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Abstract
Recent studies show that deep reinforcement learning (DRL)
agents tend to overfit to the task on which they were trained
and fail to adapt to minor environment changes. To expe-
dite learning when transferring to unseen tasks, we propose a
novel approach to representing the current task using reward
machines (RMs), state machine abstractions that induce sub-
tasks based on the current task’s rewards and dynamics. Our
method provides agents with symbolic representations of op-
timal transitions from their current abstract state and rewards
them for achieving these transitions. These representations
are shared across tasks, allowing agents to exploit knowledge
of previously encountered symbols and transitions, thus en-
hancing transfer. Empirical results show that our represen-
tations improve sample efficiency and few-shot transfer in a
variety of domains.

1 Introduction
Reinforcement learning (RL) methods, especially Deep RL
(DRL) methods, have shown impressive capabilities in a
wide variety of problems (Chen, Xu, and Agrawal 2021;
Schrittwieser et al. 2020). However, recent studies show that
these algorithms have difficulty adapting to even the slight-
est variations in the agent’s objective or environment dynam-
ics (Danesh and Fern 2022; Agarwal et al. 2021a; Zhang
et al. 2018; Leike et al. 2017). Adapting quickly to new tasks
is imperative in real-world scenarios, such as robotics (Ngo
et al. 2018) and healthcare (Tseng et al. 2017), where agents
reside in a dynamic world with ever-changing objectives and
constraints. Consequently, agents require many interactions
with the environment to learn to perform new tasks despite
having mastered similar ones. The problem is exacerbated
for tasks with sparse reward signals (Gupta et al. 2022) and
long-term dependencies between actions (Langford 2018).
Example 1 A housekeeper robot learns to do multiple tasks,
one of which is to make coffee in a mug. Next, the robot is
tasked with making coffee in a glass, something it has never
attempted. The two tasks are similar in that they interact
with many of the same objects (e.g. coffee, spoon, etc.) and
perform identical subtasks (e.g. boil water, fill cup, etc.). The
robot is expected to use its experience in making coffee in a
mug to learn to achieve the new task more quickly.
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A Contextual MDP (CMDP) (Langford 2017; Hallak,
Di Castro, and Mannor 2015) models settings such as Ex-
ample 1 as a collection of tasks within the same environ-
ment, where each task is represented by the current context.
CMDPs have been used in recent work that aims to improve
zero-shot transfer capabilities, i.e., solving new tasks after
training on a subset of them (Benjamins et al. 2022; Hal-
lak, Di Castro, and Mannor 2015). In contrast, we aim to
improve few-shot transfer, in which the agent may continue
training on previously unseen tasks with the objective of
minimizing the additional training required to achieve de-
sirable performance.

One of the key challenges when using a CMDP to model
transfer learning settings is finding a concise way to repre-
sent the current context while maximizing transfer capabili-
ties. For this, we take advantage of Reward Machines (RMs)
(Toro Icarte et al. 2018), state machine based abstractions
that represent the structure of the reward function and the
dynamics of a task and its subtasks. Transitions between
abstract states in the RM occur when certain facts, repre-
sented as binary symbols, hold true. As the agent traverses
the environment, it keeps track of these facts and its current
RM state. Camacho et al. (2021) used RMs by providing the
agent with the current abstract state and showed that this can
expedite learning on a single task. In contrast, we leverage
RMs to improve transfer.

Our novel technique, called Contextual PRE-Planning
(C-PREP), takes as input a CMDP and an RM genera-
tor function that represents contextual information through
task-specific RM abstractions with shared symbolic repre-
sentations. Given a task, C-PREP finds an optimal policy in
the corresponding RM abstraction and gives the agent the
next desired abstract transition according to that policy as
additional input. Furthermore, C-PREP uses the RM by re-
shaping the reward function according to abstract state tran-
sitions within the RM, thus highlighting important transi-
tions throughout learning. When transferred to a new task,
the agent can exploit abstract transitions that it has encoun-
tered during training and needs only to adapt to symbols
with which it has not previously interacted.

