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ABSTRACT

Training highly generalizable server model necessitates requires data from mul-
tiple sources in Federated Graph Learning. However, noisy labels are increas-
ingly undermining federated system due to the propagation of erroneous infor-
mation between nodes. Compounding this issue, significant variations in data
distribution among clients make noise node detection more challenging. In our
work, we propose an effective structural and semantic calibration framework for
Robust Federated Graph Learning, AURA. We observe that spectral discrepan-
cies across different clients adversely affect noise detection. To address this,
we employs SVD for self-supervision, compelling the model to learn an intrin-
sic and consistent structural representation of the data, thereby effectively at-
tenuating local high-frequency perturbations induced by noisy nodes. We intro-
duce two metrics, namely ”Depth Influence” and ”Breadth Influence”. Based on
these metrics, the framework judiciously selects and aggregates the most con-
sensual knowledge from the class prototypes uploaded by each client. Concur-
rently, clients perform knowledge distillation by minimizing the KL divergence
between their local model’s output distribution and that of the global model, which
markedly enhances the model’s generalization performance and convergence sta-
bility in heterogeneous data environments. AURA demonstrates remarkable robust-
ness across multiple datasets, for instance, achieving a 7.6% ↑ F1-macro score
under a 20%-uniform noise on Cora. The code is available for anonymous access
at https://anonymous.4open.science/r/AURA-F351/.

1 INTRODUCTION

Federated Graph Learning (FGL), which combines the advantages of federated learning and graph
neural networks, is rapidly emerging as a significant research direction in distributed machine
learning. This approach enables multiple clients to collaboratively train a shared global model
while preserving the privacy of local graph data. It ensures effective privacy protection (13; 14) and
utilizes the neural message passing mechanism to learn representations from non-Euclidean data
structures. Such graph-structured data is prevalent in domains including biological networks (45),
urban transportation systems (44), and online social platforms (33).

Despite its potential, existing FGL research often relies on the idealized assumption of abundant and
accurate node labels. In practice, however, obtaining large-scale, high-quality labeled datasets is a
costly endeavor. Consequently, methods such as web scraping or utilizing user-generated content
for automatic label acquisition have become common. While these approaches reduce costs, they
inevitably introduce challenges related to label sparsity and noise.

It is well-established that neural networks are prone to overfitting noisy labels, which degrades their
generalization performance (28; 43). As a generalization of neural networks to the graph domain,
FGL models, as illustrated in Figure 1, exhibit similar performance degradation when trained
with noisy labels. A more severe issue arises from the inherent message-passing mechanism of
GNNs, which exacerbates the negative impact of label noise. Unlike independently and identically
distributed (i.i.d.) data, where a label error is isolated, an incorrect label on a single node can
propagate to its neighbors via graph edges. This process triggers cascading errors throughout the
multi-layer propagation of GNNs. This pollution propagation effect ultimately leads to a significant
degradation in the global model’s performance, far exceeding the impact observed on i.i.d. data.
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The complexity of this problem is further amplified within the federated learning framework, where
the unique graph topology of each client introduces significant heterogeneity.

Figure 1: Problem Illustration. For current robust
FGL scenarios: I) As illustrated in the top-right sub-
plot, noisy labels have a severely detrimental effect on
the server model’s performance, causing a performance
drop of nearly 50%. II) The heterogeneity of data dis-
tributions across clients poses a significant challenge to
the detection of noisy nodes.

From a structural perspective, node labels are
not isolated attributes but are closely coupled
with their local connectivity patterns. A clean
label typically aligns with its neighborhood,
manifesting as a smooth, low-frequency signal
in the graph’s spectral domain. In contrast, a
noisy label disrupts this local consistency, ap-
pearing as an abrupt, high-frequency anomaly.
Significant structural differences among client
graphs also lead to varied spectral composi-
tions. For instance, in graphs with high ho-
mophily (e.g., social networks), noisy nodes
generate more discernible high-frequency sig-
nals. Conversely, in graphs with complex con-
nectivity patterns (e.g., biological molecular
networks), these local anomalies can be easily
obscured by the inherent structural noise. Con-
sequently, noise detection methods effective in
one spectral environment may fail in another.
Thus, a key question arises: 1) How can we de-
sign a framework that generalizes across het-
erogeneous client graphs by mining intrinsic structural patterns associated with label quality, to
distinguish between clean and noisy nodes and mitigate performance degradation from client drift?

From a semantic perspective, even if clients can learn representations that are more robust to local
spectral and noise variations, the server still faces significant aggregation conflicts during the knowl-
edge fusion stage. Due to spectral heterogeneity and the non-i.i.d. nature of the data, updates from
different clients naturally carry different or even contradictory semantic directions. Consequently,
the server receives multiple, potentially conflicting updates for the same conceptual class. If a sim-
ple averaging strategy like FedAvg is used, these differences are often blurred, leading to a global
consensus that is either suboptimal or deviates from the correct direction. This naive aggregation
approach not only fails to extract shared knowledge effectively but can also misguide the local
models in subsequent rounds. Therefore, a more fundamental question is: 2) How can we filter out
local noise and drift while constructing a high-quality global knowledge base to guide all clients?

To address the client drift issue arising from spectral heterogeneity, as identified in Problem I, we
propose Structural-aware Frequency Alignment (SFA). This method utilizes Singular Value Decom-
position (SVD) to perform a low-rank approximation of each client’s adjacency matrix. This process
decomposes the original graph into two distinct views: a ”structural backbone view” capturing core,
low-frequency structural information, and a ”redundant view” containing high-frequency and noise-
related information. By enforcing representational consistency across these two views, our model
performs dual denoising, simultaneously addressing inter-client heterogeneity and intra-client label
noise. This approach effectively filters out high-frequency variations arising from structural differ-
ences among clients, thereby mitigating client drift. Moreover, this framework concurrently weakens
the impact of local high-frequency disturbances caused by mislabeled nodes. The resulting node em-
beddings are highly robust to both noise and drift, providing a solid foundation for downstream tasks.

To address the semantic aggregation conflicts in Problem II, we propose Semantic-guided Con-
sensus Distillation (SCD). The core of SCD is constructing a stable, high-quality global prototype
graph to serve as a ”semantic anchor” for alignment across all clients. On the client side, we first
define depth influence and breadth influence, then select and aggregate local key information based
on these metrics before uploading it to the global model. On the server side, a similarity-based
selection mechanism aggregates the most consensual knowledge from client-uploaded category
prototypes to build this global graph. Clients continue to employ relational knowledge distillation.
By minimizing the Kullback-Leibler divergence between the similarity distributions of local and
global model outputs with respect to the global prototypes, we compel the local model to emulate
the global model’s understanding of the semantic relationships within the prototype graph. This ap-
proach elevates knowledge transfer from a hard, vector-level alignment to a soft, semantic-relational
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one, significantly enhancing generalization and stability. This framework accurately decouples label
noise and interference from spectral heterogeneity while ensuring excellent performance. We name
the combination of these two strategies AURA, the Structural and Semantic Calibration framework
for Robust Federated Graph Learning. Our main contributions are summarized as follows:

• We address the challenging problem of defending against noisy labels in FGL. We identify the key
challenges as learning representations robust to the dual interference of intra-client label noise and
inter-client spectral heterogeneity, and constructing a high-quality global knowledge base while
mitigating the effects of local noise and client drift.

