistic tool failures, with success
rates that may correlate with both workflow instruction quality and tool reliability levels. These
findings could inform approaches for improving LLM robustness in practical workflow execution
scenarios.

The primary contributions of this work are multifold:

1. Benchmark Design and Automated Construction: We present PILOT-Bench, an evalu-
ation framework that systematically assesses LLM workflow execution capabilities under
instruction variability and tool uncertainty through automated task generation from struc-
tured tool libraries.

2. MDP-Based Workflow Generation Framework: We develop a Markov Decision Pro-
cess (MDP) framework that generates theoretically optimal execution workflows maximiz-
ing expected success rates, along with seven types of systematically perturbed variants,
enabling controlled evaluation of model robustness to instruction quality variations.

3. Evaluation Findings: Our evaluation reveals that models exhibit dramatically different
robustness patterns when confronted with flawed instructions: GPT-4o-mini maintains rel-
atively stable performance (optimal: 67.7%, flawed: 62.2%, a 5.5 percentage point drop),
while Gemini-2.5-Flash shows substantial degradation (optimal: 60.1%, flawed: 20.0%,
a 40.1 percentage point drop). We also observe emergent abilities in workflow execution
where multi-step tool-use proficiency appears suddenly at certain parameter thresholds.

4. Real-World API Integration: We extend PILOT-Bench with a real-world task set that
integrates live public APIs, serving as a complementary evaluation component that directly
assesses model performance on actual API interactions. Real-world experiments reveal
patterns consistent with the observations from the simulated API experiments.

The remainder of this paper is organized as follows. Section 2 details the core components, evalua-
tion methodology, and benchmark statistics. Section 3 describes our automated construction pipeline
and MDP-based workflow generation methods. Section 4 presents experimental results and analysis
of current LLM capabilities. Section 5 reviews related benchmarks.

2 BENCHMARK SETUP

In this section, we present the setup of PILOT-Bench. We begin by describing the core components
of the benchmark data and their organization, followed by the task types and evaluation methodology
used to assess agent performance. A figure demonstrating the benchmark setup is provided in Figure
1.

2.1 BENCHMARK DATA ORGANIZATION

The PILOT-Bench dataset is structured around three primary components: task specifications, tool
registry, and reference workflows.

Task Specifications. The benchmark comprises 5,040 unique tasks organized across multiple di-
mensions of type and complexity. Each task specification includes a natural language description,
structured input/output requirements, a list of required tools, execution constraints, and comprehen-
sive metadata. Detailed examples of task specifications are provided in Appendix B.1.

Tool Registry. The benchmark includes a comprehensive Tool Registry modeling 30 canonical
software APIs with probabilistic behavior. Tools are systematically organized into six functional
categories: data processing, file operations, network, computation, integration, and utility, with five
tools per category ensuring balanced coverage.

Each tool definition specifies functional parameters with type constraints, structured return schemas,
and explicit error models that enumerate possible failure modes. The system models five primary
failure types: input validation failures (INVALID INPUT), operational failures (OPERATION -
FAILED), timeout conditions (TIMEOUT), calculation errors (CALCULATION ERROR), and re-
source overflow conditions (OVERFLOW). These error types reflect common failure patterns in real-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

world scenarios. Representative tool examples and detailed specifications are provided in Appendix
B.1.

Reference Workflows. Each task is accompanied by four distinct prompt types (detailed in Section
3.3): baseline, Chain-of-Thought, MDP-optimal workflow prompt (optimal with respect to our MDP
reward function), and flawed workflow prompt with systematic error injection. These variants enable
evaluation of both instruction-following fidelity under high-quality instructions and robustness under
flawed instruction quality.

2.2 TASK EXECUTION AND EVALUATION

Execution Environment. PILOT-Bench employs a simulated execution environment that provides
realistic tool behavior. When agents invoke tools, a probabilistic simulator calculates success rates
based on tool dependencies, execution history, and failure patterns, then generates appropriate suc-
cess or failure responses. The simulator implements a base success rate of 0.8. Complete imple-
mentation details are provided in Appendix B.3.

Evaluation Methodology. Task outcomes are categorized into three distinct levels of success. A
task is considered full success if all specified tools are executed correctly and in the proper
sequence. Partial success reflects substantial task completion that satisfies most requirements
but does not achieve perfect execution. Failure indicates that task completion is insufficient due
to critical tool failures or breakdowns in execution.

The evaluation framework relies on four primary assessment criteria. Required Tools Coverage mea-
sures the proportion of tools successfully executed from the task’s required tool list, with full -
success requiring 100% coverage. Sequence Correctness assesses whether tools are executed in
the exact order dictated by task dependencies. Output Generation verifies the successful execution
of output-producing tools (e.g., writers, exporters, savers) as evidence of meaningful task comple-
tion. Explicit Completion Signals examines the conversation history for indications from the LLM
that the task has been completed. Achieving full success requires success in all four of these
criteria.

Additionally, two considerations are also applied. Minimum Tool Execution: This defines task-type-
specific thresholds for considering partial success. A task may be rated as partial success
if it meets at least two conditions, such as exceeding minimum tool execution coverage while pro-
ducing the expected outputs. Termination Conditions: The evaluation also accounts for premature
task termination, such as when a task experiences an excessive number of consecutive tool failures
or becomes trapped in a repetitive loop, which typically results in a failure rating. Complete
implementation details are provided in Appendix B.4.

2.3 BENCHMARK STATISTICS

PILOT-Bench contains 5,040 unique tasks systematically distributed across multiple dimensions to
ensure balanced coverage of workflow scenarios. The benchmark incorporates 30 canonical tools
organized into six functional categories, providing a controlled yet diverse environment for evalu-
ating LLM workflow execution capabilities. Here we present some statistics about tasks and tools.
For more detailed statistical information, please see Appendix B.1.

Task Distribution. We classify tasks using two approaches: task type classification and complex-
ity classification. Task types include five categories: complex validation pipeline tasks, complex
network integration tasks, basic file processing tasks, advanced computation pipelines, and simple
data transformation tasks. Complexity classification spans three levels: easy, medium, and hard.
Complex validation pipeline tasks (1,520 instances, 30.2%) form the largest category, followed by
complex network integration tasks (1,360 instances, 27.0%), basic file processing tasks (1,200 in-
stances, 23.8%), advanced computation pipelines (640 instances, 12.7%), and simple data trans-
formation tasks (320 instances, 6.3%). Tasks span three complexity levels: easy (1,520 instances,
30.2%), medium (2,880 instances, 57.1%), and hard (640 instances, 12.7%). The distributions for
both classification approaches are shown in Figure 2a and 2b.

Tool Library Composition. We organize tools into six categories: computation, data processing,
file operations, integration, network, and utility, with each category containing five tools, as shown in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2c. We also conduct a statistical analysis of tool-required parameters, with results presented
in Figure 2d. The most common required parameter is options, which is required by 25 tools.

(a) Task type (b) Task complexity (c) Tool category (d) Required parameters

Figure 2: PILOT-Bench statistics showing (a) task type distribution, (b) task complexity distribution,
(c) tool category distribution, and (d) required parameter distribution.

3 BENCHMARK CONSTRUCTION

PILOT-Bench employs an automated construction pipeline that generates diverse workflow tasks
from a systematic tool library. The construction process consists of three main stages: tool library
generation, task creation, and prompt generation. This automated approach enables scalable bench-
mark expansion while maintaining task quality and diversity.

3.1 TOOL LIBRARY GENERATION

The tool library is constructed using a two-layer categorization system that balances systematic
coverage with realistic workflow dependencies. The foundation consists of a category-operation
matrix spanning 6 functional categories (data processing, file operations, network, computation,
integration, utility) and 5 operations each, yielding 30 distinct tool types. Each tool follows the
{category} {operation} naming convention and includes standardized parameter templates,
return schemas, and error handling specifications.

The second layer introduces semantic operation types that group tools by their workflow roles:
sources (readers, fetchers), processors (parsers, transformers, analyzers), aggregators, outputs (writ-
ers, posters), and utilities. This semantic grouping enables dependency modeling where processors
depend on sources, aggregators depend on processors, and outputs depend on aggregators. More
detailed information can be found in Appendix C.1.

3.2 TASK GENERATION METHODOLOGY

Tasks are automatically generated through semantic matching between predefined operation se-
quences and the tool library. The system defines five task types: basic file processin, simple data -
transformation, complex validation pipeline, complex network integration, and advanced compu-
tation pipeline. Each task type follows a standard operation sequence, such as [’read’, ’validate’,
’transform’, ’aggregate’, ’write’] for complex validation pipelines.

The generation process uses RAG-based semantic matching to map operation steps to appropriate
tools. For example, a ’read’ operation can match to file operations reader or network -
fetcher based on semantic similarity. Task variation is introduced through multiple tool choices
per operation and different templates. An optional LLM enhancement phase improves task descrip-
tions while preserving logical consistency, ensuring both natural language quality and structural
integrity. More detailed information can be found in Appendix C.2.

3.3 WORKFLOW PROMPT GENERATION

Each task has four distinct prompt types to evaluate different aspects of agent capability. Table 1 pro-
vides a comprehensive comparison of these prompt variants. Baseline prompts contain essential task
information including description, input/output specifications, and tool usage instructions. Chain-
of-Thought (CoT) prompts enhance baseline prompts with explicit CoT instructions that encourage

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison of prompt types in PILOT-Bench.

Prompt Type Base Components Additional Elements Evaluation Focus

Baseline
Task description,
Input/output specs,
Tool instructions

None Basic instruction
following

Chain-of-Thought
Task description,
Input/output specs,
Tool instructions

Explicit reasoning
instructions

Reasoning and
planning capabilities

MDP-Optimal Workflow
Task description,
Input/output specs,
Tool instructions

Detailed execution plan Workflow adherence

Flawed Workflow
Task description,
Input/output specs,
Tool instructions

Perturbed execution plan
with systematic errors

Error detection and
robustness

step-by-step analysis. MDP-Optimal workflow prompts incorporate detailed execution plans derived
from MDP formulations that account for tool dependencies and success probabilities.

The MDP-optimal workflow prompts are generated using a MDP framework that formally defines
optimality in terms of expected cumulative reward for tool sequence selection under uncertainty. Our
MDP formulation uses a composite state representation capturing tool execution states, progress
tracking, etc. The action space consists of structured tool invocations. The system implements a
two-phase adaptive reward strategy: an initial coverage-focused phase prioritizing tool discovery
and usage, followed by a sequence-optimized phase emphasizing execution order and efficiency.
Policy optimization employs Proximal Policy Optimization (PPO) with Transformer-based neural
networks, mixed-precision training, and curriculum learning across five difficulty stages. The trained
policy generates tool sequences that are optimal with respect to the learned reward function and
state transition probabilities, producing workflows with maximized expected success rates given the
MDP’s modeling assumptions. More details can be found in Appendix D. Flawed workflow prompts
are systematically generated by introducing controlled perturbations to MDP-optimal workflows
across seven categories: sequential ordering errors, tool misuse, parameter configuration errors,
missing critical steps, redundant operations, logic discontinuity, and semantic drift. More detailed
information can be found in Appendix C.3.

3.4 REAL-WORLD API INTEGRATION

To complement our simulated environment, we extend PILOT-Bench with a real-world task set
integrating live public APIs that directly assess practical deployment capabilities.

API Selection and Characterization. We source candidate APIs from the public-apis GitHub
repository1. To identify APIs exhibiting probabilistic behaviors aligned with our benchmark design,
we conduct empirical reliability assessment: each candidate API is invoked 20 times to measure
success rate and response latency distributions. APIs are selected based on two criteria: (1) Suc-
cess rate variability—non-deterministic behavior with occasional failures (timeouts, rate limiting,
service interruptions), and (2) Latency variability—substantial variation in response times reflecting
real-world network dynamics. This yields APIs naturally exhibiting stochastic behaviors that mirror
our simulated error modes.