We empirically evaluate C-PREP in various environments
with sparse rewards and varying difficulties. In our experi-
ments, a DQN agent (Mnih et al. 2015) is initially trained
on a collection of source contexts. Subsequently, we transfer



the policy network to a different set of target contexts, where
it undergoes further training and continuous evaluation. We
observe an improvement in few-shot as well as zero-shot
transfer performance when using C-PREP compared to var-
ious other context representation methods. The performance
gap grows as the problem difficulty increases, with an im-
provement of 22.84% to 42.31% in time-to-threshold (few-
shot transfer), and from 11.86% to 36.5% in jumpstart (zero-
shot transfer) for the most complex tasks compared to the
next best baseline.

2 Background
Reinforcement Learning (RL) is a method for agent learn-
ing through experiencing the world, acting within it, and
receiving rewards (both positive and negative) for achiev-
ing certain states or state transitions. RL problems com-
monly model the world as a Markov Decision Process
(MDP) (Bellman 1957) M = ⟨S,A, T,R, γ⟩ where S is
a set of possible states, A is a set of agent actions, T :
S × A × S → [0, 1] is the state transition function, R :
S × A × S → R is the transition reward function, and γ
is the temporal reward discount factor. The objective is to
find a policy π∗ such that: π∗ ∈ argmaxπ E[J(π)], where
J(π) = Est,st+1∼T ;at∼π [

∑∞
t=0 γ

tR(st, at, st+1)] is the ex-
pected return of policy π in MDP M .

In this work we focus on Transfer learning (TL), which
is the improvement of learning a new task through the trans-
fer of knowledge from a related task that has already been
learned (Torrey and Shavlik 2009). We model a collection of
MDPs using a Contextual MDP (CMDP) (Hallak, Di Cas-
tro, and Mannor 2015), a 4-tuple ⟨C, S,A,M⟩ where C is
the context space, S and A are state and action spaces, and
M is a mapping from a context c ∈ C to an MDPMc con-
sisting of S and A but with distinct transition and reward
functions, that is, Mc = ⟨S,A, Tc, Rc, γ⟩. We sometimes
refer to context-induced MDPs as “tasks”, and to the shared
S and A as the “environment”. In Example 1, C is the set of
all house chores, S and A are the state of the house and the
agent’s capabilities, andM maps a chore c to an MDPMc

that corresponds to completing the chore.
Fig. 1a depicts the general flow of transfer learning over a

CMDP (Benjamins et al. 2022; Hallak, Di Castro, and Man-
nor 2015). The input consists of the observed MDP state
and the current context. The state representation is processed
by a (optional) feature extractor to be represented as a vec-
tor. The context is represented via a context representation
function that maps a context to a vector representation. The
state representation is merged with the context representa-
tion (usually by concatenation), and the new representation
is fed into a policy network that will determine the next ac-
tion.

Kirk et al. (2021) distinguish between two categories of
context representations. The first type, known as Control-
lable (CTL) context representations, includes the necessary
information to generate the MDP, which can be thought of as
a transparent implementation of the environment generation
process (implemented inM). The second type, Procedural
Content Generation (PCG) context representations, conceal
the MDP variables and only reveal information about the

context identity, operating as a black-box with no insight
into the generation process.

Given a CMDP ⟨C, S,A,M⟩, transfer learning algo-
rithms attempt to leverage knowledge from interactions with
a set of source contexts Csrc ⊂ C to improve learning in a
set of target contexts Ctgt ⊂ C such that Csrc ∩ Ctgt = ∅. In
Example 1, Csrc is the set of contexts representing the chores
it learns to do, including making coffee in a mug, and mak-
ing coffee in a glass is a context in Ctgt. Policies learned
after training in Csrc and Ctgt from scratch are the source
policy and the target policy, respectively. The policy learned
on Ctgt after training in Csrc is the transferred policy. Given
a distribution Ψ over C, the objective is to optimize a cho-
sen transfer utility U in expectation over sampled source and
target context sets. Transfer utilities of interest in this work,
suggested by Taylor and Stone (2009), are jumpstart (JS),
time to threshold (TT), and transfer ratio (TR). JS measures
(zero-shot transfer) performance on the target contexts with-
out additional training. TT measures the number of training
timesteps taken until convergence to a policy of acceptable
performance threshold (few-shot transfer). TR measures the
ratio of rewards accumulated over time by the agent using
knowledge transfer against the agent that is trained from
scratch, that is, how much the agent benefits from transfer
(transfer relevance). Calculations of these utilities are avail-
able in Appendix F.

