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Abstract

Test-Time Training (TTT) has emerged as a
promising solution to address distribution shifts
in 3D point cloud classification. However, exist-
ing methods often rely on computationally expen-
sive backpropagation during adaptation, limiting
their applicability in real-world, time-sensitive
scenarios. In this paper, we introduce SMART-
PC, a skeleton-based framework that enhances
resilience to corruptions by leveraging the ge-
ometric structure of 3D point clouds. During
pre-training, our method predicts skeletal rep-
resentations, enabling the model to extract ro-
bust and meaningful geometric features that are
less sensitive to corruptions, thereby improving
adaptability to test-time distribution shifts. Un-
like prior approaches, SMART-PC achieves real-
time adaptation by eliminating backpropagation
and updating only BatchNorm statistics, result-
ing in a lightweight and efficient framework ca-
pable of achieving high frame-per-second rates
while maintaining superior classification perfor-
mance. Extensive experiments on benchmark
datasets, including ModelNet40-C, ShapeNet-C,
and ScanObjectNN-C, demonstrate that SMART-
PC achieves state-of-the-art results, outperform-
ing existing methods such as MATE in terms
of both accuracy and computational efficiency.
The implementation is available at: https://
github.com/Al1iBahri94/SMART-PC.

1. Introduction

Recent advancements in deep learning have significantly
improved the classification of 3D point clouds (Pang et al.,
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Figure 1. The blue points represent the sampled points on the sur-
face of spheres created using the skeletal points as centers and their
corresponding radii. Each sphere illustrates the local geometric
structure defined by the skeletal representation.
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2022; Zhang et al., 2022b; Bahri et al., 2025; Liang et al.,
2024; Bahri et al., 2024a). However, these models often
assume that the test data distribution matches the training
distribution, an assumption that rarely holds in real-world
scenarios. Distribution shifts, caused by factors such as envi-
ronmental conditions or sensor inaccuracies in LiDAR data,
can introduce distortions that degrade model performance
(Ren et al., 2022; Sun et al., 2022). This vulnerability is
particularly challenging in critical domains like autonomous
navigation and robotics. As pre-training for all potential
scenarios is impractical, robust methods for unsupervised
test-time adaptation are essential to address these shifts ef-
fectively.

In Test-Time Training (TTT) for classification, an additional
technique is employed during pre-training with the source
dataset, which can be leveraged during the adaptation phase.
During adaptation, the network utilizes unlabeled target data
to dynamically adjust to shifts in data distributions at test
time. Recent TTT approaches in the 2D image domain have
explored various strategies, such as entropy-based regular-
ization, updating BatchNorm statistics, and self-supervised
tasks (Liang et al., 2020; Wang et al., 2020; Mirza et al.,
2022; Sun et al., 2020). However, these methods strug-
gle when directly applied to 3D point clouds, highlighting
the need for TTT techniques specifically designed for 3D
data. In the 3D domain, a notable work is the MATE frame-
work (Mirza et al., 2023), which addresses the problem of
TTT for 3D point cloud classification. MATE introduces
a 3D-specific approach that leverages the self-supervised
paradigm, where a network is adapted to out-of-distribution
(OOD) target data by solving a self-supervised task. MATE
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utilizes a masked autoencoder (MAE), where the network
reconstructs a point cloud from its partially removed data.
This reconstruction process enables adaptation, enhancing
robustness to distribution shifts during test-time.

While MATE represents a significant advancement in TTT
for 3D point clouds, it has critical limitations. MATE fo-
cuses on reconstructing points on the surface of objects,
making it highly sensitive to surface-level corruptions, such
as noise, which frequently occur in real-world scenarios.
This focus on surface points makes the features learned by
MATE highly sensitive to corruptions, resulting in reduced
resilience to distribution shifts. Additionally, MATE heavily
depends on updating all network parameters during adap-
tation. This approach reduces the model’s speed, making
it less practical for real-time applications due to its lower
Frames/Second.

In contrast, our method overcomes these limitations by intro-
ducing a skeleton-based framework for TTT. By capturing
the essential geometric structure of 3D point clouds, skele-
tons enable the model to learn powerful and meaningful fea-
tures that are inherently less sensitive to corruptions. This is
achieved through the abstraction property of skeletal repre-
sentations (Lin et al., 2021), which simplifies the shape into
a compact form, filtering out high-frequency noise and local
distortions. As a result, the model focuses on the underly-
ing geometric structure rather than surface-level variations,
enhancing robustness to distribution shifts. By leveraging
these robust features, our approach eliminates the need for
backpropagation during adaptation, significantly improving
speed. Instead, following prior studies (Nado et al., 2020; Li
etal., 2018), we update only the BatchNorm statistics, which
effectively adapts the model to distribution shifts without
modifying its learned weights. This efficiency demonstrates
that skeleton-based pre-training inherently equips the model
with features that are more resilient to corruption compared
to MATE, providing a lightweight and effective solution for
TTT. As shown in Figure 1, the skeletal representation cap-
tures the geometric structure of point clouds by abstracting
them into compact and meaningful features. Our method not
only overcomes the limitations of MATE but also introduces
a paradigm shift in TTT by emphasizing the importance
of meaningful feature extraction during pre-training, ensur-
ing robustness and adaptability with minimal computational
effort. Our main contributions are:

* We propose SMART-PC, a skeleton-based framework
for TTT that enhances robustness by extracting geo-
metric features that are less sensitive to distribution
shifts.

* Our method achieves test-time adaptation without back-
propagation, relying solely on updating BatchNorm
statistics, making it highly efficient for real-time appli-
cations.

* We achieve state-of-the-art results on benchmark
datasets, demonstrating the effectiveness of our ap-
proach compared to existing methods, including
MATE.

2. Related Works

Test-Time Training. TTT enhances model adaptability
by leveraging unseen target data during inference, unlike
domain generalization or adaptation methods, which oper-
ate solely during training. TTT methods can be broadly
categorized into regularization-based and self-supervised
approaches. Regularization-based methods include TENT
(Wang et al., 2020), which minimizes prediction entropy by
adapting BatchNorm parameters, and SHOT (Liang et al.,
2020), which combines entropy minimization with diversity
regularization to develop robust feature extraction. MEMO
(Zhang et al., 2022a) applies data augmentations to test in-
puts and minimizes the entropy of averaged outputs, im-
proving robustness. DUA (Mirza et al., 2022) updates
BatchNorm statistics to address distribution shifts with min-
imal overhead, while T3A (Iwasawa & Matsuo, 2021) re-
fines the linear classifier using pseudo-prototypes, achieving
backpropagation-free adaptation. These methods highlight
the diversity of TTT strategies for addressing distribution
shifts.

