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Abstract

Continuous control of non-stationary environments is a major challenge for deep reinforcement
learning algorithms. The time-dependency of the state transition dynamics aggravates the
notorious stability problems of model-free deep actor-critic architectures. We posit that
two properties will play a key role in overcoming non-stationarity in transition dynamics:
(i) preserving the plasticity of the critic network and (ii) directed exploration for rapid
adaptation to changing dynamics. We show that performing on-policy reinforcement learning
with an evidential critic provides both. The evidential design ensures a fast and accurate
approximation of the uncertainty around the state value, which maintains the plasticity of
the critic network by detecting the distributional shifts caused by changes in dynamics. The
probabilistic critic also makes the actor training objective a random variable, enabling the
use of directed exploration approaches as a by-product. We name the resulting algorithm
Evidential Proximal Policy Optimization (EPPO) due to the integral role of evidential
uncertainty quantification in both policy evaluation and policy improvement stages. Through
experiments on non-stationary continuous control tasks, where the environment dynamics
change at regular intervals, we demonstrate that our algorithm outperforms state-of-the-art
on-policy reinforcement learning variants in both task-specific and overall return.

1 Introduction

Most deep reinforcement learning algorithms are developed assuming stationary transition dynamics, even
though in many real-world applications the transition distributions are time-dependent, i.e., non-stationary
(Thrun, 1998). The non-stationarity of state transitions makes it essential for the agent to keep updating its
policy. For example, a robotic arm may experience wear and tear, leading to changes in the ability of its
joints to apply torque, or an autonomous robot navigating a terrain with varying ground conditions, such as
friction, inclination, and roughness. In such environments, an agent can maintain high performance only
by continually adapting its policy to changes. On-policy algorithms, such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017), are particularly well-suited for non-stationary environments because they rely
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solely on data from the most recent policy, ensuring policy improvement through sufficiently small updates
(Kakade & Langford, 2002). This makes PPO an attractive choice for applications ranging from physical
robotics (Melo & Maximo, 2019) to fine-tuning large language models (Touvron et al., 2023; Achiam et al.,
2023; Zheng et al., 2023). Agents designed for open-world, non-stationary environments have to continually
learn throughout their entire lifecycle, not just during a fixed training phase. Time-dependent changes in state
transition dynamics result in non-stationary Markov decision processes (MDPs), where existing reinforcement
learning algorithms often struggle to adapt effectively.

We posit that the simultaneous presence of two key features is essential for overcoming the challenges caused
by non-stationarity in deep reinforcement learning:

(i) Maintaining the plasticity of the critic network: Plasticity refers to the ability of a neural
network to change its wiring in response to new observations throughout the complete learning period. Deep
reinforcement learning algorithms have been reported to suffer from the loss of plasticity in non-stationary
settings by a vast body of earlier work (Dohare et al., 2021; Lyle et al., 2022; Nikishin et al., 2022; Abbas
et al., 2023; Dohare et al., 2023; Lyle et al., 2023; Dohare et al., 2024; Lee et al., 2024; Moalla et al., 2024;
Chung et al., 2024; Kumar et al., 2025; Lyle et al., 2025).

(ii) Ensuring directed exploration for rapid adaptation to changing dynamics: Directed
exploration determines the degree of exploration based on an estimated uncertainty of an unobserved state.
In this way, the agent prioritizes underexplored, hence more informative, areas of the state-action space,
thereby improving its sample efficiency. Directed exploration is instrumental in fast-changing non-stationary
environments where the agent has limited time to adapt to each new condition (Kaufmann et al., 2012; Besbes
et al., 2014; Zhao et al., 2020).

We hypothesize that both sustained plasticity and directed exploration can be achieved by quantifying
the uncertainty around the value function. An agent equipped with a probabilistic value function will
systematically reduce the uncertainty of its value predictions as it collects more data. When confronted with
a change in environment dynamics, the value function output will make predictions with reduced confidence.
The increased uncertainty will increase the critic training loss, thereby keeping the training process active.
Furthermore, the probabilistic value predictor will make it possible to assign uncertainty estimates to the
policy training objective, which can in turn be used as an exploration bonus to direct the policy search toward
underexplored areas of the state-action space.

Our Hypothesis: FEquipping an agent with a mechanism to quantify the uncertainty of the value
function enables it to (i) preserve plasticity and (ii) explore effectively under non-stationary dynamics.

Guided by the above hypothesis, we adopt Fvidential Deep Learning (Sensoy et al., 2018) as a well-suited
framework for learning probabilistic value functions. Evidential deep learning suggests modeling the uncertainty
of each data point by a Bayesian data-generating process where the hyperparameters of the prior distribution
are determined by input-dependent functions. The likelihood and priors are chosen as conjugate pairs to keep
the calculation of the data point-specific posterior and the marginal likelihood analytically tractable. The
prior hyperparameter functions are modeled as deep neural networks, the parameters of which are learned by
empirical Bayes. Evidential approaches are observed to deliver high-quality uncertainty estimates in both
regression (Amini et al., 2020) and classification (Kandemir et al., 2022) settings.

Figure 1 illustrates the learning profiles of on-policy deep actor-critics in a continuous control task with
non-stationary dynamics. Plain PPO, its recent extension to non-stationary environments (Moalla et al.,
2024), and a state-of-the-art variant equipped with directed exploration (Yang et al., 2024b) all lose their
adaptation capability at early stages of training. Conversely, our evidential version and its extension to
directed exploration quickly adapt to new tasks. We posit that our new method, called Fvidential Proximal
Policy Optimization (EPPO), brings such a performance boost as it fulfills both requirements of our hypothesis
above. Our contributions are as follows:
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(ii) Due to the absence of a widely adopted bench- Figure 1: PPO, its non-stationary extension, and PPO
mark, we introduce two new experimental designs tai- equipped with directed exploration all lose their adap-
lored to evaluate the adaptation capabilities of contin- tation capability after 1 million steps. In contrast,
uous control agents to rapidly changing environment evidential PPO variants continue to improve, and di-
conditions. We benchmark our approach against two rected exploration further enhances evidential PPO’s
state-of-the-art PPO variants and observe that it out- Performance. See Section B.4 for details.
performs them in the majority of cases.

2 Background

2.1 On-policy deep actor-critics

We define an infinite-horizon MDP as a tuple M £ (S, A, P,r, po,7), where S represents the state space and
A denotes the action space. Let P be the state transition probability distribution such that s" ~ P(:|s,a)
where s € S and a € A. We assume a deterministic, time-homogeneous reward function r : S x A — R to
facilitate presentation but without loss of generality. We denote the initial state distribution as so ~ po(-)
and the discount factor as vy € (0,1). We consider non-stationary environments with time-dependent state
transition probabilities, i.e., P;(-|s, a) for a time index ¢, where the non-stationarity arises from these changes.
We consider stationary stochastic policies defined as a ~ 7(+|s). We use the following standard definitions of
the action-value function Q™, the value function V™, and the advantage function A™:

o
QTK‘ (Stv CLt) = Est+1:oo, [Z ’}/lrt—i-l , Aﬂ'(st,at) S Qﬂ'(st,at) — V""(St),

Qt41:
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where expectations are taken over trajectories induced by the policy 7 and ryy; £ r(8t41, at+1). The colon
notation a : b refers to the inclusive range (a,a +1,...,b). We denote by G; = Yoo y'ris the discounted
sum of rewards.

We focus our study on on-policy deep actor-critic algorithms. We adopt PPO (Schulman et al., 2017) as the
state-of-the-art representative of the conservative policy iteration approaches (Kakade & Langford, 2002).
This algorithm family has been adopted in real-world scenarios due to its relative robustness stemming
from the conservative policy updates that promote slower but more stable training. Prime examples include
the control of physical robotic platforms (Lopes et al., 2018; Melo & Mdaximo, 2019) and fine-tuning large
language models (Christiano et al., 2017; Bai et al., 2022; Touvron et al., 2023; Achiam et al., 2023; Zheng
et al., 2023). PPO is a policy gradient method that updates the policy using a surrogate objective, ensuring
that policy updates remain constrained to ensure an average policy improvement (Schulman et al., 2015). We
follow the established practice and adopt the clipped objective as the surrogate function. PPO updates its
policy 7y, parametrized by 6 € ©:

Letip(0) = E(s,0)~mo [min (WA’TOM(&a), clip (we(as) 1—¢1+ e> fl’“ld(s, a))] ,

mord(als) moa(als)’

where ATod (s,a) is an estimate of the advantage function, and clip( T:Zii(?(l‘rs)) ,1—¢,1+¢€) bounds the probability

ratio within the range [1 — €, 1 + €] for € > 0. PPO approximates the value function with V,, parametrized by
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¢ € ®. It uses the squared-error loss Lyr(¢) = E,, [(Vi(s:) — G¢)?] to learn Vi, The learned Vy is then used
to compute advantage estimates, guiding policy updates for more stable and efficient learning.

