
ODA: Observation-Driven Agent for integrating LLMs and Knowledge
Graphs

Anonymous ACL submission

Abstract

The integration of Large Language Models001
(LLMs) and knowledge graphs (KGs) has002
achieved remarkable success in various natu-003
ral language processing tasks. However, ex-004
isting methodologies that integrate LLMs and005
KGs often navigate the task-solving process006
solely based on the LLM’s analysis of the007
question, overlooking the rich cognitive poten-008
tial inherent in the vast knowledge encapsu-009
lated in KGs. To address this, we introduce010
Observation-Driven Agent (ODA), a novel AI011
agent framework tailored for tasks involving012
KGs. ODA incorporates KG reasoning abili-013
ties via global observation that enhances reason-014
ing capabilities through a cyclical paradigm of015
observation, action, and reflection. Confronting016
the exponential explosion of knowledge during017
observation, we innovatively design a recur-018
sive observation mechanism. Subsequently, we019
integrate the observed knowledge into the ac-020
tion and reflection modules. Through extensive021
experiments, ODA demonstrates state-of-the-022
art performance on several datasets, notably023
achieving accuracy improvements of 12.87%024
and 8.9%.025

1 Introduction026

Large language models (LLMs) (Touvron et al.,027

2023; Scao et al., 2022; Muennighoff et al., 2022;028

Brown et al., 2020) have exhibited extraordinary029

capabilities across a variety of natural language pro-030

cessing tasks. Despite their impressive accomplish-031

ments, LLMs often struggle to provide accurate032

responses to queries that necessitate specialized033

expertise beyond their pre-training content. In re-034

sponse to this limitation, a natural and promising035

approach involves the integration of external knowl-036

edge sources, such as knowledge graphs (KGs), to037

augment LLM reasoning abilities. KGs provide038

structured, explicit, and explainable knowledge rep-039

resentations, offering a synergistic method to over-040

come the intrinsic constraints of LLMs. The fusion041

Figure 1: An example of LLM integrating KG. Ob-
served entities are in white while non-observed entities
are in gray. Entities selected by the agent for answering
the question are highlighted in yellow.

of LLMs with KGs has garnered significant interest 042

in recent research (Pan et al., 2024), underlying a 043

vast array of applications (Zhang et al., 2023; Do 044

et al., 2024; Sun et al., 2023b). 045

Existing methodologies for solving tasks that 046

integrate KGs with LLMs can be categorized into 047

two groups. The first one involves retrieving rele- 048

vant triples from KGs in response to specific ques- 049

tions (Wang et al., 2023b; Jiang et al., 2023). The 050

second part adopts an explore-exploit strategy, di- 051

recting the knowledge utilization process within the 052

graph according to the question (Sun et al., 2023b; 053

Guo et al., 2023). However, both categories navi- 054

gate the task-solving process by merely relying on 055

the LLM’s analysis of the question, overlooking 056

the rich cognitive potential inherent in the abundant 057

knowledge encapsulated in KGs. KGs, which store 058

a wealth of informative and symbolic facts, should 059

deeply participate in the reasoning process together 060

with LLM rather than being merely treated as a 061

static repository of knowledge (Pan et al., 2024). 062

As the example in the upper panel of Figure 1, LLM 063

analyzes the question and navigates towards Narra- 064
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tive location relation of entity The Call of The Wild.065