Among self-supervised approaches, TTT++ (Liu et al.,
2021) introduces an additional self-supervised branch that
leverages contrastive learning within the source model to
facilitate adaptation to the target domain. Another method,
TTT-MAE (Gandelsman et al., 2022), employs a Masked
Autoencoder (MAE) to address the one-sample learning
problem effectively, demonstrating improved performance
across various visual benchmarks. A recent method, MATE
(Mirza et al., 2023), is the first TTT framework specifically
tailored for 3D point cloud data, enhancing the resilience of
deep networks to distribution shifts during testing. It lever-
ages a MAE objective, masking a significant portion of each
target point cloud and tasking the network with reconstruct-
ing the complete structure before classification. In addition
to these approaches, several works on test-time adaptation
have explored updating model parameters during inference
to handle distribution shifts effectively (Wang et al., 2024;
Bahri et al., 2024b).

Skeletal Representation. Skeletal representations are a
compact and structural abstraction of 3D point clouds, cap-
turing the underlying geometric and topological properties
of objects. These representations simplify complex point
cloud data by reducing it to a set of key skeletal points
that capture the core of the geometry (Figure 1), which are
particularly useful for tasks such as shape analysis, object
recognition, and reconstruction. Several methods have been
proposed to generate skeletal representations from 3D data.
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Early approaches often relied on medial axis transformations
(MAT) (Choi et al., 1997) or Voronoi-based (Ogniewicz &
Ilg, 1992) methods to extract the central skeleton of an ob-
ject. While effective in capturing global geometry, these
methods are typically computationally intensive and sensi-
tive to noise (Li et al., 2015; Sun et al., 2015; Yan et al.,
2018). More recent learning-based approaches, such as
Point2Skeleton (Lin et al., 2021) and Learnable Skeleton-
Aware 3D Point Cloud Sampling (Wen et al., 2023), have
shifted towards using neural networks to predict skeletal
points directly from input point clouds. These methods lever-
age local geometric features and end-to-end optimization
to produce accurate and robust skeletal representations. By
capturing the core geometric structure of 3D point clouds,
skeletal representations provide a compact and meaning-
ful abstraction that is less sensitive to noise and distortions
compared to raw point cloud data. This robustness makes
them particularly suitable for dynamic adaptation scenarios,
where models need to generalize effectively to unseen con-
ditions. In this paper, we leverage skeletal representations
with technical enhancements that enable the network to learn
robust geometric features, thereby eliminating the need for
extensive parameter updates during Test-Time Adaptation
(TTA). Instead, our method relies solely on lightweight ad-
justments, such as updating BatchNorm statistics. This ap-
proach ensures both efficient and effective TTT while fully
utilizing the inherent strengths of skeletal representations.

3. Method

3.1. Preliminaries

A point cloud is represented as P € RV*3, where N is the
total number of points, and each point is defined by its 3D
spatial coordinates (i, y, z). This representation captures
the geometric structure of 3D objects, but due to the irreg-
ular and unordered nature of point clouds, processing all
N points can be computationally expensive and redundant.
To reduce redundancy and focus on the most representative
points, we apply Farthest Point Sampling (FPS). This tech-
nique selects a subset of M points from the original point
cloud as centers, denoted as:

C = FPS(P) € RM*3, (1)

where M < N. The FPS algorithm ensures that the se-
lected centers are evenly distributed across the point cloud,
preserving the overall geometric structure. For each center
point ¢; € C, we construct its local neighborhood by select-
ing its K nearest neighbors from the original point cloud
P using the K-Nearest Neighbors (KNN) algorithm. This
results in a neighborhood tensor:

Plocal = kNN(C’ P) c R]WXKXB’ (2)

where K is the number of neighbors for each center point.
Each neighborhood Py, [i] € RE*3, corresponding to a

center c;, captures the local geometric features around c;.
These neighborhoods provide localized context, allowing
the network to efficiently process the point cloud by fo-
cusing on both global structure (via the centers) and local
geometric details (via the neighbors). This hierarchical tok-
enization forms the basis for subsequent feature extraction
and skeletal prediction.

With the point cloud tokenized into centers and their local
neighborhoods, the next step is to define the skeletal repre-
sentation. The skeleton of a 3D shape provides a compact
representation of its intrinsic geometric structure. It ab-
stracts the shape by representing it as a collection of skeletal
points and their corresponding radii, which together form a
skeletal mesh. This concept was introduced by (Lin et al.,
2021) for learning-based approaches. A skeletal mesh is
defined as a discrete set of skeletal spheres. Each sphere is
represented as:

5= (cs,r(cs)) e R?, 3

where ¢, € R3 is the center of the skeletal sphere, referred to
as the skeletal point, and r(cs) € R is its associated radius,
representing the distance from the center ¢, to the surface
of the original 3D shape. The skeletal mesh is constructed
by connecting the skeletal spheres using two main elements.
First, edges, denoted as e;; = (e, ¢;), connect two skeletal
points ¢; and ¢;, forming the basic linear structure of the
skeleton. Second, faces, denoted as fijr = (cs,, s, Csy )
are triangular connections between three skeletal points that
capture 2D non-manifold surfaces within the mesh.

The skeletal representation possesses two key properties.
The first is recoverability, where the skeletal mesh acts as
a complete descriptor of the shape. This means the original
3D shape can be reconstructed by interpolating the skeletal
spheres. For a skeletal sphere s = (cs,r(cs)), any point p
on its surface can be expressed as:

p=cs + T(Cs) U, @

where v is a unit vector specifying the direction. The second
property is abstraction, by which the skeleton simplifies
the representation of the shape by capturing its fundamen-
tal structure, significantly reducing the complexity of the
original point cloud while retaining its essential geometric
information. This discrete skeletal representation approxi-
mates the Medial Axis Transform (MAT), which is a con-
tinuous formulation of the skeleton. Unlike the MAT, the
skeletal mesh is more robust to boundary noise and pertur-
bations, making it suitable for learning-based approaches.
By predicting skeletal points and their radii, the skeletal
representation provides a robust and efficient way to ana-
lyze and process 3D shapes, even under noisy or corrupted
conditions.
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Figure 2. An overview of the SMART-PC framework. The framework integrates skeletal prediction and classification tasks, leveraging
skeletal representations to extract robust geometric features. During online adaptation, two strategies are employed: adaptation with the
skeletal loss Lsxe; and backpropagation, and a lightweight, backpropagation-free approach that updates only BatchNorm statistics.

