
Published as a conference paper at ICLR 2024

TOWARDS ROBUST MULTI-MODAL REASONING VIA
MODEL SELECTION

Xiangyan Liu3,∗ Rongxue Li2,1,∗ Wei Ji3 Tao Lin1,†

liu.xiangyan@u.nus.edu; lirongxue@westlake.edu.cn;
weiji0523@gmail.com; lintao@westlake.edu.cn
1Westlake University 2Zhejiang University 3National University of Singapore

ABSTRACT

The reasoning capabilities of LLM (Large Language Model) are widely acknowl-
edged in recent research, inspiring studies on tool learning and autonomous
agents. LLM serves as the “brain” of the agent, orchestrating multiple tools
for collaborative multi-step task solving. Unlike methods invoking tools like
calculators or weather APIs for straightforward tasks, multi-modal agents excel
by integrating diverse AI models for complex challenges. However, current
multi-modal agents neglect the significance of model selection: they primarily
focus on the planning and execution phases, and will mainly invoke predefined
task-specific models for each subtask, making the execution fragile. Meanwhile,
other traditional model selection methods are either incompatible with or
suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies
among subtasks arising by multi-step reasoning.
To this end, we identify the key challenges therein and propose the M3 framework
as a plug-in with negligible runtime overhead at test-time. This framework
improves model selection and bolsters the robustness of multi-modal agents in
multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA,
a new dataset specifically designed to investigate the model selection challenge
in multi-modal agents. Our experiments reveal that our framework enables
dynamic model selection, considering both user inputs and subtask dependencies,
thereby robustifying the overall reasoning process. Our code and benchmark:
https://github.com/LINs-lab/M3.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Ouyang et al., 2022; Chowdhery et al., 2022;
Zhang et al., 2022b; Touvron et al., 2023) recently emerged to show great potential for achieving
human-level intelligence, leveraging the key reasoning ability to tackle complex problems.
As a key step towards artificial general intelligence, the study on multi-modal learning has soon
evolved into two paradigms, either training large end-to-end models like PaLM-E (Driess et al., 2023)
and Mini-GPT4 (Zhu et al., 2023) for direct task resolution, or employing LLMs to decompose
tasks into subtasks for smaller yet specific models (Gupta & Kembhavi, 2023; Surís et al., 2023;
Shen et al., 2023; Gao et al., 2023a). The latter paradigm—as evidenced in the significant attention
since tool learning (Schick et al., 2023) and autonomous agents (Reworkd, 2023; Richards et al.,
2023)—demonstrates the immense potential in addressing complex real-world problems, where
multiple AI models collaborate through multi-modal multi-step reasoning process.
In the realm of multi-modal reasoning scenarios, existing multi-modal agents (Gupta & Kembhavi,
2023; Shen et al., 2023) emphasize planning and execution phases, while neglecting the critical
model selection phase. As exemplified in Figure 1 (a & b), a simplistic model selector relies on
predefined task-specific models for subtasks, increasing the likelihood of intermediate errors and
compromising the overall reasoning process. Moreover, existing traditional model selection methods,
though effective in various domains (Zhao et al., 2021; Park et al., 2022; Lee et al., 2022; Zitovsky
et al., 2023), primarily focus on selecting a single model from multiple candidates per sample.

∗Equal contribution. Work was done during Xiangyan’s visit to Westlake University.
†Corresponding author.

1

https://github.com/LINs-lab/M3

Published as a conference paper at ICLR 2024

Question:
What color is the nose of

the object next to the cat?

localize the object
next to the cat

L V

localize the nose
of this object

what color is
the nose?

Answer with reasoning graph:

“Red”

L

(a) Multi-modal Multi-step Reasoning (b.1) Execution process based on simplistic model selection

L VL

m(3)
L

m(3) m(2)

L VLL

“Black”

m(1) m(1) m(2)

simplistic model selector

robust model selector

(b.2) Execution process based on robust model selection

(c) Three model selection paradigms

simplistic
e.g. HuggingGPT

+4.35% +2.69%

traditional
e.g. MetaGL

subtask denpendency-aware
e.g. M3 (ours)

L

V

m(·)
m(·)
 candidate models

Visual Question
Answering

Localization (Text-guided
Object Detection)

Figure 1: Illustration of the multi-modal multi-step reasoning process and three model selection paradigms
within. (a) shows how multi-modal agents utilize LLMs to decompose complex multi-modal tasks, resulting in a
multi-step reasoning process where each node corresponds to a simpler yet more specific subtask. (b) highlights
that compared to a robust model selector, simplistic model selection methods are more prone to generating wrong
outcomes at intermediate subtask stages, thereby impacting the ultimate reasoning result. Here, m(i) indicates
the i-th model is selected and the color means the corresponding subtask type. (c) numerically illustrates the
comparative outcomes of model selection methods from different paradigms in multi-modal reasoning.
Adapting these methods to multi-modal reasoning scenarios, which necessitate multiple models for
subtasks, is challenging due to the oversight of subtask dependencies.
To this end, we formally define the problem of model selection in multi-modal reasoning scenarios
as our first contribution, and then introduce the M3 framework (Model Selector for Multi-Modal
Reasoning) as our preliminary remedy for the field. Given the lack of benchmarks, we further create
a new dataset named MS-GQA (Model Selection in GQA (Hudson & Manning, 2019)) to facilitate
research in the field. In detail, M3 represents the multi-step reasoning process as a computation graph,
with nodes corresponding to reasoning subtasks. Multi-modal encoders and models’ embedding
table transform input and selected models into node features, where a computation graph learner then
models the relationships between input, selected models, and subtask dependencies to predict the
execution status. M3 showcases superior performance in the model selection process for multi-modal
models, with trivial overhead in selection.
Our key contributions are summarized as follows:
• We formulate the model selection problem in multi-modal reasoning contexts as an initial endeavor.
• We introduce M3, a model selection framework for multi-modal models with multi-step reasoning,

jointly modeling the relationship between samples, selected models, and subtask dependencies.
• We create a comprehensive dataset called MS-GQA to facilitate the research for the community.
• We provide an effective yet efficient model selection solution, with trivial test-time overhead.

2 RELATED WORK

2.1 MULTI-STEP REASONING WITH LLM

A line of work utilizes LLMs to interact with simple APIs, including WebGPT (Nakano et al., 2021),
Toolformer (Schick et al., 2023), PAL (Gao et al., 2023b), and ToolkenGPT (Hao et al., 2023),
enabling the manipulation of tools like web browser and calculators. Their capabilities are enhanced
by behaving as autonomous agents (Richards et al., 2023; Nakajima, 2023; Reworkd, 2023), where
they reason, break down complex tasks into subtasks, and iteratively execute those subtasks until the
desired goals are achieved. Note that these studies only call simple deterministic APIs for text tasks.
To tackle complex multi-modal tasks, researchers are increasingly expanding tool libraries with
trained AI models (Wu et al., 2023; Huang et al., 2023; Surís et al., 2023). For instance, Vis-
Prog (Gupta & Kembhavi, 2023) and HuggingGPT (Shen et al., 2023) employ LLMs to decompose
complex tasks into subtasks and connect various AI models to address them. Chameleon (Lu et al.,

2

Published as a conference paper at ICLR 2024

2023) is a plug-and-play compositional reasoning framework using a richer set of tools. Unlike
the aforementioned approaches that provide a static plan without considering dependent subtasks,
AssistGPT (Gao et al., 2023a) and AVIS (Hu et al., 2023) dynamically strategize the utilization
of external tools based on the intermediate results of multi-step reasoning. However, all existing
methods lack model selection consideration, resulting in reasoning instability.