Reward Machines (RMs) (Toro Icarte et al. 2022) are
state machine abstractions of MDPs. Given a set of proposi-
tional symbols P , an RM is a 3-tuple R = ⟨U, δu, δr⟩ where
U is a set of abstract states, and δu : U × 2P → U and
δr : U×2P → R are the abstract transition and reward func-
tions, respectively. Given the current abstract state u ∈ U
and a subset of propositional symbols l ⊆ P that hold true,
δu(u, l) is the next abstract state and δr(u, l) is the reward
received for this transition. When δu(u, l) = u′, l is called
the abstract transition label from u to u′. To connect be-
tween the abstraction and the underlying MDP, P is coupled
with a transition labeling function L : S × A × S → 2P

that maps state-action-state transitions in the MDP to ab-
stract transition labels in the RM.

Fig. 2a textually describes an RM for the task of making
coffee in Example 1. It defines abstract states u0 to u3 that
each represent a high-level stage within the task of making a
cup of coffee. The RM dictates that the agent must first boil
some water, then put the coffee in the cup, and finally pour
boiling water into the cup. These relationships are graphi-
cally visualized in Fig. 2b.

The main benefits of RMs are that they represent transi-
tions between abstract states using binary symbols that per-
tain to the state of the underlying MDP (through L) and pro-
vide dense rewards via reward shaping. As a result, an RM
corresponding to some context divides its induced task into
sub-tasks that each describe a stage in the process of solv-
ing the overall task, rewarding the agent upon completion
of each sub-task. To employ sensible reward shaping, we
use potential-based reward shaping (Ng, Harada, and Rus-
sell 1999) which, given a potential function ϕ, define a new
abstract reward function δ′r(u, l) = δr(u, l)+γϕ(δu(u, l))−
ϕ(u). Toro Icarte et al. (2022) prove that potential-based re-
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Figure 1: (a) The general flow of transfer learning with a CMDP. (b) A visualization of the C-PREP context representation
function. Context c is used to generate a task-specific RM.

Symbols:
    B - There is boiling water in the kettle.
    C - Coffee contents are in the cup.
    W - Boiling water poured into the cup.

Make-Coffee:
States - u0,u1,u2,u3
Transitions - 
    (u0, not B) --> next=u0;r=0
    (u0,     B) --> next=u1;r=0
    (u1, not C) --> next=u1;r=0
    (u1,     C) --> next=u2;r=0
    (u2, not W) --> next=u2;r=0
    (u2,     W) --> next=u3;r=1

(a)

Start

(b)

Start
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Figure 2: (a) A textual representation of the RM in Example 1 describing the Make-Coffee task. (b) A graph visualization
of the textually defined RM. (c) An expansion of the RM that differentiates between mug and glass receptacles, described in
Section 3.

ward shaping guarantees that optimal policies in an MDP
for which rewards have been replaced with RM rewards are
optimal using the RM reshaped rewards. Moreover, it is em-
pirically shown that using RM-reshaped rewards can signif-
icantly expedite policy convergence for RL agents.

3 Contextual Pre-Planning (C-PREP) for
Transfer Learning

We aim to improve transfer in multi-task domains mod-
eled as Contextual MDPs (CMDPs). Benjamins et al. (2022)
proved that to guarantee optimality, it is necessary to condi-
tion the policy on the context itself. Therefore, it is crucial to
represent the context in a way that allows the agent to gener-
alize across contexts. For this, we use RMs to represent the
current context and offer a novel way to enhance the agent’s
ability to exploit its previous experiences in new settings.
Since our focus is on exploiting the structure of the RMs for
transfer and not on their generation, we assume that the RM
generator function is given as input, which can be based on
domain knowledge, learned from demonstration (Camacho
et al. 2021), or learned via discrete optimization (Toro Icarte

et al. 2019).
Camacho et al. (2021) exploited RMs to expedite learn-

ing in single task domains by providing the agent with the
current abstract state. We instead focus on transfer learning,
and provide the next desired abstract transition from the cur-
rent RM abstract state as contextual input at each timestep.
Essentially, we guide the agent through optimal paths in the
RM with abstract transitions represented using a set of sym-
bols that is shared across all tasks. Upon transfer, the agent
can expedite transfer learning by exploiting abstract transi-
tions and leveraging prior knowledge of encountered sym-
bols in the new task. This may be beneficial for learning in
general but is key in transfer settings as it provides reusable
representations between tasks.