Modern PPO implementations use Generalized Advantage Estimation (GAE) (Schulman et al., 2016), which
is a technique for computing advantage estimates. This method helps reduce the variance in the return
estimate while enabling step-wise updates via bootstrapping. GAE constructs the advantage function using a
weighted sum of multi-step temporal-difference errors. Let the temporal-difference residual at time step ¢ be
5 & 4+ Vs (st+1) — Vp(s). The GAE estimate is defined as the exponentially weighted sum of temporal

difference residuals:
o0

ASAE()\),‘IT _ Z(’)/)\)lét-‘rl’ (1)
=0

where A € [0,1] is a hyperparameter that controls the bias-variance trade-off. GAE provides a flexible
mechanism for estimating advantages, allowing reinforcement learning algorithms to achieve improved
stability and faster convergence (Schulman et al., 2015; 2017).

Loss of plasticity mitigation. Many deep reinforcement learning algorithms suffer from loss of plasticity
under non-stationarity, attributed to several factors. Dohare et al. (2021; 2023; 2024) treat the loss of
plasticity in PPO primarily as an optimization challenge. To address this, Dohare et al. (2021; 2024) propose
a continual backpropagation method to counteract decaying plasticity, while Dohare et al. (2023) introduce a
non-stationary adaptation of the Adam optimizer (Kingma & Ba, 2015), balancing exponential decay rates
for moment estimates (Lyle et al., 2023). Another line of work employs regularization to preserve plasticity,
such as constraining learned features to remain close to their initial values (Lyle et al., 2022), penalizing
parameter drift relative to initializations (Kumar et al., 2025), promoting weight-matrix orthogonality to
stabilize learning (Chung et al., 2024), and discouraging excessive feature shifts during training (Moalla et al.,
2024). Some approaches balance adaptation and retention by maintaining separate fast and slow learners,
periodically resetting the fast learner to the slow one (Lee et al., 2024). Other methods target specific
causes, such as activation sparsity reducing gradients (Abbas et al., 2023), while others show that combining
mechanisms like layer normalization and weight decay strengthens plasticity preservation (Lyle et al., 2025).
Recent studies have also linked data diversity to plasticity preservation: Mayor et al. (2025) improve diversity
through multiple parallel environments, and McLean et al. (2025) do so through multi-task training. While
these approaches rely on optimizer adaptations, regularization, architectural modifications, or data diversity
to preserve plasticity, our method achieves both diverse data collection and plasticity preservation within a
single probabilistic framework using evidential value learning. We compare our method with Dohare et al.
(2024) and Moalla et al. (2024), which represent state-of-the-art solutions for loss of plasticity in PPO.

Directed exploration encourages agents to seek out novel or informative states. Prior work has improved
the exploration schemes of PPO in both stationary and non-stationary settings (Burda et al., 2019; Wang
et al., 2019; Zhang et al., 2022; Steinparz et al., 2022; Yang et al., 2024b). PPO is also widely applied in
continuous control, particularly in robotics (Schwarke et al., 2025; Mittal et al., 2024), where non-stationarity
often arises due to dynamic environments and changing task requirements. To address this, Schwarke et al.
(2023) extended random network distillation (Burda et al., 2019) to non-stationary robotic tasks, while Yang
et al. (2024Db) further advanced it with a distributional formulation. We compare against Yang et al. (2024b),
which represents the state-of-the-art in directed exploration for PPO, with its non-distributional variant
demonstrating strong performance in non-stationary robotics task (Schwarke et al., 2023).

Relation of non-stationary reinforcement learning to curriculum, meta-, and continual reinforce-
ment learning. Continual learning aims to learn a single policy that maximizes the expected return in a
stream of tasks (Khetarpal et al., 2022). This is a useful learning setup when the tasks have common properties.
The challenge is to improve performance in each new task by exploiting these commonalities without causing
a performance drop in the previously seen tasks, the phenomenon called catastrophic forgetting (Rusu et al.,
2016; Kirkpatrick et al., 2017; Traoré et al., 2019; Kaplanis et al., 2019). Non-stationary reinforcement
learning addresses setups where some factors of the environment change slower than the step-level transition
dynamics. In such setups, the agent is tasked to adapt to the recent change as quickly as possible and does
not have to remember all the history of the changes. Instead, it uses all the model capacity to capture the
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trend of the change and rapidly adapt to it. Our setup can thus be viewed as a special case of a continual
reinforcement learning problem with weaker assumptions than standard benchmarks (Wolczyk et al., 2021;
Tomilin et al., 2023), such as the agent having no access to task identifiers, task-specific replay buffers,
or network heads. These relaxed assumptions make our non-stationary setting an even more challenging
instance of continual reinforcement learning. In curriculum learning, task order is typically chosen, either
explicitly or implicitly, to promote transfer or accelerate mastery (Bengio et al., 2009). In our case, tasks
change at short, fixed intervals, independent of success, difficulty, or skill acquisition. The sequences are
structured but not pedagogically curated; they reflect arbitrary shifts in environment dynamics rather than
a progression intended to guide the learner. Meta-learning trains agents across task distributions for fast
generalization at test time (Al-Shedivat et al., 2018; Berseth et al., 2021; Bing et al., 2023). Methods in these
areas often stress retention by constraining updates, which can reduce plasticity. In non-stationary settings,
however, plasticity is crucial for effective long-term adaptation with minimal regret. Despite its importance,
non-stationary reinforcement learning has been less studied than meta- or continual learning (Khetarpal et al.,
2022). Compared to continual learning formulations such as Dohare et al. (2024), our setting differs in two
ways: (i) changes occur at shorter intervals, requiring faster adaptation, and (ii) changes are structured rather
than random, enabling realistic strategies. In domains like robotics or control under changing conditions,
retaining performance across all past dynamics is often infeasible; the main challenge is rapid adaptation to
current conditions, highlighting non-stationary reinforcement learning as a distinct and practical setting.

2.2 Evidential deep learning

Bayesian inference (Bishop, 2006; Gelman et al., 2013) infers a posterior distribution over model parameters
from a given likelihood function evaluated on data and a prior distribution chosen without access to data.
Evidential deep learning (Sensoy et al., 2018) applies the classical Bayesian framework in a particular way
where posteriors are fit to data-specific random variables from data-specific prior distributions, the parameters
of which are amortized by input observations. The amortized prior and the likelihood are chosen from
conjugate families to ensure analytically tractable computation of the posterior and the marginal likelihood,
the latter of which is used as a training objective.! See Ulmer et al. (2023) for a recent survey paper
introducing the concept in greater detail.

We build our solution on Amini et al. (2020)’s adaptation of the evidential framework to regression problems,
as a typical continuous control task has real-valued reward functions. Amini et al. (2020)’s approach assumes
that the output label y corresponding to an input observation x follows a normally distributed likelihood
with mean p and variance o2. This distribution is assigned a Normal Inverse-Gamma (NZG) distributed
evidential prior:

(1, 0%)|lm(x) ~ NIG (4, 0% |w(®), v(@), a(x), B(z))
=N (plw(z),oc?v(z) ") InvGam(o?|a(z), B(z)),

where the hyperparameters w, v, a, 8 are modeled as input-dependent functions, specifically neural networks
with weights ¢. Throughout the paper, we suppress the dependency of the variables on ¢ and a for notational
clarity, e.g., w = wy(x), and refer to them jointly as the evidential parameters m £ my = (w, v, o, 3). Due to
its conjugacy with the normal likelihood p(y|u, 02) = N (y|p, 02), the posterior p(iu, 02|y, m) and the marginal
likelihood p(y|m) are analytically tractable. This marginal is the well-known Student-t distribution:

1
ylm ~ St <y‘w, M,?a) .
va

The parameters of this distribution can be fit by minimizing the negative logarithm of the marginal likelihood

Ly (m) = %bg (g) — alog () + (a + ;) log ((y —w)?v+ Q) + log (F(Fa(i)l)> ; (2)
2

where Q@ = 28 (1 +v) and T'(+) is the Gamma function. See Section A for the derivation of the posterior
distribution.