2.2 MODEL SELECTION

The research on model selection can date back to Forster (2000), and was further extensively investi-
gated in various aspects: 1) meta-learning methods (Zhao et al., 2021; 2022; Park et al., 2022), 2) non-
meta-learning methods (Ying et al., 2020; Zohar et al., 2023), 3) model selection for ensemble (Kotary
et al., 2023), 4) model selection with language models (Zhao et al., 2023; Hari & Thomson, 2023), 5)
new metrics for model selection (Zhang et al., 2021; Yang et al., 2023a), and others (Chen et al., 2023;
Lee et al., 2022; Zitovsky et al., 2023). We discuss the most relevant two lines of research as follows.
Meta-learning-based approaches utilize the similarity between new instances and historical instances
to predict the performance of candidate models. For example, MetaOD and ELECT (Zhao et al., 2021;
2022) address the unsupervised outlier model selection problem, where they extract meta-features
by considering input-specific characteristics. MetaGL (Park et al., 2022) further extends (Zhao et al.,
2021) to select a model for each new graph. However, in our multi-modal multi-step reasoning sce-
narios, there is currently a lack of established approaches for extracting instance-wise meta-features.
In contrast, non-meta-learning-based methods resort to using complex networks to learn the rela-
tionship between instances and model choices, without using meta-features. Auto-Selector (Ying
et al., 2020) employs a pre-trained model selector and parameter estimator to automatically choose an
anomaly detection model for incoming time-series data. LOVM (Zohar et al., 2023) employs textual
dataset descriptions to train a linear model that predicts the performance of vision-language candidate
models. EMMS (Meng et al., 2023) employs weighted linear regression to estimate multi-modal
model transferability. Note that these methods are restricted to one-step selection and overlook subtask
dependencies in multi-step reasoning, and thus infeasible for model selection in multi-step reasoning.
In the context of using LLMs for multi-modal models in multi-step reasoning, existing methods
either rely on external metrics like download counts for model selection, or explicitly specify the
use of a specific version of a model for a designated task without any selection process (Surís et al.,
2023). None of the prior work takes the challenges of multi-step reasoning dependency into account.

3 MODEL SELECTION HARNESSES THE MULTI-MODAL REASONING

3.1 ON THE CHALLENGES OF MULTI-MODAL MULTI-STEP REASONING

Given a complicated input query, the contemporary multi-modal multi-step reasoning process nor-
mally involves calling LLMs to decompose users’ input to subtasks, in which the reasoning logic can
be constructed as a task graph by composing dependent intermediate subtasks.
The problem of selecting models for subtasks along the task graph can be defined below:
Definition 3.1 (Model selection for each subtask type on a multi-modal task graph). Let m(i, j, t)
denote a model choice of subtask type t for the i-th sample xi, where m(i, j, t) indicates the j-th
choice from the model zoo for subtask type t on xi. Each subtask type t has nt choices, forming a set
{m(·, j, t) | j ∈ [nt]}.
Assume a task graph consists ofK subtask types, then all potential model selection choices for the task
graph can be defined as C = {m(·, j, t) | j ∈ [nt], t ∈ [K]}, with size |C| =

∏K
t=1 nt. The optimal

choice of models on the task graph for i-th input can be represented as c⋆i := {m(i, j⋆t , t) | t ∈ [K]},
where we select the optimal model index j⋆t for each subtask type t.

Though Definition 3.1 fully characterizes the procedure of traditional model selection methods as
evidenced in Figure 2 and Section 2.2, it leaves the unique challenge emerged in the multi-modal
multi-step reasoning untouched, namely the critical subtask dependency defined below.
Definition 3.2 (Subtask dependency on a multi-modal task graph). Given the i-th input xi with
embeddings from various modalities. Its multi-step reasoning procedure decomposed by an LLM can
be described as a directed acyclic computation graph Gi = {Vi, Ti, Ei} with nodes corresponding to
multi-modal subtasks, where
• Vi = {vi,k | k ∈ [L]} is the subtask nodes in the graph, vi,k is the k-th node in Gi, and L := |Vi|;
• Ti = {ti,k | k ∈ [L]} is the set of subtask types in Vi, ti,k is the subtask type of k-th node in Gi;
• Ei is the set of edges that connect pairs of subtask nodes in the graph Gi.

3

Published as a conference paper at ICLR 2024

Are the dog and the
object to its right the

same color?

How many legs do the
animals on both sides of the

cat have?

Simplistic Subtask
Dependency-Aware

Multi-modal
Input

Decomposed
Computation Graph

m(1)

What is the pattern
of the shirt?

L V P

m(3)

V

L

m(2)

L

V

P

VL

V

L

V

P

VL

V VL

V

L

How many legs do
the cat have?

L V P

m(1)

V

L

m(3) V

L

m(5)

V

L

m(2) V

L

Traditional

m(1)

V

L

m(3) V

L

m(2)

V

L

m(4) V

L

m(2)

V

L

m(7) V

L

m(6)

V

L

m(5) V

L

m(1)

m(2) m(3)

m(2) m(3)

V

L

V

L

(a)

External Metrics
(e.g. Download

Counts)

Input Information Input Information &
Subtask Dependency

(b)

(c)

(d)

Inputs with distinct differences: (a), (b), (c)
Similar inputs: (c), (d)

Figure 2: Comparison of three model selection paradigms under various inputs. The model selection pro-
cesses of the three paradigms, from left (simplistic) to right (subtask dependency-aware), become progressively
more fine-grained. “Simplistic” is inflexible and can be considered input-agnostic. “Traditional” can solely
depend on subtask type and the corresponding original input information for model selection. When inputs
are similar, “Traditional” cannot provide as diverse model selections as “Subtask Dependency-Aware”, which
leverages differences in reasoning logic to offer more varied and suitable model choices. Note that node P (green
circle) in the figure denotes Python module invocation, which does not entail model selection.

Remark 3.3 (Generalizing model selection beyond the subtask type). To ease the presentation,
Definition 3.1, Definition 3.2, and the main content below only consider selecting the model per
subtask type. Though being sufficient for traditional model selection methods, such formulation can
be further generalized to performing model selection per subtask node (rather than per subtask type)
in our case, and we leave it for future research.

Challenges: on the infeasibility of adapting existing model selection methods. Existing
methods (see details in our Section 2.2), either the current preliminary strategies for multi-modal
agents (Gupta & Kembhavi, 2023; Surís et al., 2023; Shen et al., 2023; Gao et al., 2023a), or model
selection methods from other domains (Zhao et al., 2021; 2022; Park et al., 2022; Ying et al., 2020;
Zohar et al., 2023), do not take the subtask dependency into account—as evidenced in the following
case study—making the model selection for multi-modal model with multi-step reasoning non-trivial.
We describe the previous two model selection paradigms (see examples in Figure 2):
1. This paradigm is primarily applied in some recent multi-modal agent frameworks, where each

subtask type t will be straightforwardly allocated to a model via some external metrics (e.g.,
download counts or recent release dates).

2. As has been widely used in other fields like outlier detection and graph learning, this paradigm
focuses on matching the optimal model through the input information as well as the subtask type.

Given the limitations of previous methods in adapting to the timely multi-modal reasoning scenarios,
in the following section, we incorporate the graph information Gi to capture subtask dependencies.

3.2 M3: A FRAMEWORK OF MODEL SELECTION FOR MULTI-MODAL REASONING

An ideal model selection solution on multi-modal reasoning scenarios discussed above motivates us
to jointly model the subtask dependency with input sample features. We depict our unified model
selection framework M3 below towards this goal.

Overview. The model selection process can be viewed as estimating the performance of a multi-
modal input over the corresponding task graph, in which the choice of model selection at each subtask

4

Published as a conference paper at ICLR 2024

Em
be

dd
in

g
Ta

bl
e

Task Graph Node Embedding

C
om

pu
ta

tio
n

G
ra

ph

Le
ar

ne
r

(scores)

m(1) m(2)
m(3)

m(1) m(2)
m(3) m(4)

Model Selection Choice

What is the pattern
of the shirt?

Learner

. . .

L V P

multi-modal input
information

subtask
dependency best choice with

highest score

L

V

P

V L

V

S

Joint Modeling

. . .

S virtual starting node
(multi-modal input)

L

V

subtask nodes
(multi-modal AI task)

P
ending node

(Python module)

m(·) m(·) candidate models

S

Figure 3: Illustration of M3: (a) depicts the forward computation process: 1) Task Graph: An initial virtual
node represents the multi-modal input. Specific models are assigned to each subtask node based on the respective
subtask type. 2) Node Embedding: Features are extracted using the multi-modal encoder ψ1(·) and embedding
table ψ2(·) for the initial virtual node and subtask nodes. 3) Computation Graph Learner: The computation
graph, including node features and subtask dependencies (edges Ei), serves as input to learner ϕ(·), contributing
to the predicted execution status sji . (b) illustrates the process of ranking and selecting the model selection
choice with a greater likelihood of success.
node propagates to the next node on the directed task graph. We introduce the notion of meta-training
and train a proxy on it to suggest the optimal model choice of task graph on unseen input. In detail,
• Training the proxy. Given an input sample xi ∈ Xtrain := {x1, . . . ,xN}, for each choice of

models on the task graph cji ∈ C, we aim to model the relationship ϕ ◦ ψ between (xi,Gi, c
j
i)

and the execution status pji ∈ {0, 1}, where ϕ and ψ denote the learner and feature extractor,
respectively. Here we simplify our setting by only considering the binary execution status, but the
principles therein can be generalized to the continuous case.