Task Construction. We design 8 sequential workflow tasks based on 23 selected APIs’ func-
tionalities and output characteristics. Tasks are constructed by analyzing each API’s input re-
quirements, output schemas, and semantic capabilities to create realistic multi-step workflows. As
an example, the content creation task requires LLMs to sequentially call four real-world
APIs—fetching a random fact, a joke, a programming quote, and a stoic quote—then compile them
into a social media post draft.

1https://github.com/public-apis/public-apis

6

https://github.com/public-apis/public-apis

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Framework Integration. We align real-world components with our existing infrastructure through:
(1) constructing MCP-compliant tool registrations matching our simulated tool library schema (Sec-
tion 3.1), including standardized parameters, return schemas, and error classifications, and (2) for-
matting tasks to match our task specification structure (Section 3.2). This enables uniform workflow
prompt generation and evaluation methodology across simulated and real-world components. The
specific tools and tasks are updated to our benchmark repository2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate several models spanning proprietary LLMs (GPT-4o-mini, O3-0416-Global, etc.) and
open-source LLMs (DeepSeek-V3, Qwen2.5-32B, etc.). Each model is tested with 4 prompt variants
per task (baseline prompt, Chain-of-Thought prompt, MDP-optimal workflow prompt, and flawed
workflow prompt). We use a base success rate ρbase = 0.8 for probabilistic tool execution.

The framework employs an interactive multi-turn execution environment with up to 10 con-
versational turns per task. Key implementation details include: (1) Interaction protocol and
execution: Models use <tool search>query</tool search>, <tool info>tool -
name</tool info>, and <tool call>tool name</tool call> syntax; the system en-
forces one-tool-per-turn execution with dependency management. (2) Automated feedback and
parameter handling: The system generates feedback messages with execution results, error in-
formation, and progress indicators; format detection reminders are provided when responses lack
proper syntax. (3) Error simulation: Tool failures follow predefined error templates specific to
each tool’s MCP specification, including modes such as TIMEOUT, DEPENDENCY ERROR, and
INVALID INPUT. For details, see Appendix B. In addition, we provide testing interaction exam-
ples in Appendix A.

Our experimental analysis of LLM workflow execution capabilities demonstrates:

• Different robustness patterns to instruction quality: Models exhibit dramatically dif-
ferent robustness patterns when confronted with flawed instructions. For example, GPT-
4o-mini maintains relatively stable performance across instruction quality variations (opti-
mal: 67.7%, flawed: 62.2%, a 5.5 percentage point drop), while Gemini-2.5-Flash shows
substantial degradation (optimal: 60.1%, flawed: 20.0%, a 40.1 percentage point drop)
(Section 4.3).

• Emergent abilities of workflow execution: Through experiments on the Qwen2.5 series,
we observe emergent abilities in workflow execution, where the model’s multi-step work-
flow execution ability appears suddenly at certain parameter thresholds rather than scaling
smoothly (Section 4.4).

• Real-world validation: We extend our evaluation with a real-world test set integrating live
public APIs. Real-world experiments reveal patterns consistent with the observations from
the simulated API experiments (Section 4.5 and Appendix E.3).

4.2 OVERALL PERFORMANCE RESULTS

Table 2 presents the performance results using baseline, Chain-of-Thought, and MDP-optimal work-
flow prompts. When the models are presented with the MDP-optimal prompt, success rates range
from 56.8% to 67.7% across both proprietary and open-source models. Among proprietary models,
GPT-4o-mini achieves a 67.7% success rate, followed by GPT-5-mini (60.7%) and Gemini-2.5-Flash
(60.1%). Open-source models show competitive performance, with Llama-3.3-70B reaching 66.1%.

4.3 SENSITIVITY ANALYSIS

We conduct sensitivity analysis to examine model performance across two dimensions: instruction
quality variation and task complexity progression. This analysis evaluates performance under the
MDP-optimal workflow and flawed workflow prompts, and five task complexity levels.

2https://github.com/PilotBenchAnonymous/PilotBench

7

https://github.com/PilotBenchAnonymous/PilotBench

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance: Baseline, Chain-of-Thought, and MDP-Optimal Workflow prompting.

Model Baseline Chain-of-Thought Optimal Workflow

Full Partial Fail Full Partial Fail Full Partial Fail

GPT-4o-mini 50.5 46.5 3.0 56.1 43.9 0.0 67.7 31.2 1.1
O3-0416-Global 52.7 44.9 2.4 48.9 45.6 5.6 58.5 35.1 6.4
Gemini-2.5-Flash 54.3 44.5 1.1 51.1 44.7 4.2 60.1 36.7 3.3
GPT-5-mini 52.0 46.0 2.0 54.3 45.7 0.0 60.7 35.5 3.8

Llama-3.3-70B 47.8 42.5 9.6 43.6 43.6 12.7 66.1 30.9 3.0
Qwen2.5-32B 52.5 43.8 3.7 51.7 45.0 3.3 65.0 31.9 3.1
DeepSeek-V3 50.0 50.0 0.0 50.0 46.9 3.1 56.8 39.0 4.2

Avg 51.4 45.5 3.1 50.8 45.1 4.1 62.1 34.3 3.6

(a) (b)

Figure 3: Performance analysis across representative models: (a) Prompt robustness analysis across
7 categories of flawed workflow prompts, and (b) model performance across different task types.

Instructions Quality Sensitivity. Table 3 shows that MDP-optimal workflow prompts achieves
higher average success rate (62.1%) compared to flawed workflow prompts (54.3%). Besides,
models exhibit dramatically different robustness patterns when confronted with flawed instructions.
Specifically, GPT-4o-mini maintains relatively stable performance with only a 5.5 percentage point
drop (optimal: 67.7%, flawed: 62.2%), suggesting implicit error correction capabilities. In con-
trast, Gemini-2.5-Flash shows substantial performance degradation with a 40.1 percentage point
drop (optimal: 60.1%, flawed: 20.0%). This indicates that tolerance to flawed instructions repre-
sents a distinct capability dimension. To analyze the specific failure modes, we examine seven types
of systematic perturbations in Figure 3a, revealing that advanced models are particularly resilient to
ordering and parameter errors but more vulnerable to semantic drift.

Task Complexity Sensitivity. Figure 3b demonstrates consistent performance degradation pat-
terns as task complexity increases. Representative models show performance decline from simple
content analysis tasks to complex computation pipelines: GPT-4o-mini (72.4% to 53.7%), GPT-5-
mini (69.9% to 53.7%), Qwen2.5-32B (73.5% to 53.7%), and Llama-3.3-70B (67.4% to 52.8%).
This degradation reflects the increasing cognitive demands of workflow execution, where advanced
computation pipelines require more sophisticated reasoning about tool dependencies and execution
chains compared to basic file processing tasks.

4.4 SCALING ANALYSIS

We conducted additional experiments on the Qwen2.5 series to investigate the relationship between
model size and workflow execution capabilities. The Qwen2.5 series exhibits non-linear scaling
patterns (Table 4), with performance varying substantially: 0.5% (3B), 63.5% (7B), 65.0% (32B),
and 65.0% (72B).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The substantial jump from 3B to 7B (63.0 percentage point increase) suggests the emergence of basic
tool comprehension capabilities around this scale, while performance plateaus from 32B to 72B
indicate diminishing returns. This pattern reflects emergent abilities in workflow execution, where
tool-use proficiency appears suddenly at certain parameter thresholds rather than scaling smoothly.
This observation aligns with discussions such as (Berti et al., 2025).

Table 3: Performance comparison: Optimal vs. Flawed Workflow prompting.

Model Optimal Workflow Flawed Workflow

Full Partial Fail Full Partial Fail

GPT-4o-mini 67.7 31.2 1.1 62.2 34.6 3.2
O3-0416-Global 58.5 35.1 6.4 53.8 39.2 7.0
Gemini-2.5-Flash 60.1 36.7 3.3 20.0 12.8 67.3
GPT-5-mini 60.7 35.5 3.8 63.5 36.1 0.4

Llama-3.3-70B 66.1 30.9 3.0 59.5 36.2 4.4
Qwen2.5-32B 65.0 31.9 3.1 62.9 35.9 1.2
DeepSeek-V3 56.8 39.0 4.2 58.4 39.7 1.9

Avg 62.1 34.3 3.6 54.3 33.5 12.2

Table 4: Qwen2.5 series scaling analysis with detailed performance metrics.

Model Size Full Success Rate Partial Success Rate Failure Rate
Qwen2.5-3B 0.5% 0.5% 99.1%
Qwen2.5-7B 63.5% 30.2% 6.3%
Qwen2.5-32B 65.0% 31.9% 3.1%
Qwen2.5-72B 65.0% 32.0% 3.0%

4.5 RESULTS ON REAL-WORLD TASK SET

To assess the transferability of our simulation findings, we also evaluate the models on real-world
tasks. Table 5 presents performance across 8 tasks using 23 live public APIs. Consistent with our
simulation results, models exhibit different robustness patterns when confronted with flawed instruc-
tions. Specifically, GPT-4o-mini shows moderate degradation (optimal: 42.1%, flawed: 34.3%, a
7.8 percentage point drop), while Gemini-2.5-Flash exhibits more substantial degradation (optimal:
55.3%, flawed: 34.1%, a 21.2 percentage point drop). We present the specific distribution of API
error rates and types occurred in our experiments in Section E.4.

Table 5: Real-word Task Set Model Performance

Model Optimal Workflow Flawed Workflow

Full Partial Fail Full Partial Fail

GPT-4o-mini 42.1 38.6 19.3 34.3 34.3 31.4
Gemini-2.5-Flash 55.3 41.2 3.5 34.1 33.5 32.4
GPT-5-mini 47.6 45.2 7.1 36.6 36.3 27.0

Llama-3.3-70B 39.6 27.1 33.3 25.4 25.4 49.3
Qwen2.5-32B 55.3 44.7 0.0 42.3 38.8 18.9
DeepSeek-V3 40.2 39.3 20.5 36.0 35.4 28.6

Avg 46.7 39.4 13.9 34.8 34.0 31.3

5 RELATED WORK

Recent studies on large language models (LLMs) have produced various benchmarks and frame-
works for evaluating tool-use reasoning, workflow execution, and LLM robustness in complex tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Comparison of workflow-oriented LLM benchmarks. Comparison involves 5 aspects:
Planning: benchmark requires the LLM to design a sequence of tool calls. Tool Choice: benchmark
measures correct selection of the appropriate tool/API. Tool Call: benchmark checks syntactic and
semantic correctness of each invocation. Multi-Step: tasks demand two or more consecutive calls.
MCP Protocol: tools are specified with the Model Context Protocol (or an equivalent structured
schema).

Benchmark Planning Tool Choice Tool Call Multi-Step MCP Protocol
ToolQA(Zhuang et al., 2023) No Yes No No No
ToolBench(Qin et al., 2023) Yes Yes Yes Yes No
MetaTool(Wang et al., 2024) No Yes No No No
ToolAlpaca(Tang et al., 2023) No No Yes No No
API-Bank(Li et al., 2023) Yes Yes Yes Yes Yes
SOP-Bench (Nandi et al., 2025) Yes Yes Yes Yes No
Multi-Mission Tool Bench (Yu et al., 2025) Yes Yes Yes Yes No
TheAgentCompany (Xu et al., 2024) Yes Yes No Yes No

Ours (this work) Yes Yes Yes Yes Yes

For example, ToolQA (Zhuang et al., 2023) analyzes tool-use reasoning by differentiating between
knowledge-based and tool-reliant questions but is limited to single tool invocations.

Some advanced benchmarks attempt to evaluate LLMs in more realistic scenarios. ToolBench (Qin
et al., 2023) extends evaluations to a broader set of APIs and enable both single- and multi-tool tasks
with curated APIs and instructions. MetaTool (Wang et al., 2024) uses meta-task augmentation
to improve tool-use knowledge transfer. ToolAlpaca (Tang et al., 2023) studies generalization in
smaller models, mainly focusing on simple tool use. Broader benchmarks such as API-Bank (Li
et al., 2023), SOP-Bench (Nandi et al., 2025), and Multi-Mission Tool Bench (Yu et al., 2025)
examine planning, procedural adherence, and adaptability, yet mostly emphasize dialog, industrial
SOPs, or changing missions. TheAgentCompany (Xu et al., 2024) studies real-world digital tasks
but does not deeply examine workflow quality and its effect on decision-making. We present a
detailed comparison between our benchmark and others in Table 6.