IMarginal likelihood optimization is also known as Type II Mazimum Likelihood or Empirical Bayes (Efron, 2012).
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Evidential deep learning in deep reinforcement learning. FEvidential deep learning has been ex-
tensively used in numerous machine learning frameworks and practical tasks (Gao et al., 2024). It has
also been integrated into deep reinforcement learning for recommendation systems to provide uncertainty-
aware recommendations (Wang et al., 2024), modeling policy network uncertainty to guide evidence-based
exploration in behavioral analysis (Wang et al., 2023), incorporating uncertainty measures as rewards for
decision-making in opinion inference tasks (Zhao et al., 2019), and calibrating prediction risk in safety-critical
vision tasks through fine-grained reward optimization (Yang et al., 2024a). However, we instead use it to
model uncertainty in value function estimates, which enables confidence-based exploration and helps preserve
the plasticity of the neural network.

3 Method

We present a method that adapts the evidential approach to learn a distribution over the value function V' (s;).
The inferred distribution induces a corresponding distribution over the GAE, which enables the model
to detect distributional shifts resulting from the non-stationarity of the dynamics and to guide directed
exploration, thereby promoting rapid adaptation.

3.1 Evidential value learning

We assume our value function estimates V (s;) to be normally distributed with unknown mean g and variance o2,
which are jointly N'ZG-distributed. We shorten the notation to V; = V(s;) when the relation is clear from
context. Although evidential deep learning has demonstrated promising results in epistemic uncertainty
estimation, including for unseen out-of-distribution data, naively following Amini et al. (2020)’s method often
results in training instabilities even on standard supervised regression tasks (Oh & Shin, 2022; Meinert et al.,
2023). Prior work relied on non-Bayesian heuristics to solve these instabilities. We are the first to introduce
a fully Bayesian hierarchical design to solve this which we summarize in the plate diagram in Figure 2.
Introducing hyperpriors on each of the four evidential param-
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Figure 2: Plate diagram of our evidential
where Gam(-) is the Gamma distribution, and 2, ... ,ﬂg are value learning model.
fixed hyperparameters.” We adopt a fixed set of hyperpriors to
provide relatively flat and uninformative priors for all experiments. See Table 12 in the Appendix for further
details. Following our notational convention, we suppress the dependency on s, e.g., w = w(s), and combine
the evidential parameters into m = (w, v, a, 3). Marginalizing over (u,o?) yields
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where p(V|m) is a Student-t distribution parameterized as in Section 2.2. The hyperprior p(m)
acts as a regularizer in the log-joint objective. The training objective of evidential value learning is
L(m) = LniL(m) — Elog p(m), where £ > 0 is a regularization coefficient.

2As w is a deterministic transformation of the state s, the notation w(s) ~ A/(-) implies that its parameters ¢ are random
variables such that w(s) is normally distributed.



Published in Transactions on Machine Learning Research (11/2025)

The mean and variance of the state-value function output V' can be computed analytically as

IE>V|'rn, [V] = IE"(u,<72)|'rn [EV“L,UQ [VH = E(u,zﬂ)\m [,LL] = w,

and

Vary|m [V] = E(u,oz)\m [Varvw}az [VH + Var(y o2)|m I:]EV‘H’O-Z [VH
= E(u0t)jm [0°] + var(u,on)m [1]

_ B g B 1
_Ozl—i_z/(al)_a1(1—i_u>7

where we assume o > 1.° The first equality follows from the law of total variance, which splits the marginal
variance into aleatoric and epistemic uncertainty components. Reliance on vary,, [y] therefore provides us
with a principled way of incorporating irreducible uncertainty inherent in the environmental structure and
reducible uncertainty due to improvable approximation errors in EPPO.

Distributional reinforcement learning. Evidential value learning belongs to a broader research field
that incorporates distributional information into reinforcement learning models, which can be roughly divided
into two sub-fields. The first aims to account for aleatoric uncertainty in the MDP caused by the inherent
stochasticity of the environment. It focuses on accurately modeling the resulting distribution over the
returns Gy, e.g., to infer risk-averse policies (Keramati et al., 2020). See Bellemare et al. (2023) for a
recent textbook introduction. The second focuses on accounting for second-degree epistemic uncertainty
inherent in value function inference, usually relying on methods from Bayesian inference (Ghavamzadeh
et al., 2015; Luis et al., 2024), e.g., to use it as a guide for exploration (e.g., Deisenroth & Rasmussen, 2011;
Osband et al., 2019). Evidential value learning differs from standard distributional reinforcement learning
approaches in several key ways. While methods in the first category focus solely on modeling aleatoric
uncertainty for risk-sensitive, usually risk-averse, control, evidential value learning is related to the second
area of research. It uses an evidential model over the value function to induce a distribution over an advantage
function that simultaneously incorporates both aleatoric and epistemic uncertainty. To make this feasible
requires the assumption of a parameterized density model instead of the model-free particle-based distribution
approximation used in distributional reinforcement learning. This dual uncertainty quantification enables
both regularization benefits and optimistic exploration strategies, distinguishing it from approaches that
target only adaptive or risk-sensitive settings through aleatoric uncertainty modeling alone.

3.2 Directed exploration via probabilistic advantages

Evidential value learning provides an uncertainty quantifier for the value function that detects shifts in the
data distribution caused by non-stationary state transition dynamics. By parameterizing the value function as
a distribution p(V'|m) rather than as a point estimate, our model naturally increases uncertainty in regions of
distributional shift, thereby maintaining gradient flows and preserving plasticity. This uncertainty propagates
through the advantage calculation, turning the generalized advantage estimator AtG’AE into a random variable.
An Upper Confidence Bound (UCB) exploration strategy emerges naturally from this probabilistic treatment,
drawing theoretical justification from the exploration-exploitation trade-off in multi-armed bandit theory
(Auer et al., 2002). The UCB estimator

AVCE — [AGAE} + K4/ var [A?AE} ) (3)

provides an optimistic estimator that balances expected advantage with uncertainty, where x > 0 controls
the confidence radius. This ensures that the policy is directed towards state-action regions where the value
function exhibits high uncertainty, enabling curiosity-driven exploration with firm theoretical grounding.

The mean estimate for GAE is

oo

AGAE Z §t+l
=0

3We enforce this condition by adding one to the neural network’s output.
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and remains tractable due to the linearity of expectations and because the mean of the temporal difference
E[0¢] = re + yE[Vi11] — E[V4] is tractable. We propose two variants of EPPO that differ in how the variance
term var[AF4F] in Equation (3) is computed.

(EPPOc,,) Exploration via correlated uncertainties. We derive the variance of A, by focusing on its
definition as the exponentially weighted average of the k-step estimators 21§’“) = Vi +Y"Vie + Z;:Ol Yreg.
Because the rewards are deterministic in our setup and therefore have zero variance, we combine them into a
generic constant term and obtain

AGAE 2 (1 _)) Z )\l_lfl,gl) =(1-2M\) (—Vt Z A Z’yl)\l_thH) + const
=1 1=0 =1

R
=-Vi+ — ;(WA)ZVHZ + const.

Given the assumed conditional independence of the states, the resulting variance is

var [AFAP) = var [V;] + (“AA) > (3) v (Vi) (4)
=1

We use this variance to construct the UCB in Equation (3) and refer to it as EPPOg,, in the experiments.

(EPPO;,a) Exploration via uncorrelated uncertainties. We also consider the case where the k-step
estimators flgk) are assumed to be independent of each other. We then construct the overall variance as the
exponentially weighted sum of the individual k-step estimators. It can be shown easily (see Section A.2) that
the resulting variance approximation is
; 1A -0\ &
GAE]| 21
var [A64] ~ 12w )+ (£52) D60 v i (5)

=1

i.e., the influence of the current value variance is down-scaled by a factor (1 — \)/(1 + ) < 1 relative to the
future time steps in EPPOj,q compared with EPPO,c,. This adjustment makes EPPO;,q more far-sighted
for the same k. We use the variance estimate in Equation (5) to construct the UCB in Equation (3).

Practical implementation of EPPO. We provide pseudocode in Algorithm 1 illustrating how to
implement EPPO variants by overlaying color-coded modifications on top of a standard PPO implementation,
where each color corresponds to a specific EPPO variant. As shown, EPPO variants require only minimal
changes to PPO with a clipped objective and GAE-based advantage calculation. The key additions include
an evidential value estimator, its update rule, and a probabilistic advantage computation with UCB. All
other components remain identical to those in PPO.