• Model selection for task graph on the unseen sample. We estimate the status of potential model
choices {sji := ϕ ◦ ψ(xi,Gi, c

j
i) | c

j
i ∈ C}, and only keep executable choices for further selection.

3.2.1 TRAINING THE PROXY

Lookup table and node embedding ψ. We adopt a similar approach to treatments in multi-modal
learning and GNNs (Li et al., 2022; Veličković et al., 2017). Using ψ := [ψ1, ψ2]—where ψ1 denotes
the multi-modal encoder and ψ2 represents the model embedding table—we map subtask nodes to
their corresponding embeddings through Hj

i := ψ(xi,Gi, c
j
i) ∈ R(L+1)×d.

More specifically, we first slightly abuse the notation and form an augmented computation graph
Gi = (Vi, Ti, Ei): we introduce a virtual starting node vi,0 to incorporate the multi-modal input
information xi and use subtask nodes {vi,k | k ∈ [L]} to indicate the execution dependency of
subtasks. We then employ two encoders ψ1, ψ2 separately to retrieve the node embeddings and use
additional W1 ∈ Rd1×d and W2 ∈ Rd2×d to unify them in a shared feature space.
• For the virtual starting node vi,0, we utilize the off-the-shelf multi-modal encoder to extract node

embedding as hi,0 = ψ1(xi) ∈ Rd1 , where d1 is the input embedding dimension.
• For other nodes, we use a lookup table to retrieve node embedding for each subtask type, namely
hj
i,k = ψ2 (m(i, j, ti,k)) ∈ Rd2 , where ti,k ∈ Ti and d2 is the model embedding dimension.

Joint modeling of node embeddings and subtask dependency ϕ. We further leverage a computa-
tion graph learner to learn the task embedding over 1) sample embeddings, 2) model embeddings, and
3) subtask dependency information. A final linear layer with a non-linear activation function is stacked

5

Published as a conference paper at ICLR 2024

on top of the learned task embedding to estimate sji := ϕ ◦ ψ(xi,Gi, c
j
i), where cji ∈ C. In detail,

Hj
i = ψ(xi,Gi, c

j
i) , sji = ϕ(Hj

i , Ei) . (1)

The output sji measures the degree of match between input sample xi and model selection choice
cji , where a higher value signifies a greater likelihood of success in a multi-modal reasoning scenario.
Note that theoretically, any neural network capable of handling directed acyclic graphs can serve as
the backbone for a computation graph learner. See Section 4.2 and Appendix D.3 for details.

Optimization over ψ and ϕ. For a given input sample xi, we aim to learn the model to estimate
execution status per the choice cji of models along the task graph, namely correlating sji ∈ [0, 1] with
ground truth pji ∈ {0, 1}. Thus, the optimization can be viewed as a multi-label classification problem.
The conventional choice of using instance-wise Binary Cross-Entropy (BCE) loss in the multi-label
classification community (Tsochantaridis et al., 2005; Wehrmann et al., 2018) only aims to build
a mapping between (xi,Gi, c

j
i) and sji , and thus suffers from the optimization difficulty caused by

prediction independency of cji ∈ C on the input xi.
Therefore, we employ Categorical Cross-Entropy (CCE) (Su et al., 2022) as our objective function,
using a list-wise approach to model ψ and ϕ for (xi,Gi, C) and {sji | c

j
i ∈ C}. Our goal is to promote

higher scores sji for executable choices (pji = 1) and lower scores for non-executable choices:

Li = log
(
1 +

∑
c
j
i∈C 1

p
j
i=0

exp(sji)
)
+ log

(
1 +

∑
c
j
i∈C 1

p
j
i=1

exp(−sji)
)
. (2)

See Appendix B and D.4 for more details on loss design and a comparison of different loss functions.

3.2.2 MODEL SELECTION FOR TASK GRAPH ON THE UNSEEN SAMPLE

Once we learn the relationship ϕ ◦ ψ, we can estimate execution status sji for all choices of models
on the task graph cji ∈ C, and transfer to the final model selection upon other criteria. For the sake
of simplicity, in our evaluation we primarily select the c⋆i via the maximal execution probability:
c⋆i = argmaxcj

i∈C ϕ ◦ ψ(xi,Gi, c
j
i) . Other metrics, e.g. computation cost, can be further integrated

to trade off efficiency and robustness.

4 EXPERIMENTS

4.1 BENCHMARK: MS-GQA

Figure 4: The proportions of various
structural categories in GQA.

As our side contribution, we introduce the first benchmark, MS-
GQA (Model Selection in GQA (Hudson & Manning, 2019)),
to explore the model selection methods on multi-modal reason-
ing scenarios. MS-GQA primarily evaluates model selection
choices of scenarios using VisProg (Gupta & Kembhavi, 2023)
as the autonomous agent to solve AI tasks on source dataset
GQA. The choice of autonomous agents and datasets can be
flexibly replaced, such as substituting VisProg with HuggingGPT (Shen et al., 2023) or other related
works (Surís et al., 2023; Gao et al., 2023a), and replacing GQA with NLVR2 (Suhr et al., 2018) or
even other in-the-wild application scenarios (Surís et al., 2023; Yang et al., 2023c).
Our benchmark considers the structural variations of tasks in GQA, and thus facilitates comprehensive
method evaluation and assesses robustness under diverse test distributions. Currently, we introduce
5 task categories, namely Query, Choose, Compare, Verify, and Logical. The tasks cover 9
functional components (subtask types), of which 7 out of 9 components align with specific Python
modules, eliminating the need for model selection. The remaining two components involve “LOC”
(localization, text-guided object detection) and “VQA” (visual question answering), offering 10 and
7 candidate models respectively. We have currently collected the binary execution results for 8,426
samples across 70 valid model selection choices. For more details, refer to Appendix A.

4.2 EXPERIMENTAL SETTINGS

Baselines. As discussed in Section 2.2, the multi-modal model currently falls short of model
selection methods. To justify the effectiveness of our solution, we extend a range of representative
methods to multi-modal reasoning scenarios as two groups of baseline references illustrated below.
Training-free selects one model for each subtask type based on the prior knowledge or external metrics
(e.g., download counts, citations, and publication dates), without considering input information:

6

Published as a conference paper at ICLR 2024

• RANDOM: Randomly choose models for each subtask type on the task graph for every sample;
• VISPROG (Gupta & Kembhavi, 2023): Follow the default choice in the original paper of VisProg

and select a deterministic candidate model per subtask type;
• EXMETRIC: Incorporate external metrics for model ranking and selection. This baseline can be

generalized as a paradigm that utilizes external metrics for model selection; 1

• GLOBALBEST (Park et al., 2022; Zhao et al., 2021): Select models on the task graph that yield
the highest average performance across all training samples, without considering input details.

Training-based focuses on leveraging a trainable proxy to find the optimal model. We adapt methods
from other domains and form our baselines to meet the requirements of the multi-modal reasoning
context. Note that tuning and improving these methods are beyond the scope of this paper.
• NCF (He et al., 2017): A representative model selection approach using collaborative filtering.

It uses a neural network to model the interaction between samples and models, leveraging both
features in a collaborative filtering manner;

• METAGL (Park et al., 2022): A representative model selection approach using meta-learning.
It uses input multi-modal features as meta-features, where a multi-relational bipartite graph is
utilized to estimate the relationship between the input and the choice of models on the task graph;

• NCF++ and METAGL++: In comparison to METAGL and NCF, M3 utilizes additional computa-
tion graph descriptions2 to capture subtask dependencies. To ensure a fair comparison, we extend
METAGL and NCF to METAGL++ and NCF++, where original multi-modal input features are
enhanced by adding extra text features derived from the computation graph descriptions.