6 CONCLUSION

We introduce PILOT-Bench, a benchmark that systematically evaluates LLM workflow execution
capabilities under realistic deployment conditions involving tool reliability issues and instruction
quality variations. While existing benchmarks may encounter these challenges incidentally, our
work makes uncertainties the primary focus of systematic study, representing a complementary eval-
uation dimension to existing capability-focused benchmarks.

Our benchmark employs an automated construction pipeline that generates 5,040 tasks from a tool
library of 30 APIs, incorporating probabilistic error models and MDP-derived workflows that repre-
sent theoretically optimal strategies maximizing expected success rates. Through systematic evalu-
ation across model families, we reveal that models exhibit dramatically different robustness patterns
when confronted with flawed instructions. We also observe emergent abilities in workflow execu-
tion where multi-step tool-use proficiency appears suddenly at certain parameter thresholds rather
than scaling smoothly. These findings provide insights into LLM robustness under uncertainty and
could inform approaches for improving model reliability in practical workflow execution scenar-
ios. Additionally, our real-world API integration validates these simulation findings, demonstrating
consistent patterns across both controlled and live deployment environments. We believe this work
opens new avenues for understanding and improving LLM performance in production settings where
uncertainty is inevitable.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, all components of the PILOT-Bench benchmark are pub-
licly available. The complete tool library, the full set of 5,040 generated task specifications, and the
source code for our automated construction pipeline are accessible at our anonymous GitHub repos-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

itory: https://github.com/PilotBenchAnonymous/PilotBench. Furthermore, we
have provided extensive details of our methodology in the appendices.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Mich Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Leonardo Berti, Flavio Giorgi, and Gjergji Kasneci. Emergent abilities in large language models: A
survey. arXiv preprint arXiv:2503.05788, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. In International Conference on Learning Representations, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

Subhrangshu Nandi, Arghya Datta, Nikhil Vichare, Indranil Bhattacharya, Huzefa Raja, Jing Xu,
Shayan Ray, Giuseppe Carenini, Abhi Srivastava, Aaron Chan, et al. Sop-bench: Complex indus-
trial sops for evaluating llm agents. arXiv preprint arXiv:2506.08119, 2025.

11

https://github.com/PilotBenchAnonymous/PilotBench

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive architec-
tures for language agents. arXiv preprint arXiv:2309.02427, 2023.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Xiaohan Wang, Dian Li, Yilin Zhao, Hui Wang, et al. Metatool: Facilitating large language models
to master tools with meta-task augmentation. arXiv preprint arXiv:2407.12871, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024.

Peijie Yu, Yifan Yang, Jinjian Li, Zelong Zhang, Haorui Wang, Xiao Feng, and Feng Zhang. Multi-
mission tool bench: Assessing the robustness of llm based agents through related and dynamic
missions. arXiv preprint arXiv:2504.02623, 2025.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXECUTION EXAMPLES

To provide concrete insight into the testing process, we present two actual execution examples from
our evaluation logs for the gpt-4o model with our optimal prompt. These examples illustrate both
successful and challenging scenarios that models encounter during advanced computation pipeline
tasks.

A.1 SUCCESSFUL EXECUTION EXAMPLE

In the following example, we provide an MDP-optimal workflow prompt to the LLM. The basic file
processing task documentary is presented as follows.

Task Type: content_analysis
Prompt Type: optimal

Task Instance:
--
Required Tools: ['file_operations_reader',
'data_processing_parser', 'data_processing_filter']

Description: Load server log files (raw text/JSON) and recent
customer feedback forms from the database, parse and normalize
timestamps and service identifiers, and convert both sources into
a common CSV schema. Apply business rules to filter by production
services, map error codes to severity levels, and discard
debug-level noise. Aggregate response times, error counts, and
complaint keywords by hourly and daily intervals, compute rolling
averages and spike detection, and correlate spikes with customer
complaints. Deliver a trend analysis CSV and a one-page summary
highlighting recurring anomalies, peak degradation windows, and
suggested next steps for the IT ops team.

The prompt that we provide to the LLM consists of the description of the task, a detailed guide on
how to perform tool search and tool call, and a recommended optimal sequence for executing the
tools, given as

Workflow Execution Plan:

1. Execute file_operations_reader
2. Execute data_processing_parser
3. Execute data_processing_filter

The execution flow in this example begins with Turn 1,

Assistant: <tool_search>file operations reader</tool_search>

This tool search request from the agent triggers the search engine to provide a set of tool search
results:

file_operations_reader, file_operations_writer,
file_operations_converter, file_operations_scanner,
file_operations_compressor

As an example, the full information of file operations reader returned by the tool search
operation is presented as follows.

1. file_operations_reader
Category: file_operations

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Description: This tool is specifically designed to read and
retrieve data from files.
Relevance: 0.70
Parameters:

- source (string): Source location or identifier [REQUIRED]
- options (object): Additional options [OPTIONAL] default={}

Returns:
- success (boolean): Whether operation succeeded
- data (object): Retrieved or parsed data
- metadata (object): Operation metadata

Possible Errors:
- INVALID_INPUT: Input validation failed
- OPERATION_FAILED: Operation could not be completed
- TIMEOUT: Operation timed out
- FILE_NOT_FOUND: Specified file not found
- PERMISSION_DENIED: Insufficient permissions

The assistant then applies the tool call operation

<tool_call>file_operations_reader</tool_call>

followed by a success message indicating that the LLM should move to the next execution step:

User: file_operations_reader executed successfully.
Output: {

"status": "completed",
"tool": "file_operations_reader",
"execution_context": {

"step": 0,
"total_tools_executed": 0

}
}

Current progress: 1 tools executed. Continue with the next step.

After several turns of tool search and tool call, the final successful execution history consists of the
following records:

Step 1: {'tool': 'file_operations_reader', 'success': True,
'output': "{'status': 'completed', 'tool':
'file_operations_reader', 'execution_context': {'step': 0,
'total_tools_executed': 0}}", 'error': None}

Step 2: {'tool': 'data_processing_parser', 'success': True,
'output': "{'status': 'completed', 'tool':
'data_processing_parser', 'execution_context': {'step': 1,
'total_tools_executed': 1}}", 'error': None}

Step 3: {'tool': 'data_processing_filter', 'success': True,
'output': "{'status': 'completed', 'tool':
'data_processing_filter', 'execution_context': {'step': 2,
'total_tools_executed': 2}}", 'error': None}

A.2 CHALLENGING EXECUTION EXAMPLE

To illustrate common execution difficulties, we also present a challenging scenario where typical
failure patterns occur.

The task instance is given as:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Task Instance:
--
Required Tools: ['network_fetcher', 'data_processing_validator',
'data_processing_parser']

Description: Pull active customer records from the CRM API and
subscriber lists from the email marketing platform, and retrieve
shipping-rate quotes for each customer address via the shipping
rate API. Normalize and convert JSON/CSV fields, deduplicate by
email, and map CRM fields to email platform fields (first_name,
last_name, email, subscription_status, lifetime_value,
shipping_class). Apply business rules: prefer the record with the
latest CRM last_updated timestamp, set shipping_class = "fast" if
lowest quote < $10, and mark lifetime_value > $200 as VIP. Push
updates to both systems via their APIs and produce a CSV of
synchronized records plus a small sync report with counts and
errors.

The reference workflow:

1. Execute network_fetcher
2. Execute data_processing_validator

- Requires: data_processing_parser
3. Execute data_processing_parser

The execution results are provided as follows. For simplicity, we omit numerical details, keeping
only the tool search and tool call decisions made by the model, and the execution result records.

Turn 1:
Assistant: <tool_search>network fetcher</tool_search>
User: Tool Search Results: network_fetcher, network_poster,
network_monitor, network_router, utility_tracker (along with tool
information details)

Turn 2:
Assistant: <tool_call>network_fetcher</tool_call>
User: network_fetcher executed successfully.

Turn 3:
Assistant: <tool_search>data processing validator</tool_search>
User: Tool Search Results: data_processing_validator,
network_validator, data_processing_filter,
data_processing_aggregator, data_processing_parser

Turn 4:
Assistant: <tool_call>data_processing_validator</tool_call>
User: data_processing_validator failed due to dependency issues.

- DEPENDENCY PROBLEMS:
Missing dependency: 'data_processing_parser' must be executed
first

- RECOMMENDATION:
Execute the required dependencies first, then retry this tool.

Turn 5:
Assistant: <tool_search>data processing parser</tool_search>
User: Tool Search Results: data_processing_parser,
data_processing_aggregator, data_processing_transformer,
data_processing_filter, data_processing_validator

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Turn 6:
Assistant: <tool_call>data_processing_parser</tool_call>
User: data_processing_parser failed.
Error: TIMEOUT: Operation timed out (after 26 seconds)

Turn 7:
Assistant: <tool_search>data processing aggregator</tool_search>
User: Tool Search Results: data_processing_aggregator,
data_processing_filter,
data_processing_parser, data_processing_transformer,
data_processing_validator

Turn 8:
Assistant: <tool_call>data_processing_aggregator</tool_call>
User: data_processing_aggregator failed due to dependency issues.

- DEPENDENCY PROBLEMS:
Dependency 'data_processing_parser' failed - cannot proceed safely

- RECOMMENDATION:
Execute the required dependencies first, then retry this tool.

Turn 9:
Assistant: <tool_call>data_processing_parser</tool_call>
User: data_processing_parser failed.
Error: INVALID_INPUT: Input validation failed (expected: JSON
format)

...

The agent’s failure stemmed from two critical errors. First, in Turn 4, it overlooked the prerequisite
that data processing parser must precede data processing validator, leading to
an execution failure. Second, when data processing validator encountered a simulated
timeout in Turn 6, the agent attempted an improper fallback. It invoked data processing -
aggregator, a tool for which it lacked the necessary information to correctly execute, causing
another execution error. These cascading failures ultimately caused the agent to exhaust its allotted
turns and fail the task.

B BASIC TASK FUNCTION COMPONENTS

The most basic component of the PILOT-Bench is a collection of tasks, presented as items in a task
library. In the procedure of interacting with and evaluating an LLM, each task is mapped to multiple
types of prompts, guiding the LLM to complete the task. The LLM is expected to perform correct
tool calls, check the returned results, until all steps of the task are correctly finished.

In the remainder of this section, we present the task specifications, including their structure and the
completion process for LLMs. We describe the tool library provided to LLMs and the simulated en-
vironments that facilitate tool execution and task completion. Finally, we explain how task execution
results are generated and evaluated.

B.1 TASKS AND TOOLS

B.1.1 PARAMETERS AND STATISTICS OF TASKS

This section provides a comprehensive overview of the task library, a collection of 5040 unique tasks
designed for various purposes. The library is generated from multiple source files and encompasses
a range of task types and complexities.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Library Composition and Statistics. The tasks within the library are categorized by type, com-
plexity. Table 7 provides a detailed breakdown of these distributions.

Table 7: Task library statistics.

Category Subcategory Number of Tasks
Task Type basic file processing 1200

simple data transformation 320
complex validation pipeline 1520
complex network integration 1360
advanced computation pipeline 640

Complexity easy 1520
medium 2880
hard 640

The tasks are generated based on several templates defined through the generation process. Each
Task Type corresponds to a specific generation logic that determines the complexity and nature of
the task.

basic file processing: These are fundamental tasks generated to represent simple data pro-
cessing workflows. They typically involve a small number of tools (2-3) chosen randomly from the
available tool library. The complexity is generally set to easy, focusing on straightforward input,
processing, and output steps.
simple data transformation: This category includes tasks that use either one or two tools.
Single-tool tasks are created for each tool category, often paired with optional validation or logging
tools. Dual-tool tasks combine two randomly selected tools for a two-step process. These are also
considered easy in complexity.
complex validation pipeline: These tasks simulate a multi-stage data validation pipeline.
They are constructed by semantically selecting a chain of tools that follow a logical data flow: read-
ing/parsing, transforming/validating, and writing/exporting. These tasks are assigned a medium
complexity.
complex network integration: This task type is designed to simulate interactions with
network APIs. The generator selects tools to create a sequence of fetching data from an endpoint,
validating the response, and potentially posting data back. These are also of medium complexity.
advanced computation pipeline: These represent the most complex tasks. They are gen-
erated by identifying longer, more intricate chains of tools based on their dependencies. The gener-
ator attempts to find paths in the tool dependency graph, resulting in tasks that require a sequence of
multiple tools to complete. These tasks are designated as hard complexity.