4 Experiments

We design experiments to benchmark EPPO variants against state-of-the-art on-policy deep actor-critic
algorithms in non-stationary continuous control environments. To amplify the effect of non-stationarity on
model performance, we define tasks over short time intervals and introduce changes in the environment
dynamics. In each interval, agents are required to detect the change, explore effectively, and adapt rapidly
to maximize the overall return during learning. We focus on non-stationarities that affect environment
dynamics in a structured manner, based on identifiable patterns of change, and exclude scenarios where
changes occur randomly. This design ensures that observed performance improvements stem from enhanced
learning capabilities rather than increased robustness to noise. We run our simulations on the Ant and
HalfCheetah environments using the ‘v5’ versions of MuJoCo environments (Todorov et al., 2012). For
further details on the experimental pipeline and hyperparameters, see Section B. The implementation of the
EPPO variants and the full experimental pipeline is available at https://github.com/adinlab/EPPO.
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Table 1: Performance evaluation on slippery environments. Area Under the Learning Curve (AULC) and
Final Return (mean+se) scores are averaged over 15 repetitions. The highest averages are highlighted in bold,
and results that are not significantly different from them (see Section B.2) are underlined. The average score
represents the mean across all environments, while the average ranking is based on the mean scores.

Metric Model decreasing increasing Average

Ant HalfCheetah Ant HalfCheetah Score Ranking

PPO 23554203 24954201 22374254 25364297 2406 5.3

PFO 25224109 23004189 2485-+90 1809-+430 2279 5.0

CB 2185+63 1519+183 22884118 1833+150 1956 6.5

AULC (1) PPOpRND 24754139 2633+£180 2307+348 2021+246 2359 4.5

EPPOmean  2504+127 24324299 2875477 2822+219 2658 3.5

EPPOcor 25614128 26994256 2944 +80 3645+240 2962 1.5

EPPOjng 2614+138 2866+218 2779+86 3374+220 2908 1.8

PPO 23574230 24834212 23414270 27204310 2475 5.5

PFO 2613+110 23464214 2620-+99 1906+462 2371 5.3

CB 2303+72 1527+193 2398+116 1920+172 2037 6.5

FINAL RETURN (1) PPOprnp  2583+141 2672+191 24284368 2115+259 2449 4.5

EPPOmean  2660+131 25224331 3002+92 2978+227 2790 3.0

EPPOcor 2714+128 28214274 3071+88 3872+248 3120 1.5

EPPOing 2741+145 2970+231 2941+89 3559+227 3053 1.8

Baselines. To validate our hypothesis that uncertainty-aware Table 2: Plasticity and exploration.
value estimation enhances both plasticity preservation and directed Comparison of baselines highlighting
exploration, we benchmark against four representative baselines, the presence of plasticity preservation
summarized in Table 2. These baselines are selected to isolate mechanisms and directed exploration.
and test the contribution of each hypothesis component. (i) PPO

(Schulman et al., 2017): A widely used on-policy deep actor-critic Plasticity Directed
reinforcement learning algorithm that serves as the foundation for =~ Model
EPPO. We follow the most recent implementation practices to repre-
sent the state of the art. In particular, we use GAE (Schulman et al., PPO
2016) to estimate value function targets. (ii) PFO (Moalla et al., PFO
2024): A recent PPO variant that addresses the plasticity problem CB
under non-stationarity by extending the trust region constraint to FFObrwp
the feature space. (i) CB (Dohare et al., 2024): A PPO variant for =FFOnean
continual learning that mitigates plasticity loss through continual EFFOcor
backpropagation, where a fraction of less-used units are randomly EFPOina
reinitialized. (i) PPOpgryp (Yang et al., 2024b): A state-of-the-art

PPO variant designed for directed exploration using random network distillation, where the distillation signal
acts as a pseudo-count to generate intrinsic rewards that guide exploration. We also evaluate the EPPO
variant with k = 0, which performs evidential value learning without directed exploration. We refer to this
model as EPPOpe.p. Its relative performance highlights the contribution of directed exploration. We use the
recommended hyperparameters for the baselines from the original papers, except for CB, where we conduct a
grid search due to its high sensitivity to two hyperparameters as reported in the original work. We provide
the full details in Section B.3.

Mechanism Exploration

AN RS N NS
NN X N X % %

Experimental setup. We propose two experimental setups to assess the ability of the models to adapt to
non-stationarity. In both setups, we encourage fast adaptation by limiting task durations to short intervals.
We also preserve agent learnability by introducing changes gradually and avoiding abrupt transitions. The
setups are as follows:

(i) Slippery environments. Inspired by Dohare et al. (2021; 2024), we construct non-stationary envi-
ronments by varying the friction coefficient of the floor in locomotion tasks using the Ant and HalfCheetah
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Table 3: Performance evaluation on paralysis environments. Area Under the Learning Curve (AULC) and
Final Return (mean+se) scores are averaged over 15 repetitions. The highest averages are highlighted in bold,
and results that are not significantly different from them (see Section B.2) are underlined. The average score
represents the mean across all environments, while the average ranking is based on the mean scores.

Model
PPO PFO CB PPOprRND EPPOmean EPPOcor EPPOjnq

back-one 2009+312  2259+113  2298+121  2562+124 2455+78 2608+129 2724+174
front-one 2054+260 2098+87 20354144  2547+120 2407+92 2749+112  2743+121
back-two  1928+174 2136457 1808+85  2226+92 2203+79 209980 2088+94

Metric Environment Strategy

Ant front-two 1975+174  2000+56  2023+78  2144+100 2259485 2294 +93 2275476
parallel  2162+175 2298486  1918+120  2358+132  2350+103 23484127 25584159
AULC (1) cross 1898+185  2161+71 1846+69 2012+93 2167+91 2197472 2281+72
Average 2004 2159 1988 2308 2307 2383 2445
back-one  2444+223 21814282 2258+142  2131+294 3160+270 3502+173 3515+131
HalfCheetah front-one 2076+209 2485+271 21514135 25924319 33844227 3558+224  3695+241
cross—-vl 23114235 2314+287 2255+118  2487+245 30024238  3205+224  3120+207
cross-v2  2477+220 1903+245 2318+95  2371+225 3039+195 32504195  3283+212
Average 2327 2221 2246 2395 3146 3379 3403
Overall Average 2133 2184 2091 2343 2643 2781 2828
Overall Average Ranking 5.9 5.2 6.2 3.8 3.1 2.1 1.7
back-one  2261+325 25034114 2478+126  2784+147 2709+83 2891+129 2977+169
front-one 2253+284 2337+87 21304188  2802+128 2649+96 3020+107 29564135
Ant back-two  2188+205 2454462  2103+77 2512491 2533-+96 2400+86 2327+112
front-two 2282+189  2249+61 2310492 2425+115 2536+98 2633+97 2605+94
parallel  2397+195 2601495  2118+137  2647+145  2649+114 2653+144  2883+163
FINAL RETURN (1) cross 2144+220  2467+79  2043+s0  2310+104 2495+103 2500+75 2570+72
Average 2254 2435 2197 2580 2595 2683 2720
back-one  2504+260 22754303 2344+152  2204+317 33204287 3696+178  3718+133
HalfCheetah front-one 2115+325 2577+295 21844146  2625+362 35404235 37244232 38924248
cross—-vl = 2405+271  2349+310 2333+131  2648+246 31594254  3420+231  3341+220
cross-v2 25504235 1953+260 2434+106  2511+250 32174204 34504208  3468+228
Average 2394 2288 2324 2497 3309 3573 3605
Overall Average 2310 2376 2248 2547 2881 3039 3074
Overall Average Ranking 5.8 5.3 6.4 3.9 3.9 1.9 1.7

environments. We induce non-stationarity in them by changing friction every 500000 steps. To create
challenging task changes, we implement two strategies: decreasing, where friction starts at its maximum
value and gradually decreases, and increasing, where friction starts at its minimum value and gradually
increases. This setup ensures that agents encounter non-stationarity in both increasing and decreasing friction
scenarios. The minimum friction is set to 0.5 and the maximum to 4.0, based on the feasibility of solving
the tasks—extreme friction values may make movement too difficult due to slipping or an inability to move
forward. We define 15 tasks by changing the friction with a positive or negative offset of 0.25.

(ii) Paralysis environments. We design a new set of non-stationarity experiments by dynamically
altering the torque capabilities of the leg joints in the Ant and HalfCheetah environments, inspired by
Al-Shedivat et al. (2018). Each experiment involves paralyzing different joints to diversify the control tasks
across experiments. We generate six torque modification schemes for Ant and four for HalfCheetah. In
each scheme, we select specific joints and progressively reduce their torque capability until they become fully
paralyzed. Then, we gradually restore their functionality, returning to the fully operational state. This yields
a sequence of nine tasks, where each joint either loses or regains 25% of its torque capacity in each step,
following the pattern: [100, 75, 50, 25,0, 25, 50, 75, 100].