• We propose AURA, a novel framework that combats noisy labels in FGL via a dual strategy of
Representation Purification and Knowledge Alignment.

• We conduct extensive experiments on five mainstream datasets under various noise types and
ratios. The results demonstrate that our approach significantly outperforms existing state-of-the-
art FGL methods. For instance, under the 20% uniform noise setting on the Cora dataset, our
method outperforms the second-best method by a significant margin of 7.6% in F1-macro score.

2 PRELIMINARIES

Notations. We follow the general paradigm of federated graph learning, K participants (indexed by
k) collaboratively train a shared global model using their private graph data. Participant k holds a
graph Gk = (Vk,Ak,Xk), where Vk = {vi}Nk

i=1 is the node set containing |Vk| = Nk nodes, Ak ∈
{0, 1}Nk×Nk is the adjacency matrix with Aij = 1 if there is an edge between nodes vi and vj (and
0 otherwise). Similarly, Xk represents node features, and Yk represents the corresponding label set.

Problem Formulation. To evaluate the robustness of our method, we take the semi-supervised
node classification on the graph as the pretext task which can be defined as follows. We split all
the nodes V into three sets Vtrain, Vval and Vtest for training, validation, and testing respectively.
After label contamination, Ỹ is divided into the ground truth labels Y and the corrupted labels Ỹ .
When learning representations in noisy label scenarios, clean nodes and noisy nodes in Vtrain are
available. Besides, given Xk and Ak, the goal of node classification is to train a classifier Encθk :

(Xk,Ak)→ Ŷk, where the model parameters are optimized by minimizing the following objective:
min
θk

L(Encθk (Xk,Ak),Yk), (1)

where L is a loss function that quantifies the discrepancy between predictions and ground-truth
labels. In accordance with the principle of Empirical Risk Minimization (ERM), the well-trained
classifier Encθk is capable of generalizing well to unseen nodes in Vtest.

Uniform noise (34): This noise model assumes that the true label has a probability ∈ (0, 1) of being
uniformly flipped to any of the other classes with equal probability. Formally, for all j ̸= i,

p(yN
m = j | yL

m = i) =
ϵ

d− 1
. (2)

Pair noise (41): This noise model assumes that the true label can only be flipped to a specific paired
class with a fixed probability ϵ, while remaining unchanged with probability 1− ϵ.

The optimization objective is to learn a generalizable global model through the federated learning
process that performs well under noisy conditions while maintaining strong robustness.

3 METHODOLOGY

3.1 STRUCTURAL-AWARE FREQUENCY ALIGNMENT (SFA)

Motivation. Significant structural differences among client graphs lead to varied spectral compo-
sitions. Consequently, a noise detection method effective in one spectral environment may prove
ineffective in another. To design a noise filtering framework that is insensitive to these spectral vari-
ations, we propose Structural-aware Frequency Alignment (SFA). This method leverages Singular
Value Decomposition (SVD) to perform a low-rank approximation of each client’s adjacency matrix,
simultaneously addressing both inter-client heterogeneity and intra-client label noise. Graph Spec-
tral Structural Decomposition. To create the structural backbone view, we perform a low-rank
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Figure 2: Architecture illustration of AURA. Best viewed in color and zoom in for details.

approximation on each client’s adjacency matrix Ak. First, we apply Singular Value Decomposition
(SVD) to decompose Ak into its constituent structural components:

Ak = UkΣkV
T
k , (3)

where Uk and VT
k are orthogonal matrices of left and right singular vectors, and Σk is a diagonal

matrix of singular values. The singular values in Σk represent the importance of their corresponding
structural patterns. In particular, the largest singular values in Σk and their corresponding vectors
capture the most dominant, low-frequency structural patterns.

Multiple articles (8; 6) demonstrate that these core structural patterns are more critical for learning
robust node representations than high-frequency details or noise. We posit that these patterns form
the graph’s structural backbone and are more critical for learning robust representations. Conversely,
the smaller singular values correspond to high-frequency details, which can include both client-
specific structural heterogeneity and noise from sources like incorrect labels.

Therefore, we construct the low-frequency backbone view by retaining only the top-m singular
values and their corresponding vectors, effectively capturing the essential structural information.
Let U[1:m]

k , Σ[1:m]
k and V

[1:m]
k be the truncated matrices corresponding to the top-m singular values.

The reconstructed, low-frequency adjacency matrix, Âk, is then reconstructed as:

Âk = U
[1:m]
k Σ

[1:m]
k V

[1:m]T

k . (4)

This matrix Âk serves as a low-pass filtered representation of the original graph structure, preserving
its most salient connectivity patterns while discarding finer, potentially disruptive information.

Graph Spectral Structural Alignment. This decomposition process yields two structural views
for each client k: the original graph, Gk, defined by Ak, and the structural backbone view, Ĝk,
defined by Âk. We then pass both views through our GNN encoder to obtain two sets of node
representations. Correspondingly, let hk denote the embeddings from the original graph Gk, and
ĥk denote the embeddings from the reconstructed graph Ĝk.

We treat these two embeddings as empirical distributions over the embedding manifold and align
their global geometry using Optimal Transport (OT). Traditional alignment methods fail to capture
cross-dimensional similarities, leading to the underutilization of dimensional information. To
address this issue, we propose a Sinkhorn distance-based embeddings alignment method, which
deploys the discrete Sinkhorn distance to comprehensively measure the distributional differences
between both embeddings. We first define a ground cost matrix C ∈ RNk×Nk , where Cij is the
cost of matching node vi from the original view to node vj from the backbone view. Specifically,
in our implementation, A natural choice is the cosine distance:

Cij
k = 1− sim(hi

k, ĥ
j
k). (5)

The SFA loss is then formulated as the Sinkhorn distance, a computationally efficient and differen-
tiable approximation of the OT distance. It seeks a transport plan P ∈ RNk×Nk that minimizes the
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total transportation cost while satisfying marginal constraints. The loss is defined as:

Lk
SFA = Sinkhorn(Hk, Ĥk) = min

P∈Π(r,c)
⟨Pk,Ck⟩F − ϵH(Pk) (6)

where ⟨·, ·⟩F is the Frobenius dot product, which calculates the total transportation cost. It is
computed by summing the element-wise products of the transport plan P and the cost matrix
Ck. Specifically, ⟨Pk,Ck⟩F =

∑
i,j PijCij . Π(r, c) is the set of joint probability matrices with

uniform marginals r and c, H(P) = −
∑

i,j Pij logPij is the Shannon entropy of the transport
plan, and ϵ > 0 is the entropic regularization parameter.

3.2 SEMANTIC-GUIDED CONSENSUS DISTILLATION (SCD)

Motivation. Even when clients can learn representations resilient to local spectral and noise varia-
tions, the server still confronts significant aggregation conflicts. These conflicts arise when updates
for the same conceptual class from different clients are mutually contradictory. To mitigate this
issue, we propose Semantic-guided Consensus Distillation (SCD), which constructs a stable, high-
quality global prototype graph to serve as a ”semantic anchor” for alignment across all clients.