Task Parameters. Each task in the library is defined by a set of parameters that describe its char-
acteristics, requirements, and expected outcomes. Table 8 provides an overview of these parameters.

Table 8: Description of task parameters.

Parameter Type Description
instance id String A unique identifier for the task instance.
task type String The category of the task (e.g., basic file -

processing, complex validation pipeline).
description String A brief, human-readable description of the task.
inputs Object An object containing the input data and options for the

task. This often includes a source file path and various
processing options.

expected outputs Object An object describing the expected outcome of the task,
which typically includes a success boolean and may
contain metadata about the results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8 continued from previous page.

Parameter Type Description
required tools Array A list of strings, where each string is the name of a tool

required to complete the task.
constraints Object An object specifying any constraints on the task execu-

tion, such as timeout in seconds and the maximum
number of max retries.

complexity String The complexity level of the task, categorized as easy,
medium, or hard.

metadata Object An object containing metadata about the task generation,
such as the template used, generation timestamp, and
whether it was LLM-generated.

original description String The original, more detailed description of the task before
any enhancements or modifications.

B.1.2 EXAMPLE OF A TASK

To directly provide an idea of what a task might look like, we present an example of a “basic file
processing task” in the task library.

The following task requires the LLM to execute a sequence of file operations reader,
data processing parser and data processing filter tools to process the input data.

{
"instance_id": "task_dee2d02d",
"task_type": "basic_file_processing",
"description": "This task retrieves data from a CSV file,
parses it into a structured format, and filters it based on
specified criteria. The final result will be a refined
dataset that meets the filtering conditions.",
"inputs": {

"source": "data/input_file.csv",
"options": {

"filter": "true"
}

},
"expected_outputs": {

"success": true,
"metadata": {
"total_records": 100,
"filtered_records": 80

}
},
"required_tools": [

"file_operations_reader",
"data_processing_parser",
"data_processing_filter"

],
"constraints": {

"timeout": 300,
"max_retries": 3

},
"complexity": "easy",
"metadata": {

"template": "basic_file_processing",
"generated_at": "2025-07-10T04:27:35.913857",
"timeout": 300,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"semantic_generation": true,
"llm_generated": true,
"inputs_generated_from": "llm"

}
}

B.1.3 PARAMETERS AND STATISTICS OF TOOLS

The tool library consists of a set of 30 canonical tools, each designed to perform a specific operation.
These tools are categorized based on their functionality, such as data processing, file operations, and
network interactions. This section provides a detailed breakdown of the library’s composition and
the parameters used across the different tools.

Tool Library Composition. The tools are grouped into six distinct categories. The distribution
of tools across these categories is uniform, with each category containing five tools. This balanced
distribution ensures a wide range of capabilities within the library. Table 9 summarizes this distri-
bution.

Table 9: Distribution of tools by category.

Category Number of Tools
computation 5
data processing 5
file operations 5
integration 5
network 5
utility 5

Common Tool Parameters. The tools in the library share a common set of parameters that define
their inputs and behavior. These parameters allow for consistent interaction with the tools, regardless
of their specific function. Table 10 provides a description of the most frequently used parameters.

Table 10: Common tool parameters and their usage.

Parameter Data Type Occurrences Description
options object 25 A flexible object for passing additional options.
source string 5 The source location or identifier for data input.
data object 5 The data payload to be processed or sent by the tool.
timeout number 5 The timeout duration for the operation, in seconds.
retry count number 5 The number of times to retry the operation upon failure.
destination string 4 The target location or identifier for the output.
input format string 4 The format of the input data (e.g., JSON, CSV).
output format string 4 The desired format for the output data.
schema object 4 The validation schema to check the data against.
precision number 4 The numerical precision for computational tasks.

Tool Construction Parameter Details. Each tool is defined by a structured set of parameters, re-
turn values, and potential errors. The following table, Table 11, provides a comprehensive overview
of the fields that constitute a tool’s definition in the library.

Table 11: Detailed description of tool definition fields.

Field Name Type Description
name String The unique name of the tool.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11 continued from previous page

Field Name Type Description
description String A human-readable summary of the tool’s purpose and

functionality.
parameters Array An array of objects, where each object defines an in-

put parameter for the tool. This includes the parameter’s
name, type, description, and whether it is required.

returns Array An array of objects describing the possible return values
from the tool. Each object specifies the name, type, and a
description of the return value.

errors Array A list of possible errors that the tool might throw, includ-
ing an error code and description for each.

dependencies Array A list of other tools that must be executed before this tool
can run.

dependency metadata Object Metadata related to the tool’s dependencies, including its
execution level and order in a workflow.

metadata Object General metadata about the tool, such as its category, op-
eration type, and creation timestamp.

canonical name String The official, unique name for the tool, used to resolve any
aliases.

aliases Array A list of alternative names that refer to this tool.
differentiation Object An object containing details that distinguish this tool

from others, including its unique purpose, key differen-
tiators, and usage keywords.

original description String The initial, unenhanced description of the tool.
differentiation enhanced Boolean A flag indicating whether the tool’s differentiation infor-

mation has been enhanced by an LLM.

B.1.4 EXAMPLE OF A TOOL

We also provide an example to demonstrate what a tool might look like. Recall that a tool named
file operations reader is required in executing the task example. Here we demonstrate its
registry in the tool library.

"file_operations_reader": {
"name": "file_operations_reader",
"description": "This tool is specifically designed to read and
retrieve data from files.",
"parameters": [

{
"name": "source",
"type": "string",
"description": "Source location or identifier",
"required": true,
"default": null,
"constraints": {}

},
{

"name": "options",
"type": "object",
"description": "Additional options",
"required": false,
"default": {},
"constraints": {}

}
],
"returns": [

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

{
"name": "success",
"type": "boolean",
"description": "Whether operation succeeded"

},
{

"name": "data",
"type": "object",
"description": "Retrieved or parsed data"

},
{

"name": "metadata",
"type": "object",
"description": "Operation metadata"

}
],
"errors": [

{
"code": "INVALID_INPUT",
"description": "Input validation failed"

},
{

"code": "OPERATION_FAILED",
"description": "Operation could not be completed"

},
{

"code": "TIMEOUT",
"description": "Operation timed out"

},
{

"code": "FILE_NOT_FOUND",
"description": "Specified file not found"

},
{

"code": "PERMISSION_DENIED",
"description": "Insufficient permissions"

}
],
"dependencies": [],
"dependency_metadata": {
"level": 0,
"execution_order": 0,
"category": "file_operations"

},
"metadata": {

"category": "file_operations",
"operation": "reader",
"version": "1.0.0",
"created_at": "2025-06-27T17:38:31.057340",
"dependency_level": 0,
"execution_order": 0

},
"canonical_name": "file_operations_reader",

},

In summary, the registration of a tool in the tool library, also often referred to as MCP (Model
Context Protocol), is presented as a standardized interface system that provides structured access to
external tools and services. Rather than a custom protocol implementation, it uses generated JSON
schemas and client libraries that define how AI agents can interact with various tools. Specifically,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the schemas specify (1) the input parameters (given as parameters in the following) that an agent
needs to provide to the tool, and (2) the possible outputs of executing the tool, including return
values (given as returns) and error messages (given as errors). The schema also specifies
other information, including the dependencies of the tool. If a tool has other dependencies, all
dependencies must be successfully executed before the tool can be called.

Provided with the task to complete, and the tool library for usage, the LLM is required to perform
tool calls, and check their return values to ensure task completion.

B.2 PROMPTS

We provide the LLMs with multiple types of task-related prompts, carrying necessary information
regarding the task. The LLMs are prompted to identify and execute tools to complete the task. The
prompts of PILOT-BENCH are classified into 4 categories:

1. Baseline prompts: Only contains basic information, such as task description, input and
output, tool call instructions, etc.

2. CoT (Chain of Thought) prompts: Baseline prompts enhanced with CoT reasoning instruc-
tions.

3. MDP-optimal workflow prompts: Baseline prompts enhanced with a detailed workflow
execution plan.

4. Flawed workflow prompts: Optimal prompts with various flaws injected to the workflow
execution plan description.

B.2.1 AN EXAMPLE OF BASELINE PROMPT

Execute a simple task.

Task: Leverage innovative multi-tool workflows to metamorphose
ambiguous input into strategic insights, enhancing operational
efficacy and fostering data-driven decisions, thus unlocking
untapped business potential through streamlined transformation.

Input Data:
- input_data: numeric array with 5 values

Expected Output:
- processed_data: processed data with success status

Tool Search Available:
You have access to a comprehensive tool library with specialized
tools for various operations.
To find relevant tools, use the search command: <tool_search>your
search query</tool_search>

Examples of tool searches:
- <tool_search>file reader writer</tool_search>
- <tool_search>data validation parser</tool_search>
- <tool_search>network api fetch</tool_search>

After finding the tools you need, execute them using:
<tool_call>tool_name</tool_call>

Instructions:
1. Analyze the task requirements
2. Search for appropriate tools based on what you need to do
3. Execute the tools in the correct order
4. Complete the task and indicate when finished

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Use appropriate tools to complete the task.

B.2.2 COT REASONING INSTRUCTIONS

Think step by step about which tools to use and why.

Please:
1. First explain your reasoning about which tools to use
2. Then execute the tools in the order you determined
3. Format tool calls as: <tool_call>tool_name</tool_call>

Begin with "Reasoning:" followed by your thought process.

Use appropriate tools to complete the task.

The instructions are directly appended to the baseline prompt to form a CoT prompt.

B.2.3 AN EXAMPLE OF MDP-OPTIMAL WORKFLOW PROMPT

We provide and example of a workflow execution plan with summary:

Workflow Execution Plan

1. Execute data_processing_transformer
- Reason: Semantic match for 'full_description' operation
- Requires: data_processing_parser

2. Execute data_processing_filter
- Reason: Semantic match for 'full_description' operation

3. Execute data_processing_parser
- Reason: Semantic match for 'full_description' operation

4. Execute computation_analyzer
- Reason: Semantic match for 'full_description' operation
- Requires: data_processing_parser, data_processing_aggregator

5. Execute file_operations_scanner
- Reason: Semantic match for 'full_description' operation

6. Execute file_operations_reader
- Reason: Semantic match for 'full_description' operation

7. Execute data_processing_validator
- Reason: Semantic match for 'full_description' operation
- Requires: data_processing_parser

8. Execute computation_calculator
- Reason: Semantic match for 'full_description' operation
- Requires: data_processing_parser, network_validator

9. Execute network_monitor
- Reason: Semantic match for 'full_description' operation

10. Execute data_processing_aggregator
- Reason: Semantic match for 'full_description' operation
- Requires: data_processing_parser

Analysis:
- Critical tools identified: data_processing_filter,
data_processing_transformer, data_processing_parser

Execution Strategy:
1. Follow the recommended sequence for optimal results
2. Use alternatives if primary tools fail

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

3. Pay special attention to critical tools

Use appropriate tools to complete the task.

The workflow execution plan is attached directly to the baseline prompt to form an MDP-optimal
workflow prompt. In section D, we will explain how the MDP-optimal workflow prompt is con-
structed.

B.2.4 FLAWED WORKFLOW PROMPT

There are several ways to perturb an MDP-optimal workflow execution plan to make it flawed. For
example, we can introduce flaws to the order of the tool execution sequence. We can also introduce
missing steps or redundancies. An ideally robust LLM is expected to discover and correct the flaws.