Evaluation metrics. We assess model performance using two metrics: (i) Area Under the Learning Curve
(AULC) and (ii) Final Return. AULC is the average return collected over the entire training trajectory. It
captures not only the agent’s final performance but also how quickly and consistently it improves throughout
training. In non-stationary environments, where the task dynamics change over time, AULC reflects the
agent’s ability to continually adapt to new conditions and recover from changes. A higher score indicates
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Figure 3: Plasticity preservation analysis using critic network metrics. We evaluate three metrics: effective
rank, stable rank, and dormant unit percentage, shown from left to right. The top row shows results from
the slippery environments, and the bottom row shows results from the paralysis environments. Each
box plot summarizes the distribution of the respective metric across training seeds: the red line indicates
the mean, the black line indicates the median, and the individual points represent outliers. These metrics
quantify the prediction capacity of the critic networks as learning progresses. EPPO variants consistently
preserve plasticity better than PPO variants, as shown by higher ranks and lower dormant unit percentages.

stronger overall adaptation and learning stability across the full training horizon. Final Return is calculated
at the completion of each individual task by averaging the returns during the last evaluation steps of that task.
These evaluations are averaged over all tasks at the end of training. This metric measures how well the agent
adapts and performs on individual tasks after it has observed and interacted with them. A higher final return
suggests more effective task-specific adaptation. Together, these metrics assess distinct but complementary
aspects of adaptation: AULC evaluates an agent’s learning efficiency and dynamic adaptability to changing
environments over time, while final return assesses the agent’s stable performance after task-specific adaptation
has occurred. We use statistical tests to identify significant improvements; see Section B.2 for details.

4.1 Results and Discussion

We present the detailed results of the experiments in Table 1 and Table 3. We also provide experimental result
visualizations in Section B.4, illustrating episode returns throughout the changing tasks and demonstrating
both quantitative and qualitative performance differences between EPPO variants and our baselines.

Plasticity preservation analysis. We analyze the plasticity of the agents’ critic networks using three
metrics: (i) Effective rank (Roy & Vetterli, 2007) quantifies the number of significant dimensions in the
feature matrix. A high value indicates that most matrix dimensions contribute, suggesting that the network
generates diverse features and maintains plasticity. (%) Stable rank (Yang et al., 2020) measures the effective
dimensionality of the feature matrix. A low rank suggests limited diversity in the learned representations,
implying that the network struggles to preserve plasticity. (i) Dormant unit percentage (Sokar et al., 2023)
refers to the proportion of inactive neurons. A high percentage suggests impaired gradient flow and reduced
learning capacity, indicating a loss of plasticity. We compute these metrics at the end of each task and report
the average over the entire training process. Figure 3 summarizes the results across both experimental setups.
As shown, EPPO variants consistently achieve higher effective and stable ranks and exhibit fewer dormant
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units than plain PPO and its recent variants for handling non-stationarity and directed exploration. Pairwise
t-tests on these plasticity metrics confirm that EPPO and its variants significantly outperform plain PPO
(p < 0.05) , indicating statistical significance; see Section B.2 for details. These findings indicate that the
evidential value learning framework helps preserve plasticity and that the addition of directed exploration
does not compromise it relative to plain PPO. We provide a full analysis in Section B.1.3.

Plasticity preservation through evidential value learning. EPPO preserves plasticity by making the
loss (Equation (2)) geometry (i) smoother (fewer extrema per unit area) and (i) more convex (less saddle
points), which facilitates gradient-based training. Table 4 decomposes the evidential learning objective (see
Equation (2)) and reports the sign of the derivative of each loss component with respect to the evidential
parameters.

Let A = |y — w| (absolute value for simplicity) denote the value function approximation error. The derivatives
of the loss term that includes the value function approximation error (see the third row in Table 4) with
respect to the evidential parameters have negative signs, decreasing the evidential parameters except w which
is driven toward the target y. Conversely, the derivatives of the other loss terms with respect to the evidential
parameters have positive signs, increasing the evidential parameters. As a result, when the value function
approximation error drives the evidential parameters downward, the other loss terms penalize this change,
balancing the tendencies and constraining the solution in the function space. This regulatory effect smooths
the loss geometry.

For a gradient-based method to perform well,
the loss geometry should exhibit similar con-
vexity in all dimensions; in other words, the
eigenvalues of its Hessian should be close to
each other (Belkin, 2021). We examine the
gradient of the term that includes the value
function approximation error with respect
to the neural network parameters, compared
with the mean squared error as in plain PPO

Table 4: Sign of loss derivatives with respect to evidential
parameters. For each loss term listed in the rows (decomposed
from Equation (2)), the table reports the sign of the derivative
of the loss with respect to each evidential parameter. ‘4’
and ‘=’ denote positive and negative signs of derivatives,
respectively, while ‘0’ indicates no dependency. All evidential-
related terms have positive derivatives except in the third row,
which includes the value function approximation error term
((y — w)?), highlighting their role as regularizers.

and other baselines. The gradient term for

PPO is 2AVyw, where 6 denotes the network ly—w v a B

parameters. In contrast, the derivative of p

Equation (2), considering only the value func- 3 log (; 0 + 0 O

tion app(roxin}za)ution error, is (2AVyw where —alog (25( V) 0 + o+ 4+
a+3)v : 1 ( ) _ o

(= A2 F (110 In effect, ¢ adaptively (@ + 3) log ((y — w)?v+28(1+v)

rescales the gradient, reducing the step size log (F F(a)1 ) 0 0 + 0

when the value function approximation error (at3)

A is large. This dynamic scaling functions as
an effective adaptive learning rate and limits excessively large updates that could move the weights into
regions with inactive gradients, which may otherwise create dormant units.

As shown in Figures 8 to 9, critics trained with evidential value learning maintain lower gradient norms,
higher effective and stable ranks, and fewer dormant units compared to critics trained with mean squared
error (plain PPO and PPOpgrnp). In these baselines, increasing gradient norms causes plasticity loss, leading
to lower ranks and more dormant units. Since all models use layer normalization and gradient clipping, as is
common in the plasticity-preserving literature (Lyle et al., 2023; 2025), these factors are controlled. Therefore,
EPPO’s improvements in plasticity are due solely to its evidential value learning loss.

Exploration analysis. We evaluate the exploration ability of the agents using the percentage coverage
metric (Mayor et al., 2025), which quantifies the spatial dispersion of state representations. Specifically,
we project the representations into a 2D space and compute the proportion of occupied cells in a uniform
grid over this projection. A higher coverage indicates better exploration, meaning that the agent visits a
broader portion of the state space. We evaluate this metric for plain PPO, PPOpgrnp, which serves as the
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Table 5: Exploration analysis. Percentage coverage (mean+se) scores are averaged over 15 repetitions. The
highest mean values are highlighted in bold and underlined if they fall within one standard error of the best
score.

PPO PPOpgrun EPPOnean EPPOcor EPPOinq

paralyzed-ant-parallel 7.51+£0.70 8.12+0.62 8.90+0.74 9.27 £ 0.52 9.34 +0.68
paralyzed-cheetah-back-one 3.18+1.21 5.26+145 1246+0.34 12.614+0.30 12.72+0.29

strongest baseline for directed exploration, and the EPPO variants on the paralysis ant environment with
the parallel strategy and the paralysis cheetah environment with the back-one strategy. Table 5 reports
the percentage coverage results. The EPPO variants consistently achieve higher coverage than both plain
PPO and PPOpgrnDp, demonstrating their enhanced ability to explore the state space. In non-stationary
environments, agents must gather data from diverse and high-reward regions of the state distribution and
continually adapt to the newly visited states through plasticity preservation. Notably, PPOpgrNp increases
the coverage of plain PPO but does not improve plasticity preservation (see Figure 3), and its adaptation
performance in terms of AULC and Final Return remains inferior to that of EPPO variants. The strength of
evidential value learning lies in its ability to jointly achieve plasticity preservation and directed exploration
within a single probabilistic learning framework. We provide further details in Section B.1.4.

Discussion. Our experimental findings are as follows:

(i) Evidential value learning helps preserve plasticity. EPPO variants yield higher effective and stable
ranks while creating fewer dormant units compared to plain PPO, thereby better preserving the plasticity
of the critic networks. This capacity to retain plasticity enables EPPO variants to continue adapting to
changing environment dynamics.

(ii) Directed exploration boosts performance. EPPO variants with directed exploration (EPPOg,, and
EPPOjnq) outperform the baselines across all metrics. They also surpass EPPOyean, which uses the mean
value function for policy improvement. These results highlight the unique contribution of directed exploration
to performance. Notably, the addition of directed exploration also improves the performance of plain PPO,
as demonstrated by PPOpgrnp.

(#ii) Plasticity alone or directed exploration alone is insufficient to overcome non-stationarity. Baselines
focusing solely on preserving plasticity (PFO, CB) or solely on directed exploration (PPOpgrnp) yield partial
improvements but fail to adapt contiunially. This indicates that both properties are necessary for sustained
performance.