3.2. Overview

In this paper, we propose a novel skeleton-based framework
for Test-Time Training (TTT) designed to improve the ro-
bustness and adaptability of 3D point cloud classification
under distribution shifts. Our method consists of three com-
ponents: Framework, Training, and Test-Time Adaptation
(TTA).

In the Framework component, we define the structure of the
model, which includes components for both classification
and skeletal point prediction. This involves investigating the
architectural details and ensuring the network is capable of
handling both tasks effectively. During the Training phase,
the model is trained on source data to perform two tasks:
skeletal prediction and classification. The skeletal-based
pre-training enables the model to learn robust and meaning-
ful geometric features that enhance resistance to corruptions
and generalize effectively across varying distributions. In
the TTA phase, our method eliminates the need for back-
propagation when the adaptation strategy is online, meaning
the model is not reset after each epoch. Instead, it relies
solely on lightweight updates to the BatchNorm statistics,
enabling the model to adapt dynamically to target data while
achieving a higher frame rate for real-time applications. The
overall network architecture is illustrated in Figure 2.

3.3. Framework

Our framework is designed to perform two primary tasks:
skeletal point and radius prediction, and point cloud classifi-
cation. These tasks share a unified encoder while leveraging
separate network components for their specific objectives.

The framework is divided into two key branches: the skele-
tal branch for predicting skeletal representations and the
classification branch for predicting class labels.

Skeletal Branch. The skeletal branch predicts skeletal
points S € RM*3 and their corresponding radii R € R *!
from the input point cloud. The encoder, denoted as E,
processes the tokenized point cloud Py.q € RM*EX3 to
extract global and local geometric features:

Fenc = E(]Dlocal) € RMXd, (5)

where d is the dimensionality of the feature space. The
encoder captures both local geometric details and global
structural information.

The decoder, denoted as D, refines the encoded features to
produce a contextually enriched representation:

Fiec = D(Fenc) € R ©6)
To predict skeletal points and radii, two separate Multi-
Layer Perceptrons (M L P, and M LP,) are applied to the
refined features Fj... The skeletal points are predicted as:

¢s = MLP(Fuec) € R, )
and the radii are predicted as:
r = MLP,(Fg.) € RM*1, 8)

The skeletal branch leverages these predictions to model
the underlying geometric structure of the input point cloud.
Unlike existing skeletal prediction methods (Lin et al., 2021;
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Wen et al., 2023), which rely on convex combinations of in-
put points to generate skeletal points, our approach directly
predicts the skeletal points and radii from the refined fea-
tures Fy... Convex combination methods inherently inject
raw point cloud data into the prediction process, making the
task easier for the network. However, this dependency on
the raw point cloud can hinder the encoder’s ability to learn
robust and meaningful geometric features, especially in the
presence of noise or distribution shifts.

Classification Branch. The classification branch uses the
shared encoder to extract features for class prediction. To
enhance the classification performance, the features from
the encoder F.,. and decoder Fy.. are combined by a sum:

Fcombmed = Fenc + Fdec- (9)

This combination allows the classification head to leverage
high-level features from the decoder that are closely related
to the skeletal points, alongside the global context from
the encoder. By incorporating these skeletal-related fea-
tures, the model enhances its ability to classify point clouds,
particularly by utilizing structural information that aids in
distinguishing complex or similar classes. The combined
features are passed through the classification head, which
consists of multiple MLP layers, normalization, and dropout
layers, to predict class probabilities:

p = Softmaz(MLP.s(Feompinea)) € RY, (10)

where K is the number of classes.

3.4. Training

In our framework, the skeletal branch is trained in a self-
supervised manner since no labels are available for skeletal
points, while the classification branch is trained in a super-
vised manner using labeled source data. To optimize these
branches, we adopt loss functions inspired by prior works
in skeletal representation (Lin et al., 2021; Wen et al., 2023).
Below, we detail the loss functions used for training the
skeletal and classification branches.

Skeletal Losses. The skeletal branch optimizes three com-
plementary loss functions to ensure accurate prediction of
skeletal points and their corresponding radii. Unlike existing
skeletal methods that operate at the point level, our approach
predicts skeletal points and radii at the patch level. For each
patch, the model predicts the center of a skeletal sphere and
its radius, which together abstract the local structure of the
point cloud.

1) Point-to-Sphere Loss. This loss ensures that input points
lie on the surface of their corresponding skeletal spheres
and that skeletal spheres align closely with their associated

input points P:

Lo =Y (wminllp— el —rtc.))
peP

+y <géig lles = pll2 — T(Cs)> ; (11

seS

where ¢, and r(cs) again denote the center and radius of
skeletal sphere s.

2) Sampling Loss. To further ensure alignment between
the skeletal spheres and the input point cloud, the Chamfer
Distance between sampled points on the surface of skeletal
spheres and the input points is calculated:

Esampling = Z ItanI} ”p - tHQ + ZmHP} Ht 7p||2; (12)
pep 'S ter 7€

where 7' represents points sampled uniformly on the sur-
faces of the skeletal spheres. This loss aggregates geometric
information from the neighborhood of input points, effec-
tively reducing high-frequency noise. As each skeletal point
represents the local center of a region in P, the influence of
individual noisy points is averaged, resulting in s being less
sensitive to corruption.

3) Radius Regularization Loss. To avoid the instability
caused by overly small radii due to noise, a regularization
term that encourages larger radii is also used:

Lradius = — Y, 7(Cs)- (13)

sesS

Furthermore, the radii r, predicted alongside c,, capture
the extent of each skeletal point’s influence. This loss en-
courages larger radii, reducing sensitivity to localized noise
by ensuring that each skeletal sphere represents a broader
region of the point cloud. This abstraction minimizes the
effect of outliers, further enhancing robustness.

The total skeletal loss is a weighted combination of these
three terms:

ﬁsk’el = Est + )\1£5(mnpling + >\2£m,diuS7 (14)

where A\; > 0 and A2 > 0 are hyperparameters balancing
the contributions of each loss.