Node Contribution Value. To effectively filter core nodes within a knowledge graph and optimize
the client-side knowledge extraction process, we propose a contribution assessment method based on
the semantic influence of nodes. This method comprehensively considers both the Breadth Influence
and Depth Influence of a node to more thoroughly characterize its importance within the knowledge
network. We define the contribution of a node from the following two dimensions:

Depth Influence: This metric aims to measure the core capability of a node to be strongly
influenced by its local context. It is defined as the maximum influence value exerted on the
node by any of its adjacent nodes, reflecting the strongest associative relationship it possesses.
A node with high Depth Influence signifies that it has an exceptionally close semantic
connection with at least one or more other nodes.

Breadth Influence: This metric is designed to measure the centrality of a node as an
information convergence point within the network. It is defined as the cumulative sum
of influence exerted by all other nodes in the network onto the target node, reflecting the
extensiveness of the influence it receives. A node with high Breadth Influence typically serves
as an intersection point for multiple knowledge paths.

The calculation process primarily involves the construction of an influence matrix, the quantification
of breadth and depth influences, and the final fusion to compute the contribution score. The influ-
ence matrix is calculated based on a random walk model, which can capture the indirect influence
transmitted between nodes through multi-step paths. This model simulates the flow of information
along the graph’s edges. First, we construct the random walk transition matrix P of the graph:

P = D−1A (7)

where A is the adjacency matrix of the knowledge graph, and D is the degree matrix, a diagonal
matrix whose elements are the degrees of the corresponding nodes.

Building on this, we introduce a mechanism similar to Personalized PageRank to compute a global
influence matrix M . This matrix not only considers direct connections but also incorporates multi-
step reachability relationships weighted by a decay factor:

M = α (I − (1− α)P )
−1 (8)

where I is the identity matrix, and α ∈ (0, 1) is a smoothing factor used to balance the probabilities
between the random walk and a global jump. An element Mi,j in matrix M represents the influence
from node j on node i, quantifying how much node j contributes to the representation learning of
node i through all possible paths in the graph. For any given node i, Scorebi is calculated as follows:

Scorebi =

∑
j∈Vtrain Mj,i

Z
(9)
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where VL represents the set of all nodes in the graph, and the numerator sums the influence from all
nodes on node i. Z is a normalization factor. The Depth Influence, Scoredi , is calculated as:

Scoredi = max
j∈N (i)

(Mj,i · τj) (10)

whereN (i) is the set of neighboring nodes of node i, and τj is an optional weight or type coefficient
for node j, used to adjust the importance of different nodes. This formula captures the strongest
determinative signal influencing node i from its immediate neighborhood. Finally, we perform a
linear weighted sum of the node’s breadth and depth influences to obtain its final contribution score:

Scorei = Scorebi + β · Scoredi (11)

where β is a hyperparameter used to adjust the weight of the Depth Influence in the total contribu-
tion score. By calculating Scorei for each node, we can quantify its importance in the graph and
subsequently set a threshold to filter out nodes with low influence.

Global Knowledge Fusion. We posit that the nodes with the highest scores constitute the Semantic
Core of each client’s training set, serving as the most distinct and unambiguous representatives of
their respective classes. Therefore, we select only the nodes ranking in the top-1/3 based on their
scores from each client Vk (denoted asV∗

k ) to generate local prototypes. For each class c, the local
prototype pc

k for client k is computed as follows:

pc
k =

1

|V∗c
k |

∑
u∈V∗c

k

hu (12)

where V∗c
k is the set of semantic core nodes belonging to class c on client k, and hu is the embedding

of node u. Upon completion of the local computations, each client uploads its generated prototypes
and the corresponding sample counts per class to the central server. The server’s objective is not to
naively average them, but rather to identify and fuse the prototypes that exhibit the highest consensus
and are most representative of the global distribution, in order to synthesize Global Anchors.

The server first assesses the mutual consistency among the local prototypes within a randomly se-
lected subset of clients N c

t (controlled by a participation rate α). For each class c, the server con-
structs a prototype similarity matrix M c

sim, where each element is defined by cosine similarity:

Mij
sim = sim(pc

i ,p
c
j) =

(pc
i )

Tpc
j

|pc
i ||pc

j |
, ∀i, j ∈ N c

t (13)

Based on this similarity matrix, the server computes a Global Cohesion Score Sc
i for each local

prototype. This score quantifies the degree of agreement between a given local prototype and all
others. A high-scoring prototype signifies that it has garnered consensus from a majority of other
clients, making it more likely to reside at the center of the global class distribution.

Sc
i =

∑
j∈N c

t ,j ̸=i

Mij
sim (14)

Finally, for each class c, the server refrains from blindly averaging all prototypes. Instead, it selects
only the top-K local prototypes with the highest Global Cohesion Scores for aggregation, thereby
synthesizing the final Global Anchor prototype Pc

g .

Local Knowledge Alignment. To guide local training, we implement a federated knowledge
distillation scheme once the global model and the anchor prototype graph (Pc

g) are disseminated
to the clients. In this framework, the received global model acts as a ”teacher,” providing semantic
guidance, while the local model acts as a ”student.” The knowledge transfer focuses on relational
understanding rather than direct feature mimicry. Specifically, we compel the student model to
replicate the teacher’s perception of how a node’s features relate to the global prototypes.

This is achieved by aligning their respective similarity distributions. For each node u, we generate
a target distribution by first obtaining its feature representation hg

u from the frozen teacher model.
We then compute the cosine similarities between hug and all prototypes in Pg using a function φ,
and normalize these scores into a probability distribution via the softmax function σ. The student

6
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Table 1: Performance comparison to state-of-the-art methods when poisoning 50% of the full set.
We report accuracy (%) and F1-macro (%) (with red/green markers indicating regression/improve-
ment over FedAvg). The best and second-best results are highlighted with Blue and underline,
respectively. Additional experimental results on more settings can be found in Appendix G.

Dataset CORA (Acc ↑) CITESEET (Acc↑) PUBMED (Acc ↑)

Noise Type Normal Uniform Pair Normal Uniform Pair Normal Uniform Pair

N
or

m
al

FedAvg [ASTAT17] 74.50↑00.00 48.17↑00.00 37.20↑00.00 64.15↑00.00 32.59↑00.00 34.22↑00.00 84.16↑00.00 78.31↑00.00 58.53↑00.00
FedProx [MLSys20] 75.32↑00.82 48.26↑00.09 33.73↓03.47 65.19↑01.04 33.04↑00.45 34.81↑00.59 84.24↑00.08 78.47↑00.16 58.32↓00.21
FedDC [CVPR22] 80.90↑06.40 46.25↓01.92 38.85↑01.65 67.85↑03.70 38.22↑05.63 37.04↑02.82 82.91↓01.35 40.18↓38.13 50.73↓07.80
FedDyn [ICLR21] 79.98↑05.48 44.42↓03.75 38.48↑01.20 69.04↑04.89 34.96↑02.37 35.11↑00.89 81.83↓02.33 74.77↓03.54 51.90↓06.63
Scaffold [ICML20] 81.90↑07.40 56.12↑07.95 43.42↑06.22 70.22↑06.07 40.44↑07.85 37.93↑03.71 75.25↓08.91 64.02↓14.29 52.56↓05.97
FedGTA [VLDB24] 72.21↓02.29 51.83↑03.66 36.56↓00.64 65.33↑01.18 37.33↑04.74 36.15↑01.93 82.41↑01.75 79.20↑00.89 57.24↓01.29
FedTAD [IJCAI24] 64.90↓09.60 46.89↓01.28 38.76↑01.56 64.30↑00.15 32.44↓00.15 34.81↑00.59 84.36↑00.20 77.23↓01.08 61.51↑02.98
FGSSL [IJCAI23] 68.74↓06.16 57.40↑09.23 34.28↓02.92 70.07↑05.92 48.59↑16.00 39.41↑05.19 67.03↓17.13 66.40↓11.91 56.43↓02.10