(iv) Evidential value learning with directed exploration accelerates convergence and improves training
stability while preserving plasticity. EPPO variants achieve superior task adaptation compared to the baselines,
as demonstrated by the final return scores and learning curves. They also converge more rapidly and improve
training stability, as supported by higher AULC scores. By modeling value uncertainty, evidential value
learning maintains plasticity throughout training.

(v) Equipping an agent with a mechanism to quantify the uncertainty of the value function enables it
to preserve plasticity and explore effectively in the face of non-stationary dynamics. Our best-performing
algorithms, which incorporate uncertainty quantification into the value function, allow agents to maintain
plasticity and conduct directed exploration. This facilitates rapid and continual adaptation to non-stationary
environments, supporting our key hypothesis.

Compute time. We perform our experiments using two computers equipped with GeForce RTX 4090
GPUs, an Intel(R) Core(TM) i7-14700K CPU running at 5.6 GHz, and 96 GB of memory. Our experiments
are conducted on these two machines with four parallel seeds. We measure approximately the total wall-clock
time for the computation of 15 seeds across all environments at 74.8 hours for PPO, 75 hours for PFO, 78.8
hours for CB, 78.1 hours for PPOpgrnDp, 75.3 hours for EPPO,ean, 75.4 hours for EPPOc,,, and 75.6 hours
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for EPPOj,q. The total execution time for all experiments reported in this work is approximately 533 hours,
equivalent to 22.2 days on two GPU-supported workstations.

5 Limitations and broader impact

We observe EPPO to be sensitive to the choice of some hyperparameters, such as the regularization coefficient &
and the confidence radius x. While this is a common weakness of most deep reinforcement learning algorithms,
the effect of the resulting brittleness may be larger in non-stationary environments. We expect that choosing
the confidence radius based on a generalization bound, as practiced commonly in bandit research (Li
et al., 2010; Srinivas et al., 2010; Kaufmann et al., 2012; Lattimore & Szepesvari, 2020) and increasing the
Bayesian modeling hierarchy will make EPPO more robust to hyperparameters. As an on-policy policy-
gradient algorithm, EPPO shares similar theoretical properties with other PPO variants. The effect of the
evidential learning extension on non-asymptotic convergence is a challenging problem; hence, it requires
special investigation. Although our study demonstrates that evidential value learning improves the control of
non-stationary systems, we did not investigate whether the quantified uncertainties are calibrated and how
strong the correlation is between their calibration and performance. We leave this interesting problem to a
separate study. Our results are limited to rigid-body locomotors of a single physics engine, despite covering
comprehensive variations of challenging scenarios at non-stationarity levels exceeding those of prior studies.
We do not expect extending our results to more tasks to bring any additional insights. We view testing our
approach on physical robotic systems as the natural next step.

Continuous control of a non-stationary environment is the core problem of building an agentic system on a
physical platform. Non-stationarity is the essential element of developing co-adaptive environments where
robots and humans learn via bilateral feedback. Such co-adaptation is crucial to ensure human-centric growth
of the capabilities of agentic systems of the future. Our work contributes to the responsible AT initiative by
facilitating the application of the powerful PPO algorithm to co-adaptive system development.
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APPENDIX

A Derivations

A.1 Derivations for evidential deep learning

We follow the derivations from Amini et al. (2020), adapting them to our notation whenever necessary.

Normal inverse-gamma (NZG) distribution We use the notation
(1,02~ NTG (11,0, v, 01, )
= N(plw, c*v™HInvGam(o?|a, B)

where w € R and v, a, 8 > 0. The mean, mode, and variance are given by

Elp=w, E[s’]=—" V&I‘[M]ZL, for a > 1.

via—1)

The second and third terms correspond to aleatoric and epistemic uncertainty, respectively.

Model evidence and type II maximum likelihood loss We derive the model evidence of an N'ZG
distribution. We marginalize out p and o:

p(ylm) = / ) p(ylp, o )( |m)d(,u702)
/:00/0_0 p (ylp, 0%) p (1, 0%Im) du do?

:/2_0 ~ p(lw0®) p (0% w, v, 0, B) dp do?

[ [Fp( -’ )1

e (7)o (25

_ /oo ﬂao.7372a exp _26 + V(Z{;‘:) da2
o2=0 V2m\/1 4+ 1/vT(a) 202
oo @ —3—2a 93 4 Lly=w)
= / p*o exp —u 20 do
21y/1+ 1/vT (@) 202
r1/24a) /v o ~(4+e)
= T2 o514 (vl =+ 28040)

where T'(+) is the Gamma function. Therefore, the evidence distribution p(y|m) is a Student-t distribution,

ie.,
p(ylm) = St( ‘w M,Qa) )
va
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which is evaluated at y with location parameter w, scale parameter 3(1 — v)/va, and degrees of freedom 2a.
We can compute the negative log-likelihood (NLL) loss as:

LxiL(m) = —log p(y|m)
“log (St (y‘w 5(1]/2”),2@))

= %log (g) — alog (2) + (a + ;) log ((y — w)21/+ Q) + log <F(I;(i))>

1
2

where Q =25 (1 +v).

A.2 Derivations for the generalized advantage estimator

Given the definition of the k-step estimator as A,E’“) = Vi + " Vigr + Z;:OI y're4y, we have that
var {flgk)] = var [V;] + v*Fvar [Viqr] .

We adapt our estimator’s variance approximation for EPPO;,q to

var {ASAE} ~(1-)\)? i)g(l—nvar {Aﬁ”}
=1

=(1-))? <var VDN 4 42N Dvar [ml})

=0 =1
(1—X)? L= A\ = e
=T eVl + (—— ;(W var Vi),

i.e., the form we have in (5).

B Further details on experiments

B.1 Experiment Details

In this section, we outline the details and design choices for our experiments and non-stationary environments.
We use the Ant and HalfCheetah environments with the ‘v5’ versions of MuJoCo (Todorov et al., 2012),
as these tasks do not reward the agent for maintaining stability.

B.1.1 Slippery environments

Our experimental design is inspired by Dohare et al. (2021; 2024). We construct a non-stationary environment
by varying the floor’s friction coefficient. Searching for feasible friction values, we set the minimum at 0.5
and the maximum at 4.0. Outside of this range, solving the tasks either becomes infeasible or yields low
rewards due to excessive action costs, limited movement, or the agent simply falling.

To introduce variation across tasks while ensuring differences between tasks, we incrementally change the
friction by 0.25, resulting in 15 distinct tasks. We implement two strategies for these changes:

e decreasing: Friction starts at its maximum value and gradually decreases.

e increasing: Friction starts at its minimum value and gradually increases.
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These setups ensures that the agents experience non-stationarity in both increasing and decreasing friction
scenarios. We implement these changes by modifying the publicly available environment XML files* ° to
adjust the floor friction coefficients.

B.1.2 Paralysis environments

We introduce a novel set of non-stationarity experiments by dynamically modifying the torque capabilities of
leg joints in the Ant and HalfCheetah environments, inspired by Al-Shedivat et al. (2018). Specifically, we
define six torque modification schemes for Ant and four for HalfCheetah. Each scheme targets selected
joints, progressively reducing their torque capacity until they become completely paralyzed, after which
their functionality is gradually restored to the fully operational state. This process results in a sequence
of nine tasks, where each joint’s torque capacity changes in increments of 25%, following the pattern:
[100, 75, 50, 25, 0, 25, 50, 75, 100]. Note that while the policy can still output full torques, the applied torque is
scaled according to the specified coefficients.

Paralysis on ant. The Ant environment consists of four legs and eight joints. We design distinct
experiments by paralyzing different joints, ensuring that control tasks remain unique across experiments.
For instance, if we paralyze the right back leg, we do not conduct a separate experiment on the left back
leg, as the locomotion is symmetric and would result in an equivalent control task. We create the following
experiments:

e back-one: Paralyzing a single back leg. The affected joints are 6 and 7.

e front-one: Paralyzing a single front leg. The affected joints are 2 and 3.

e back-two: Paralyzing both back legs. The affected joints are 0, 1,6, and 7.
e front-two: Paralyzing both front legs. The affected joints are 2, 3,4, and 5.

e cross: Paralyzing diagonally opposite legs (right back and left front). The affected joints are 0, 1,2,

e parallel: Paralyzing the left-side legs (one back and one front). The affected joints are 2,3, 6, and

Paralysis on halfCheetah. The HalfCheetah environment consists of two legs and four joints. To
prevent the agent from resorting to crawling, we modify only one joint per leg. We create the following
experiments:

e back-one: Paralyzing a single joint in the back leg. The affected joint is 2.
e front-one: Paralyzing a single joint in the front leg. The affected joint is 5.

e cross-—vl: Paralyzing diagonally opposite joints in the back and front legs. The affected joints are 2
and 4.

e cross-v2: Paralyzing a different pair of diagonally opposite joints in the back and front legs. The
affected joints are 1 and 5.