However, this entity has many neighboring entities066

with that relation, leading LLM to incorrectly infer067

Canada as the answer. In contrast, the bottom panel068

demonstrates how KG provides key patterns that069

reveal both The Call of The Wild and White Fang070

share the location Yukon. If LLM could observe this071

information beforehand, it would precisely guide072

its reasoning process towards the correct answer073

(as shown in the bottom panel). Therefore, LLM074

should adopt an overall observation to incorporate075

the extensive knowledge and intricate patterns em-076

bedded within the KG. Achieving this objective077

presents two primary challenges: firstly, a global078

observation of the KG can result in an exponential079

growth in the number of triples. As shown in the080

upper panel of Figure 1, fully processing all 3-hop081

connections for The Call of the Wild is impractical.082

Secondly, the integration of such comprehensive083

observation into the existing reasoning paradigms084

of LLMs presents another challenge. How to com-085

bine the observation with the reasoning process of086

LLM matters for solving the tasks.087

Motivated by this, we introduce a novel frame-088

work, the Observation-Driven Agent (ODA), aimed089

at sufficiently integrating the capabilities of both090

LLM and KG. ODA serves as an AI Agent specif-091

ically designed for KG-centric tasks. ODA en-092

gages in a cyclical paradigm of observation, action,093

and reflection. Within ODA, we design a novel094

observation module to efficiently draw reasoning095

patterns of KG. Our observation module avoids096

the problem of exponential growth of triples via097

recursive progress. This approach ensures ODA098

integrating abilities of KG and LLM while mit-099

igating the challenges associated with excessive100

data in KG, improving the efficiency and accuracy.101

Following the observation phase, ODA takes ac-102

tion by amalgamating insights derived from LLM103

inferences with the observed KG patterns. ODA104

can perform actions of three distinct types: Neigh-105

bor Exploration, Path Discovery, and Answering.106

Subsequently, ODA reflects on its internal state,107

considering both the outcomes of its actions and108

the prior observations. This iterative process con-109

tinues until ODA accomplishes the task at hand.110

We conduct extensive experiments to testify111

to the effectiveness of ODA on four datasets:112

QALD10-en, T-REx, Zero-Shot RE and Creak.113

Notably, our approach achieved state-of-the-art114

(SOTA) performance compared to competitive115

baselines. Specifically, on QALD10-en and T-REx116

datasets, we observed remarkable accuracy im- 117

provements of 12.87% and 8.9% over competitive 118

baselines. We conclude the contributions as fol- 119

lows: 120

• We propose ODA, an AI Agent tailored for 121

KG-centric tasks. ODA conducts observation 122

to incorporate the reasoning ability of KG. 123

• We further design action and reflection mod- 124

ules to integrate observation into LLM reason- 125

ing to exploit the capabilities of both sides. 126

• We conduct experiments on four datasets and 127

achieve SOTA performances. 128

2 Methods 129

In this work, we aim to solve tasks associated with 130

KG. Let q represent a user question. The task T can 131

be defined as generating an answer Y given a ques- 132

tion q, task-relevant entities E = {e0, e1, ..., ek}, 133

and a KG denoted as G. Formally, the task T can 134

be expressed as: 135

T : (q, E), G → Y 136

Employing an iterative approach, ODA tackles 137

the challenges inherent in KG-centric tasks. In 138

contrast to existing methods that couple LLMs 139

and KGs and rely solely on analyzing the LLM’s 140

query, ODA integrates observed knowledge from 141

the KG into the entire reasoning process, result- 142

ing in more informed decisions. To achieve this 143

objective, our ODA system, illustrated in Figure 144

2, primarily comprises three key modules for task 145

resolution: 146

• Observation: This module efficiently ob- 147

serves and processes relevant knowledge from 148

the KG environment, generating an observa- 149

tion subgraph (denoted as Oi). By leveraging 150

insights and patterns gleaned from the KG, 151

this subgraph is incorporated into a reason- 152

ing LLM. This synergistic integration equips 153

ODA with enhanced capabilities from both 154

the LLM and KG, allowing it to tackle tasks 155

more effectively. 156

• Action: Drawing upon both the global obser- 157

vation subgraph Oi and ODA memory (de- 158

noted as M ), the action module,represented 159

by ai, strategically selects the most suitable 160

action to execute on the KG, ensuring the ac- 161

curate answering of the question. 162
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Figure 2: Diagram of ODA.