Notably, HuggingGPT (Shen et al., 2023) employs the “In-context Task-model Assignment” model
selection strategy. However, our Appendix H experiments show its ineffectiveness, so it is not
included in the baselines for simplicity.

Evaluation metric. An ideal model selection method for multi-modal reasoning scenarios should
allocate the optimal model choice per subtask or subtask type, so as to maximize the execution chance
for every input sample. To assess methods on Ntest samples from the MS-GQA benchmark, we define
the metric Successful Execution Rate (SER) as 1

Ntest

∑Ntest
i=1 1αi

. Here, 1αi
indicates the execution

result of the i-th sample upon the selected choice of models c⋆i , either 1 (success) or 0 (fail).
SER measures model selector performance: higher SER means better performance and greater overall
reliability in multi-modal reasoning. In special cases where all model selection choices either succeed
or fail, evaluating the model selector is pointless, so we exclude these cases from our experiments.

Implementation details. To facilitate a fair comparison with M3, we use CCE loss in both NCF
and METAGL, including their extensions (NCF++ and METAGL++). The default backbone network
of the computation graph learner is GAT (Veličković et al., 2017), which is well-known and capable
of handling directed acyclic graphs. When dealing with input features with multi-modal information,
we utilize “blip-base-vqa” as the default feature extractor. Additionally, the pure textual encoder
“bert-base-uncased” is used for encoding the extra computation graph description information. 3

The results below are reported over five random seeds. The dataset from MS-GQA is split randomly
into training, validation, and test sets, with a 6 : 2 : 2 ratio. Ablation studies on the choices of feature
extractors and backbone in computation graph learner are deferred to Appendix D.1, D.2 and D.3.

4.3 RESULTS: MODEL SELECTION ACROSS DIVERSE TEST DISTRIBUTIONS

In this section, we examine the performance of M3 and other strong baselines across varied test
distributions. The test set is divided into multiple sub-test sets. There are two criteria for division: 1)
problem structure; 2) model selection difficulty. It is noteworthy that the training dataset remains
consistent throughout these experiments. The superiority of M3 is summarized below.

Training-based methods outperform Training-free methods. In Table 1 and Table 2, the
Training-based methods represented by M3 and METAGL significantly outperform and demonstrate
greater robustness than the Training-free methods represented by EXMETRIC and GLOBALBEST.
Specifically, on the Full test set in Table 1, Training-based methods achieve approximately 64%

1HuggingGPT filters models based on download count on HuggingFace. As our deployed models are not
entirely on HuggingFace, we choose the most recently published and largest-parameter model for each subtask.

2The LLM decomposes the original input to generate a textual description of the multi-modal reasoning
execution process, which we refer to as the computation graph description.

3https://huggingface.co/Salesforce/blip-vqa-base, https://huggingface.co/bert-base-uncased

7

Published as a conference paper at ICLR 2024

Table 1: Performance comparison in test scenarios with diverse structural information. The testing set
is split into five sub-test sets: Query, Choose, Compare, Verify, and Logical. Each subset maintains consistent
structural information; for instance, all Compare samples involve tasks related to comparisons. Full refers
to the uncategorized test set, which is the complete test dataset. “Improv.” indicates the specific numerical
improvement of M3 compared to the corresponding method in this column.

Category Metrics Traning-free Training-based

RANDOM VISPROG EXMETRIC GLOBALBEST NCF NCF++ METAGL METAGL++ M3

Su
bs

et

Query SER (%) 45.36±1.7 44.85±0.0 58.64±0.0 51.07±0.0 53.94±2.9 53.63±4.3 57.63±2.2 55.18±5.2 59.53±1.0

Improv. (%) +14.17 +14.68 +0.89 +8.46 +5.59 +5.90 +1.90 +4.35 -

Choose SER (%) 68.26±4.0 66.94±0.0 68.60±0.0 69.42±0.0 70.25±1.7 73.39±2.5 73.72±3.4 74.71±5.1 76.53±2.8

Improv. (%) +8.27 +8.27 +7.93 +7.11 +6.08 +3.14 +2.81 +1.82 -

Compare SER (%) 71.29±3.1 82.26±0.0 61.29±0.0 77.42±0.0 73.92±3.9 74.52±2.1 75.16±4.6 73.55±1.8 76.45±1.4

Improv. (%) +5.16 -5.71 +15.16 -0.97 +2.53 +1.93 +1.29 +2.90 -

Verify SER (%) 62.38±2.5 68.40±0.0 65.80±0.0 71.75±0.0 75.46±0.9 71.67±2.6 70.56±3.0 73.01±3.0 75.09±0.6

Improv. (%) +12.71 +6.69 +9.29 +3.34 -0.37 +3.42 +4.53 +2.08 -

Logical SER (%) 64.72±1.6 72.47±0.0 59.55±0.0 78.65±0.0 76.50±1.8 77.08±1.8 74.94±1.6 75.73±1.7 77.53±2.9

Improv. (%) +12.81 +5.06 +17.98 -1.12 +1.03 +0.45 +2.59 +1.80 -

SER (%) 56.51±0.3 59.04±0.0 61.66±0.0 63.58±0.0 65.92±1.5 64.40±1.7 66.01±0.4 65.62±3.2 68.70±0.6Full Improv. (%) +12.19 +9.66 +7.04 +4.12 +2.83 +4.30 +2.69 +3.08 -

to 69% SER, while Training-free methods only reach 57% to 64%. Furthermore, Table 1 and Table
2 reveal that in sub-test sets, unlike Training-free methods that occasionally excel in one subset while
performing poorly in others, Training-based methods consistently exhibit overall stability.

Table 2: Performance comparison with respect to the difficulty of
model selection. Each increase in the “difficulty level” indicates a
one-unit rise in average model selection difficulty for the sub-test set,
leading to a 20% reduction in the executable ratio (E

[∑
j
p
j
i/|Ci|

]
).

Best performances are noted in blue, while the poorest are in orange.

Difficulty Level

EXMETRIC 98.35±1.9 86.67±2.9 59.90±3.8 25.53±2.4 15.62±2.8

GLOBALBEST 92.86±0.0 75.46±0.0 65.62±0.0 54.47±0.0 14.06±0.0

NCF 93.12±1.9 82.67±2.9 65.94±3.8 48.08±2.4 15.31±2.8

METAGL 82.42±3.8 77.58±2.9 70.10±0.9 53.36±3.3 20.21±2.7

M3 93.30±1.7 84.97±1.6 70.50±2.2 52.26±2.6 20.42±1.4

M3 demonstrates its robustness
in diverse test sets. In direct com-
parisons, Table 1 presents that M3

stands out as the top performer,
showcasing a remarkable 2.69% im-
provement over the previous state-
of-the-art (METAGL) in the com-
plete test set (Full). Moreover, M3

consistently excels in various sub-
test sets across both Table 1 and Ta-
ble 2, demonstrating its robustness
and competitiveness. Even in sub-test sets where it does not claim the top spot, M3 maintains a strong
presence, often ranking among the top two or three methods. However, it can be observed that other
methods, particularly training-free ones, often perform poorly on specific sub-test sets.

M3 effectively leverages the subtask dependency information. In Table 1, we assess NCF++ and
METAGL++, both of which employ a text encoder to extract textual features describing multi-modal
reasoning logic on the task graph. Our experiments reveal that this approach often fails to capture
meaningful information and can even harm the performance of the original methods. Conversely, our
framework M3, which integrates subtask dependencies into the modeling process as a whole, is more
effective and non-trivial.

4.4 RESULTS: MODEL SELECTION IN DATA MISSING SCENARIOS

Given the challenges of collecting complete execution results for each sample under all choices of
models in real-world scenarios, this section will discuss how training-based methods perform on the
fixed complete test set (Full) in two different types of training data missing scenarios:
• missing choices of models on the task graph (c), which involves varying levels of incomplete

execution results associated with different model selection choices per sample. E.g., with a missing
ratio of 0.2, ∼ 20% of model selection choices do not have corresponding execution results.

• missing samples (x), where all collected samples have execution results for all model choices on
the task graph, but some samples are absent compared to the complete training set. In this case, a
missing ratio of 0.2 means that 20% of samples are entirely absent.