B.1.3 Plasticity preservation analysis

We calculate the metrics as follows:

4https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/ant .xml
Shttps://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/half_ch
eetah.xml
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o Effective rank is calculated using the feature matrix & € R™*™ from the penultimate layer, with
singular values oy, for k =1,2,...,¢q, where ¢ = max(n,m). We define py =

ol where ||lo||1 =), |ok|.
The effective rank of ® is given by:

effective rank(®) £ exp H(p1,p2, - - -,Pq),

where the entropy H(p1,p2,...,0q) = — ) Pk 10g Dy

e Stable rank is also computed using the feature matrix ® from the penultimate layer, with:

Sk g2
stable rank(®) £ min T >1-0,,
k > 5 0;
where § is a threshold. We set § = 0.01, meaning that the selected rank captures at least 99% of the total
variance.

e Dormant unit percentage measures the portion of neurons that remain consistently inactive across a
batch of inputs. We compute activations immediately after applying the nonlinearity and consider a neuron
dormant if its output remains below a small threshold (0.01) for all samples in the batch.

We measure these metrics at the end of each task in the evaluation environment and report their averages
over the entire training process. The results for each environment are presented in Figures 5 to 7. We also
provide the evolution of these metrics along with the maximum absolute gradient of the critic throughout
training in Figures 8 to 9.

Significance test. Figure 4 presents p-values for the relative performance of the methods, see Section B.2
for more details. Only the lower triangular part of each matrix is shown, where each entry corresponds to the
p-value from comparing the row and column methods. The results show that our EPPO variants preserve
plasticity significantly better than plain PPO at a 0.05 significance level. Note that each pairwise test is
evaluated and reported independently, i.e., no Bonferroni correction was applied.

B.1.4 Exploration analysis

Following Mayor et al. (2025), we applied UMAP with default parameters to project the states into a 2D
space.® This projection is necessary due to the large number and high dimensionality of the states. We then
applied min—max normalization with a small epsilon (le—5) to scale the projected data to the range [0, 1).

Let the resulting projection be denoted as D = {(z;,y;) | i =1,..., N}, where x;,y; € [0,1). We discretize
the 2D space into a uniform grid of G x G cells and assign each point (x;,y;) to its corresponding grid cell:

idx{ = min (|z; - G|,G—-1), idx! =min(ly;,-G|],G—-1)

The set of occupied cells is defined as
O ={(idx{,idx!) |i=1,...,N},
and the percentage coverage is computed as

O]

Percentage Coverage = ezl x 100

where |O] is the number of unique occupied cells, and G? is the total number of grid cells.
We used a grid size of G = 100, corresponding to a 0.01 resolution per grid cell. Since Mayor et al. (2025)
does not report the specific choices of UMAP parameters, scaling method, or grid size, we selected these

values to ensure fairness and reproducibility. The same 15 random seeds are used for this experiment as in
the other experiments.

6We relied on the following implementation: https://docs.rapids.ai/api/cuml/stable/api/#umap.
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Table 6: p-values for effective rank in slippery. Table 7: p-values for effective rank in paralysis.

PPO PFO CB PPOprup  EPPOpean  EPPOcor EPPOipng PPO PFO CB PPOpryp  EPPOpean  EPPOcor EPPOjng
PPO PPO
PFO  0.020 PFO  0.000
CB 0.000 0.000 PFO 0.000 0.000
PPOpgryp  0.127  0.994  1.000 PPOpgryp  0.747  1.000  1.000
EPPOpess  0.000 0.690 1.000  0.019 EPPOpean 0000 0.621 1.000  0.000
EPPO.,; 0.010 0.877 1.000  0.070 0.825 EPPO.,, 0001 0.809 1.000  0.000 0.751
EPPO.,q 0.001 0.683 1.000  0.011 0.457 0.135 EPPO.,q 0.003 0.789 1.000  0.000 0.736 0.486
Table 8: p-values for stable rank in slippery. Table 9: p-values for stable rank in paralysis.
PPO PFO CB PPOpryp  EPPOpean  EPPOcor EPPOing PPO PFO CB PPOpryp  EPPOpean  EPPOcor EPPOjng
PPO PPO
PFO  0.041 PFO  0.000
cB 0.000 0.003 CB 0.000 0.000
PPOsmp 0211 0.884  0.999 PPOsp  0.323 0999 1.000
EPPOpe.a  0.000 0044 0.874  0.002 EPPOpc.n 0000 0.016 0993  0.000
EPPO.,, 0.000 0.045 0.938 0.002 0.668 EPPO.or 0.000 0.081 0.999 0.000 0.909
EPPOi,s  0.000 0004 0702  0.000 0.248 0.051 EPPO;,q 0000 0124 1.000  0.000 0.924 0.606

Table 10: p-values for dormant unit percentage in Table 11: p-values for dormant unit percentage in

slippery. paralysis.
PPO PFO CB PPOpryp  EPPOpean  EPPOcor EPPOing PPO PFO CB PPOpryp  EPPOpean  EPPOcor EPPOing
PPO PPO
PFO  0.097 PFO  0.000
CB  0.001 0.004 CE 0.000 0.000
PPOpmwp 0278  0.847  0.998 PPOpmp  0.663  1.000  1.000
EPPOpe.n  0.003 0071 0921  0.010 EPPOy., 0.000 0.001 1.000  0.000
EPPO.,, 0.003 0.089 0.973  0.010 0.698 EPPO.,, 0.000 0.043 1.000  0.000 0.962
EPPOi,q  0.000 0.006 0.826  0.000 0.286 0.044 EPPOi,q  0.000 0.044 1.000  0.000 0.951 0.494

Figure 4: Each lower-triangular entry shows the p-value of a one-sided paired t-test testing whether the
method in the row significantly outperformed the method in the column (see Section B.2). Smaller p-values
indicate stronger evidence in favor of the row method’s superior performance.
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B.2 Statistical significance

Throughout our experiments we evaluate the significance of performance improvements via statistical tests.
Our approach performs a one-sided paired t-test between the model with the highest average performance
over all seeds against each of the other models. We compare the null hypothesis of equal means compared to
the alternative of better performance by the other model. We consider the null hypothesis to be rejected
for p-values smaller than 0.05. Runs are paired over random seeds and we assume approximately normally
distributed performance values, fulfilling the t-test assumptions. As this procedure only compares baselines
against the best-performing method instead of all pairwise combinations and relies on a conservative one-sided
testing approach, we do not employ further multiple testing corrections.

B.3 Hyperparameters

In this section, we provide all the necessary details to reproduce EPPO. We evaluate EPPO with 15 repetitions
using the following seeds: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. Our implementation will be made public
upon acceptance. We list the hyperparameters for the experimental pipeline in Table 12.

B.3.1 Training

Architecture and optimization details. We train EPPO for 500 000 steps per task, performing updates
to the policy and critic 10 times every 2048 step with a batch size of 256. The learning rate is set to 0.0003
for both the actor and critic, optimized using Adam (Kingma & Ba, 2015). The actor and critic networks
each consist of a 2-layer feedforward neural network with 256 hidden units. Unlike other baselines, our critic
network outputs four values instead of one to predict the evidential priors. We apply Layer Normalization (Ba
et al., 2016) and ReLU activations (Nair & Hinton, 2010) for both networks. The policy follows a diagonal
normal distribution. Following common practice in the literature, we set the discount factor to v = 0.99, the
GAE parameter to A = 0.95, and the clipping rate to e = 0.2. Gradient norms are clipped at 0.5, and GAE
advantage estimates are normalized within each batch.

Evaluation details. = We evaluate the models at the beginning and final steps of each task, as well as
every 20000 steps, using 10 evaluation episodes. The evaluation environment seeds are set to the training
seed plus 100. For metric calculation, we use the mean return across the evaluation episodes.

EPPO details. We set the regularization coefficient (§) to 0.01 to scale it down, selecting this value
heuristically based on its contribution to the total loss. To prevent overfitting and allow flexibility in learning,
we use uninformative, flat priors for the hyperprior distributions. Specifically, we choose a normal distribution
N (w]0,100?) for w, though a positively skewed distribution may further improve performance. For v, «,
and 8, we use a gamma distribution Gam(5,1) to ensure positivity. Additionally, we shift the hyperprior
distribution of a by +1 to ensure a finite mean.

PFO details. We followed the original implementation and set the feature regularization coefficient to 10.0.
No additional hyperparameters were tuned, and the rest of the implementation was kept identical to our
PPO setup.