To test the capability of the LLM, we include Sequential Ordering Errors, where tools are executed
in an incorrect sequence, and Tool Misuse Errors, which involve selecting an inappropriate tool
that appears suitable. Parameter Configuration Errors occur from incorrect or omitted parameters,
while Missing Critical Steps involves the strategic removal of essential operations. We also observe
Redundant Operations, where unnecessary tools are added; Logic Discontinuity, where a tool’s
output is incompatible with the next tool’s input; and Semantic Drift, a gradual deviation from the
intended workflow caused by replacing tools with functionally different but semantically similar
alternatives. We refer to C.3 for details of the flaws.

B.3 TOOL RESULT SIMULATOR

Once the LLM performs a tool call, a simulator provides a return message that is either a success or
a type of failure. For simplicity, we create a unified simulator for every tool, which calculates the
success rate of a specific tool execution, then randomly samples a success or a failure.

The specific simulator implementation is decomposed as follows:

Success rate calculator. The success rate calculator assigns a success rate p ∈ [0, 1] for each
specific tool execution. Specifically, the calculator first assigns a base success rate of p0 = 0.8.
Then, dependencies of the current tool is checked. For each dependency that has not been previ-
ously called, a penalty of 0.5 is multiplied to the success rate. For each dependency that has been
previously called but not successfully executed, a penalty of 0.7 is multiplied to the success rate.
Further, failure histories of the current task decreases the success rate of the current tool execution.
Each history failure record induces a penalty of 0.9 multiplied to the success rate. In summary, we
have

ρsuccess = ρbase ·
∏

0.5Nu · 0.7Nf · 0.9Nh

where Nu is the number of dependencies not called, Nf is the number of dependencies (called but)
not successfully executed, and Nh is the number of historical execution failures.

Result simulator. Given the success rate p, the result simulator first randomly simulates a “suc-
cess” or “failure”. If the result is “success”, the simulator creates the success-related return message
provided in the tool’s documentation. If the result is “failure”, the simulator randomly selects a type
of failure (e.g., TIMEOUT, EXECUTION FAILURE) from the tool’s documentation.

B.4 TASK RESULT EVALUATION

The evaluation of task outcomes is performed by the InteractiveExecutor, which determines
the success of a task based on a detailed analysis of the execution history. This section outlines the
different levels of task success and the criteria used for their assessment.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.4.1 LEVELS OF TASK SUCCESS

full success: This level indicates that the task was completed perfectly. It requires all of the
specified tools to be executed successfully and in the correct sequence.

partial success: This level represents a task that was completed to a significant extent but
did not meet all the criteria for full success. This could mean, for example, that a majority of the
required tools were executed, or that a valid output was generated despite some tools failing.

failure: This level is assigned when the task could not be meaningfully completed. This typ-
ically occurs if a critical number of tools fail, no output is generated for essential tasks, or the
execution gets stuck in a loop.

B.4.2 EVALUATION CRITERIA

The executor evaluates the success of a task by assessing several key factors from the execution
state. The final success level is determined by a combination of these criteria:

• Required Tools Coverage: This is the most critical metric. The evaluator checks what per-
centage of the tools listed in the task’s required tools list were executed successfully.
Full success requires 100% coverage.

• Sequence Correctness: For a task to be considered a full success, the required tools
must not only be executed but also be called in the precise order specified in the task
definition.

• Output Generation: The evaluator checks whether any tool that is expected to produce an
output (e.g., tools with names like ‘writer’, ‘exporter’, ‘saver’) was successfully executed.
The generation of an output is an indicator of full success and partial success, especially
for pipeline-oriented tasks.

• Explicit Completion Signal: The conversation history is scanned for signals from the lan-
guage model indicating that it considers the task complete (e.g., “task completed”, “finished
executing”).

• Minimum Tool Execution: For each task type, there is a minimum number of success-
fully executed tools required to be considered for partial success. For instance,
an advanced computation pipeline requires more successful tool calls than a
simple data transformation.

• Termination Conditions: The evaluation also considers reasons for premature termina-
tion, such as an excessive number of consecutive tool failures or getting stuck in a repetitive
loop, which would typically lead to a failure rating.

A task is rated as a partial success if it meets at least two of the conditions (e.g., has over
Minimum Tool Execution tool coverage and generates an output). If the conditions for either
full or partial success are not met, the task is marked as a failure.

C BENCHMARK CONSTRUCTION

In this section, we introduce how the tasks are automatically constructed. Specifically, this includes
the generation of the task documentation, tool library and prompts.

C.1 TASK AND TOOL CONSTRUCTION

The generation framework employs a category-mediated architecture where tool categories serve as
the primary interface between tool capabilities and task requirements, ensuring that generated tasks
are both reasonable and logically correspond to the underlying tool ecosystem.

C.1.1 TOOL GENERATION METHODOLOGY

We first generate the tool library, which is independent of tasks, and generated via a LLM-free rule-
based process. This process highly relies on categories, where the basic layer of category consists

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

of a category-operation matrix consisting of 30 distinct tool types. Then, we introduce semantic
operations and semantics matching that re-categorizes these tools, in order to (1) introduce aliases
to flexibly create more tools and (2) facilitate and interface with task creation.

Layer 1: Category-Operation Matrix (Tool Definition Layer). The system defines 6 categories,
each with 6 specific operations, creating a 6× 5 matrix of 30 distinct tool types. The categories and
their operations are given as

• data processing: parser, transformer, validator, aggregator, filter

• file operations: reader, writer, scanner, compressor, converter

• network: fetcher, poster, monitor, validator, router

• computation: calculator, analyzer, optimizer, simulator, predictor

• integration: connector, authenticator, mapper, queue, scheduler

• utility: logger, cache, notifier, tracker, helper

Within the matrix, each category-operation pair (e.g., data processing parser, network fetcher) gen-
erates a unique tool with:

• Specific parameter templates

• Specific return value templates

• Specific error handling templates

• Category-specific behavior patterns

The category-operation matrix-based templates generate the following information of tools:

• Naming Convention. Tools follow a systematic {category} {operation} pattern,
ensuring consistent identification and categorization.

• Parameter Assignment. The system uses rule-based logic to assign appropriate parame-
ters based on operation semantics. For example, reading operations (e.g., reader, parser,
scanner) receive source parameters, and transformation (e.g., transformer, converter,
mapper) operations receive input format and output format specification param-
eters.

• Return Value Generation. Return values are systematically assigned based on operation
type. For example, operations for receiving data, e.g., reader, fetcher, scanner, returns
data values. Other than the operation-specific return values, all tools provide success
indicators and metadata.
Another part of return values is the error information, where we also create general errors
such as INVALID INPUT, and operation-specific errors such as OVERFLOW for computa-
tion operations.

Layer 2: Semantic Operation Types (Workflow/Dependency Layer). The system then regroups
the 30 operations into 5 semantic operation types based on their role in data processing workflows:

operation_types = {
'sources': ['reader', 'fetcher', 'scanner', 'authenticator'],
'processors': ['parser', 'transformer', 'validator',
'analyzer', 'calculator'],
'aggregators': ['aggregator', 'combiner', 'merger'], # Note:
some are aliased
'outputs': ['writer', 'poster', 'exporter', 'notifier'], #
Note: some are aliased
'utilities': ['logger', 'cache', 'tracker', 'monitor']

}

We have the following remarks:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1. Cross-category semantic grouping. Operations from different categories can belong to
the same semantic type. For example:

• sources includes: reader (file operations), fetcher (network), scanner (file operations),
authenticator (integration)

• processors includes: parser (data processing), transformer (data processing), valida-
tor (data processing/network), analyzer (computation), calculator (computation)

2. Some operations have aliases. The semantic layer introduces some operations not explic-
itly in the original 30:

• combiner and merger (aliases for aggregator)
• exporter (alias for writer or converter)

3. Workflow-based logic. This semantic grouping enables dependency rules like:
dependency_rules = {

'processors': {
'transformer': ['parser', 'reader'], # transformers
depend on parsers and readers
'validator': ['parser', 'transformer'],
'analyzer': ['parser', 'aggregator'],
'calculator': ['parser', 'validator']

},
... more rules

}

Based on the dependency rules, the prerequisites of each tool is configured, facilitating
construction of complicated workflows with dependencies.

How the Two Layers Work Together. We now summarize how the two layers of categorization
work together to generate tool information, and facilitate task construction. First, in the tool gener-
ation phase, we use Layer 1 (category + operation) to create specific tools. Each tool gets a unique
name and a category-specific parameter/return template. Next, we move to the dependency resolu-
tion phase, where we use Layer 2 (semantic operation types) to determine logical dependencies.

Lastly, the task construction phase, which will be introduced shortly, combines both layers to build
workflow-aware task templates. This phase uses semantic types to understand data flow patterns,
and uses specific category-operation tools as the actual implementation.

C.2 TASK GENERATION METHODOLOGY

This section describes a systematic approach for generating computational tasks based on a library
of available tools, ensuring that generated tasks are both reasonable and logically correspond to the
capabilities of the underlying tool ecosystem. The framework employs a multi-layered architecture
that combines predefined task templates, semantic tool matching, and large language model (LLM)
augmentation to create diverse, executable task instances.

Foundational Task Categories The system first defines five types of tasks, including basic file
processing, simple data transformation, complex validation pipeline, complex network integration,
and advanced computation pipeline.

Then, for each category of tasks, we define a standard operation sequence, given as

operation_sequences = {
'basic_file_processing': ['input', 'process'],
'simple_data_transformation': ['read', 'process', 'output'],
'complex_validation_pipeline': ['read', 'validate',
'transform', 'aggregate', 'write'],
'complex_network_integration': ['fetch', 'parse', 'validate',
'transform', 'post'],
'advanced_computation_pipeline': ['read', 'validate',
'transform', 'compute', 'aggregate', 'write'],

}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

The task generation process begins with a structured template system that defines the fundamental
characteristics of different task types. Each task template serves as a blueprint that specifies the
following core components:

• Task requirements: A TaskRequirement object that defines the minimum number of
tools needed, required tool operations (such as ”reader”, ”transformer”, ”writer”), and com-
plexity constraints. This ensures that generated tasks align with available tool capabilities
and maintain logical coherence.

• Template structure: Each template includes a task type identifier, descriptive require-
ments, and objectives that guide the generation process. The template acts as a constraint
mechanism, ensuring that only feasible task combinations are considered.

• Tool category analysis: The system performs automated analysis of the available tool
library to identify tool categories and their associated operations. This analysis informs
template creation, ensuring that templates are grounded in actual tool availability rather
than abstract specifications.

Semantic Tool Matching. To connect tasks to the pre-generated tool system, the framework in-
corporates semantic matching to select appropriate tools for task generation. For example, when
read exists in the operation sequence of a task, RAG semantic matching would lead to operations
such as reader, fetcher and scanner in the tool semantic operation types. This further leads
to retrieving specific tools, such as file operations reader. To create variations in one task
category, the specific tool matching with a task operation has multiple choices (e.g., read can corre-
spond to file operations reader or network fetcher). For each task, only one specific
tool is selected for each operation step. Other sources of variation come from the choice of different
templates.

Task Construction Example. We now provide a simple example of how a task might be con-
structed.

Step 1: Choice of tools

complex_validation_pipeline = ['read', 'validate', 'transform',
'aggregate', 'write']

semantics search result:
'read' -> choose 'file_operations_reader'
'validate' -> choose 'data_processing_validator'
'transform' -> choose 'data_processing_transformer'
'aggregate' -> choose 'data_processing_aggregator'
'write' -> choose 'file_operations_writer'

final required_tools = [a list of tools after dependency-based
sorting]

Step 2: Task construction

1. Task ID
instance_id = f"task_{uuid.uuid4().hex[:8]}"

2. Task description (template-based)
description = f"... #{i+1}"

3. Input and output (based on template and tools)
requirements = [

TaskRequirement("processing_config", "Configuration for
processing"),
...

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

]

objectives = [
TaskObjective(

"...",
[f"Execute {tool}" for tool in selected_tools],
"output"

)
]

4. Difficulty (based on task type and tools)
complexity = "easy" if len(tools) <= 2 else "medium"

LLM Enhancement. After the basic RAG tool-selection results of a task, we can also use LLM
APIs to create an instance of a task.