R
ob

us
t

Coteaching [NeurIPS18] 72.03↓02.47 45.43↓02.74 39.03↑01.83 64.30↑00.15 41.48↑08.89 35.85↑01.63 84.26↑00.10 76.85↓01.46 60.02↑01.49

FedNoRo [IJCAI23] 74.50↑00.00 42.34↓05.83 34.96↓02.24 67.76↑03.61 30.37↓02.22 32.99↓01.23 84.16↑00.00 77.03↓01.28 44.97↓13.56
FedNed [AAAI24] 69.84↓04.66 35.37↓12.80 34.46↓02.74 57.78↓06.37 29.63↓02.96 31.11↓03.11 84.56↑00.40 62.32↓15.99 53.09↓05.44
FedCorr [CVPR22] 75.14↑00.64 52.01↑03.84 36.20↓01.00 38.96↓25.19 26.07↓06.52 29.04↓05.18 85.93↑01.77 68.93↓09.38 48.91↓09.62

CRGNN [NN24] 72.30↓02.20 49.36↑01.19 38.03↑00.83 69.33↑05.18 33.78↑01.19 38.81↑04.59 84.08↓00.08 40.11↓38.20 59.72↑01.19
RTGNN [WWW23] 71.46↓03.04 46.62↓01.55 35.28↓00.83 67.85↑03.70 51.11↑18.52 37.19↑02.97 60.10↓24.06 68.09↓10.22 47.01↓11.52
CLNode [WSDM23] 69.65↓04.85 36.56↓11.61 35.47↓01.73 59.11↓05.04 28.59↓04.00 30.37↓03.85 84.99↑00.83 79.63↑01.32 53.39↓05.14

AURA 85.22↑10.72 61.64↑13.47 46.27↑09.07 77.23↑13.08 52.38↑19.79 46.28↑12.06 85.95↑01.79 80.44↑02.13 57.53↓01.00

Whole Dataset 48.04±0.9 36.94±0.3 69.49±0.5

Dataset COAUTHOR-PHYSICS (F1-macro ↑) MINESWEEPER (F1-macro↑) COAUTHOR-CS (F1-macro ↑)

Noise Type Normal Uniform Pair Normal Uniform Pair Normal Uniform Pair

N
or

m
al

FedAvg [ASTAT17] 24.18↑00.00 13.76↑00.00 27.10↑00.00 53.51↑00.00 33.40↑00.00 19.38↑00.00 02.47↑00.00 02.47↑00.00 02.47↑00.00
FedProx [MLSys20] 23.22↓00.96 17.50↑03.74 25.55↓01.55 53.54↑00.03 33.30↓00.10 19.35↓00.03 02.76↑00.29 02.45↓00.02 03.76↑01.29
FedDC [CVPR22] 13.55↓10.63 13.46↓00.30 14.45↓12.65 53.59↑00.08 35.51↑02.11 16.60↓02.78 03.22↑00.75 01.90↓00.57 03.43↑00.96
FedDyn [ICLR21] 15.78↓08.40 15.51↑01.75 27.32↑00.22 51.22↓02.29 37.70↑04.30 16.23↓03.15 06.38↑03.91 02.47↑00.00 02.47↑00.00
Scaffold [ICML20] 42.61↑18.43 13.46↓00.30 05.13↓21.97 44.25↓09.26 41.46↑08.06 18.99↓08.11 02.46↑00.01 02.42↓00.05 02.76↑00.29
FedGTA [VLDB24] 13.72↓10.46 17.48↑03.72 16.24↓10.86 53.58↑00.07 33.19↓00.21 21.43↑05.67 01.35↓01.12 03.17↑00.70 02.59↑00.12
FedTAD [IJCAI24] 22.13↓02.05 15.42↑01.66 08.80↓18.30 54.11↑00.60 32.35↓01.05 20.12↑06.98 02.47↑00.00 02.56↑00.09 06.68↑04.21
FGSSL [IJCAI23] 28.13↑03.95 13.58↓00.18 05.06↓22.04 44.46↓09.05 43.50↑10.10 16.23↓10.87 02.83↑00.36 02.89↑00.42 00.31↓02.16

R
ob

us
t

Coteaching [NeurIPS18] 13.46↓10.72 14.12↑00.36 34.85↑07.75 44.25↓09.26 36.77↑03.37 17.12↓09.98 08.00↑05.53 07.20↑04.73 04.36↑01.89
FedNoRo [IJCAI23] 22.46↓01.72 13.96↑00.20 27.10↑00.00 53.54↑00.03 33.40↑00.00 17.87↓09.23 02.49↑00.02 03.01↑00.54 02.49↑00.02
FedNed [AAAI24] 35.94↑11.76 23.16↑09.40 22.88↓04.22 51.97↓01.54 38.67↑05.27 26.58↑07.20 11.85↑09.38 06.80↑04.33 05.33↑02.86
FedCorr [CVPR22] 27.93↑03.75 21.47↑07.71 29.42↑02.32 44.14↓09.37 18.40↓15.00 16.12↓10.98 01.34↓01.13 02.47↑00.00 02.62↑00.15

CRGNN [NN24] 35.12↑10.94 26.97↑13.21 35.83↑08.73 46.78↓06.73 17.09↓16.31 16.78↓02.60 13.08↑10.61 07.31↑04.84 11.09↑08.62
RTGNN [WWW23] 33.17↑08.99 13.78↑00.02 05.06↓22.04 43.93↓09.58 48.27↑14.87 31.20↑11.82 02.47↑00.00 02.52↑00.05 02.47↑00.00
CLNode [WSDM23] 40.78↑16.60 23.25↑09.49 22.80↓04.30 53.93↑00.42 36.59↑03.19 29.94↑10.56 06.83↑04.36 06.79↑04.32 05.68↑03.21

AURA 57.99↑33.81 68.87↑55.11 54.13↑27.03 55.29↑01.78 49.68↑15.88 47.12↑27.74 21.80↑19.33 22.31↑19.84 15.11↑12.64

Whole Dataset 20.36±0.6 35.58±0.3 05.10±0.4

model is then trained to minimize the Kullback-Leibler (KL) divergence between its own output
distribution (derived from its feature hi

u) and the teacher’s target distribution. This objective is
formalized as our Federated Knowledge Distillation loss:

LFKD =
1

|Vi|
∑
u∈Vi

KL
(
σ
(
φ(hi

u,Pg)
)
, σ (φ(hg

u,Pg))
)
, (15)

where KL divergence penalizes deviations in the student’s relational reasoning from the teacher’s.
Furthermore, we provide the overall workflow of our framework in Appendix D.

4 EXPERIMENT

In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
How does AURA perform compared to existing normal/ robust federated graph learning frameworks?
(RQ2) What is the impact of each component of AURA on the overall performance? (RQ3) How
sensitive is AURA to its key components and parameters?