Classification Loss. For the classification branch, we train
the network using labeled source data. The features from
the encoder and decoder are combined as described earlier
and passed to the classification head. The classification
loss is defined as the cross-entropy between the predicted
probabilities and the ground truth labels:

1 B K
['cls = _E Z
=1k

Yir log(Yir), (15)
=1
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where B is the batch size, K is the number of classes, ¥;x
is the ground truth label for the i-th sample in class k, and
Uik 1s the predicted probability for the same class.

The overall loss for training the network is a combination
of the skeletal and classification losses:

Etotal = Eskel + »Ccls~ (16)

This joint optimization allows the model to learn robust
skeletal representations in a self-supervised manner while
simultaneously leveraging labeled source data for classifica-
tion.

3.5. Test-Time Adaptation (TTA)

In this work, we explore two modes of test-time adaptation,
inspired by prior works such as MATE (Mirza et al., 2023):
online adaptation and standard adaptation. Both modes
aim to adapt the model to corrupted target data during test
time but differ in how the model state is managed across
epochs and corruptions.

Online Adaptation. In the online mode, the model is not re-
set after each epoch, allowing the accumulated information
from previous batches to influence the adaptation process.
However, the model is reset at the beginning of adaptation
for each new corruption type. Initially, we perform test-time
adaptation in a backpropagation-free manner, updating only
the statistical parameters of the Batch Normalization (Batch-
Norm) layers (i.e., the running mean and running variance).
This approach leverages the observation that the features
extracted by the model during pre-training on source data
are highly robust and less sensitive to corruption. By updat-
ing only the BatchNorm statistics, the model dynamically
adjusts to the target data, achieving higher frame rates for
real-time applications while maintaining high performance.

To further analyze the effectiveness of the extracted features,
we conducted an additional experiment where all model pa-
rameters, along with the BatchNorm statistical parameters,
were updated during test-time adaptation. Specifically, we
optimized the skeletal loss functions Lyas, Lsampiing. and
L radius (as described in Section 3.4) to adapt the skeletal
representation to the target distribution.

Standard Adaptation. In the standard mode, the model is
reset after every batch, meaning each test batch adapts inde-
pendently without accumulating information from previous
batches. In this case, updating only the BatchNorm statistics
has limited effectiveness since the adaptation does not retain
context across batches. Consequently, for standard adapta-
tion, we update all the parameters of the model using the
skeletal loss functions Lpas, Lsampling> and Lyqdius. This
allows the model to adjust more comprehensively to each
batch of corrupted data.

4. Experiments

FPS vs Accuracy for SMART-PC and MATE
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Figure 3. Frames/Second vs. Accuracy for SMART-PC and MATE
during online adaptation on the ScanObjectNN dataset. SMART-
PC achieves higher frame rates and accuracy, surpassing the real-
time threshold (30 Frames/Second) in the (N-24) setting.

In this section, we present a comprehensive evaluation of our
proposed method using multiple 3D point cloud datasets.
To thoroughly examine its robustness and generalization
capabilities, we conduct experiments on three benchmark
datasets: ModelNet40-C (Sun et al., 2022), ShapeNet-C
(Chang et al., 2015), and ScanObjectNN-C (Uy et al., 2019).
These datasets encompass a variety of real-world challenges,
including different levels of corruption and noise, enabling
us to showcase the effectiveness of our approach in diverse
and complex scenarios. Furthermore, we evaluate the per-
formance of our method in both online and standard modes.
For the online mode, we compare the backpropagation-free
strategy with backpropagation-based adaptation to highlight
the efficiency and robustness of our approach. A detailed
description of the dataset, additional experiments, expanded
visualization results related to skeletons, and a comprehen-
sive evaluation of our method across all datasets, including
accuracy metrics for each corruption type, are provided in
the Supplementary Materials.

4.1. Implementation Details

For both training and adaptation, we employed the Point-
MAE backbone, following the settings outlined in the
MATE paper (Mirza et al., 2023) to ensure a fair and con-
sistent comparison. The batch size is set to 1 for both adap-
tation modes, with 1 iteration for the online mode and 20
iterations for the standard mode, identical to the MATE
paper for fair comparison once again. The optimizer and
learning rate are identical to those used in the MATE paper.
For augmentation, scale-transfer is used during pre-training,
similar to MATE. During adaptation, however, MATE em-



Skeletal Model Adaptation for Robust Test-Time Training in Point Clouds

Table 1. Top-1 Classification Accuracy (%) for the ModelNet-40C, ScanObjectNN-C and ShapeNet-C datasets. Differences between
SMART-PC variants and MATE counterparts are indicated as (+x%). ~ denotes reproduced results, © denotes adaptation without
backpropagation, and * denotes diffusion-based test-time adaptation methods.

ModelNet-40C ~ ScanObjectNN-C  ShapeNet-C
Org-SO* 54.0 37.0 61.3
MATE-SO* 54.4 34.5 56.5
SMART-PC-SO 61.7 +7.3%) 38.7 (+4.2%) 64.5 +8.0%)
DUA (Mirza et al., 2022) 54.7 38.7 60.8
TTT-Rot (Sun et al., 2020) 53.0 - 60.9
SHOT (Liang et al., 2020) 26.6 29.6 36.2
T3A (Iwasawa & Matsuo, 2021) 55.7 - 54.4
TENT (Wang et al., 2020) 26.5 27.7 374
CloudFixer-Standard* (Shim et al., 2024) 68.0 - -
CloudFixer-Online* (Shim et al., 2024) 77.2 - -
DDA-Standard® (Gao et al., 2023) 68.1 - -
SVWA-Standard* (Babhri et al., 2024b) 57.1 37.4 50.5
MATE-Standard* (Mirza et al., 2023) 63.0 36.9 63.1
SMART-PC-Standard 63.1 +0.1%) 39.6 (+27%) 64.4 (+1.3%)
BFTT3D* (Wang et al., 2024) 57.2 33.0 60.7
MATE-Online* (Mirza et al., 2023) 70.6 36.9 69.1
SMART-PC-Onlinef 70.8 46.7 65.9
SMART-PC-Online 72.9 (+2.3%) 47.4 (+105%) 67.1 (2.0%)

ploys random masking, whereas we use random rotation in
all experiments. All experiments were conducted using a
single NVIDIA A6000 GPU, ensuring consistency across all
tested configurations. Additionally, we evaluate the frames
per second rate of our method and compare it with MATE.