Specifically, we provide to the LLM related RAG semantic search result together with the following
prompt:

prompt = f"""
You are an expert workflow designer. Based on RAG search results,
design {task_desc}.

Available tools (sorted by relevance):
{json.dumps(tools_info, indent=2)}

Requirements:
- Task type: {task_type}
- Complexity: {complexity}
- Select 3-6 most appropriate tools based on:

1. RAG relevance scores
2. Logical workflow sequence
3. Tool categories and operations
4. Input/output compatibility between tools

Design a complete task instance with:
1. A clear description of what the task accomplishes
2. A logical sequence of tools that work together
3. Realistic input data that matches the first tool's parameters
4. Expected output that matches the final tool's returns
"""

The LLM enhancement provides a more natural and detailed task description, and ensures consis-
tency (e.g., among choices of tools and description) within the task setting.

C.3 WORKFLOW PROMPT GENERATION

Each task has several corresponding prompts that guide the tested LLM to complete the task. The
baseline prompts and CoT prompts can be directly transformed from the task profile in the gener-
ated task library. The MDP-optimal workflow prompt is generated through MDP training (details
provided in Section D), while the flawed workflow prompt is created by inserting deliberate flaws.

We present a comprehensive framework for systematically generating flawed workflows from opti-
mal sequences. Our approach introduces seven distinct categories of workflow defects with varying
severity levels, enhanced by semantic similarity detection through RAG techniques.

• Sequential Ordering Errors (Order Flaws). Sequential ordering errors occur when tools
are executed in incorrect or flawed sequences, violating logical dependencies or temporal
constraints.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

To inject this error into the workflow, we use the swap method, i.e., creating random per-
mutations of adjacent tool pairs. We also use the dependency violation method, which
repositions dependent tools before their prerequisites, to inject more logical flaws.

• Tool Misuse Errors Tool misuse represents the selection of inappropriate tools that appear
suitable but lack the required functionality for the specific context.
To inject this error, we use the semantic similarity method. leveraging RAG-based semantic
search to identify tools with similar descriptions but different functionalities. We also use
category mismatch method, which replaces tools with alternatives from entirely different
functional categories, simulating gross misunderstanding of tool capabilities.

• Parameter Configuration Errors. Parameter errors involve incorrect specification or
omission of required tool parameters.
To inject this error, we use the missing parameters method, which systematically removes
required parameters based on tool specifications. We also use the type mismatch method,
which introduces parameters with incorrect data types or value ranges. Parameter error
injection follows the formula Perror = α× Prequired + β × Poptional, where α and β are
severity-dependent coefficients.

• Missing Critical Steps. Workflow incompleteness through strategic removal of essential
tools or validation steps.
To inject this error, we use the middle step removal method, which eliminates intermediate
processing steps while preserving workflow endpoints. We also use the validation removal
method, which systematically removes quality assurance and verification tools.

• Redundant Operations. Introduction of unnecessary or duplicated operations that in-
crease computational overhead without adding value.
To inject this error, we use the duplication method, which repeats existing tools within the
sequence. We also use the unnecessary addition method, which inserts tools that provide
no functional benefit to the task.

• Logic Discontinuity. Breaks in logical flow where tool outputs become incompatible with
subsequent tool inputs.
To inject this error, we use the format mismatch method, which introduces incompatible
data format transitions between tools. We also use the unrelated insertion method, which
adds tools unrelated to the primary task objective.

• Semantic Drift (RAG-Enhanced). Advanced error patterns enabled by semantic under-
standing, representing gradual deviation from intended workflow semantics.
To inject this error, we use the semantic mismatch method, which replaces tools with se-
mantically similar but functionally inappropriate alternatives. We also use the semantic
drift method, which performs progressive replacement where each subsequent tool is se-
lected based on the previous replacement, creating cumulative semantic deviation. The
drift function is defined as Ti = argmaxt∈T (S(t, Ti−1)× (1−F (t, Toriginal))), where S
represents semantic similarity and F represents functional equivalence.

D MDP-BASED WORKFLOW GENERATION TRAINING MECHANISM

This section provides a comprehensive analysis of the Markov Decision Process (MDP) training
framework used for MDP-optimal workflow generation in our system.

D.1 MDP STATE SPACE FORMULATION

The MDP state space S is defined by a composite representation that captures both task semantics
and execution dynamics. Each state st ∈ S is represented as:

st = ⟨τ, ω;ψ, ϕ, ξ⟩

where τ and ω are task-invariant components that remain constant throughout execution, while ψ,
ϕ, and ξ capture the dynamic execution state.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Static Task Components (τ, ω): The task identification τ = {task id, task type, task objective}
and semantic feature vector ω ∈ R20 encode task requirements (input/output needs, domain type,
complexity level) as normalized features. These components are extracted once at initialization and
provide consistent task context for all subsequent decisions.

Tool Execution States Component (ψ)

ψ = {σi : i ∈ T } where σi ∈ Σ

The tool execution status set Σ contains:

Σ = {NOT ATTEMPTED,QUEUED,RUNNING,SUCCESS,

FAILED,TIMEOUT,DEPENDENCY FAILED}

where T represents the available tool set and each σi tracks the execution status of tool i.

Progress and Workflow Component (ϕ)

ϕ = {p, k,Machieved,Mexpected, eseq}

where:

• p ∈ [0, 1] denotes overall task progress
• k ∈ N represents the current workflow step
• Machieved ⊆ Mexpected are milestone sets
• eseq = [ι1, ι2, . . . , ιk] is the tool execution sequence

RAG-Enhanced Context Component (ξ) This component integrates retrieval-augmented gener-
ation capabilities:

ξ = {Rrag,Ecache,Csemantic,Hselection, Tcandidates}

where:

• Rrag: RAG search results mapping semantic operations to tool-score pairs
• Ecache: Pre-computed embedding similarity scores for all tools
• Csemantic: Semantic confidence scores per tool
• Hselection: Tool selection history with metadata
• Tcandidates: Capability-type to candidate-tools mapping for fallback selection

State Encoding for Neural Networks The composite state is encoded into a fixed-size vector
st ∈ Rd through concatenation and normalization:

st = Concat(encode(ψ), encode(ϕ), encode(ξ), ω)

where encode(·) transforms discrete components into continuous representations using one-hot
encoding, progress normalization, and embedding lookups.

This multi-faceted state representation enables the MDP to capture both structural workflow depen-
dencies and semantic task requirements, facilitating more informed action selection in complex tool
orchestration scenarios.

D.2 MDP ACTION SPACE DEFINITION

The action space A consists of structured actions that operate on tool orchestration and workflow
management. Each action a ∈ A is represented as a composite tuple:

a = ⟨α, ι, β, θ, c⟩

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

where the component α refers to an action (with respect to the tool), t is the specific choice of target
tool, and β is the consequent relevant information. Specifically, we introduce the components as
follows:

Action Type Component (α) The action type α belongs to a finite set of predefined operations:

α ∈ Atype = {INVOKE TOOL,VALIDATE OUTPUT,RETRY TOOL,

RECOVER ERROR,CHECK DEPENDENCIES,

CREATE CHECKPOINT,RESTORE CHECKPOINT,

NO OP,PARALLEL EXECUTE}

Tool Target Component (ι) The tool identifier ι ∈ T ∪{∅} specifies the target tool for execution,
where T represents the available tool set and ∅ indicates no specific tool target.

Semantic Enhancement Component (β) The RAG-enhanced component β = ⟨ssem,Ssrc, Talt⟩
contains:

• ssem ∈ [0, 1]: Semantic relevance score from embedding-based search
• Ssrc ∈ {rule, embedding, hybrid, pattern}: Information source type
• Talt ⊆ T : Alternative tool candidates

Parameters Component (θ) Action parameters θ contain execution-specific configuration as a
key-value mapping, enabling flexible parameterization for different action types.

Confidence Component (c) The confidence score c ∈ [0, 1] represents the system’s belief in the
action’s appropriateness for the current state, computed through multi-factor assessment.

D.2.1 ACTION FILTERING MECHANISM

Valid actions at state st are determined through a multi-stage filtering process F : S → 2A:

Avalid(st) = Fsemantic ◦ Fdependency ◦ Fconstraint(A)

where:

Constraint Filter (Fconstraint): Removes actions violating basic execution constraints:

Fconstraint(A) = {a ∈ A :status(a.ι) ̸= SUCCESS∧
retries(a.ι) < 3∧
parallel safe(a.ι) ∨ |running tools(st)| = 0}

Here a.ι represents the choice of tool ι of action a.

Dependency Filter (Fdependency): Ensures prerequisite tools are successfully executed:

Fdependency(A′) = {a ∈ A′ : ∀d ∈ deps(a.ι), ψd = SUCCESS}

Semantic Filter (Fsemantic): Applies multi-source confidence scoring:

Fsemantic(A′′) = {a ∈ A′′ : ccomposite(st, a) > τthreshold}

The composite confidence combines multiple information sources:

ccomposite(st, a) =
∑
i

wi · ci(st, a) (1)

with weights w = [wrule, wembed, wpattern, wtask] = [0.25, 0.30, 0.25, 0.20] and individual confidence
components:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

crule(st, a) = falignment(ω.ftask, ops(a.ι))
cembed(st, a) = ξ.Ecache[a.ι]

cpattern(st, a) = max
p∈P

pscore · 1[a.ι extends p]

ctask(st, a) = preference(τ.task type, a.ι)

D.2.2 FALLBACK ACTION GENERATION

When |Avalid(st)| ≤ 1 (only NO OP available), the system employs progressive fallback strategies:

Algorithm 1 Fallback Action Generation

1: if ξ.Tcandidates ̸= ∅ then
2: Add top-2 RAG candidates with c = 0.35
3: else if workflow step < 10 then
4: Add dependency-free tools with c = 0.30
5: else
6: Force recovery actions: α ∈ {RECOVER ERROR,RESTORE CHECKPOINT}
7: end if

D.2.3 ACTION SPACE CARDINALITY

The total action space size scales as:
|A| = |Atype| × (|T |+ 1) + |Ameta|

where |Ameta| = 4 represents tool-independent actions (NO OP, CREATE CHECKPOINT, etc.).
However, the effective action space at any state st is typically |Avalid(st)| ≪ |A| due to filtering
constraints.

This structured action representation enables the MDP to maintain semantic coherence while pro-
viding sufficient flexibility for complex workflow orchestration scenarios.

D.3 MULTI-PHASE ADAPTIVE REWARD FUNCTION

The reward function implements a sophisticated two-phase training strategy that adapts based on the
agent’s learning progress. This design addresses the fundamental challenge of learning both what
tools to use and when to use them.

D.3.1 PHASE-ADAPTIVE STRATEGY

The core insight is that tool selection learning requires different optimization objectives at different
stages:

R(st, at, st+1) =

{
Rcoverage(st, at, st+1) if ρsuccess < θadapt

Rsequence(st, at, st+1) otherwise

where ρsuccess represents the current success rate and θadapt = 0.3 is the adaptation threshold.

Phase I: Coverage-Focused Learning (ρsuccess < 0.3)

During initial learning, the agent must discover which tools are relevant for different task types. The
reward function prioritizes exploration and tool discovery:

Rcoverage = Rexploration +Rdiscovery +Rcompletion

Rexploration = αattempt · 1[tool attempted] + αnovel · 1[first attempt]
Rdiscovery = βrequired · 1[ι ∈ Trequired] · 1[success]
Rcompletion = γprogress ·∆p+ δmilestone · |Mt+1 −Mt|

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

with reward weights: αattempt = 3, αnovel = 30, βrequired = 50, γprogress = 100, δmilestone = 40.

The key insight is that any successful execution of required tools receives substantial rewards, re-
gardless of execution order.

Phase II: Sequence-Optimized Learning (ρsuccess ≥ 0.3)

Once basic tool usage is learned, the focus shifts to optimizing execution sequences and workflow
efficiency:

Rsequence = Rorder +Refficiency +Rcompletion

Rorder =


15 · |Tcorrect seq| if perfect sequence order
5 · |Tnear seq| if near-correct order
−5 ·

∑
ι |iactual(ι)− iexpected(ι)| otherwise

Refficiency = ηstep ·
max(0, ktarget − k)

ktarget
+ ηerror · 1[etotal = 0]

where iactual(ι) and iexpected(ι) represent actual and expected positions of tool ι in the execution
sequence.