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. Adhering to (47), we evaluate the efficacy and robustness in five sce-
narios with different characteristics, including Cora (25), CiteSeer (9), PubMed (3), Physics (31),
CS (32), and Minesweeper (2). Following (47), we adopt a 20%/20%/40% train/validation/test ran-
dom split for the dataset. These datasets represent a wide range of domains and are commonly used
in graph-based machine learning tasks. Detailed datasets information is provided in Appendix C.1.
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Comparison Method. We compare AURA with several state-of-the-art methods in normal FGL and
robust FGL: (1) FedAvg [ASTAT17] (26), (2) FedProx [MLSys20] (18), (3) FedDC [CVPR22]
(7), (4) FedDyn [ICLR 21] (1), (5) Scaffold [ICML 20] (16), (6) FedGTA [VLDB24] (21), (7)
FedTAD [IJCAI24] (47), (8) FGSSL [IJCAI23] (12), (9) textbfCoteaching [NeurIPS18] (10), (10)
FedNoRo [IJCAI23] (39), (11) FedNed [AAAI24] (23), (12) FedCorr [CVPR22] (40);three Robust
GraghLearning methods: (13) CRGNN [NN24] (20), (14) RTGNN [WWW23] (29), (15) CLNode
[WSDM23] (38). Detailed descriptions of all the baselines can be found in Appendix C.2.

Parameter Configuration. The number of the SVD parameter m in Equation (4) is set 10, and the
number of smoothing factor α in Equation (8) is set 0.85. The number of the contribution score β in
Equation (11) is set 1. The detailed ablation study on hyperparameters is placed in Sec. 4.4.

4.2 MAIN RESULTS (RQ1)

We systematically evaluated our method across a spectrum of noise environments. The experiments
included both uniform and pair noise types, with noise ratios set at 0.2, 0.5 and 0.7 to simulate
varying levels of label corruption. The performance results are presented in Tab. 1, demonstrating
consistent superiority of our approach. We summarize the key observations as follows:

Takeaway ➊: AURA demonstrates consistent robustness under diverse noise conditions. As
evidenced by Tab. 1, our method demonstrates remarkable robustness under 50% moderate-noise
environments, consistently outperforming state-of-the-art FL and FGL baselines across both uniform
and pair noise patterns on diverse datasets. A notable example is the Coauthor-CS dataset with
GCN backbone under 50%-uniform noise, where AURA achieves an accuracy of 22.31%—surpassing
the best baseline, CRGNN (11.09%), by a significant margin of 11.22 percentage points. This
substantial performance gap underscores the effectiveness of our noise mitigation strategy.

The superiority of AURA extends beyond moderate-noise scenarios, as shown in Figure 3a, where it
maintains an average performance gain ranging from 4.07% to 19.01% across both high-noise and
low-noise environments compared to all baselines. More experimental results can be found in ??.

Moreover, AURA demonstrates stable and superior performance across varying client scales, high-
lighting its robust scalability. As illustrated in Figure 3b, our framework achieves significantly
better performance than other methods in scenarios with both 10 and 15 clients.

(a) Noise Scale Analysis (b) Client Scale Analysis

Figure 3: Performance comparison under varying scales: (a) noise rate scaling; (b) number of clients scaling.
Purple bars indicate the performance of AURA. Experiments conducted on Cora and Citeseer datasets with
50% uniform noise. Our method demonstrates consistent superiority across both scaling scenarios, exhibiting
remarkable robustness to increasing noise levels and stable performance with growing client populations.

Takeaway ➋: AURA achieves state-of-the-art performance in clean settings. More importantly,
Tab. 1 reveals that AURA not only excels in challenging noisy conditions but also achieves state-
of-the-art performance in clean settings, demonstrating its versatility and general applicability
across various data quality scenarios. The consistent excellence across this spectrum of conditions
highlights the methodological robustness of our approach.
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4.3 ABLATION STUDY (RQ2)

We conduct an ablation study on the key components of AURA both at the client-side and server-side.
Tab. 2 reports the performance of AURA and its variants by removing specific components from SFA
to SCD. We observe that both components significantly improve framework performance. Notably,
AURA accurately decouples label noise and interference from spectral heterogeneity while ensuring
excellent performance. SFA effectively filters out high-frequency variations arising from structural
differences among clients, thereby mitigating client drift. Meanwhile, SCD elevates knowledge
transfer from a hard alignment to a soft one, significantly enhancing generalization and stability.
Importantly, when both SFA and SCD are combined, performance reaches its peak.

4.4 SENSITIVITY STUDY (RQ3)

Table 2: Ablation study on key components for
AURA on Cora and Citeseer under uniform and pair
noise settings. Please see details in Sec. 4.3

.
Methods Cora-uni Cora-pair Cite-uni Cite-pair

Ours 0.6164 0.4423 0.4989 0.4460
w/o SFA 0.5762 0.4338 0.4375 0.4260
w/o SCD 0.5555 0.4227 0.3852 0.3710
w/o ALL 0.4832 0.372 0.3259 0.3422

We investigate the impact of final
loss parameter α and β, on the per-
formance of AURA. Specifically, we
vary α ∈ {0.15, 0.2, 0.25, 0.3}, and
β ∈ {0.45, 0.5, 0.55} on Cora and Cite-
seer datasets. Noise setting is 50%-uniform
and 50%-pair. We observe from Figure 4 (a,
b) that α = 0.25 and β = 0.5 lead to an
outstanding performance. Overall, the evalua-
tion metrics demonstrate minimal fluctuations
across different hyperparameter choices. In
most of our experiments, we set the default
values as 0.5 for α and 0.25 for β. Similarly, we investigate the impact of the random walk
parameter on the framework’s performance. We report the performance of AURA on the Cora,
Citeseer, and CS datasets under different noise settings, as illustrated in the Figure 4 (c, d). Based
on the experimental results, we ultimately set this parameter to 0.85.

Figure 4: Hyperparameter Analysis of AURA. (a,b) Accuracy vs. α and β on Cora and Citeseer under
uniform-50% noise. (c,d) Accuracy vs. random walk parameter δ on multiple datasets: Cora (green), CS
(blue), and Citeseer (yellow); (c) uniform-50% and (d) pair-20% noise.

5 CONCLUSION

In this work, we propose an innovative exploration of robust FGL in noisy environment. To achieve
this goal, we introduce AURA, a novel framework that tackles this challenge from both structural
and semantic perspectives. At the client level, our Structural-aware Frequency Alignment (SFA)
module leverages low-rank approximation to decompose local graphs into a structural backbone
and a redundant view. By enforcing consistency between these views, we effectively purify node
representations from both intra-client label noise and inter-client spectral heterogeneity, mitigating
client drift. Concurrently, at the server level, our Semantic-guided Consensus Distillation (SCD)
method constructs a high-quality global prototype graph from consensual client knowledge. This
graph serves as a semantic anchor, guiding local models through relational knowledge distillation to
align their semantic understanding, which overcomes the limitations of naive aggregation. Extensive
experiments on six datasets confirm the superiority of AURA, demonstrating significant performance
gains over state-of-the-art methods under various noise conditions.
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A NOTATIONS

We present a comprehensive review of the commonly used notations and their definitions in Tab. 3.

Table 3: Notations and Definitions.