CB details. We set the decay rate to 0.0001 and apply ¢5 regularization with a coefficient of 0.0001,
following the original paper. We performed a grid search over maturity thresholds in [1000,10000] and
replacement rates in [0.0001, 0.00001, 0.000001] using one representative task from each experimental setting.
For slippery environments under the increasing setting, we selected a maturity threshold of 1000 with
replacement rates of 0.0001 for Ant and 0.00001 for HalfCheetah. For paralysis environments under the
back-one setting, we used a maturity threshold of 1000 with replacement rate 0.0001 for Ant, and a maturity
threshold of 10000 with replacement rate 0.00001 for HalfCheetah. We adopted the generate-and-test process
from the official repository’, while keeping the rest of the implementation identical to our PPO setup. We

"https://github.com/shibhansh/loss-of-plasticity/tree/63c35£3c758bbb713dd42c72d43dc192£de0d109
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Table 12: Hyperparameters used in the experimental pipeline.

Policy learning

Seeds

Number of steps per task

Learning rate for actor and critic
Horizon

Number of epochs

Minibatch size

Clip rate €

GAE parameter A

Hidden dimensions of actor and critic
Activation functions of actor and critic
Normalization layers of actor and critic
Optimizer for actor and critic
Discount factor v

Maximum gradient norm

[1,2,...,15]
500000
0.0003

2048

10

256

0.2

0.95

[256, 250]
ReLU
Layer Norm
Adam

0.99

0.5

Evaluation-related

Evaluation frequency (steps)
Evaluation episodes

20000 and end of the tasks
10

EPPO-related

Regularization coefficient (&)
Hyperprior distribution of w
Hyperprior distribution of v
Hyperprior distribution of «
Hyperprior distribution of £

0.01

N (w]0,100%)
Gam(v|5,1)
Gam (al5,1) + 17
Gam (8]5,1)

Grid Search-related

Seeds

Radius parameter x for EPPO¢or
Radius parameter « for EPPOj,q
Maturity threshold for CB
Replacement rate for CB

(1001, 1002, 1003]
(0.01,0.1,0.25]
(0.01,0.05,0.1]

[1000, 10 000]

[0.0001, 0.00001, 0.000001]

PFO-related

Feature regularization coefficient 10.0
CB-related
Regularization rate (¢2) 0.0001
Decay rate  0.0001

PPODRND—related

Hidden dimensions of bonus ensemble
Activation functions of bonus ensemble
Normalization layers of bonus ensemble

Learning rate for bonus ensemble
Optimizer for bonus ensemble
Number of ensemble elements

Bonus scaling factor

[256, 256, 256, 32]
ReLU

None

0.0003

Adam

10

0.9

TThe +1 ensures a finite mean for a.
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Table 13: Radius parameters (k) of EPPO.

Confidence radius parameter (k)

Experiment Environment Strategy

EPPOcor EPPOind

Slippery g i :
HalfCheetah cliecreaS}ng 0.05 0.1
increasing 0.1 0.1

back-one 0.05 0.01

front-one 0.1 0.1

Ant back-two 0.01 0.25

front-two 0.1 0.01

Paralvsis cross 0.01 0.1
Y parallel 0.05 0.01
back-one 0.05 0.01

front-one 0.1 0.1

HalfCheetah  ss—vi  0.05 0.25
cross-v2 0.05 0.1

observed that the performance of CB is highly sensitive to the choice of maturity threshold and replacement
rate but also to random seeds.

PPOpgrnp details. We use a bonus ensemble with 10 neural networks, each composed of a 4-layer
feedforward architecture with hidden dimensions [256, 256,256, 32]. Each network takes a concatenated
state-action pair as input. We apply ReLU activations after each layer and do not include normalization
layers. We optimize the ensemble using Adam (Kingma & Ba, 2015) with a learning rate of 0.0003. We
scale the output of the ensemble by a bonus factor of 0.9 to guide exploration during training. We adopt the
architecture and hyperparameters from the original implementation by Yang et al. (2024b).

Grid search details for x of EPPO. We introduce a confidence radius parameter (k) that controls the
level of optimism incorporated into exploration. To determine an appropriate value, we perform a grid search
over k € [0.01,0.05,0.1] for EPPOjuq and & € [0.01,0.1,0.25] for EPPOco,, selecting these ranges based on their
influence on the advantage estimate. We train models using three seeds (1001, 1002, 1003) and exclude them
from the main results. After evaluating the AULC metric, we select the optimal x values and use them for
EPPOQO’s final evaluation. Table 13 presents the x values selected for training.

Practical implementation of EPPO. We provide pseudocode in Algorithm 1 illustrating how to
implement EPPO variants by overlaying color-coded modifications on top of a standard PPO implementation,
where each color corresponds to a specific EPPO variant. All lines are shared across EPPO variants and
PPO unless otherwise indicated in the comment section.

B.4 Result visualizations

The learning curves across environment steps are illustrated in Figures 10 to 12. In these figures, the thick
curve (dashed, dotted, dash-dotted, or solid) represents the mean returns across ten evaluation episodes and
15 random seeds, with the shaded area indicating one standard error from the mean. The legend provides the
mean and standard error for the AULC and final return scores, listed in this order. The vertical black dotted
lines mark the task changes.
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Algorithm 1 Evidential Proximal Policy Optimization variants (EPPO,,ean, , EPPO;,q) Over PPO

1: Input: Initial policy parameters 6, value function parameters ¢, clipping threshold €, minibatch size M,
number of update epochs K, trajectory horizon T, discount factor v, GAE parameter A, learning rates
A, Ay, radius k for and EPPO;, 4, regularization coefficient &

2: for each epoch do

3: Roll out policy in the environment and fill the buffer D with (s, at, 74, S¢41,dy)

4: Vi Vy(sy) and Vigq < V(si41) > Value estimates for PPO

5: Wt, Vg, Oét,ﬁt — V¢(St) and Wt+1, Vi+1, Oét+1,,6t+1 — V¢,(St+1) > For EPPOs

6: Vi wy, Vigr < wina > Mean value estimates of EPPOs

1 1
7 var [Vi] < b (1 + ), var [Viy1] < Pri1 <1 + ) > Variance value estimates of EPPOs
ay — 1 Vi Q41 — 1 Vi1

8: Compute deltas: §; < ¢ + 'yV}H(lA— dy) —V;

9: Initialize accumulator A <— 0 and A as empty list of size T for mean

10: Initialize accumulator var [A] < 0 and var {A] as empty list of size T for variance > , EPPOing
11: fort=T—-1to0by —1 do

12: A5 +yAA(L = dy)

13: A A

14: var [A] < (vA)? (var [Vig1] + (1 — dy)var [A]) > , EPPO; g
15: 4

- 1-A\?

16: var [At] — mvar Vi] + ()\) var [A] > Equation (5) EPPO; g
17: end for

18: A A+ Ky [ var {/q for all samples > UCB with Equation (3) , EPPOing
19: Compute returns: Rt — At + V; and normalize advantages
20: for k=1to K do
21: Shuffle D and split into minibatches of size M
22: for each minibatch do
23: Compute importance ratio: () = _molalse)

TOo1a (at ‘st)
24: Compute clipped objective: Leyip(6) = 77 > min (rt(H)At, clip(r¢(9),1 — ¢, 14+ e)/it)
25: Update policy with gradient clipping: 6 < 6 + A Vg Laip ()
1 N2
26: Compute value loss: Ly p(¢) = T > (V¢(st) - Rt) > PPO
27: Estimate wy, vy, ay, B <+ Vi (st) > EPPOs
28: Compute model-fit loss: where Q; = 28:(1 + 1) > Equation (2) EPPOs
1 1 1 S r
o0 5 s () o+ = s (e <) s (22
1

29: Compute regularization: L,cq(¢) = T > log p(wt) + log p(vy) + log (o) + logp(vy) > EPPOs
30: Compute value loss: Ly p(@) = Lnin(@) — ELreq (@) > EPPOs
31: Update value function with gradient clipping: ¢ <— ¢ — Ay Vo Ly p(9)
32: end for
33: end for
34: end for
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Figure 5: Plasticity preservation analysis for the slippery experiment.
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Figure 6: Plasticity preservation analysis for the paralysis experiment on Ant environment.
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Figure 7: Plasticity preservation analysis for the paralysis experiment on HalfCheetah environment.
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Figure 8: Plasticity preservation metrics and maximum absolute gradient norms throughout training for the
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Figure 9: Plasticity preservation metrics and maximum absolute gradient norms throughout training for the

paralysis experiment on HalfCheetah-back-one environment.
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Figure 11: Learning curves for the paralysis experiment on Ant environment.
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Figure 12: Learning curves for the paralysis experiment on HalfCheetah environment.
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