Data missing results in adverse effects. Figure 5(a) and 5(b) reveal that the missing of data gen-
erally leads to performance decline across all training-based methods. Specifically, when the missing
ratio reaches 0.8, the SER of M3 drops to 66.66% and 64.67%, respectively, while other baselines
exhibit a typical 2% to 3% performance decline. Anomalies in some baselines, where performance
improves with increased missing ratios, may be attributed to two factors: 1) certain methods are insen-
sitive to training data quantity, and 2) the smaller dataset introduces more experimental randomness.

8

Published as a conference paper at ICLR 2024

(a) Missing ratio of model choices c (b) Misssing ratio of samples x (c) Time limit (s)

Figure 5: Performance comparison in scenarios with missing training data and varying time constraints at
test-time. (a) and (b) depict two data-missing scenarios with progressively increasing proportions on the x-axis.
(c) illustrates method performance across different time constraints.
Data missing does not impact the superiority of M3 over baselines. Figure 5(a) and 5(b)
demonstrate that M3 exhibits superior performance compared to other training-based baselines in
two types of missing scenarios. Specifically, despite the overall decline in performance due to missing
data in most methods, M3 consistently outperforms other baselines, underscoring its robustness.
Notably, in Figure 5(b), even when up to 80% of samples are missing (64.67%), M3 performs better
than the best training-free method (GLOBALBEST, 63.58%).

4.5 RESULTS: TEST-TIME EFFICIENCY

SER (%)
60 68

Seconds (s)

negligible !

VisProg

M3

Avg. Execution Time

Avg. Execution Time
+ Model Selection Time

62 64 66

0.6

0.8

1.4

1.6

GlobalBest

HuggingGPT

MetaGL

0.4
58

Figure 6: Comparing M3 and other methods
from the perspectives of performance and aver-
age time cost. Execution time encompasses the
overall task completion time when agents collabo-
rate using multiple models, while model selection
time is the time spent utilizing a proxy for model
selection.

In practical applications of multi-modal reasoning,
beyond enhancing system robustness through model
selection, it is crucial to consider the associated cost
of implementing the selection process. In this section,
we discuss the efficiency of M3, in terms of 1) its
extra model selection time and 2) its comparison with
baselines under the same inference time limit budget.

Negligible runtime overhead at test-time. Figure
6 illustrates that M3 outperforms all other baselines,
particularly training-free methods, despite incurring
extra time overhead from model selection. However,
this additional time overhead (0.09s) is considerably
shorter than the overall task execution time (0.62s)
and can be considered negligible.

M3 continues to perform the best under various time constraints. In practical production
settings, due to cost constraints, not all models are available during test-time. To mimic this challenge,
we gradually decrease the time limit and exclude models from the candidate pool on the task graph
if their average execution time exceeds the current limit. Figure 5(c) illustrates the robustness of
M3 across a range of scenarios, from the most stringent time limit scenario (0.3s) to scenarios with
no time constraints (∞). Despite a decrease in overall performance, M3 consistently excels other
baselines, highlighting its suitability for time-constrained settings at test-time.

5 CONCLUSION

We introduce M3, a novel framework for assisting autonomous agents in model selection for
multi-modal multi-step reasoning scenarios. It tackles the issue of subtask dependencies, a new
challenge arising from multi-step reasoning, which existing methods fail to address. In MS-GQA
experiments, our framework substantially improves performance, enhancing multi-modal reasoning
robustness. Despite resource constraints limiting our experiments to MS-GQA, M3 has broader
applications, including subtask node model selection in multi-step reasoning and adaptation to
various agents and real-world datasets. For an in-depth discussion of our work’s research significance,
the advantages and limitations of our method, and an analysis of our experimental results, please
refer to Appendix E, F, and G.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We thank anonymous reviewers for their constructive and helpful reviews. This work was supported
in part by the National Science and Technology Major Project (No. 2022ZD0115101), the Research
Center for Industries of the Future (RCIF) at Westlake University, and the Westlake Education
Foundation.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Annie S Chen, Yoonho Lee, Amrith Setlur, Sergey Levine, and Chelsea Finn. Confidence-based
model selection: When to take shortcuts for subpopulation shifts. arXiv preprint arXiv:2306.11120,
2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Murtaza Dalal, Tarun Chiruvolu, Devendra Singh Chaplot, and Ruslan Salakhutdinov. Plan-seq-learn:
Language model guided rl for solving long horizon robotics tasks. In CoRL 2023 Workshop on
Learning Effective Abstractions for Planning (LEAP), 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023.

Malcolm R Forster. Key concepts in model selection: Performance and generalizability. Journal of
mathematical psychology, 44(1):205–231, 2000.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. AssistGPT: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640, 2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023b.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. ToolkenGPT: Augmenting frozen language
models with massive tools via tool embeddings. arXiv preprint arXiv:2305.11554, 2023.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language model. arXiv preprint arXiv:2308.11601, 2023.

10

Published as a conference paper at ICLR 2024

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David A Ross, Cordelia Schmid,
and Alireza Fathi. AVIS: Autonomous visual information seeking with large language models.
arXiv preprint arXiv:2306.08129, 2023.

Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, et al. AudioGPT: Understanding and generating speech,
music, sound, and talking head. arXiv preprint arXiv:2304.12995, 2023.

Drew A Hudson and Christopher D Manning. GQA: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International Conference on Machine Learning, pp. 5583–5594.
PMLR, 2021.

James Kotary, Vincenzo Di Vito, and Ferdinando Fioretto. Differentiable model selection for ensemble
learning. In Proceedings of the Fifteen International Joint Conference on Artificial Intelligence,
IJCAI-23, 2023.

Jonathan N Lee, George Tucker, Ofir Nachum, Bo Dai, and Emma Brunskill. Oracle inequalities
for model selection in offline reinforcement learning. Advances in Neural Information Processing
Systems, 35:28194–28207, 2022.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. arXiv
preprint arXiv:2311.05437, 2023a.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
arXiv preprint arXiv:2304.09842, 2023.

Fanqing Meng, Wenqi Shao, Zhanglin Peng, Chonghe Jiang, Kaipeng Zhang, Yu Qiao, and
Ping Luo. Foundation model is efficient multimodal multitask model selector. arXiv preprint
arXiv:2308.06262, 2023.

M Minderer, A Gritsenko, A Stone, M Neumann, D Weissenborn, A Dosovitskiy, A Mahendran,
A Arnab, M Dehghani, Z Shen, et al. Simple open-vocabulary object detection with vision
transformers. arxiv 2022. arXiv preprint arXiv:2205.06230.

Yohei Nakajima. Babyagi. https://github.com/yoheinakajima/babyagi, 2023.

11

https://github.com/yoheinakajima/babyagi

Published as a conference paper at ICLR 2024

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Namyong Park, Ryan A Rossi, Nesreen Ahmed, and Christos Faloutsos. MetaGL: Evaluation-free
selection of graph learning models via meta-learning. In The Eleventh International Conference
on Learning Representations, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

Reworkd. AgentGPT. https://github.com/reworkd/AgentGPT, 2023.

Toran Bruce Richards et al. Auto-GPT. https://github.com/Significant-Gravitas/
AutoGPT, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
GPT: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580,
2023.

Jianlin Su, Mingren Zhu, Ahmed Murtadha, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Zlpr: A
novel loss for multi-label classification. arXiv preprint arXiv:2208.02955, 2022.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
reasoning about natural language grounded in photographs. arXiv preprint arXiv:1811.00491,
2018.

Dídac Surís, Sachit Menon, and Carl Vondrick. ViperGPT: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun, and Yoram Singer.
Large margin methods for structured and interdependent output variables. Journal of machine
learning research, 6(9), 2005.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv
preprint arXiv:2205.14100, 2022.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. Hierarchical multi-label classification
networks. In International conference on machine learning, pp. 5075–5084. PMLR, 2018.

12

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://github.com/reworkd/AgentGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

Published as a conference paper at ICLR 2024

Licheng Wen, Xuemeng Yang, Daocheng Fu, Xiaofeng Wang, Pinlong Cai, Xin Li, Tao Ma, Yingxuan
Li, Linran Xu, Dengke Shang, et al. On the road with gpt-4v (ision): Early explorations of visual-
language model on autonomous driving. arXiv preprint arXiv:2311.05332, 2023.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Jianfei Yang, Hanjie Qian, Yuecong Xu, and Lihua Xie. Can we evaluate domain adaptation models
without target-domain labels? a metric for unsupervised evaluation of domain adaptation. arXiv
preprint arXiv:2305.18712, 2023a.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Chencheng Jiang, Haoran Tan, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
from environmental feedback. arXiv preprint arXiv:2310.08588, 2023b.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang. MM-ReAct: Prompting chatgpt for multimodal
reasoning and action. arXiv preprint arXiv:2303.11381, 2023c.