Notation Definition

Gk = {Vk,Ak,Xk} Input data for the m-th client
Ak The adjacency matrix of Gk

Xk The feature matrix of Gk

Yk The one-hot label matrix of Gk

hk The embeddings from the original graph Gk

K The number of clients
d The dimension of the node feature
ϵ The fixed probability that the true label is flipped to a specific paired class∑[1:m]
k The top-m diagonal structural pattern for the m-th client
Âk The loss-pass filtered representation of the original graph structure
Cij The cost of matching node vi from the original view to node vj from the backbone view
Pij The transport plan that minimizes the total transportation cost

⟨·, ·⟩F The Frobenius dot product
Π(r, c) The set of joint probability matrices with uniform marginals r and c

D The degree matrix
I The identity matrix
M The global influence matrix
α The smoothing factor

Scorebi The Breadth influence for node i

Scoredi The Depth influence for node i

τi The optional weight or type coefficient for node i

β The hyperparameter used to adjust the weight of Depth Influence
pc
k The local prototype of class c for client k

Sc
i The similarity score of prototypes i from class c

B RELATED WORK.

Federated Graph Learning(FGL). Federated Graph Learning (FGL) extends Federated Learning
(FL) to graph-structured data, enabling decentralized training while preventing the exposure of raw
graph data, thus enhancing privacy protection (11; 14; 22; 4; 37; 36). Despite extensive research
dedicated to enhancing model performance, the presence of noise in datasets, such as erroneous
node labels, poses a significant threat to a model’s generalization capabilities. To overcome this
limitation, we propose a robust Federated Graph Learning (FGL) framework based on hyperspher-
ical representation learning. This framework enhances the model’s ability to extract the principal
update direction from clients, thereby maintaining stable classification performance in scenarios
characterized by both label noise and data heterogeneity.

Robust Federated Learning and Graph Learning.

The presence of noisy labels in Federated Learning, particularly when applied to graph-structured
data, presents a core challenge to model robustness and generalization. Existing solutions to this
problem predominantly follow two main paradigms: label correction and self-supervised learning.
Label correction methods aim to directly identify and rectify erroneous annotations. Such techniques
typically rely on representations learned from training data, for instance, by reassigning noisy labels
based on nearest-neighbor relationships (35)in the embedding space or through predictions from a
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global model(5). Although established techniques like loss correction (30; 28) and sample selection
(10; 15; 17; 24; 42) exist for learning with noisy labels in traditional graph learning, they are not
directly applicable to training GNNs in a federated setting, especially under conditions of limited
label noise and data heterogeneity. A critical bottleneck is that most existing approaches implicitly
assume a homogeneous data distribution, causing their performance to degrade in real-world non-
IID scenarios. This often results in the intermixture of effective signals and noise components within
the feature space. Pivoting from these limitations, our research is the first to systematically apply
the self-supervised learning paradigm to construct a robust federated graph learning framework. We
aim to leverage the intrinsic structure of the data itself to overcome the dual challenges posed by
label noise and data heterogeneity.

C EXPERIMENTAL DETAILS.

C.1 DATASET DETAILS

To assess the effectiveness of AURA, we conduct experiments on five real-world graph datasets: Cora,
CiteSeer, PubMed, Physics, and CS. Each dataset is split into training, validation, and test sets in a
fixed 20%/40%/40% ratio. The key statistics of these datasets are summarized in Tab. 4. A detailed
description is provided below:

• Cora, CiteSeer, and PubMed. These three citation network datasets are standard benchmarks in
graph-based machine learning, especially for tasks like node classification and link prediction. In
these datasets, nodes correspond to academic papers, while edges represent citation links. Each
node is assigned a class label, and its feature vector is constructed from textual information such
as words in the title or abstract. These datasets exhibit sparsity and high dimensionality, making
them well-suited for evaluating the effectiveness and scalability of graph neural networks (GNNs).

• Coauthor-Physics. Coauthor-Physics is an academic network containing co-authorship relation-
ships based on the Microsoft Academic Graph. Nodes in the graph represent authors and edges
represent co-authorship relationships. In the dataset, authors are categorized into five classes
based on their research areas, and the nodes are characterized as bag-of-words representations of
keywords of papers.

• Coauthor-CS. Coauthor-CS represents a co-authorship network in the field of computer science,
where nodes correspond to research papers, and edges denote co-authorship relations. Each paper
is associated with a topic category, and features are extracted from the paper’s title and abstract.
This dataset is commonly used to evaluate node classification and community detection algo-
rithms.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,278 7 1,433

Citeseer 3,327 4,552 6 3,703
Pubmed 19,717 44,324 3 500

Coauthor-Physics 34,493 530,417 5 8,415
Coauthor-CS 18,333 327,576 15 6,805

Table 4: Statistics of datasets used in experiments.

C.2 COUNTERPART DETAILS

This section provides a comprehensive overview of the baseline approaches employed in our study.

• FedAvg [ASTAT17]. A foundational algorithm in Federated Learning, FedAvg operates by allow-
ing clients to independently train models on their local datasets and subsequently transmit their
model updates to a central server. The server performs a weighted aggregation of these updates
to refine the global model, which is then redistributed to the clients for further local training. By
transmitting only model parameters instead of raw data, FedAvg reduces communication costs and
enhances privacy. However, it struggles with performance degradation in scenarios where client
data distributions are highly non-IID (19; 27).
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• FedProx [MLSys20]. As an enhancement of FedAvg, FedProx is specifically designed to address
the challenges posed by statistical heterogeneity in federated learning. It introduces an additional
regularization term that constrains local updates, preventing excessive divergence from the global
model. This proximal term mitigates the impact of local data distribution shifts, leading to more
stable convergence. By ensuring consistency in updates across clients, FedProx demonstrates
improved robustness in non-IID settings.

• FedDC [NeurIPS20]. FedDC addresses local model drift caused by non-independent and identi-
cally distributed (Non-IID) data across clients. It introduces a local drift decoupling and correction
mechanism, where an auxiliary variable on each client tracks the gap between local model updates
and the global model. This approach enforces consistency at the parameter level, leading to ac-
celerated convergence and strong performance in heterogeneous environments with partial client
participation.

• FedDyn [ICLR21]. FedDyn addresses the inconsistency between local client objectives and the
global optimization goal. It introduces a dynamic regularization method that modifies each client’s
objective function every round, aligning the stationary points of the local objectives with that of
the global objective. This ensures that even with heterogeneous data, the local updates correctly
contribute to the global goal, achieving robust performance in both convex and non-convex set-
tings with imbalanced data and device heterogeneity.

• Saffold [ICML20]. Scaffold addresses the ”client drift” problem in federated learning caused by
heterogeneous data distributions across clients. It corrects for this drift by using control variates to
estimate the update direction of the global model and the drift of each local model. This variance
reduction technique modifies local updates to better align with the global objective, ensuring faster
and more stable convergence while achieving higher accuracy in Non-IID settings.

• FedGTA [VLDB24]. FedGTA is tailored for large-scale graph federated learning, tackling issues
of slow convergence and suboptimal scalability. Unlike prior methods that focus on either opti-
mization strategies or complex local models, FedGTA integrates topology-aware local smoothing
with mixed neighbor feature aggregation to improve learning efficiency (46). By leveraging graph
structures in aggregation, it enhances scalability and performance in federated graph learning.

• FedTAD [IJCAI24]. FedTAD addresses subgraph heterogeneity in FL by decomposing local
graph variations into label and structural differences, preventing inconsistent model aggregation.
It enhances knowledge transfer via topology-aware distillation, boosting FL reliability and effi-
ciency.