• Reflection: Utilizing the global observation163

subgraph Oi, the reflection module provides164

feedback by reflecting on the knowledge ob-165

tained from the action step. The reflected166

knowledge is then stored in memory M for167

the next iteration, facilitating continuous rea-168

soning.169

Through this iterative process, ODA dynamically170

updates both its observation subgraph Oi and mem-171

ory M , enabling it to perform precise question-172

answering. Each module is discussed in detail in173

the following sections.174

The observation module is specifically designed175

to inspect global KG knowledge and navigate the176

reasoning process with the KG environments. It177

can effectively guide the action module towards178

better decision-making. At each iteration i, it lever-179

ages task-relevant entities Ei and a question q to180

generate an observation subgraph Oi. This process181

can be formulated as:182

Oi = Observation([Ei, q])183

Initially, the task-relevant entities are populated184

with the entities embedded within the question q.185

For KG-centric tasks, the global observation in-186

curs the problem of an explosive number of nodes.187

To address the scalability challenge during obser-188

vation subgraph updates, we propose a D-turn ob-189

serve strategy, where D represents the maximum190

hop depth. Each turn has two steps: update and191

refine. The update step focuses on expanding the192

subgraph, while the refining step ensures its appro-193

priate size without loss of important information.194

For each entity e ∈ Ei, the observation module 195

initializes the observation entities as a set Ed
o = 196

{e} at hop depth d, where d represents the current 197

search depth within the knowledge graph.The two- 198

step update and refine process iterates for each 199

entity e until D is reached. The specific details are 200

described below: 201

Algorithm 1 Observation
Require: Question q, limit D, N , and P

Initialize task-relevant entities Ei with the en-
tities in q
for e ∈ Ei do

Set d = 0
Initialize observation entities Ed

o = {e}
while d < D do

for entity ∈ Ed
o do

Extract the neighboring triples
for (r, t) ∈ triples do

Cosine similarity(q,r + t)
end for
Sort(triples) using similarity scores

end for
Append top N triples to Oi

Extract top P% triples from the top N
triples

Update Ed
o with t in top P% triples

Increment d : d = d+ 1
end while

end for

2.1 Observation 202

Update: 203
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Figure 3: An example workflow of ODA. In this case, ODA initiates the obervation with entity Johann Wolfgang
von Goethe. During the first iteration on the left side, the Neighbor Exploration of Johann Wolfgang von Goethe
is selected, and the reflected triple (Johann Wolfgang von Goethe, unmarried Partner, Lili Schöneman) is stored
in memory. Subsequently, The observation of Lili Schöneman then guides ODA to choose Neighbor Exploration
action, and leads to the retention of the triple (Lili Schöneman, place of birth, Offenbach am Main) in memory,
as shown on the right side. Once sufficient knowledge has been accumulated, ODA triggers the Answer action,
correctly identifying Offenbach am Main as the answer.

• For each entity in Ed
o , neighboring triples are204

extracted from KG. Each triple takes the form205

[e, r, t], where r signifies the relation, and t206

denotes the tail entity.207

• The similarity score between the question and208

the combination of relation r and tail t in each209

triple, is measured using cosine similarity.1:210

Cosine Similarity(vq,vr+t) =
vq · vr+t

∥vq∥∥vr+t∥
211

• The neighboring triples are sorted in descend-212

ing order based on their similarity scores.213

• Append the Top-N triples to the observation214

subgraph Oi.215

Refine:216

• The Top-N triples are further refined by re-217

taining only the top P% with the highest sim-218

ilarity scores.219

1We use the GPT text-embedding-ada-002 model from
OpenAI for encoding.

• The tail entities from the refined top P% 220

triples are identified as the starting observa- 221

tion entities Ed
o for the next iteration. 222

Then we obtain the observation subgraph Oi for 223

ith turn. It is then utilized for the next modules. 224

2.2 Action 225

Within an AI Agent framework, memory plays 226

a crucial role as a long-term storage component 227

(Shinn et al., 2023; Yao et al., 2023). In our ODA 228

, memory M is involved in guiding both the ac- 229

tion and reflection modules. In its interaction with 230

the action module, memory assists in selecting the 231

most appropriate action, thereby facilitating suc- 232

cessful task completion. 233

Harnessing the power of an LLM, the action 234

module crafts strategic prompts to generate opti- 235

mal actions. Based on its memory M , observation 236

subgraph Oi, and historical actions a<i, the ODA 237

selects the most accurate action ai. 238

ai = Action([Oi, a<i,M ]) 239

We propose three core actions designed to em- 240

power ODA : 241
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• Neighbor Exploration: This action explores242

the KG neighborhood of the entity in task-243

relevant entities Ei, retrieving all neighboring244

triples. This helps build context and under-245

stand interconnectedness within the KG for246

ODA .247

• Path Discovery: Given two entities in task-248

relevant entities Ei, this action searches for249

all possible paths connecting them. Each path250

consists of interconnected triples, allowing251

the ODA to explore various connections and252

potentially uncover hidden relationships.253

• Answer: This action responds to the question254

only if the required information is present in255

memory M .256

Upon selecting an answer action, ODA halts the257

iterative loop of observation, action, and reflection.258

Leveraging the reliable knowledge within memory259

M , it can then directly formulate the answer to the260

question. Alternatively, if a Neighbor Exploration261

or Path Discovery action is selected, ODA strate-262

gically extracts relevant knowledge from the KG263

as a set of triples. These extracted triples are then264

fed into the subsequent reflection step for further265

processing.The prompt used here can be found in266

Table 7.267

2.3 Reflection268

The reflection module plays a crucial role in eval-269

uating the triples generated from the action step270

and subsequently updating ODA memory M . De-271

signed specifically for KG tasks, memory M272

adopts a format comprising a network of paths that273

align with the innate structure of KGs, aimed at op-274

timizing efficiency and relevance. Each path within275

M holds a set of triples. By strategically integrat-276

ing the observed subgraph Oi and existing memory277

M , the reflection module provides invaluable feed-278

back, guiding future decision-making. This process279

can be formalized as:280

M = Reflection([Oi, ai,M ])281

Given that memory M is structured as a net-282

work of paths, the reflection module navigates these283

paths to identify the first suitable one for integrating284

the new triple. This suitability stems from the align-285

ment of the last triple’s tail t within the chosen path286

with the new triple’s entity e. If a matching path287

exists, the triple is appended. Otherwise, a new288

path is created within the memory subgraph.The 289

specific prompt text used for the reflection module 290

is provided in Table 8. 291

The observation, action, and reflection modules 292

collaborate in an iterative process until either the 293

Answer action is triggered or the maximum itera- 294

tion limit is reached. Figure 3 depicts an example 295

of how observation, action, and reflection work 296

together. 297

3 Experiments 298

Dataset Test Entity Type License

QALD10-en 333 396 Multi-hop MIT License
T-REx 5000 4943 Slot-Filling MIT License
Zero-Shot RE 3724 3657 Slot Filling MIT License
Creak 1371 516 Fact Checking MIT License

Table 1: Dataset statistics. Entity stands for the entity
derived from the question within the datasets.