Yuanxiang Ying, Juanyong Duan, Chunlei Wang, Yujing Wang, Congrui Huang, and Bixiong Xu.
Automated model selection for time-series anomaly detection. arXiv preprint arXiv:2009.04395,
2020.

Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Li, Xiyang Dai, Lijuan
Wang, Lu Yuan, Jenq-Neng Hwang, and Jianfeng Gao. Glipv2: Unifying localization and vision-
language understanding. Advances in Neural Information Processing Systems, 35:36067–36080,
2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022b.

Yuxiang Zhang, Sachin Mehta, and Anat Caspi. Rethinking semantic segmentation evaluation for
explainability and model selection. arXiv preprint arXiv:2101.08418, 2021.

Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Qizhe Xie. Automatic model selection with
large language models for reasoning. arXiv preprint arXiv:2305.14333, 2023.

Yue Zhao, Ryan Rossi, and Leman Akoglu. Automatic unsupervised outlier model selection.
Advances in Neural Information Processing Systems, 34:4489–4502, 2021.

Yue Zhao, Sean Zhang, and Leman Akoglu. Toward unsupervised outlier model selection. In 2022
IEEE International Conference on Data Mining (ICDM), pp. 773–782. IEEE, 2022.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Joshua P Zitovsky, Daniel De Marchi, Rishabh Agarwal, and Michael Rene Kosorok. Revisiting
bellman errors for offline model selection. In International Conference on Machine Learning, pp.
43369–43406. PMLR, 2023.

Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, and Serena Yeung. LOVM: Language-only vision
model selection. arXiv preprint arXiv:2306.08893, 2023.

13

Published as a conference paper at ICLR 2024

CONTENTS OF APPENDIX

A Details of MS-GQA 14
A.1 Collection Process and Statistics . 14
A.2 Files of MS-GQA . 15
A.3 Subtask types of MS-GQA . 15

B Details of Loss Choice 16

C Training Details 17

D Ablation Study 18
D.1 Multi-modal Feature Extractor . 18
D.2 Computation Graph Description Feature Extractor 18
D.3 Backbone of Computation Graph Learner . 18
D.4 Objective Funciton . 18

E Research Significance 19
E.1 Model Selection for Multi-modal Reasoning . 19
E.2 Reliable Model Selector: M3 . 19
E.3 Promising Future Work . 19
E.4 Real-World Applications . 20
E.5 Techniques . 20

F Strengths and Limitations of the M3 Framework 20
F.1 Strengths: . 20
F.2 Limitations: . 21

G Further Analysis 21

H Supplementary Experiment on the “In-context Task-model Assignment” of Hugging-
GPT 21

A DETAILS OF MS-GQA

A.1 COLLECTION PROCESS AND STATISTICS

MS-GQA is constructed by deploying the VisProg agent (Gupta & Kembhavi, 2023) on
the GQA (Hudson & Manning, 2019) dataset, focusing on 9 subtask types, particularly
“LOC”(Localization, Text-guided Object Detection) and “VQA” (Visual Question Answering).
The other 7 subtask types (“EVAL”, “COUNT”, “CROP”, “CROPLEFT”, “CROPRIGHT”,
“CROPABOVE”, “CROPBELOW”) involve Python modules, thus excluding the need for model
selection. The construction process involves these key steps:
• Model Zoo Expansion: VisProg has integrated recently released, popular, open-source models

from Visual Question Answering and Text-guided Object Detection domains into its “VQA”and
“LOC”modules, expanding the available pool of candidate models.

• Execution Results Collection: 10,000 samples are randomly selected from the GQA dataset (test-
dev set). Each sample is first decomposed using LLM, resulting in a computation graph description
representing the reasoning logic (see “program” in Figure 8). Following this description, all models
(“VQA”: 7, “LOC”: 10, total: 7× 10 = 70) are sequentially executed for each sample, yielding
700,000 execution records. Each execution record represents the result (0: fail, 1: success) of a
specific sample’s execution for a model selection choice.

• Data Cleaning: Samples that experienced reasoning execution failures due to incorrect computa-
tion graph descriptions generated by LLM are filtered out. These cases are not within the scope of
our model selection research.

Finally, considering resource constraints, we manage to collect a total of 8,426 valid samples, which
constitute the foundation for constructing the comprehensive MS-GQA benchmark presented in this
study. Within the VisProg framework, the LLM employed is the GPT-3.5-turbo by OpenAI. Regarding
the selection of candidate models, we opt for the most recent, widely recognized, high-performing
models in each subtask category. The specific candidate models are detailed in Table 3.

14

Published as a conference paper at ICLR 2024

Table 3: List of models that can be selected for each subtask in MS-GQA.

Subtask Candidate Models Link Venue
owlvit-large-patch14 (Minderer et al.) https://huggingface.co/google/owlvit-large-patch14 ECCV 2022
owlvit-base-patch16 (Minderer et al.) https://huggingface.co/google/owlvit-base-patch16 ECCV 2022
owlvit-base-patch32 (Minderer et al.) https://huggingface.co/google/owlvit-base-patch32 ECCV 2022
glip_large (Zhang et al., 2022a) https://github.com/microsoft/GLIP NeurIPS 2022
glip_tiny_a (Zhang et al., 2022a) https://github.com/microsoft/GLIP NeurIPS 2022
glip_tiny_b (Zhang et al., 2022a) https://github.com/microsoft/GLIP NeurIPS 2022
glip_tiny_c (Zhang et al., 2022a) https://github.com/microsoft/GLIP NeurIPS 2022
glip_tiny_ori (Zhang et al., 2022a) https://github.com/microsoft/GLIP NeurIPS 2022
groundingdino_swinb (Liu et al., 2023b) https://github.com/IDEA-Research/GroundingDINO Arxiv 2023

LOC

groundingdino_swint (Liu et al., 2023b) https://github.com/IDEA-Research/GroundingDINO Arxiv 2023

vilt-b32-finetuned-vqa (Kim et al., 2021) https://huggingface.co/dandelin/vilt-b32-finetuned-vqa ICML 2021
git-base-textvqa (Wang et al., 2022) https://huggingface.co/microsoft/git-base-textvqa TMLR 2022
blip-vqa-base (Li et al., 2022) https://huggingface.co/Salesforce/blip-vqa-base ICML 2022
blip2-opt-2.7b (Li et al., 2023) https://huggingface.co/Salesforce/blip2-opt-2.7b ICML 2023
blip2-flan-t5-xl (Li et al., 2023) https://huggingface.co/sheraz179/blip2-flan-t5-xl ICML 2023
instructblip-vicuna-7b (Dai et al., 2023) https://huggingface.co/Salesforce/instructblip-vicuna-7b Arxiv 2023

VQA

instructblip-flan-t5-xl (Dai et al., 2023) https://huggingface.co/Salesforce/instructblip-flan-t5-xl Arxiv 2023

A.2 FILES OF MS-GQA

There are three main files for MS-GQA:
• gqa_model_selection_instance_results.json provides the results of whether a sample can be

successfully executed under different model combination choices and the cost time. As shown
in Figure 7, the sample with index 1 chooses “instructblip-vicuna-7b” as the “VQA” model and
“groundingdino_swint” as the “LOC” model, then this sample can be executed successfully and
the cost time is 0.887s.

• gqa_computation_graph_descrption.json offers the image ID, problem, and programing text of
a sample, as shown in Figure 8.

• testdev_balanced_questions.json includes the task type of a sample. As shown in Figure 9, we
can get a sample’s task type from the attribute of [types][structural].

A.3 SUBTASK TYPES OF MS-GQA

Table 4 shows the examples of five subtasks, including Qurey, Choose, Compare, Verify and Logical.

Figure 7: Examples in gqa_model_selection_instance_results.json.

15

Published as a conference paper at ICLR 2024

Figure 8: Examples in gqa_computation_graph_descrption.json.

Figure 9: Examples in testdev_balanced_questions.json.