Real-Time Adaptation. Figure 3 illustrates the adapta-
tion performance of SMART-PC and MATE in terms of
Frames/Second on the ScanObjectNN-C dataset. The adap-
tation strategy employed is online, with a batch size of 1
and a single iteration per adaptation step. The terms “N-
48” and “N-24” represent the number of created batches,
which are generated differently for the two methods: MATE
uses random masking, while SMART-PC employs random
rotations.

A significant advantage of SMART-PC is its ability to per-
form adaptation in online mode without requiring backprop-
agation. By updating only the statistics of BatchNorm layers,
SMART-PC achieves significantly higher Frames/Second
compared to MATE, which relies on computationally ex-
pensive backpropagation during adaptation. As shown in
Figure 3, reducing the number of batches from N-48 to N-
24 does not affect the accuracy of either method. However,
MATE cannot increase its Frames/Second rate due to the in-
herent limitations of backpropagation. In contrast, SMART-
PC demonstrates a substantial increase in Frames/Second,
surpassing the real-time threshold of 30 Frames/Second
when fewer batches are used. This highlights the efficiency
and scalability of SMART-PC, making it a practical solution
for real-world applications requiring real-time adaptation.

For additional comparisons with other methods, including
diffusion-based approaches, please refer to the Supplemen-
tary Materials.

4.2. Main Results

In all results tables, “Org-SO” refers to the evaluation
of a naive pretrained model, without any additional pre-
training branch, on the corrupted dataset without adaptation.
“MATE-SO” represents a model pretrained with a recon-
struction branch, evaluated on the corrupted dataset without
adaptation. “SMART-PC-SO” denotes our model pretrained
with a skeleton branch on clean data, evaluated on the cor-
rupted dataset without adaptation. Results marked with *
indicate reproduced outcomes, and “{” refers to adaptation
using BatchNorm statistical parameters without backpropa-
gation.

ModelNet-40C. Table 1 presents the top-1 classification
accuracy on the ModelNet40-C dataset under various cor-
ruption types. In the source-only setting, SMART-PC-SO
achieves an average accuracy of 61.7%, significantly out-
performing both MATE-SO (53.7%) and Org-SO (54.0%).
This demonstrates the robustness of our skeleton-based pre-
training in handling distribution shifts without adaptation.

For adaptation strategies, in the standard mode, SMART-
PC-Standard achieves an average accuracy of 63.1%,
higher than MATE-Standard (63.0%). In the online mode,
SMART-PC-Online attains the highest average accuracy of
72.9%, compared to 69.6% for MATE-Online. Notably,
SMART-PC-Onlinet leverages a backpropagation-free strat-
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Figure 4. Effect of Augmentation During Adaptation in Our
Method and Comparison with Other Methods on the ScanOb-
jectNN Dataset in Online Mode.

egy, which enables efficient adaptation while maintaining
superior performance. These results highlight the effec-
tiveness and scalability of SMART-PC in both source-only
(without adaptation) and adaptive settings under challenging
conditions.

ShapeNet-C. Table 1 summarizes the top-1 classification
accuracy on the ShapeNet-C dataset under various corrup-
tion types. In the source-only setting, SMART-PC-SO
achieves an average accuracy of 64.5%, outperforming both
MATE-SO (56.5%) and Org-SO (61.3%). This result high-
lights the effectiveness of our skeleton-based pre-training in
generalizing to unseen corruptions without adaptation.

ScanObjectNN-C. Table 1 presents the top-1 classification
accuracy across 15 corruption types on the ScanObjectNN-C
dataset. In the source-only setting, SMART-PC-SO achieves
an average accuracy of 38.7%, significantly outperforming
both MATE-SO (34.5%) and Org-SO (37.0%).

In the standard adaptation mode, SMART-PC-Standard
achieves an average accuracy of 39.6%, slightly higher than
MATE-Standard (36.9%). This improvement highlights
the effectiveness of leveraging skeletal representations for
enhancing robustness to distribution shifts.

In the online mode, SMART-PC-Online achieves the high-
est average accuracy of 47.4%, significantly outperforming
MATE-Online (36.9%). Furthermore, SMART-PCt, which
utilizes a backpropagation-free adaptation strategy by updat-
ing only the BatchNorm statistics, achieves a competitive ac-
curacy of 46.7%. The efficiency of the backpropagation-free
strategy highlights its practicality for real-world applications
requiring high Frames per Second.

Overall, these results demonstrate that SMART-PC con-
sistently achieves state-of-the-art performance across all
adaptation modes, with notable gains under challenging
real-world corruptions, highlighting its robustness and gen-
eralization capability.

The Effect of Batch Size on Accuracy

~
iy

Accuracy (%)
~
o

[e)]
o
!

68

8 16 32 64 128
Batch Size
Figure 5. Impact of Batch Size on Mean Accuracy for the ModelNet-

C Dataset in Standard Mode.

4.3. Ablation Study

Batch Size. We evaluate the effect of batch size on our
method’s performance using the ModelNet40-C dataset in
standard adaptation mode, where all parameters are updated,
with 20 iterations as in the MATE paper. As shown in
Figure 5, increasing the batch size improves accuracy, from
67.94% at batch size 8 to 73.42% at batch size 128. This
improvement showcases the effectiveness of larger batch
sizes for achieving higher accuracy. To ensure fairness in
comparison with MATE and other methods and to avoid
increasing computational costs, we used a batch size of 1
for all main results in both standard and online modes.

Augmentation. Figure 4 illustrates the impact of differ-
ent augmentations and the absence of augmentation on our
method during adaptation. This experiment was conducted
on the ScanObjectNN dataset in online mode with batch
size 1 and iteration 1. Consistent with the MATE paper, we
created 48 batches using random rotations to introduce diver-
sity among the data. Even without augmentation (SMART-
PC W/O Aug), our method achieves a 46.42% accuracy,
outperforming MATE (36.93%) and demonstrating the ro-
bustness of our skeleton-based framework. Applying ran-
dom rotations (SMART-PC With Rot) increases accuracy to
47.36%. Other augmentations, including horizontal flipping
(SMART-PC With H-Flip) and translations (SMART-PC With
Trans), achieve comparable improvements, with accuracies
of 46.8% and 47.08%, respectively.

Feature Summation. We conduct an ablation study on the
impact of summing the features from the shared encoder,
used for both skeletal and classification tasks, with the de-
coder features. This summation improves SMART-PC’s
accuracy from 62.4% to 63.1% on the ModelNet-C dataset
in standard mode, compared to using only the encoder fea-
tures for classification.