D.3.2 UNIVERSAL REWARD COMPONENTS

Several reward components operate consistently across both phases:

Progress Incentives:
Rprogress = γbase ·∆p+ γearly ·∆p · 1[k < 10] + γlate ·∆p · 1[p > 0.8]

RAG-Enhanced Semantic Alignment:
Rsemantic = λrag · srag(ι) + λpattern · spattern(eseq, ι) + λtask · stask(τ, ι)

where srag(ι) is the RAG similarity score, spattern captures learned sequential patterns, and stask rep-
resents task-tool alignment.

Terminal Rewards:

Upon episode completion, substantial rewards are distributed based on both success and training
phase:

Rterminal =


150 + 50 · rcoverage if coverage phase and success
100 + 50 · rsequence if sequence phase and success
max(0, 50 · pfinal) if failure

where rcoverage =
|Texecuted∩Trequired|

|Trequired| and rsequence measures sequence correctness.

D.3.3 PENALTY STRUCTURE

The penalty system is designed to be adaptive and minimal during early learning:

Rpenalty = Rerror +Rrepetition +Rstagnation

Rerror =


0 if ρsuccess < 0.1

−2 ·∆etotal if 0.1 ≤ ρsuccess < 0.3

−5 ·∆etotal otherwise

Rrepetition = −κ · (count(ι, eseq)− 1) · 1[count(ι) ≥ 2]

Rstagnation = −10 · 1[at = at−1 = NO OP]

where κ = 1 during coverage phase and κ = 5 during sequence phase.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

D.3.4 KEY DESIGN PRINCIPLES

This reward architecture embodies several key principles:

• Progressive Complexity: Early learning focuses on tool discovery; later learning opti-
mizes execution patterns

• Semantic Guidance: RAG-enhanced rewards align tool selection with task semantics

• Adaptive Penalties: Error tolerance decreases as competence increases

• Terminal Differentiation: Final rewards depend on both success and current learning ob-
jectives

The phase transition at ρsuccess = 0.3 ensures that agents first master basic tool usage before attempt-
ing to optimize execution sequences, leading to more stable and efficient learning convergence.

D.4 MDP ENVIRONMENT DYNAMICS

This section details the core environment mechanics that govern state transitions, completion crite-
ria, and adaptive behavior in our MDP framework. Unlike conventional MDP environments with
static rules, our system implements dynamic thresholds and curriculum-adaptive mechanisms that
evolve during training.

D.4.1 ENVIRONMENT STEP EXECUTION

The environment step function orchestrates the complete MDP transition process through three se-
quential phases:

MDPStep(st, at) = ⟨st+1, rt, done⟩

where each component is computed through dedicated sub-procedures:

st+1 = StateTransition(st, at)
rt = AdaptiveReward(st, at, st+1)

done = CompletionCheck(st+1)

Phase I: State Transition (st+1 = StateTransition(st, at))

The state transition simulates tool execution through an adaptive reliability model that adjusts suc-
cess probability based on training progress:

ρsuccess(ι, st) = ρbase ·
∏

d∈deps(ι)

γdep · γrιretry · γsemantic

ρbase =


0.95 if ρepisode < 0.1

0.90 if 0.1 ≤ ρepisode < 0.3

0.85 otherwise

where ρepisode represents the current episode success rate, γdep = 0.8 penalizes unmet dependencies,
γretry = 0.95 reduces reliability with retry attempts rι, and γsemantic ∈ [1.0, 1.3] rewards semantic
task-tool alignment. We note that this differs from the tool result simulator probability settings B.3,
which enables a testing environment different from the training environment.

The transition updates multiple state components:

• Tool execution states: ψt+1
ι ∼ Bernoulli(ρsuccess(ι, st))

• Execution sequence: et+1
seq = etseq ∪ {ι} if successful

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• Error tracking: et+1
consecutive, et+1

total updated based on outcome

• Data flow state progression: ξt+1
flow advanced according to semantic operations

Phase II: Progress Computation (pt+1 within st+1)

Progress update adapts to task structure through dual calculation modes:

pt+1 =

{
|Texecuted∩Trequired|

|Trequired| + βsequence if Trequired ̸= ∅
0.3 · pmilestone + 0.4 · ptool + 0.3 · pstep otherwise

where βsequence = 0.1 provides sequence order rewards, pmilestone = |Machieved|
|Mexpected| , ptool =

min(1.0, |successful tools|
5), and pstep = min(1.0, k

20).

Progress is monotonically increasing: pt+1 = max(pt, pcomputed) to prevent regression.

Phase III: Reward Calculation (rt = AdaptiveReward(st, at, st+1))

The adaptive reward system operates through the two-phase strategy detailed in Section D.3, incor-
porating:

• Base exploration rewards for any non-NO OP action
• Tool execution rewards scaled by training phase
• Progress increment rewards: 100 · (pt+1 − pt)

• Required tool coverage bonuses (coverage phase) or sequence order bonuses (sequence
phase)

• Semantic alignment rewards from RAG-enhanced action selection

Phase IV: Completion Assessment (done = CompletionCheck(st+1))

Episode termination employs hierarchical completion criteria:

done = (pt+1 ≥ 1.0)∨
(Trequired ⊆ Texecuted)∨
(k > kmax)∨
(econsecutive > emax)∨
(|Avalid(st+1)| ≤ 1)

where kmax and emax are curriculum-adaptive thresholds. Success determination considers both
completion method and achieved progress:

success =


True if pt+1 ≥ 0.95 ∨ Trequired ⊆ Texecuted

pt+1 ≥ 0.5 if timeout or deadlock
False otherwise

This four-phase execution framework ensures consistent state evolution while maintaining
curriculum-appropriate difficulty and comprehensive performance assessment.

D.4.2 CURRICULUM-ADAPTIVE TRAINING

Additionally, the training process implements dynamic curriculum adjustment based on performance
metrics:

Curriculum Stage Transitions:

stagei+1 =


stagei + 1 if ρ(n)success > θadvance ∧ n ≥ nmin

max(0, stagei − 1) if ρ(n)success < θregress

stagei otherwise

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

where i indexes curriculum update events, and ρ(n)success represents the success rate over the last n
episodes. We have advancement threshold θadvance = 0.7, regression threshold θregress = 0.3, and
minimum episodes nmin = 50.

Each curriculum stage modifies completion criteria given in table 12.

Table 12: Curriculum-dependent completion thresholds.

Stage Min Progress Max Errors Required Coverage
0 0.1 50 0.2
1 0.3 30 0.4
2 0.5 20 0.7
3 0.7 15 0.9

4+ 0.7 10 1.0

D.5 POLICY OPTIMIZATION FRAMEWORK AND MDP TRAINING

The MDP training implements a sophisticated optimization framework that combines policy gradi-
ent methods with curriculum learning and RAG-enhanced decision making. The optimization pro-
cess operates through carefully orchestrated phases that build upon the adaptive reward structure.
The policy update process operates directly on the multi-source confidence composition framework
established earlier, optimizing the neural network that learns to weight and combine different infor-
mation sources for action selection.

Policy Architecture and Parameters:

The trainable policy πθ is implemented as a neural network that takes the encoded state representa-
tion st ∈ Rd and outputs action probabilities over the filtered valid action space Avalid(st).

Critically, the policy network learns to implicitly weight the confidence components defined earlier:

clearned(st, aι) = πθ(aι|st) ≈ fθ

∑
j

wj · cj(st, ι)


where cj ∈ {crule, cembed, cpattern, ctask} are the confidence components defined in Section D.2.1, and
fθ represents the learned non-linear transformation.

Objective Function Correspondence:

The optimization objective directly corresponds to maximizing the expected cumulative reward de-
fined in Section D.3.1:

J(θ) = Eτ∼πθ

[
T∑

t=0

Radaptive(st, at, st+1)

]

= Eτ∼πθ

[
T∑

t=0

(Rcoverage(st, at, st+1) · 1[ρsuccess < 0.3] +Rsequence(st, at, st+1) · 1[ρsuccess ≥ 0.3])

]

where Rcoverage and Rsequence are the phase-specific reward functions detailed in equations (8)-(12)
of Section 4.3.

D.5.1 EPISODE REWARD ADJUSTMENT

Post-episode reward adjustment propagates final performance back through the trajectory:

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

r′t = rt · µperformance + λposition · (1−
t

T
) + δrag + δpattern

µperformance =


1.5 if scorefinal ≥ 0.9

1.2 if scorefinal ≥ 0.7

1.0 if scorefinal ≥ 0.5

0.7 otherwise

where δrag rewards RAG-guided selections and δpattern rewards pattern completion.

Gradient Computation with Experience Replay:

The policy gradient incorporates the episode reward adjustment mechanism:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st) · r′t

]

r′t = rt · µperformance + λposition · (1−
t

T
) + δrag + δpattern

where:

• rt = Radaptive(st, at, st+1) is the immediate reward from Section D.3.1

• µperformance ∈ {0.7, 1.0, 1.2, 1.5} scales based on final episode score

• δrag provides additional reward when actions align with RAG-enhanced confidence
cembed(st, ι)

• δpattern rewards actions that complete successful sequential patterns from Psuccessful

Curriculum-Adaptive Learning Rate:

The learning rate adapts based on curriculum stage and phase transition status:

αpolicy = αbase · γstage
curriculum · βphase

βphase =


1.2 if recently transitioned to sequence phase
1.0 if stable in current phase
0.8 if performance declining

where αbase = 3× 10−4 and γcurriculum = 0.95.

Integration with State Encoding:

The policy update directly operates on the state encoding defined in Section 4.1:

st = Concat(encode(ψt), encode(ϕt), ω.ftask, encode(ξt))

Loss(θ) = −
T∑

t=0

log πθ(at|st) · r′t + βentropyH(πθ(·|st))

where H(·) is the entropy term encouraging exploration, with βentropy = 0.01 during coverage phase
and βentropy = 0.005 during sequence phase.

Convergence and Performance Monitoring:

Policy convergence is monitored through multiple metrics aligned with the curriculum progression:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

• Coverage Phase: Convergence measured by |Texecuted∩Trequired|
|Trequired| > 0.8 consistently

• Sequence Phase: Convergence measured by sequence correctness score > 0.7 and step
efficiency improvement

The parameter update incorporates gradient clipping (∥∇θJ(θ)∥2 ≤ 0.5) and momentum-based
optimization to ensure stable convergence across both training phases.

This policy update framework directly optimizes the multi-source confidence weighting to maximize
the phase-adaptive reward signals, enabling the system to learn both tool discovery and sequence
optimization through unified gradient-based learning.

D.5.2 EXPERIENCE COLLECTION AND REPLAY

The system maintains episode trajectories for pattern learning:

Depisode = {(st, at, rt, st+1)
T
t=0}

Dpatterns = ExtractPatterns(Depisode, scorefinal)

Psuccessful = Psuccessful ∪ Dpatterns

Pattern Extraction: Sequential tool patterns are learned from successful episodes:

patternk = sequence[i : i+ k] ∀i, k ∈ {2, 3}

score(patternk) =

∑
episodes scoreepisode · 1[patternk ∈ episode]∑

episodes 1[patternk ∈ episode]

D.5.3 GENERATING THE MDP-OPTIMAL WORKFLOW PROMPT

Once an MDP-optimal workflow has been determined by the trained policy, it exists as a structured
Python object containing a sequence of tools, dependency information, and rich metadata. To make
this workflow actionable by a downstream execution agent, it must be translated into a comprehen-
sive and unambiguous set of instructions. This is achieved through the generate mcp prompt
function, which constructs a detailed prompt formatted according to a Multi-Agent Communication
Protocol (MCP). The goal of this prompt is not merely to list the tools, but to provide a complete
operational context, including the strategic reasoning, expected outcomes, and contingency plans.
The generation process is composed of several automated steps that assemble distinct components
of the final prompt.