B DETAILS OF LOSS CHOICE

In Section 3.2 discussion, we observe that in multi-modal reasoning, a single sample’s execution result
(success or failure) is known, creating a binary outcome. Notably, the count of successful executions
is variable. Consequently, we transform the model selection process in multi-modal reasoning into a

16

Published as a conference paper at ICLR 2024

Table 4: Subtask examples in MS-GQA.

Subtask Type Question Image

Qurey How tall is the chair in the bottom of the photo?

Choose Is the ground blue or brown?

Compare Are both the phone and the coffee cup the same color?

Verify Is the surfer that looks wet wearing a wetsuit?

Logical Does the utensil on top of the table look clean and black?

multi-label classification issue. Here, the count of positive labels (successful executions) varies, and
the total categories are denoted as |C|.
Previous literature often employs Binary Cross-Entropy (BCE) loss for multi-label classification
problems due to its ease of optimization. However, BCE’s instance-wise nature overlooks the distinct
impact of different model selection choices on the same sample.
Therefore, an optimal optimization objective for multi-modal reasoning should emphasize differenti-
ating between model selection choices corresponding to positive and negative labels for a specific
sample. Any choice associated with a positive label is deemed optimal. Hence, we choose Categorical
Cross-Entropy (CCE) loss since it ensures that “the score for each target class is not lower than the
score for each non-target class”.

C TRAINING DETAILS

NCF, NCF++, and M3 are all implemented by ourselves within a unified pipeline. We employ grid
search to filter some crucial hyperparameters. Specifically, we explored hidden sizes [16, 32, 64,
128], learning rates [1e-2, 5e-3, 1e-3, 5e-3, 1e-4], weight decays [0.01, 0.001, 0.0001], and optimizer

17

Published as a conference paper at ICLR 2024

options [AdamW, Adam, SGD]. A batch size of 64 is utilized, along with StepLR Scheduler with
parameters step size 100 and gamma 0.7.
What’s more, we conduct experiments on both METAGL and METAGL++ after adapting the code of
MetaGL (Park et al., 2022) to suit our specific scenario. And we train both METAGL and METAGL++
using the optimizer of Adam. The learning rate is adjusted within [1e-2, 5e-3, 1e-3, 5e-3, 1e-4], with
a majority of the experiments using 1e-3. The weight decay is set to 0, and the batch size is set to 128.

D ABLATION STUDY

D.1 MULTI-MODAL FEATURE EXTRACTOR

To verify the effect of the quality of multi-modal features on model selection, we perform ablation
experiments on the choices of multi-modal feature extractors. We choose BLiP (Li et al., 2022),
BERT (Devlin et al., 2018) + ViT (Dosovitskiy et al., 2020), and ViLT (Kim et al., 2021) as the
feature extractors separately. As shown in the Table 5, the quality of the features really affects the
performance of model selection methods, but M3 stays superiority no matter which feature extractor
we use.

Table 5: Performance comparison of model selection methods with different multi-modal feature extractors.

Feature extractor NCF METAGL M3

BLiP 65.92±1.5 66.01±0.4 68.70±0.6

ViLT 64.87±0.8 61.90±0.8 65.91±0.7

BERT+ViT 63.14±0.8 62.27±1.6 64.94±0.5

D.2 COMPUTATION GRAPH DESCRIPTION FEATURE EXTRACTOR

NCF++ and METAGL++ leverage extra text features derived from the computation graph descriptions
compared to NCF and METAGL. Here we use “bert-base-uncased4” (Devlin et al., 2018), “sentence-
bert”5 (Reimers & Gurevych, 2019), and “roberta-base”6 (Liu et al., 2019) from HuggingFace,
respectively, to extract the computational graph features given in textual form by LLM. Table 6 show
the performance of NCF++ and METAGL++ across different textual encoders.

Table 6: Performance comparison with different computation graph feature extractors.

Extractor NCF++ METAGL++

bert-base-uncased 64.40±1.7 65.62±3.2

sentence-bert 63.95±2.2 64.00±1.8

roberta-base 64.28±1.3 65.90±1.1

D.3 BACKBONE OF COMPUTATION GRAPH LEARNER

In Table 7, we report SER of M3 when using GAT (Veličković et al., 2017), GRU (Chung et al., 2014)
and Transformer (Vaswani et al., 2017) as the backbone, respectively. Since GRU and Transformer
cannot be directly applied to model directed acyclic graphs, we made corresponding adjustments;
however, their performance still lags behind that of GAT.

D.4 OBJECTIVE FUNCITON

As shown in Table 8, we report the performance comparison of NCF, METAGL and M3 on Binary
Cross-Entropy Loss (BCE) and Categorical Cross-Entropy loss (CCE), respectively.

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
6https://huggingface.co/roberta-base

18

Published as a conference paper at ICLR 2024

Table 7: Performance comparison with different backbone for M3.

Backbone SER

GAT (GNNs) 68.70±0.6

GRU (RNNs) 68.02±0.7

Transformer 65.32±0.4

Table 8: Performance comparison with different loss function.

NCF METAGL M3

BCE 64.49±1.4 66.03±1.4 67.65±1.3

CCE 65.92±2.8 66.01±0.4 68.70±0.6

E RESEARCH SIGNIFICANCE

E.1 MODEL SELECTION FOR MULTI-MODAL REASONING

• Model selection techniques have proven successful in various fields. Model selection
techniques, recognized in tasks like time series prediction and graph learning, aim to match
samples with suitable models, enabling task completion without sample labels.

• Errors could have a chain reaction effect. Choices in models impact overall robustness,
crucial in multi-step reasoning with strong task dependencies, as errors can lead to chain
reactions on subsequent executions.

• Underperformance of current model selection strategies. Section 4’s experimental
results reveal poor and lacking robustness in existing multi-modal agent model selectors,
with methods from other domains yielding unsatisfactory results due to neglect of subtask
dependency.

• A significant gap from the oracle model selector. In MS-GQA, the oracle model selector
attains 100% success, while a random strategy reaches about 56% SER, and existing multi-
modal agents usually achieve around 60% effectiveness. Our M3 framework, addressing
subtask dependency, enhances results to about 69%. Nevertheless, a noticeable gap from the
oracle’s 100% remains, underscoring substantial research potential in this area.

E.2 RELIABLE MODEL SELECTOR: M3

• Addressed the limited robustness of current model selectors. The industry emphasizes
agent robustness, however, current multi-modal agent research is not mature, and their use
of simplistic model selection damages robustness. M3 addresses these shortcomings as
an effective and efficient plugin in the model selection stage to enhance overall system
robustness.

• Reliable performance in various scenarios. M3 demonstrates reliability in various data
missing and restriction scenarios on the MS-GQA dataset. Sections 4.4 and 4.5 highlight its
superior performance compared to existing training-based methods, reflecting the potential
applicability of M3 in real-world production environments.

• Highly lightweight and efficient. As pioneers in this research, we’ve avoided complex
network structures and training techniques. Instead, we’ve tackled a key challenge, subtask
dependency, using a straightforward design—a directed acyclic computation graph. This ap-
proach models relationships among multi-modal inputs, subtask dependency, and candidate
models. The design leads to low costs for both training and testing, with overall memory
usage around 6GB, as noted in Section 4.5. This emphasizes M3’s practical potential for
real-world production scenarios.

E.3 PROMISING FUTURE WORK

• Empower LLM with model selection capabilities. Currently, the M3 framework operates
orthogonally to LLM in multi-modal agents. The former, following task planning by the

19

Published as a conference paper at ICLR 2024

latter, performs model selection for each subtask based on its output. Given LLM’s robust
reasoning abilities, granting it model selection capabilities is a promising endeavor. This
would allow LLM to simultaneously handle task planning and model selection, eliminating
the need for training an additional model selector and reducing deployment costs in practical
production environments.

• Enhance supervisory signals using intermediate results. In the current training of the
M3 framework, only the final execution results of the multi-modal agent are utilized as
supervisory signals, indicating the success of execution or the correctness of the provided
answer. However, at each step of reasoning, intermediate results are generated. If these
results are judiciously employed as supplementary supervisory signals, we believe it can
further improve the effectiveness of M3.

• More economical unsupervised and semi-supervised training methods. Similar to
the second point, if intermediate results are reasonably utilized, even as a form of data
augmentation, supervisory signals can come not only from the final execution results but
also from the intermediate stages. This enables a more cost-effective training approach.