3.1 Dataset 299

To evaluate the performance of our ODA , we 300

conduct experiments on four KBQA datasets: 301

QALD10-en (Perevalov et al., 2022),the fact- 302

checking dataset Creak (Onoe et al., 2021), T-REx 303

(Elsahar et al., 2018), and Zero-Shot RE (Petroni 304

et al., 2021). We evaluate ODA on the test set for 305

each dataset listed in Table 1. The Hits@1(Sun 306

et al., 2019) accuracy with exact match is utilized 307

as our evaluation metric. 308

3.2 Setup 309

We utilized the GPT-4 (OpenAI, 2023) model as the 310

ODA via the OpenAI API. Throughout our experi- 311

ments, we consistently configured the temperature 312

value of GPT-4 to 0.4 and set the maximum token 313

length to 500. 314

For the observation step, we set Pt to 10 and Nt 315

to 50. Furthermore, the ODA loop was capped at 316

a maximum of 8 iterations. Lastly, the maximum 317

hop depth D is set to 3. 318

To establish Wikidata KG database and retrieve 319

information from it, we employed the simple- 320

wikidata-db2 Python library. This library provides 321

various scripts for downloading the Wikidata dump, 322

organizing it into staging files, and executing dis- 323

tributed queries on the data within these staged 324

files. Specifically, we deployed the Wikidata dump 325

across five AWS EC2 instances, each consisting of 326

a 768GB machine with 48 cores. 327
2https://github.com/neelguha/simple-wikidata-db
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Considering that our ODA relies heavily on con-328