Core Structure The entire prompt is encapsulated within a root <mcp task> tag, creating a
structured, machine-readable format. This structure is populated by several key sections, each gen-
erated by a dedicated helper function that extracts and formats information from the final workflow
object.

Execution Plan Generation This is the central component of the prompt, outlining the se-
quence of actions the agent should take. The script employs an intelligent generation method,
generate smart execution plan, to create a detailed, step-by-step guide. For each tool

in the optimal sequence, this function populates the plan with a rich set of contextual details drawn
from the smart actions list in the workflow object:

• Semantic Rationale: If a tool was selected via semantic search (RAG), its relevance score
is included (e.g., Semantic match: 95%). This immediately informs the agent of the confi-
dence in that tool’s applicability.

• Generated Reasoning: A concise, natural language explanation for the tool’s selection
is provided. This is generated by the generate tool reasoning function, which
considers factors like the tool’s position in the sequence (e.g., Initial data loading step),
its semantic capabilities (e.g., Performs parse, transform operations), and whether it was a
mandatory requirement of the task.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

• Dependencies and Alternatives: The prompt explicitly lists the direct prerequisites for
each tool (e.g., Requires: file operations reader) and provides a list of alternative tools,
ranked by semantic similarity, that can be used if the primary tool fails.

• Expected Outcome and Confidence: For each step, a high-level expected outcome is
stated (e.g., Expected: data validated), and a composite confidence score, calculated by
calculate comprehensive confidence, is displayed to manage the agent’s ex-

pectations about potential failures.

Intelligence and Semantic Insights To provide the agent with meta-level awareness of the plan’s
quality, two sections are generated.

• The <workflow intelligence> section provides a top-level summary, including
the overall predicted success probability of the workflow, calculated by calculate -
success probability.

• The <semantic insights> section, generated by generate semantic -
insights, offers a quantitative summary of how Retrieval-Augmented Generation
(RAG) influenced the plan. It reports metrics such as the average semantic match score
across all tools and the proportion of tools that were selected based on semantic relevance
versus learned policy patterns.

Contingency and Execution Guidance The final sections of the prompt provide static but critical
instructions to ensure robust execution.

• The <failure handling> block provides a clear, universal protocol for error handling.
It instructs the agent to first attempt the primary tool, then cycle through the provided
alternatives upon failure, and finally report the issue if all options are exhausted.

• The <execution tracking> block sets the requirements for the agent’s response, in-
structing it to report its tool selection rationale, any deviations from the plan, and its confi-
dence in each step’s outcome. This ensures that the execution results can be used for future
learning and analysis.

Through this multi-faceted generation process, a simple sequence of tools derived from an MDP is
transformed into a rich, self-contained operational directive that guides not just the “what” but also
the “why”, “how”, and “what if” of task execution.

E DETAILED EXPERIMENTAL RESULTS

E.1 DETAILED MODEL PERFORMANCE ACROSS TASK TYPE

The following table presents model performance across different task types. Performance generally
decreases from basic file processing tasks to advanced computation pipelines, though patterns vary
across model architectures.

Table 13: Model performance across task types.

Task Type GPT-4o-mini GPT-5-mini Claude-Sonnet-4 Gemini-2.5-Flash DeepSeek-V3 DeepSeek-R1 Qwen2.5-32B Llama-3.3-70B
Advanced processing 55.2% 54.1% 51.4% 50.0% 48.3% 50.0% 52.4% 55.8%
API data retrieval 59.0% 54.6% 50.0% 57.1% 49.5% 47.5% 57.1% 64.3%
Batch processing 82.0% 58.7% 60.5% 64.6% 58.6% 50.0% 64.0% 59.8%
Content analysis 77.9% 76.3% 66.0% 70.9% 70.0% 66.1% 82.1% 81.7%
Multi-step processing 67.5% 62.1% 51.7% 59.5% 59.5% 47.3% 72.9% 65.3%

E.2 COMPLETE MODEL PERFORMANCE ON REAL-WORLD TEST SET

In this section, we present the complete model performance table, including results under the base-
line prompt and CoT prompt.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 14: Prompt type performance comparison: Success rates across different prompt types for
each model.

Model Baseline Chain-of-Thought Optimal Workflow Flawed Workflow
Full Partial Fail Full Partial Fail Full Partial Fail Full Partial Fail

GPT-4o-mini 38.9 38.9 22.2 41.7 41.7 16.7 42.1 38.6 19.3 34.3 34.3 31.4
Gemini-2.5-Flash 33.3 33.3 33.3 39.5 39.5 21.1 55.3 41.2 3.5 34.1 33.5 32.4
GPT-5-mini 38.9 38.9 22.2 41.7 41.7 16.7 47.6 45.2 7.1 36.6 36.3 27.0

Llama-3.3-70B 16.7 16.7 66.7 16.7 16.7 66.7 39.6 27.1 33.3 25.4 25.4 49.3
Qwen2.5-32B 41.7 41.7 16.7 43.9 40.4 15.8 55.3 44.7 0.0 42.3 38.8 18.9
DeepSeek-V3 32.1 30.9 37.0 37.8 35.3 26.9 40.2 39.3 20.5 36.0 35.4 28.6

Avg 33.6 33.4 33.0 36.9 35.9 27.3 46.7 39.4 13.9 34.8 34.0 31.3

E.3 SCALING ANALYSIS ON THE REAL WORLD TEST SET

In this section, we present scaling analysis results for the Qwen2.5 series on the real-world test set
under MDP-optimal workflow prompts. Table 15 reveals a dramatic emergence of workflow exe-
cution capabilities between the 3B and 7B parameter scales. The 3B model exhibits near-complete
failure (93.3% failure rate with only 5.0% full success), indicating insufficient capacity for multi-step
API coordination. A sharp capability transition occurs at 7B parameters, where the model achieves
37.7% full success with failure rate dropping to 28.1%. The 14B model maintains similar perfor-
mance (35.0% full success, 30.0% failure), while the 32B model demonstrates the strongest perfor-
mance with 55.3% full success and zero failures. This non-smooth scaling pattern—characterized by
sharp capability emergence between 3B and 7B, followed by steady improvement to 32B—provides
evidence for emergent workflow execution abilities in real-world API interaction settings, corrobo-
rating our simulation findings (Section 4.4).

Table 15: Qwen2.5 series scaling analysis with Optimal prompt.

Model Size Full Success Rate Partial Success Rate Failure Rate
Qwen2.5-3B 5.0% 1.7% 93.3%
Qwen2.5-7B 37.7% 34.2% 28.1%
Qwen2.5-14B 35.0% 35.0% 30.0%
Qwen2.5-32B 55.3% 44.7% 0.0%

E.4 REAL-WORLD API FAILURE DISTRIBUTION

We present a record of 974 total API calls across 23 different live APIs, achieving an overall success
rate of 51.3% (500 successful calls, 474 failures). This 48.7% natural failure rate demonstrates the
inherent uncertainty in real-world API interactions that our benchmark aims to capture. Unlike the
simulated tools in our main experiments, these APIs execute actual HTTP requests to live endpoints,
exposing agents to real-world system behaviors. The error modes and system behaviors directly
come from real-world API interactions. Table 16 shows the distribution of error types observed
during our experiments.

Table 16: Error Type Distribution in API Calls

Error Type Counts Percentage of Failures
TIMEOUT 337 71.10%
OPERATION FAILED 41 8.65%
INVALID INPUT 27 5.70%
INVALID RESPONSE 21 4.43%
NETWORK ERROR 21 4.43%
RATE LIMIT ERROR 1 0.21%

We now present an explanation of all the error types presented in the table. The predominant error
type, TIMEOUT, reflects our implementation of a 30-second timeout threshold for API responses.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

This design choice aligns with common industry practices for production systems, where timeout
mechanisms are essential safeguards against indefinite waiting and resource exhaustion. Impor-
tantly, the occurrence of timeout errors depends entirely on real-world network conditions, server
load, and backend processing times, making these failures authentic reflections of the unpredictable
nature of distributed systems rather than artificial constraints. OPERATION FAILED errors result
from Python exceptions during response processing, such as JSON parsing failures or encoding er-
rors. INVALID INPUT are mapped from HTTP 400 status codes returned by APIs when request
parameters are missing or malformed. INVALID RESPONSE errors occur when APIs return un-
parseable content, such as empty response bodies or data that doesn’t match expected schemas.
NETWORK ERROR are triggered by issues including DNS resolution failures and connection re-
fusals. RATE LIMIT ERROR directly map to HTTP 429 responses when API rate limits are ex-
ceeded.

F LIMITATIONS

Our simulation uses a simplified probabilistic failure model (base success rate 0.8 with penalty
adjustments) that does not capture real-world complexities such as input-dependent errors, time-
varying reliability, or realistic recovery mechanisms like exponential backoff. These simplifications
balance reproducibility, scalability, and our focus on instruction quality variation. While the real-
world task set (Section 3.4) shows simulation rankings correlate with real-world performance, future
work could incorporate input-conditioned failure probabilities, explicit rate limiting, and correlated
failure patterns.

G THE USE OF LARGE LANGUAGE MODELS

In adherence to the ICLR 2026 policy on the use of Large Language Models (LLMs), we disclose
that an LLM was utilized as a specific component within our benchmark construction methodology.

Role in Code Development. The implementation of our experimental framework, including the
automated task generation pipeline and the simulation environment, was expedited with the assis-
tance of LLM-based coding tools. Specifically, we utilized Anthropic’s Claude for generating code
snippets, debugging complex logic, and refactoring. These tools acted as programming assistants,
and all final code was reviewed, validated, and integrated by the human authors.

Role in Manuscript Preparation. Our writing process for the appendices involved a collaborative
human-LLM workflow. The initial drafts of all appendix sections were written by the human authors
to ensure the factual and technical accuracy of the content. These drafts were then processed by an
LLM for the purpose of polishing the language, improving formal structure, and enhancing clarity.
Following the LLM’s revisions, the authors conducted a final, thorough review to make critical edits,
verify all statements, and ensure the text precisely reflected our methodology and findings.

The core research ideation, experimental design, analysis of results, and the primary drafting of the
main manuscript were conducted by the human authors. We take full and final responsibility for all
content presented in this paper, including any code and text produced with the assistance of LLMs.

42

	Introduction
	Benchmark Setup
	Benchmark Data Organization
	Task Execution and Evaluation
	Benchmark Statistics

	Benchmark Construction
	Tool Library Generation
	Task Generation Methodology
	Workflow Prompt Generation
	Real-World API Integration

	Experiments
	Experimental Setup
	Overall Performance Results
	Sensitivity Analysis
	Scaling Analysis
	Results on real-world task set

	Related Work
	Conclusion
	Execution Examples
	Successful Execution Example
	Challenging Execution Example

	Basic Task Function Components
	Tasks and tools
	Parameters and statistics of tasks
	Example of a task
	Parameters and statistics of tools
	Example of a tool

	Prompts
	An example of baseline prompt
	CoT reasoning instructions
	An example of MDP-optimal workflow prompt
	Flawed workflow prompt

	Tool Result Simulator
	Task Result Evaluation
	Levels of Task Success
	Evaluation Criteria

	Benchmark Construction
	Task and Tool construction
	Tool Generation Methodology

	Task Generation Methodology
	Workflow Prompt Generation

	MDP-based Workflow Generation Training Mechanism
	MDP State Space Formulation
	MDP Action Space Definition
	Action Filtering Mechanism
	Fallback Action Generation
	Action Space Cardinality

	Multi-Phase Adaptive Reward Function
	Phase-Adaptive Strategy
	Universal Reward Components
	Penalty Structure
	Key Design Principles

	MDP Environment Dynamics
	Environment Step Execution
	Curriculum-Adaptive Training

	Policy Optimization Framework and MDP Training
	Episode Reward Adjustment
	Experience Collection and Replay
	Generating the MDP-optimal workflow Prompt

	Detailed Experimental Results
	Detailed Model Performance across Task Type
	Complete model performance on real-world test set
	Scaling Analysis on the real world test set
	Real-world API failure distribution

	Limitations
	The Use of Large Language Models