• FGSSL [IJCAI23]. FGSSL addresses local client distortion caused by both node-level semantics
and graph-level structures. It improves discrimination by contrasting nodes from different classes,
aligning local nodes with their global counterparts of the same class while pushing them away
from different classes. To handle structural information, it transforms adjacency relationships
into similarity distributions and distills relational knowledge from the global model into local
models. This approach preserves both structural integrity and discriminability, achieving superior
performance on multiple graph datasets.

• Coteaching [NeurIPS18]. Coteaching addresses the challenge of training deep learning models
with noisy labels that can degrade performance. It proposes a dual-network approach where two
models are trained simultaneously. In each mini-batch of data, each network selects samples with
the smallest training loss—which are likely to be correctly labeled—and teaches these samples
to its peer network for the subsequent parameterparameter update. This collaborative process
prevents the models from overfitting to mislabeled data, significantly improving their robustness
and generalization on datasets with noisy labels.

• FedNoRo [IJCAI23]. FedNoRo adopts a two-stage framework to address class-imbalanced global
data with heterogeneous label noise in federated learning. The method first identifies noisy clients
through per-class loss indicators and Gaussian Mixture Modeling, then performs noise-robust
federated updates via joint knowledge distillation and distance-aware aggregation, specifically
designed for realistic medical scenarios with data imbalance and complex noise patterns.

• FedNed [AAAI24]. FedNed adopts a negative distillation framework to effectively leverage ex-
tremely noisy clients in federated learning. The method first identifies noisy clients, then inno-
vatively utilizes them as ’bad teachers’ through a dual-training approach: one model trained on
original noisy labels for reverse knowledge distillation, and another on global model-generated
pseudo-labels for conditional participation in aggregation. This approach transforms noisy clients
from detrimental elements into valuable contributors while progressively enhancing their trust-
worthiness through pseudo-label refinement

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• FedCorr [CVPR22]. FedCorr adopts a multi-stage framework to address heterogeneous label
noise in federated learning while preserving data privacy. The method first dynamically identifies
noisy clients through model prediction subspace analysis and per-sample loss evaluation, then
employs an adaptive local proximal regularization to handle data heterogeneity. After fine-tuning
on clean clients and correcting labels for noisy ones, FedCorr performs final training across all
clients to fully utilize available data, effectively handling varying noise levels without requiring
prior assumptions about client noise models.

• CRGNN [NN24]. CRGNN addresses label noise in GNNs by combining neighborhood-based la-
bel correction and contrastive learning. It utilizes message passing neural networks to update node
representations, integrating graph contrastive learning for consistent representations across aug-
mented graph views. Finally, CGNN employs an MLP for prediction distributions and iteratively
corrects noisy labels by comparing them with their neighbors and choosing the most labels.

• RTGNN [WWW23]. RTGNN proposes a noise governance framework that combines self-
reinforcement supervision for noisy label correction and consistency regularization to prevent
overfitting. The method categorizes labels into clean and noisy types, then applies adaptive super-
vision by rectifying inaccurate labels and generating pseudo-labels for unlabeled nodes, enabling
effective learning from clean labels while mitigating noise impact.

• CLNode [WSDM23]. CLNode addresses the difficulty of training Graph Neural Networks
(GNNs) on complex graphs for node classification tasks. It introduces a curriculum learning strat-
egy that organizes training samples in a meaningful order, from easy to difficult, based on node
characteristics. By allowing the model to first learn from simpler nodes and gradually progress to
more complex ones, it helps the model better capture intricate structural patterns and relationships.
This approach enhances the overall training process and leads to superior performance on various
node classification benchmarks.

D ALGORITHM WORKFLOW

The AURA algorithm framework is presented in Algorithm 1.

Algorithm 1 AURA Framework
Input: Communication rounds T , participant scale K, k-th client private model θk, k-th client local
data Gk and loss weight β
Output: The final global model θglobal
for t = 1, 2, · · · , T do

Client Side: for m = 1 to K in parallel do
Âk ← SVDandReconstruct(Gk,Ak)by Equation (4) // Decompose original graph and re-
construct low-frequency adjacency matrix
LSFA ← Sinkhorn(Hk, Ĥk)by Equation (6) // Graph Spectral Structural Alighment
Scorebi ← BreadthInfluence(Gk)by Equation (9) // Calculate Breadth Influence for each
node
Scoredi ← DepthInfluence(Gk)by Equation (10) // Calculate Depth Influence for each node
P ← CalculatePrototypes(Scorebi , Score

d
i ,Gk)by Equation (12) // Select node and calcu-

late prototypes
LFKD ← LocalKnowledgeAlignment(Pg,h

g,hi)by Equation (15) // Semantic-guided
Consensus Distillation
θt+1
m ← LocalUpdating(θtm,LSFA + βLFKD) // Backward propagation

Server Side:
Mc

sim = CalculateSimilarity(pc),∀c by Equation (13) // Calculate prototypes similarity
Pc

g ← SelectPrototypes(Mc
sim),∀c by Equation (14) // Select Prototypes by similarity matrix

θglobal ← Aggregate(θk),∀k // Clean clients aggregation
θk ← θglobal,∀k // Distribute parameters to clients

return θglobal
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Table 5: Performance comparison to state-of-the-art methods when poisoning 20% of the full set.

Dataset CORA (Acc ↑) CITESEET (Acc↑) PUBMED (Acc ↑)

Noise Type Normal Uniform Pair Normal Uniform Pair Normal Uniform Pair
N

or
m

al

FedAvg [ASTAT17] 74.50↑00.00 68.83↑00.00 67.55↑00.00 64.15↑00.00 43.70↑00.00 52.44↑00.00 84.16↑00.00 84.36↑00.00 83.07↑00.00
FedProx [MLSys20] 75.32↑00.82 68.92↑00.09 69.56↓02.01 65.19↑01.04 45.33↑01.63 51.26↓01.18 84.24↑00.08 84.46↑00.10 83.25↑00.18
FedDC [CVPR22] 80.90↑06.40 67.55↓01.28 70.02↑02.47 67.85↑03.70 53.04↑09.34 57.33↑04.89 82.91↓01.35 53.04↓31.32 44.81↓38.26
FedDyn [ICLR21] 79.98↑05.48 67.82↓01.01 69.20↑01.65 69.04↑04.89 52.89↑09.19 56.59↑04.15 81.83↓02.33 81.10↓01.97 75.81↓07.26
Scaffold [ICML20] 81.90↑07.40 73.40↑04.57 71.85↑04.30 70.22↑06.07 56.96↑13.26 62.07↑09.63 75.25↓08.91 72.77↓11.59 65.54↓17.53
FedGTA [VLDB24] 72.21↓02.29 71.57↑02.74 68.46↓00.91 65.33↑01.18 48.74↑05.04 56.59↑04.15 82.41↑01.75 83.35↓01.01 81.83↓01.24
FedTAD [IJCAI24] 64.90↓09.60 62.61↓06.22 63.35↑04.20 64.30↑00.15 44.44↓00.74 52.59↑00.15 84.36↑00.20 84.59↓00.23 82.97↓00.10
FGSSL [IJCAI23] 68.74↓06.16 69.20↑00.37 66.27↓01.28 70.07↑05.92 64.30↑20.60 62.81↑10.37 67.03↓17.13 72.34↓12.02 66.57↓16.50