C-PREP Context Representation Function. Based on
the above intuition, we propose Contextual PRE-Planning
(C-PREP) for leveraging information in context-specific
RMs. For each task, C-PREP generates an RM ⟨U, δu, δr⟩
with abstract transitions represented using a shared symbol
set, that is, we use the same symbol set P to represent all
RM transitions. Using Value Iteration (VI) (Bellman 1957),



we find an optimal policy in the RM. We then give the agent
an optimal abstract transition label in the RM from the cur-
rent abstract state u (as dictated by the RM policy), i.e., a
transition label l such that δu(u, l) is the next state on a (dis-
counted) reward-maximizing path in the RM. Intuitively, we
wish to guide the agent towards an optimal path within the
RM.

C-PREP relies on providing the next desired abstract tran-
sition in the RM to the agent. However, since there is no
direct representation of actions in the RM, we cannot use
standard planning methods for this purpose. We therefore
use a variant of value iteration, as suggested by Toro Icarte
et al. (2022), with the following update rule over the abstract
states of RM R.

V k
R(u) = max

l∈2P

[
δr(u, l) + γV k−1

R (δu(u, l))
]

(1)

where V k
R is the value of abstract state u at iteration k (V 0

R =
0), and δu(u, l) and δr(u, l) are the next abstract state and re-
ward received for achieving transition label l at abstract state
u, respectively. To show the relationship between this rule
and VI for MDPs, we define MR =

〈
U, 2P , T,R, γ

〉
where

T (u, l, δu(u, l)) = 1 and R(u, l, u′) = δr(u, l). We observe
that the VI update rule for MR, denoted V k, is equivalent to
V k
R. Formally,

V k(u) =max
l∈2P

∑
u′∈U

T (u, l, u′)(R(u, l, u′) + γV k−1(u′))

=max
l∈2P

R(u, l, δu(u, l)) + γV k−1(δu(u, l))

=max
l∈2P

δr(u, l) + γV k−1(δu(u, l))) = V k
R(u)

Thus, to identify optimal abstract transitions, we can find
an abstract optimal policy in RM R by using VI to find an
optimal policy π∗ in MR.

Given the current abstract state u, from which there may
be multiple optimal abstract transitions, C-PREP samples an
optimal abstract transition l from π∗(·|u). Since π∗ is opti-
mal in deterministic MDP MR:

supp(π∗(·|u)) ⊂ argmax
l∈2P

(δr(u, l) + γV ∗(δu(u, l)))

where supp(π∗(·|u)) is the support set of probability distri-
bution π∗(·|u). Thus, any transition we sample from π∗ is
one that maximizes discounted return in the RM.

Based on the above formulations, the C-PREP context
representation function (depicted in Fig. 1b) operates in a
three-step process: (1) generate an RM R = G(Mc) for the
current context c, (2) find an optimal policy π∗ in MR, (3)
at each timestep, sample an optimal transition l ∼ π∗(·, u)
given the current RM abstract state u and return it.

Throughout training, the C-PREP RM generation func-
tion updates its returned representation according to the cur-
rent abstract state. To notify the agent that a correct (or in-
correct) abstract transition has been completed, we provide
additional rewards that emphasize the executed abstract tran-
sition’s quality. For this, we employ potential based reward-
shaping as defined in Section 2. As it is already calculated,
we use V ∗ as the potential function ϕ to generate the reward

signal that is provided to the agent instead of the original
MDP reward. In the RM described in Fig. 2a, the agent will
receive a higher reward for transitioning from state u0 to u1

rather than loop back to itself because this brings it closer to
the abstract goal state.

Transfer Learning with C-PREP The input to our set-
ting includes a CMDP ⟨C, S,A,M⟩ and an RM generator
function G that maps each context-induced task Mc to its
corresponding RM G(Mc) = ⟨U c, δcu, δ

c
r⟩ which is defined

over shared symbol set P .
The C-PREP context representation function can be in-

tegrated into any algorithm following the transfer learning
flow depicted in Fig. 1a. Algorithm 1 (Appendix G) demon-
strates an implementation of a DQN (Mnih et al. 2015) for
transfer learning settings using C-PREP as the context repre-
sentation function and RM reward shaping. The key differ-
ences between this implementation and the standard DQN
are that the algorithm initially generates an RM for the sam-
pled context, calculates its state values, and reshapes the RM
rewards. States encountered in the episode are augmented
by the C-PREP context representation according to the RM
transition. Rewards are replaced with the reshaped rewards
from the RM according to the achieved abstract transition at
that timestep.