E.4 REAL-WORLD APPLICATIONS

• Utilizing agents to decompose and gradually solve complex multi-modal reasoning tasks is
currently one of the mainstream research paradigms for addressing multi-modal challenges.
Relevant work, from pioneers like VisProg (Gupta & Kembhavi, 2023) to the highly regarded
HuggingGPT (Shen et al., 2023), and more recently LLaVA-Plus (Liu et al., 2023a), has
been a focal point for researchers in this field.

• Moreover, AssistGPT (Gao et al., 2023a) and Chameleon (Lu et al., 2023) highlight the
potential applications in areas such as video understanding, education, and finance. Mean-
while, inspired by these endeavors (Yang et al., 2023b; Dalal et al., 2023; Wen et al., 2023),
we reasonably expect that multi-modal agents whose per-step execution relies on other tools
will eventually extend their applications to other AI domains, including autonomous driving,
robotics, and embodied intelligence.

• When agents call upon different multi-modal AI models to tackle various subtasks in
reasoning, it gives rise to the need for model selection techniques. Specifically, considering

– the richness and abundance of existing multi-modal model types;
– the extensive candidate models;
– the reliability and feasibility demonstrated by model selection in other domains;
– the overly simplistic or less effective model selection strategies employed by current

multi-modal agents;

Researching model selection in the context of multi-modal reasoning is highly promising
and practically valuable in this new scenario.

E.5 TECHNIQUES

Our technical contributions encompass addressing the challenge of subtask dependency in multi-
modal agents by decomposing the original multi-modal task into sub-tasks, as defined in the multi-
modal reasoning scenario (see Definition 3.2). Sections 2 and 4 reveal the inadequacy of existing
model selection strategies in multi-modal agents, particularly in handling subtask dependencies.
Baseline methods, as outlined in Appendix E.1, exhibit notable underperformance compared to the
oracle model selector. In response, our proposed model selection framework, M3, skillfully integrates
multi-modal inputs, model embeddings, and subtask dependencies on a directed acyclic graph. This
approach, detailed from Section 4.3 to Section 4.5, demonstrates the reliability and robustness of
M3. As an initial endeavor, the unified modeling approach of M3 holds promise to inspire future
researchers.

F STRENGTHS AND LIMITATIONS OF THE M3 FRAMEWORK

F.1 STRENGTHS:

• Effective performance. The experimental results in Tables 1 and ?? demonstrate that
our approach consistently outperforms baselines across various test distributions on the

20

Published as a conference paper at ICLR 2024

MS-GQA dataset, particularly when compared to simplistic strategies like training-free
methods.

• Efficient design. As pioneers in this domain, we opted for a straightforward yet effective
approach. Rather than intricately designing the network structure and optimization strategies
for M3, we focused on exploring the critical aspect of subtask dependency. This simplicity
is reflected in the efficiency of the entire framework, as evidenced by results in Section 4.5.

• Applicability across diverse multi-modal agents. The M3 framework comprises three main
components: multi-modal inputs, subtask dependency, and candidate models. Although
our experiments were conducted with the VisProg agent, these three inputs constitute
foundational components of existing multi-modal agents. For example, in HuggingGPT, if
a user inputs an image and a corresponding question, this forms the model’s multi-modal
inputs. Then, HuggingGPT breaks down the user’s original input, identifying various sub-AI
tasks and their dependencies, abstracted as subtask dependency. Candidate models in this
context refer to all off-the-shelf models or model APIs within HuggingGPT.

F.2 LIMITATIONS:

• Data dependency. The experiments in Section 4.4 demonstrate that, despite M3 performing
better than baselines in scenarios with varying degrees of data missing, there is an absolute
decline in performance. This underscores the crucial role of data in M3’s effectiveness.

• Supervisory signal underutilization. The source of supervisory signals during training is
too singular, failing to fully harness the intermediate results of multi-step reasoning. This
limitation may contribute to M3’s higher dependency on data.

G FURTHER ANALYSIS

• M3 exhibits the best performance on the complete test set of MS-GQA. Table 1 illustrates
that M3 stands out as the top performer overall compared to other baselines. It achieves a
significant 2.69% improvement over the previous state-of-the-art (METAGL) in the complete
test set (Full).

• M3 continues to perform exceptionally well on the sub-test sets of MS-GQA. Moreover,
in both Table 1 and Table 2, M3 consistently excels in several sub-test sets, including the
Query and Choose sets in Table 1 and the Group 3, and 5 (difficulty level) sets in Table
2. Even in the remaining sub-test sets where it does not perform best, M3 maintains a
strong performance, usually ranking among the top two or three methods. In contrast, some
baselines may excel in one sub-test set but perform poorly in others. For example, VisProg
achieves an 82.26% SER on the Compare sub-test set in Table 1 but fares the worst among
all methods on the Query (45.36%) and Choose (68.26%) sub-test sets. In contrast, the M3

framework consistently performs well across all sub-test sets, which is why M3 significantly
outperforms training-free methods on the complete test set (Full). This also demonstrates
the robustness of M3.

• M3 depends on the size of dataset. As shown in Figure 5(b), despite M3 performing better
than baselines in scenarios with varying degrees of data missing, there is an absolute decline
in performance. Nevertheless, constrained by limited financial resources, we only collected
the limited dataset, MS-GQA. So according to the above experimental results, we have
reason to believe that expanding the size of the dataset further will improve the performance
of M3 on both sub-test sets and the the whole test set.

H SUPPLEMENTARY EXPERIMENT ON THE “IN-CONTEXT TASK-MODEL
ASSIGNMENT” OF HUGGINGGPT

In the original HuggingGPT (Shen et al., 2023) text, there is a mention of utilizing the in-context
learning ability of LLM for model selection. Following the configuration in the HuggingGPT source
code, we represented each model by using its metadata and relevant descriptions. Based on Table 9,
our primary conclusions are as follows:
• The selected model consistently remained the same despite changes in question descriptions or

structures.

21

Published as a conference paper at ICLR 2024

• The consistency indicates that leveraging the in-context learning capability of LLM currently falls
short of achieving genuine and effective dynamic model selection.

Table 9: Distribution of the selected model based on in-context learning

Candidate Models Query Choose Compare Logical Verify

vilt-b32-finetuned-vqa 100% 100% 100% 100% 100%
git-base-textvqa 0% 0% 0% 0% 0%
blip-vqa-base 0% 0% 0% 0% 0%
blip2-opt-2.7b 0% 0% 0% 0% 0%
blip2-flan-t5-xl 0% 0% 0% 0% 0%
instructblip-vicuna-7b 0% 0% 0% 0% 0%
instructblip-flan-t5-xl 0% 0% 0% 0% 0%

The corresponding experimental details and observations are outlined below:
• Settings. We randomly selected 100 questions from GQA, and constructed prompts following

HuggingGPT’s description. 100 questions cover 5 different question structures, and each question
structure typically has distinct reasoning characteristics. The corresponding experimental code
is included in the supplementary materials. We randomly selected 100 questions from GQA,
and constructed prompts following HuggingGPT’s description. 100 questions cover 5 different
question structures, and each question structure typically has distinct reasoning characteristics.
The corresponding experimental code is included in the supplementary materials.

• Observations. All questions, irrespective of task type and question itself, are assigned to the first
model (vilt-b32-finetuned-vqa) with five 100% values in the first model column.

• Comment. The experiment was conducted only in a one-step scenario, where one model is
selected for a single task. Though simple, we believe this case is sufficient to state the fact that
“in-context task-model assignment” may not be particularly effective in a multi-step setting.

22

	Details of MS-GQA
	Collection Process and Statistics
	Files of MS-GQA
	Subtask types of MS-GQA

	Details of Loss Choice
	Training Details
	Ablation Study
	Multi-modal Feature Extractor
	Computation Graph Description Feature Extractor
	Backbone of Computation Graph Learner
	Objective Funciton

	Research Significance
	Model Selection for Multi-modal Reasoning
	Reliable Model Selector: M3
	Promising Future Work
	Real-World Applications
	Techniques

	Strengths and Limitations of the M3 Framework
	Strengths:
	Limitations:

	Further Analysis
	Supplementary Experiment on the ``In-context Task-model Assignment'' of HuggingGPT