R
ob

us
t

Coteaching [NeurIPS18] 72.03↓02.47 67.37↓01.46 66.82↑00.73 64.30↑00.15 54.22↑10.52 56.74↑04.30 84.26↑00.10 82.52↓01.84 83.40↑00.33
FedNoRo [IJCAI23] 74.50↑00.00 68.83↑00.00 67.37↓00.18 67.76↑03.61 43.70↓00.00 52.44↑00.00 84.16↑00.00 84.36↑00.00 83.07↓00.00
FedNed [AAAI24] 69.84↓04.66 56.58↓12.25 55.94↓11.61 57.78↓06.37 37.33↓06.37 46.07↓06.37 84.56↑00.40 81.63↓02.73 79.91↓03.16

FedCorr [CVPR22] 75.14↑00.64 67.82↓01.01 65.63↓01.92 38.96↓25.19 30.07↓13.63 34.07↓18.37 85.93↑01.77 84.69↑00.33 84.64↑01.57

CRGNN [NN24] 72.30↓02.20 67.28↓01.55 67.92↑00.37 69.33↑05.18 60.00↑16.30 62.37↑09.93 84.08↓00.08 83.40↓00.96 83.38↑00.31
RTGNN [WWW23] 71.46↓03.04 59.60↓09.23 54.57↓12.98 67.85↑03.70 60.33↑16.63 66.67↑14.23 60.10↓24.06 74.49↓09.87 65.71↓17.36
CLNode [WSDM23] 69.65↓04.85 57.68↓11.15 57.59↓09.96 59.11↓05.04 40.59↓03.11 48.74↓03.70 84.99↑00.83 82.06↓02.30 80.74↓02.33

AURA 85.22↑10.72 75.50↑06.67 73.58↑06.03 77.23↑13.08 65.56↑21.86 67.26↑14.82 85.95↑01.79 86.15↑01.79 82.11↓00.96

Whole Dataset 62.13±0.9 49.12±0.3 80.54±0.0

Dataset COAUTHOR-PHYSICS (F1-macro ↑) MINESWEEPER (F1-macro↑) COAUTHOR-CS (F1-macro ↑)

Noise Type Normal Uniform Pair Normal Uniform Pair Normal Uniform Pair

N
or

m
al

FedAvg [ASTAT17] 24.18↑00.00 15.58↑00.00 37.93↑00.00 53.51↑00.00 50.16↑00.00 47.22↑00.00 02.47↑00.00 02.47↑00.00 02.47↑00.00
FedProx [MLSys20] 23.22↓00.96 19.81↑04.23 46.06↓08.13 53.54↑00.03 51.25↓01.09 47.42↓00.20 02.76↑00.29 02.72↓00.25 03.12↑00.65
FedDC [CVPR22] 13.55↓10.63 13.46↓02.12 13.46↓24.47 53.59↑00.08 46.52↑03.64 44.33↓02.89 03.22↑00.75 03.09↓00.62 02.54↑00.07
FedDyn [ICLR21] 15.78↓08.40 13.61↓01.97 21.69↑16.24 51.22↓02.29 50.23↑00.07 44.33↓02.89 06.38↑03.91 06.05↑03.58 04.09↑01.62
Scaffold [ICML20] 42.61↑18.43 15.21↓00.37 24.66↓13.27 44.25↓09.26 46.45↑03.71 45.01↓02.21 02.46↑00.01 02.47↓00.00 02.47↑00.00
FedGTA [VLDB24] 13.72↓10.46 13.59↓01.99 32.84↓05.09 53.58↑00.07 51.40↓01.24 46.13↑01.09 01.35↓01.12 03.11↑00.64 03.54↑01.07
FedTAD [IJCAI24] 22.13↓02.05 13.46↓02.12 13.75↓24.18 54.11↑00.60 51.85↓01.69 45.55↑01.67 02.47↑00.00 02.78↑00.31 02.47↑00.00
FGSSL [IJCAI23] 28.13↑03.95 13.46↓02.12 34.25↓03.68 44.46↓09.05 41.98↑08.18 44.33↓02.89 02.83↑00.36 02.47↑00.00 02.14↓00.33

R
ob

us
t

Coteaching [NeurIPS18] 13.46↓10.72 32.29↑16.71 42.52↑04.59 44.25↓09.26 44.78↑05.38 44.33↓02.89 08.00↑05.53 07.37↑04.90 08.22↑05.75
FedNoRo [IJCAI23] 22.46↓01.72 15.58↑00.00 37.93↑00.00 53.54↑00.03 51.25↑01.09 47.42↓00.20 02.49↑00.02 02.42↑00.05 02.49↑00.02
FedNed [AAAI24] 35.94↑11.76 41.90↑26.32 38.51↓00.58 51.97↓01.54 51.94↑01.78 48.79↑01.57 11.85↑09.38 11.57↑09.10 06.75↑04.28
FedCorr [CVPR22] 27.93↑03.75 28.45↑15.87 34.12↑03.81 44.14↓09.37 41.12↓09.04 44.12↓03.10 01.34↓01.13 08.06↑05.59 02.96↑00.49

CRGNN [NN24] 35.12↑10.94 47.44↑31.86 44.14↑06.21 46.78↓06.73 43.12↓07.04 44.33↓02.89 13.08↑10.61 11.39↑08.92 11.70↑09.23
RTGNN [WWW23] 33.17↑08.99 13.46↓02.12 40.28↓02.35 43.93↓09.58 44.25↑05.91 44.31↑02.91 02.47↑00.00 09.78↑07.31 02.47↑00.00
CLNode [WSDM23] 40.78↑16.60 37.96↑22.38 28.14↓09.79 53.93↑00.42 52.41↑02.25 48.30↑01.08 06.83↑04.36 06.83↑04.36 06.81↑04.34

AURA 57.99↑33.81 66.64↑51.06 56.53↑18.60 55.29↑01.78 54.34↑04.18 54.34↑07.12 21.80↑19.33 21.56↑19.84 20.17↑17.70

Whole Dataset 25.45±0.9 42.46±0.3 07.46±0.0

E ETHICS AND SOCIETAL IMPACT

This work aims to advance the robustness of FGL by addressing challenges such as label noise
and data heterogeneity. While the research primarily focuses on improving model performance
and generalization in decentralized environments, we acknowledge the broader implications of
deploying such models in real-world settings. One key ethical concern lies in the use of sensitive
data in FL environments. Although FL inherently protects privacy by keeping data local, the po-
tential for adversarial manipulation of models or the inadvertent leakage of sensitive information
remains a risk. In this study, we do not introduce any new sensitive datasets or personal data into
the models, and we adhere to the principles of privacy-preserving machine learning.

F THE USE OF LARGE LANGUAGE MODEL (LLMS)
Our use of Large Language Models (LLMs) was strictly limited to polishing the language an-
cearch and intellectual content of this papegenerating figures for the manuscript. All underlying
reincluding the AURA frawork, its theoretical foundations, experimental design, and thanalysis of
results, was completed entirely by the authors without assistance from LLMs.

G ADDITIONAL EXPERIMENTAL RESULTS

We place additional Acc and F1-macro score results under 0.2 noisy label ratios in Tab. 5.
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