Skeleton Loss Coefficients. To further evaluate the con-
tribution of each loss component in our skeleton-based pre-
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Pt2Sphere  Sampling RadiusReg Source Acc(%) Corrupted Acc(%)
1.0 1.0 0.0 91.3 67.82
0.0 1.0 1.0 91.6 67.79
1.0 0.0 1.0 91.6 67.80
1.0 1.0 1.0 91.2 72.84
0.3 1.0 0.4 91.3 72.95

Table 2. Ablation study of skeleton loss coefficients on ModelNet40 and ModelNet40-C (online adaptation). The best configuration
corresponds to the original coefficients from the Point2Skeleton paper.

Dataset Org-SO MATE-SO SMART-PC-SO
ScanObjectNN-C 33.00 33.22 35.90
ModelNet40-C 57.16 54.71 65.25
ShapeNet-C 60.73 53.07 62.24

Table 3. Mean accuracy (%) of BFTT3D using different pretrained models under the backpropagation-free setting. SMART-PC-SO

achieves the best results across all datasets.

training, we conducted an ablation study using different
coefficients for the Skeletal loss terms: point-to-sphere loss,
sampling loss, and radius regularization. The experiments
were performed on the ModelNet40 and ModelNet40-C
datasets under the online adaptation setting.

As shown in Table 2, the best performance is obtained
with the coefficient set (0.3, 1.0, 0.4), which corresponds to
the original settings in the Point2Skeleton paper (Lin et al.,
2021). This configuration achieves the highest accuracy
of 72.95% on corrupted data (Corrupted Acc), confirming
that each skeletal loss term contributes meaningfully to the
learning of robust features under corruption. Additionally,
as described in the main paper, the Radius Regularization
Loss (Equation 6) is designed to avoid instability caused by
overly small radii, especially under noisy conditions. This
loss encourages the model to learn larger and more stable
radii, which improves the robustness of the skeletal abstrac-
tion. Although we do not observe excessively large radii,
the Point-to-Sphere and Sampling losses (Equations 11 and
12) implicitly constrain radius size by preserving geometric
consistency. As shown in Table 2, removing the regular-
ization term leads to a drop in performance, confirming its
importance.

Evaluating Pretraining Strategies in Backpropagation-
Free Adaptation. Our method supports two adapta-
tion modes: one with backpropagation and one that is
backpropagation-free. The goal of the backpropagation-free
mode is to show that pretraining with a skeleton-based de-
coder encourages the model to learn robust and meaningful
geometric features. These features are resilient enough that,
during test-time, simply updating the BatchNorm statistical
parameters (i.e., running mean and variance) is sufficient to
improve performance—without performing gradient-based
updates.

To validate this effect, we conducted additional experiments

using the BFTT3D (Wang et al., 2024) adaptation method
across three different pretraining strategies (Org-SO, MATE-
SO, and SMART-PC-S0O). Each pretrained model was eval-
uated using the same BFTT3D adaptation strategy under
the backpropagation-free setting. As shown in Table 3,
our SMART-PC-SO model consistently outperforms both
Org-SO and MATE-SO across all three datasets. This pro-
vides strong evidence that the skeletal decoder encourages
the model to extract more structure-aware and corruption-
resilient features, which support effective test-time adapta-
tion without updating model weights.

5. Conclusion

In this paper, we proposed SMART-PC, a skeleton-based
framework for robust and efficient test-time training of 3D
point cloud models under distribution shifts. By leveraging
skeletal representations, SMART-PC enhances robustness to
corruptions while enabling high Frames per Second during
online adaptation through a backpropagation-free strategy
that updates only BatchNorm statistics. Experiments on
benchmark datasets, including ModelNet40-C, ShapeNet-C,
and ScanObjectNN-C, demonstrate state-of-the-art perfor-
mance in both source-only and adaptation settings. Overall,
SMART-PC provides a scalable and practical solution for
real-world applications requiring robust 3D point cloud clas-
sification under challenging conditions. Future work may
explore extending this framework to other 3D tasks, such as
semantic segmentation, instance segmentation, and object
detection.

Impact Statement

This paper presents work aimed at advancing the field of
Machine Learning. While there are several potential societal
implications of our work, we believe that none of them need
to be specifically highlighted in this context.
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A. Implementation

Our approach was implemented using PyTorch, with the codebase organized into two main components: Pretrain and
Adaptation.

Pretrain. We start with the initial pretraining phase of the base models (Point-MAE). In this phase, the backbone is
pretrained with a classification branch in a fully supervised manner and a skeleton branch in a self-supervised manner.
The pretraining is performed on clean datasets such as ModelNet, ShapeNet, and ScanObjectNN, ensuring the models are
well-prepared for the subsequent adaptation steps.

Adaptation. After completing the pretraining phase, we transition to the adaptation stage, which consists of two modes:
online and standard. In the standard adaptation mode, all model parameters are updated using the skeleton loss, allowing
the model to comprehensively adjust to the target data. In the online adaptation mode, we employ two distinct strategies.
The first strategy involves adapting only the statistical parameters of the BatchNorm layers (e.g., running mean and variance)
without backpropagation. This approach significantly reduces computational costs, enabling our method to achieve higher
Frames per Second and making it suitable for real-time applications. The second strategy involves updating all model
parameters using the skeleton loss, similar to the standard mode. These flexible adaptation strategies highlight the efficiency
and scalability of our method, catering to both real-time and high-accuracy requirements.

B. Datasets

ModelNet-40C. ModelNet-40C (Sun et al., 2022) serves as a robustness benchmark for point cloud classification, designed
to evaluate the ability of architectures to handle real-world distribution shifts. It extends the original ModelNet-40 test set
by introducing 15 common corruption types, grouped into three categories: transformations, noise, and density variations.
These corruptions simulate practical challenges like sensor errors and LiDAR noise, offering a realistic assessment of model
performance under diverse and challenging conditions.

ShapeNet-C. ShapeNetCore-v2 (Chang et al., 2015) is a widely used dataset for point cloud classification, containing
51,127 3D shapes spanning 55 categories. It is partitioned into three subsets: 70% for training, 10% for validation, and
20% for testing. To evaluate the robustness of models under real-world conditions, (Mirza et al., 2023) augmented the
test set with 15 types of corruptions, mirroring those in ModelNet-40C. These corruptions, created using the open-source
implementation from (Sun et al., 2022), resulted in a modified version of the dataset known as ShapeNet-C.