tinuous interaction with the KG, we discovered329

that the real-time extraction of required Wikidata330

knowledge on AWS achieved an average comple-331

tion time of 50 seconds per question-answer pair332

within QALD10-en dataset. However, as the KGQA333

dataset expanded, the cost of using the Wikidata334

database on AWS became prohibitively expensive.335

Consequently, to address the computational ex-336

penses involved, we devised a solution by gener-337

ating an offline subgraph for each KGQA dataset.338

This offline subgraph captures all the triples within339

a 3-hop radius of the entities in each dataset, in-340

cluding the properties of both the entities and the341

relations involved. Notably, generating such a sub-342

graph for the T-REx dataset, with its 4943 entities343

(as listed in Table 1), takes approximately 54 min-344

utes and 42.834 seconds in practice.345

3.3 Baseline Models346

To comprehensively evaluate ODA effectiveness,347

we conduct a rigorous benchmark against several348

SOTA models across diverse categories. The com-349

parison encompasses various models, starting with350

prompt-based approaches that do not utilize ex-351

ternal knowledge. These include direct answer-352

ing with GPT-3.5 and GPT-4, as well as the Self-353

Consistency (Wang et al., 2023c) and CoT (Sun354

et al., 2023b). On the other hand, Kownledge-355

combined models are considered, which incorpo-356

rate fine-tuned techniques such as SPARQL-QA357

(Santana et al., 2022), RACo (Yu et al., 2022),358

RAG (Petroni et al., 2021) and Re2G (Glass et al.,359

2022). Additionally, there is ToG (Sun et al.,360

2023a) model, which integrates LLM with KG to361

bolster question-answering proficiency.362

3.4 Main Result363

Our ODA method outperforms existing methods,364

as shown in Table 2. On average, our method365

achieves an accuracy gain of up to 19.58% com-366

pared to direct answering with GPT-4, 19.28% com-367

pared to fine-tuned models, and 7.09% compared368

to TOG. These results demonstrate the efficiency369

and effectiveness of our method in comparison to370

other state-of-the-art methods.371

Furthermore, our ODA significantly outper-372

forms the prompt-based methods across various373

datasets, particularly showing an improvement374

of 65.50% and 23.77% on Zero-Shot REx and375

QALD10-en , respectively. These results underscore376

the importance of leveraging external knowledge377

graphs for reasoning and completing the question- 378

answering task. 379

Compared to the fine-tuned method, our 380

ODA method demonstrates superior performance. 381

Specifically, our method achieves a performance 382

gain of 21.27% for the QALD10-en dataset, 6.99% 383

for the Creak dataset, and 50.56% for the 384

Zero-Shot RE dataset. Notably, this interaction 385

between the LLM and KG, as our method employs, 386

proves more effective than data-driven fine-tuned 387

techniques, despite requiring no explicit training. 388

Our ODA method exhibits significant per- 389

formance gains over the TOG method across 390

most datasets, with improvements of 12.87% 391

(QALD10-en), 8.9% (T-REx), and 7% (Zero-Shot 392

RE), despite both methods leveraging large lan- 393

guage models and knowledge graphs. This perfor- 394

mance disparity highlights the critical role of our 395

observation module and the effectiveness of deeply 396

incorporating reasoning from KG. Specifically, our 397

method demonstrates significantly stronger perfor- 398

mance on the QALD10-en dataset, known for its 399

multi-hop and complex reasoning requirements. 400

This achievement underscores our ODA ability to 401

effectively exploit the rich knowledge and patterns 402

within KG, seamlessly combining the reasoning 403

strengths of both LLM and KG to tackle complex 404

questions successfully. 405

4 Discussion 406

To better understand the key factors influenc- 407

ing our ODA, we conducted extensive analy- 408

sis experiments. To conserve computational re- 409

sources, we kept the previously mentioned datasets 410

(QALD10-en, Creak, T-REx, and Zero-Shot RE) 411

but randomly sampled 400 examples each for 412

Creak, T-REx, and Zero-Shot RE. 413

4.1 Effect of Observation 414

To assess the efficacy of the observation module, 415

we conducted comprehensive experiments with the 416

model without observation. During the action step, 417

ODA selects the action only based on the knowl- 418

edge within memory. Subsequently, the reflection 419

step reflects on the triples outputted by the action 420

and updates memory without the guide from obser- 421

vation. 422

A statistical comparison was performed to evalu- 423

ate the performance of the ODA with and without 424

observation across all datasets (see Table 3). The 425

results show that the ODA with observation out- 426
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Method QALD10-en Creak T-REx Zero-Shot
RE

Average

Without external knowledge

Direct answering(GPT3.5) 44.74 90.00 37.78 37.14 52.42
Direct answering(GPT4) 57.10 94.52 57.72 55.50 66.21
Self-Consistency(GPT3.5)(Wang et al., 2023c) 45.30 90.80 41.80 45.40 55.83
COT(GPT3.5)(Sun et al., 2023a) 42.90 90.10 32.00 28.80 48.45

Leveraging external knowledge

Fine-tuned SOTA 45.40(1) 88.20(2) 87.70(3) 44.74(4) 66.51
TOG-R(GPT4)(Sun et al., 2023a) 54.70 95.40 75.50 86.90 78.13
TOG(GPT4)(Sun et al., 2023a) 53.80 95.60 77.10 88.30 78.70
ODA (GPT-4) 66.67 95.19 86.00 95.30 85.79

Table 2: Performance Comparison of different methods. The fine-tuned SOTA includes:(1)(Santana et al.,
2022),(2)(Yu et al., 2022),(3)(Glass et al., 2022),(4)(Petroni et al., 2021)

performs the ODA without observation, with an427

average improvement of 3.14%. Specifically, for428

QALD10-en dataset, the ODA with observation out-429

performs the ODA without observation by 5.41%.430

Since QALD10-en involves multi-hop reasoning, the431

improved performance of the ODA with observa-432

tion indicates that the observation module enhances433

the reasoning ability of the agent, enabling more434

accurate action selection and reflection.435

We can further illustrate the benefits of the obser-436

vation module with a practical case. In this scenario437

(see Table 5), question is Where are both The Call438

of the Wild and White Fang set, the most two fa-439

mous works of Jack London?. Without observation,440

ODA generated the memory, such as (The Call of441

the Wild, narrative location, Canada), ultimately442

produced the wrong answer of Canada. However,443

with the observation module, the ODA correctly444

reasons the memory,such as (The Call of the Wild,445

narrative location, Yukon), (White Fang, narrative446

location, Yukon). As a result, the ODA with ob-447

servation provides the correct answer, Yukon. This448

case exemplifies how the observation module im-449

proves the accuracy of action selection and reflec-450

tion, consequently enhancing the reasoning ability451

of ODA .452

By incorporating observation information, ODA453

reasoning power undergoes a dramatic leap, there-454

fore generate an accurate answers. This boost455

stems from the synergistic interplay between the456

observation module, harnessing the KG’s inherent457

reasoning capabilities, and LLM, which further am-458

plifies those strengths.459

4.2 Effect of Observation on Reflection 460

In this section, we discuss the impact of observa- 461

tion on reflection module. Three non-observation 462

reflection methods were designed to verify whether 463

observation can enhance the effectiveness of reflec- 464

tion. The similarity-based involves reflecting on the 465

triples from action steps by calculating similarity. 466

In this approach, triples are first sorted based on the 467

similarity score between the r+ t and the question. 468

The top-k triples are then selected and stored in 469

memory for the next iteration. The random-based 470

method randomly picks k triples from the action’s 471

output and stores them in memory. Finally, the 472

generated-fact method creates k natural language 473

question-related facts for storage. All methods use 474

k = 15. 475

Table 3 showcases our ODA dominance over 476

all three non-observation methods. It achieved an 477

average accuracy increase of 2.48% compared to 478

the similarity-based method, 6.00% compared to 479

the random-based method, and 3.66% compared to 480

the generated-fact method. 481

In specific cases (see Table 6), when answer- 482

ing the question What is the capital of the prefec- 483

ture Tokyo?, the generated-fact method resulted in 484

problematic facts, such as Tokyo is the capital of 485

Tokyo,Tokyo is the capital of Japan. These were es- 486

sentially hallucinations created by the LLM based 487

on the given question. They misled the agent result- 488

ing in incorrect answers. In contrast, the reflection 489

of our ODA leveraging observation yielded fac- 490

tual knowledge, (Tokyo, capital, Shinjuku), conse- 491

quently enabling the ODA to answer the question 492

correctly. 493

The findings of Table 3 reveal that observation 494

enables reflection module to generate more ac- 495
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Method QALD10-en Creak T-REx Zero-Shot RE Average

Without Observation 61.26 95.50 82.00 91.75 82.63
Similarity-based Reflection 61.26 95.20 83.20 93.50 83.29
Random-based Reflection 58.56 89.00 79.50 92.00 79.77
Generated-fact Reflection 63.66 91.00 80.00 93.75 82.10
ODA 66.67 96.00 85.40 95.00 85.77

Table 3: Ablation Comparison

curate memories, which translates to improved496

question-answering accuracy for ODA. This re-497

sult underscores the value of both leveraging KG498

reasoning capabilities and fostering deep collabo-499

ration between KG and LLMs.500

4.3 Performance across Different Backbone501

Models502

We evaluated the effectiveness of ODA across var-503

ious backbones by analyzing its impact on T-REx504

and QALD10-en datasets. Our ODA approach sig-505

nificantly outperformed the direct answering meth-506

ods using GPT-3.5 and GPT-4, as evidenced by507

the Table 4. Notably, ODA yielded a remarkable508

30.4% improvement with the direct answering us-509

ing GPT-3.5 model on QALD10-en dataset. This510

experiment suggests the generalizability of ODA511

across different LLMs.512

Method T-REx QALD10-en

Direct answering(GPT3.5) 37.60 44.74
ODA (GPT3.5) 68.00 49.71

Direct answering(GPT4) 57.44 57.10
ODA (GPT4) 86.00 66.67

Table 4: Performance comparison using different back-
bone models

5 Related Works513

KG-enhanced LLM Knowledge Graph-514

enhanced Language Models utilize two primary515

methodologies when tackling tasks that require516

integration with KGs. The first involves the517

extraction of relevant triples from KGs in response518

to posed questions. Wang et al. (2023b) prompt519

LLMs to generate explicit knowledge evidence520

structured as triples. Similarly, Jiang et al. (2023)521

develop specialized interfaces for gathering522

pertinent evidence from structured data, thus523

enabling LLMs to focus on reasoning tasks based524

on this information. Baek et al. (2023) retrieve525

facts related to the input question by assessing526

semantic similarities between the question and527

associated facts, subsequently prepending these 528

facts to the input. Meanwhile, Li et al. (2023) 529

iteratively refine reasoning rationales by adapting 530

knowledge from the KG. Wang et al. (2023a) 531

dissect complex questions using predefined 532

templates, retrieve entities from the KG, and 533

generate answers accordingly. 534

The second approach employs an explore-exploit 535

strategy that guides the knowledge utilization pro- 536

cess within the graph. Sun et al. (2023b) perform 537

an iterative beam search on the KG to identify the 538

most promising reasoning pathways and report the 539

outcomes. Guo et al. (2023) selectively accumulate 540

supporting information from the KG through an 541

iterative process that incorporates insights from the 542

LLM to address the question. 543

AI Agent In the domain of AI agents, Yao et al. 544

(2022) utilize LLMs to interleave the generation 545

of reasoning traces with task-specific actions. Wu 546

et al. (2023) design an agent framework that is 547

adaptable, conversational, and capable of operating 548

in various modes that leverage combinations of 549

LLMs, human input, and auxiliary tools. Chen et al. 550

(2023) focus on creating expert agents capable of 551

solving complex tasks. 552

6 Conclusion 553

In this work, we design ODA framework for KG- 554

centric tasks. In ODA, we introduce KG observa- 555

tion mechanism to combine the reasoning abilities 556

of KG with LLM. We first propose the observation 557

method to mitigate the problem of explosive num- 558

ber of triples in KG when tackling complex tasks. 559

Then we fuse the observation into the action and 560

reflection modules to further enhance the overall 561

performance. We conduct extensive experiments, 562

and the results clearly illustrate the effectiveness 563

of our framework, highlighting its capability to 564

enhance performance across four KBQA datasets, 565

particularly in handling complicated questions. 566
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Limitation567