ScanObjectNN-C. ScanObjectNN (Uy et al., 2019) is a real-world dataset for point cloud classification, comprising 2,309
training samples and 581 testing samples across 15 categories. To assess robustness, (Mirza et al., 2023) applied 15 unique
corruption types to the test set, using the approach described in (Sun et al., 2022). The resulting modified dataset is referred
to as ScanObjectNN-C.

C. More Experiments

Comparison and Advantages of SMART-PC over BFTT3D in Backpropagation-Free Mode. Unlike BFTT3D, which
uses class-based prototypes from the source dataset during adaptation, our method relies solely on the target dataset
without accessing any source information. Another key distinction is efficiency: as shown in Table 4, our method in the
backpropagation-free mode achieves significantly higher FPS compared to MATE, SVWA, BFTT3D, CloudFixer, and
DDA. In terms of performance, our method also outperforms BFTT3D across three corrupted datasets, as reported in
Table 1. Together, Table 4 and Table 1 demonstrate that our skeleton-based pretraining enables the model to learn robust

Method FPS
DDA 0.04
CloudFixer 1.07
BFTT3D 6.83
SVWA 10.86 (for N,=2)
MATE 10.79
SMART-PC 59.52

Table 4. Comparison of inference speed (FPS) across different adaptation methods on the ModelNet40-C dataset.
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Clean Point Cloud Corrupted Point Cloud Corrupted Point Cloud
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Figure 6. Visualization of a clean point cloud and its corrupted versions. The predicted skeleton remains stable even under corruption,
supporting accurate classification (ACC: 85.7 and 80.4 in the clean and success cases, respectively). In the failure case, the corruption
leads to misaligned skeletons and significantly lower performance (ACC: 21.0).

geometric features, allowing effective adaptation with only statistical parameter updates, achieving both high accuracy and
fast inference.

Analyzing the Impact of BatchNorm Statistic Updates. Updating the running mean and variance in BatchNorm layers
has been shown to improve robustness under covariate shift (Nado et al., 2020). Furthermore, the AdaBN (Li et al., 2018)
paper supports the significance of this mechanism by stating that: “label related knowledge is stored in the weight matrix
of each layer, whereas domain related knowledge is represented by the statistics of the Batch Normalization (BN)”. This
highlights that updating BN statistics is a meaningful and effective approach for handling domain shifts.

During pretraining, our method learns more abstract and robust features through the skeleton prediction branch. These
features are resilient to corruption, such that during test-time adaptation, simply updating the statistical parameters of the
BatchNorm layers (i.e., running mean and variance) can effectively suppress noise without requiring backpropagation.

As shown in Figure 6, our method maintains strong accuracy even under corruption. The clean input (left) yields a
high classification accuracy of 85.7%, while the corrupted input still achieves 80.4% in a successful case, demonstrating
robustness. In contrast, a failure case (right) leads to significant misalignment, dropping accuracy to 21.0%. These results
indicate that the learned skeletal representation acts as a noise-resistant abstraction, preserving semantic structure under
moderate distortions.

To further analyze the effect of BatchNorm statistics update in our setting, we visualized the impact of distribution shift on
the BatchNorm input and how updating the statistics can help realign the model to the new distribution. In Figure 7, the
Gaussian solid curves represent the statistics of the input data. As observed, the source distribution (blue) aligns well with the
accumulated statistics from pre-training (black dashed curve), resulting in a centered and scaled distribution with zero mean
and unit variance. However, when facing a distribution shift (red) in the center column, the pre-training-time accumulated
statistics no longer align with the corrupted target distribution, leading to an inconsistent input distribution to the subsequent
layers—compared to what the model has seen during training (i.e., covariate shift). This misalignment is clearly visible in the
center column as the distance between the red solid curve and the black dashed curve. By updating the BatchNorm statistics,
the running mean and variance shift toward the target distribution. This helps mitigate the covariate shift introduced by the
target domain (right column), moving the statistics (green dashed curves) closer to the data distribution (solid curves).

This pattern is consistent across different channels of both the first BatchNorm layer in the encoder (top row) and the
classification head (bottom row). For each BN layer, channel input values are aggregated across batch samples and tokens,
and plotted as histograms of the values. Similar to the input data statistics, the BN statistics curves are plotted as Gaussian
curves, computed from the corresponding running mean and running variance.
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Clean with Pretrained Statistics Corrupt with Pretrained Statistics Corrupt with Adapted Statistics

Value Value Value

Figure 7. Distribution of the input (solid colors) and the running statistics (dashed curve) of BatchNorm layers across different channels.
Top: first BN layer in the encoder, Bottom: first BN layer in the classifier. Blue: clean source data, Red: corrupted target data, Solid
Curve: Gaussian curve of data statistics, Black Dashed Curve: pretrained accumulated statistics, Green Dashed Curve: adapted statistics.

D. Detailed Results

In this section, the performance of our method is presented in Table 5, Table 6, and Table 7 showcasing detailed results
for each corruption across all datasets. Our method consistently outperforms previous approaches in source-only (without
adaptation), standard adaptation, and online adaptation modes. In most corruption scenarios, SMART-PC achieves higher
accuracy compared to prior methods, demonstrating its robustness and effectiveness in handling distribution shifts across
ModelNet40-C, ShapeNet-C, and ScanObjectNN-C. The improvements are particularly significant in challenging corruption
types, highlighting the advantages of leveraging skeletal representations for test-time training.

E. More Visualizations

Skeletal Reconstruction. In Figure 8, we present several 3D objects showcasing the original point clouds (blue dots) and
their corresponding skeletal spheres. Each skeletal sphere is defined by a skeleton point (the center of the sphere) and its
associated radius, which represents the local geometric structure around the skeleton point. The spheres collectively capture
the essential geometric and structural features of the objects.