Given the diverse nature of KG-related tasks span-568

ning multiple domains and requiring a broad range569

of capabilities, the implementation of a multi-agent570

system is promising to significantly enhance task571

performance. We leave the integration of our ob-572

servation mechanism with multi-agent sysmtem to573

future work.574

References575

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.576
Knowledge-augmented language model prompting577
for zero-shot knowledge graph question answering.578
arXiv preprint arXiv:2306.04136.579

Tom Brown, Benjamin Mann, Nick Ryder, Melanie580
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind581
Neelakantan, Pranav Shyam, Girish Sastry, Amanda582
Askell, et al. 2020. Language models are few-shot583
learners. Advances in neural information processing584
systems, 33:1877–1901.585

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,586
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin587
Shi. 2023. Autoagents: A framework for automatic588
agent generation. arXiv preprint arXiv:2309.17288.589

Quyet V Do, Tianqing Fang, Shizhe Diao, Zhaowei590
Wang, and Yangqiu Song. 2024. Constraintchecker:591
A plugin for large language models to reason on592
commonsense knowledge bases. arXiv preprint593
arXiv:2401.14003.594

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,595
Christophe Gravier, Jonathon Hare, Frederique Lafor-596
est, and Elena Simperl. 2018. T-REx: A large scale597
alignment of natural language with knowledge base598
triples. In Proceedings of the Eleventh International599
Conference on Language Resources and Evaluation600
(LREC 2018), Miyazaki, Japan. European Language601
Resources Association (ELRA).602

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub603
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio604
Gliozzo. 2022. Re2G: Retrieve, rerank, generate.605
In Proceedings of the 2022 Conference of the North606
American Chapter of the Association for Computa-607
tional Linguistics: Human Language Technologies,608
pages 2701–2715, Seattle, United States. Association609
for Computational Linguistics.610

Tiezheng Guo, Qingwen Yang, Chen Wang, Yanyi Liu,611
Pan Li, Jiawei Tang, Dapeng Li, and Yingyou Wen.612
2023. Knowledgenavigator: Leveraging large lan-613
guage models for enhanced reasoning over knowl-614
edge graph. arXiv preprint arXiv:2312.15880.615

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,616
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-617
gpt: A general framework for large language model618
to reason over structured data. arXiv preprint619
arXiv:2305.09645.620

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng 621
Ding, Shafiq Joty, Soujanya Poria, and Lidong 622
Bing. 2023. Chain-of-knowledge: Grounding large 623
language models via dynamic knowledge adapt- 624
ing over heterogeneous sources. arXiv preprint 625
arXiv:2305.13269. 626

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 627
Adam Roberts, Stella Biderman, Teven Le Scao, 628
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey 629
Schoelkopf, et al. 2022. Crosslingual generaliza- 630
tion through multitask finetuning. arXiv preprint 631
arXiv:2211.01786. 632

Yasumasa Onoe, Michael J. Q. Zhang, Eunsol Choi, and 633
Greg Durrett. 2021. Creak: A dataset for common- 634
sense reasoning over entity knowledge. 635

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages 636
2303–08774. 637

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji- 638
apu Wang, and Xindong Wu. 2024. Unifying large 639
language models and knowledge graphs: A roadmap. 640
IEEE Transactions on Knowledge and Data Engi- 641
neering. 642

Aleksandr Perevalov, Dennis Diefenbach, Ricardo Us- 643
beck, and Andreas Both. 2022. Qald-9-plus: A mul- 644
tilingual dataset for question answering over dbpe- 645
dia and wikidata translated by native speakers. In 646
2022 IEEE 16th International Conference on Seman- 647
tic Computing (ICSC), pages 229–234. 648

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick 649
Lewis, Majid Yazdani, Nicola De Cao, James Thorne, 650
Yacine Jernite, Vladimir Karpukhin, Jean Maillard, 651
Vassilis Plachouras, Tim Rocktäschel, and Sebastian 652
Riedel. 2021. KILT: a benchmark for knowledge 653
intensive language tasks. In Proceedings of the 2021 654
Conference of the North American Chapter of the 655
Association for Computational Linguistics: Human 656
Language Technologies, pages 2523–2544, Online. 657
Association for Computational Linguistics. 658

Manuel Alejandro Borroto Santana, Bernardo Cuteri, 659
Francesco Ricca, and Vito Barbara. 2022. SPAR- 660
QLQA enters the QALD challenge. In Proceedings 661
of the 7th Natural Language Interfaces for the Web 662
of Data (NLIWoD) co-located with the 19th Euro- 663
pean Semantic Web Conference (ESWC 2022), vol- 664
ume 3196 of CEUR Workshop Proceedings, pages 665
25–31, Hersonissos, Greece. CEUR-WS.org. 666

Teven Le Scao, Angela Fan, Christopher Akiki, El- 667
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A Case Study737

To demonstrate ODA effectiveness, we highlight738

several representative cases from the QALD10-en739

dataset. For improved readability, we replaced en-740

tity IDs in Outputs with their corresponding names.741

We selected two examples to illustrate how ODA742

utilizes observation to correctly address the ques-743

tion in Table 5 and Table 6.