This visualization demonstrates the capability of our model to learn meaningful and compact representations of 3D shapes
through skeletal abstraction. The skeleton effectively captures the underlying structure while filtering out high-frequency
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Table 5. Top-1 Classification Accuracy (%) for all distribution shifts in the ModelNet40-C dataset. All results are based on the PointMAE
backbone trained on a clean training set and adapted to the OOD test set with a batch size of 1. Results marked with * indicate reproduced
outcomes (adaptation only) using the pretrained models from the MATE GitHub repository. Results marked with ** indicate full
reproduction from scratch, including both pretraining and adaptation. The symbol “1” denotes adaptation using only BatchNorm statistical
parameter updates, without backpropagation.
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Org-SO* 666 592 72 31.8 746 677 698 593 751 744 380 537 70.0 38.6 23.4|54.0
MATE-SO* 59.7 513 282 553 715 574 60.7 652 774 67.1 302 623 619 372 199 | 53.7
MATE-SO** 60.8 533 288 534 709 579 59.6 689 77.1 675 31.7 656 620 339 24.6 | 544
SMART-PC-SO 81.8 795 13.6 654 843 757 778 620 659 734 427 69.1 73.8 363 244 | 61.7
DUA 65.0 585 147 485 688 628 632 621 662 688 462 538 647 412 36.5|54.7
TTT-Rot 61.3 583 345 489 667 63.6 639 598 68.6 552 273 546 640 40.0 29.1 | 53.0
SHOT 296 282 9.8 254 327 303 30.1 309 312 321 228 273 294 20.8 18.6]|26.6
T3A 64.1 623 334 650 754 632 66.7 574 63.0 7277 328 544 677 39.1 183|557
TENT 29.2 287 10.1 25.1 33.1 303 29.1 304 31.5 31.8 227 27.0 28.6 20.7 19.0 | 26.5
MATE-Standard* 69.8 61.8 189 639 725 640 660 740 808 71.0 367 69.2 663 384 29.9 | 589
MATE-Standard** 753 709 23.0 647 792 679 693 765 84.0 759 472 71.8 71.6 37.5 29.7| 63.0
SMART-PC-Standard 82.4 80.1 120 67.1 84.5 760 78.6 67.3 729 733 439 72.6 735 374 248 | 63.1
MATE-Online* 80.6 79.5 20.7 715 826 78.1 80.7 78.1 86.6 79.6 549 784 774 454 49.6 | 69.6
MATE-Online** 82.1 783 29.6 741 843 774 792 794 86.7 788 552 79.1 769 47.8 49.8 | 70.6
SMART-PC-Onlinet 85.0 83.2 31.6 77.6 859 79.2 80.8 77.8 793 77.8 603 80.6 76.8 452 404 |70.8
SMART-PC-Online 854 84.0 494 79.7 857 80.1 813 81.7 827 783 60.5 82.6 767 444 41.8| 729

Table 6. Top-1 Classification Accuracy (%) for all distribution shifts in the ShapeNet-C dataset. All results are based on the PointMAE
backbone trained on a clean training set and adapted to the OOD test set with a batch size of 1. Results marked with * indicate reproduced
outcomes, while “}” denotes adaptation using BatchNorm statistical parameters without backpropagation.
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MATE-Standard 778 747 43 662 786 763 753 861 86.6 79.2 56.1 84.1 76.1 123 13.1 | 63.1
SMART-PC-Standard 80.8 78.9 89 604 81.8 81.1 81.7 848 784 80.8 63.7 849 798 115 8.8 | 644
MATE-Online* 815 78.6 409 759 81.6 79.7 80.1 849 859 818 708 851 79.0 142 16.6 | 69.1
SMART-PC-Onlinef 80.4 78.7 21.0 72.7 809 809 80.6 825 783 809 70.1 825 79.0 105 9.7 | 659
SMART-PC-Online 812 80.5 289 743 812 80.7 805 831 81.0 804 732 828 79.0 10.0 10.2 | 67.1

15



Skeletal Model Adaptation for Robust Test-Time Training in Point Clouds

Table 7. Top-1 Classification Accuracy (%) for all distribution shifts in the ScanObjectNN-C dataset. All results are based on the
PointMAE backbone trained on a clean training set and adapted to the OOD test set with a batch size of 1. Results marked with * indicate
reproduced outcomes (adaptation only) using the pretrained models from the MATE GitHub repository. Results marked with ** indicate
full reproduction from scratch, including both pretraining and adaptation. The symbol “t” denotes adaptation using only BatchNorm
statistical parameter updates, without backpropagation.

A S g 3]

s & 5 5 5 7 £ 4 § f &

~ 5 [3) =3 3 %, g ] S ) “ ~ >3 < 3
Corruptions: 5§ & s § £ ES) ES) g 9 s S S 5 g g Ave.
Org-SO* 21.7 188 169 184 222 46.0 470 721 694 489 356 73.0 494 67 93|37.0
MATE-SO* 203 322 189 212 205 356 367 699 666 389 287 704 394 83 98345
MATE-SO** 153 20.1 134 11.0 153 287 294 692 645 329 250 706 334 9.1 9.0]29.8
SMART-PC-SO 26.7 37.7 169 213 272 442 489 695 563 485 432 723 480 84 11.0 | 38.7
DUA* 30.5 40.1 102 23.6 299 43.7 46.1 683 663 485 389 687 484 8.6 8.1]387
SHOT* 30.2 34.1 162 22.6 226 324 321 455 450 345 293 478 362 7.1 81296
TENT* 29.5 31.6 17.6 248 27.2 310 324 40.7 350 302 266 36.6 293 10.5 124 |27.7

MATE-Standard* 275 294 143 222 256 408 420 737 632 451 353 733 453 7.1 93369
MATE-Standard** 229 315 134 170 243 341 355 695 637 39.1 284 688 387 77 62|334
SMART-PC-Standard 27.5 39.1 19.3 215 298 44.2 489 683 602 494 454 70.1 491 84 122 39.6

MATE-Online* 33.0 441 133 253 29.1 368 377 733 652 372 313 726 406 72 74369
MATE-Online** 294 339 160 255 325 348 382 694 66.6 406 306 702 403 81 79363
SMART-PC-Onlinef 394 54.6 19.6 40.1 403 544 559 733 69.5 551 501 749 578 69 7.9 | 46.7
SMART-PC-Online 423 537 238 375 41.6 570 570 71.1 688 573 534 72.1 582 84 84| 474

Figure 8. Visualization of 3D objects with original point clouds (blue dots) and their corresponding skeletal spheres.

noise, enabling the model to focus on the fundamental geometry of the objects. The diversity of shapes in this figure—ranging
from guitars and airplanes to furniture—highlights the robustness of our approach in generalizing across different object
classes. These visualizations also provide insight into how the skeletal abstraction simplifies complex point cloud data
into manageable representations, facilitating better performance in downstream tasks such as classification and adaptation
under challenging conditions. This compact representation ensures that the geometric structure is preserved, even when the
original point clouds are corrupted or noisy.
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