Question Where are both The Call of the Wild and White Fang set, the most two famous works of Jack
London?

Action Thought: The question asks about the setting of two works, The Call of the Wild and
White Fang, both by Jack London. The observation provides some information about the
narrative locations of these works, but to confirm and provide a specific answer, I will use
the GetNeighbor function on The Call of the Wild.
Action: GetNeighbor
Entity_id: The Call of the Wild

Reflection Thought: First, I will focus on the triples related to the locations of the two works, The Call
of the Wild and White Fang, as the question is asking about the settings of these two novels.
I will also consider the triples related to the author, Jack London, as the question mentions
him. I will select the triples that are most directly related to the settings of the two novels.
Triples: (The Call of the Wild, Narrative location, Yukon), (The Call of the Wild, Narrative
location, Canada), (The Call of the Wild, author, Jack London)

Action Thought:The question asks for the setting of both The Call of the Wild and White Fang,
two notable works of Jack London. From the observation, we can see that The Call of the
Wild has narrative locations in the United States of America, Alaska, Canada, and Yukon.
However, we don’t have the narrative location for White Fang. Therefore, I will use the
GetNeighbor function on the entityID of White Fang to find its narrative location.
Action: GetNeighbor
Entity_id: White Fang

Reflection Thought:First, I will look for triples that directly answer the question. The question is asking
for the setting of two works by Jack London, namely, The Call of the Wild and White Fang.
Therefore, I will look for triples that contain these two works and a relation that indicates a
setting or location. From the candidate triples, I can see that there are two triples that indicate
a narrative location for White Fang: (White Fang, Narrative location, Yukon), (White Fang,
Narrative location, Canada).
Triples: (White Fang, Narrative location, Yukon), (White Fang, Narrative location, Canada)

Action Thought:The question is asking for the locations where both The Call of the Wild and White
Fang are set. From the reference memory, I can see that The Call of the Wild is set in the
United States of America, Alaska, Canada, and Yukon. White Fang is set in Canada and
Yukon. The common locations for both books are Canada and Yukon.
Answer: [Canada,Yukon]

Table 5: Case 1

744
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Question The question is What is the capital of the prefecture Tokyo ?
Action Thought: The question is asking for the capital of the prefecture Tokyo. The candidate

entity ID ’Q1490’ corresponds to Tokyo. I can see from the observation that there is a triple
(Tokyo, capital, Shinjuku) which might answer the question. However, to confirm this, I will
execute a GetNeighbor action on ’Q1490’ to get all the triples where Tokyo is the head.
Action: GetNeighbor
Entity_id: Tokyo

Reflection Thought: The question is asking for the capital of Tokyo. From the observation, we can
see that Tokyo is the capital of Japan and it is a prefecture of Japan. The capital of Tokyo is
Shinjuku. Therefore, we should select the triples that contain this information.
Triples: (Tokyo, instance of, prefecture of Japan), (Tokyo, capital , Shinjuku), (Tokyo, capital,
Japan)

Action Thought:The question is asking for the capital of the prefecture Tokyo. From the reference
memory, it is stated that the capital of Tokyo is Shinjuku. Therefore, the answer to the
question is Shinjuku.
Answer: Shinjuku

Table 6: Case 2
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B Prompt745

This section presents the prompts for the action and746

reflection modules in tables 7 and 8.

Action Prompt

Neighbor Exploration &
Path Discovery

GetNeighbor(entityID: str) -> List[Tuple[str, str, str]]:
Description: Returns triplets containing the given entityID as the head
and its corresponding entityID as the tail.
GetPath(entityID1: str, entityID2: str) -> List[List[Tuple[str, str, str]]]:
Description: Returns all triplets linking the two given entityIDs.
Example Usage:GetPath("Q30", "Q25231") returns all triplets connecting
’Q30’ and ’Q25231’.

Answer You are a agent that answer questions based on the reference memory
and your knowledge.
Here are the reference memory:[Memory]. You can use it to help you
answer the quesiton.
Here is the question you are asked to answer the question:[Question].
Ensure that your answer contains one answer or a list of answer, and
each answer should be only one or several words,a phrase, a number,true
or false, or a date, no other information or descripation in answer.

Table 7: Action Prompt Description

747

Field Prompt
Reflection You are an agent that provides answers based on a KG.

You queried some triples [triples] from last action step and their cor-
responding labels:[entities labels] from the KB based on the question:
[Question].
Now you are asked to select related triples, so you can answer the ques-
tion in the future by using them.
Here are the observation: [Obervation] for guiding you to select the right
triples from the candidate triples.
Also, here is the memory: [Memory]. You can use it to help you select
the right triples from the candidate triples.

Table 8: Reflection Prompt Description
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