We note that the ability of C-PREP to support transfer de-
pends on the resolution of the generated RMs, i.e., how well
the generated RMs represent the context space. If the set of
propositional symbols P is too abstract, the generated RMs
do not sufficiently distinguish between contexts. In contrast,
if it is too refined, computation time may increase due to
running VI in huge tables for every context.

In Example 1, when training to make coffee in a mug, the
agent learns to pour water into the mug and should exploit
this capability upon transferring to the task of making cof-
fee in a glass. Fig. 2 shows two different RMs that can be
used to describe this setting. The RM in Fig. 2b does not
differentiate between a mug and a glass, as they are both en-
capsulated by the “cup” symbol C. In contrast, the RM in
Fig. 2c distinguishes between the tasks of making coffee in
a mug and in a glass, rewarding the agent only for the former
(when transitioning from uM

2 to u3).

4 Empirical Evaluation
The objective of our empirical evaluation is to examine
whether agents using C-PREP exhibit improved perfor-
mance on transfer utilities of interest.

4.1 Experimental Setup
Environments: We test our method in four environments
with compound and long-horizon tasks and sparse reward
signals1:

Grid Navigation (GN): An agent must reach a specified
destination on a grid. The state space consists of the agent’s
current location and the action space includes moving in
one of the four cardinal directions and a ”done” action to
be called upon arrival at the destination.

1Our code base is described in Appendix I.



Multi Points-of-interest (MP): The agent navigates to mul-
tiple destinations in any order. The state space consists of
the agent’s location and an indicator of whether a certain
destination has already been visited. The action space is as
in GN, but with an ”arrived” action replacing the ”done” ac-
tion.
Pick-up and drop-off (PD): An agent picks up and drops
off passengers at their destinations. The state space is as in
MP with indicators for passengers that have been dropped
off at their destinations. In addition to navigation actions,
the action space contains ”pick-up” and ”drop-off” actions.
Ordered Navigation (ON): The agent must navigate to
specified destinations in a specific order. The state and ac-
tion spaces are as in MP.

All maps are 6 × 6. At every timestep, the agent receives
a reward of 1 when achieving the environment objective and
0 otherwise, and the discount factor is γ = 0.99.

Defining the CMDP Spaces: The environments described
above include pairs of state and action spaces. To define a
CMDP we couple them with the following context spaces:

• Entity Location (EL): The context indicates the locations
of core entities in the environment, e.g., passenger loca-
tions and drop-off destinations.

• Changing Map (CM): The context indicates the number
and location of walls in the grid.

• Point-of-interest Order (PO): The context indicates the
order of the locations to visit.

The GN, MP, and PD environments are each used with both
the EL and CM context spaces. The ON environment is
paired with the PO context space. Contexts are represented
using controllable (CTL) representations (see Section 2).
For full details on CTL context representations, see Ap-
pendix C.

Transfer Session: Each transfer learning training session
begins by randomly sampling two disjoint context sets from
the CMDPs described above; the source set Csrc and the tar-
get set Ctgt. We adopt “training protocol B” of Kirk et al.
(2021) such that the size of Csrc is much smaller than the
size of the context space. The agent initially trains on tasks
induced by Csrc for Nsrc steps and then continues its train-
ing in Ctgt for additional Ntgt steps. We record performance
progress during and after training. For full details see Ap-
pendix E.

Context Representations: We vary the RM information
exposed to the agent. We examine the following representa-
tions:

• CTL- Controllable context representation without RMs
(same baseline in (Toro Icarte et al. 2018)).

• CTL+RS (Toro Icarte et al. 2018) - Adds dense reshaped
RM rewards to the current context’s reward functions.

• CTL+LTL+RS (Camacho et al. 2021) - Adds the Last
Transition Label (LTL) as an additional context represen-
tation that is the current truth assignment of all proposi-
tional labels.

• CTL+C-PREP (ours) - Adds the C-PREP context repre-
sentation, i.e., the Desired Transition Label (DTL), with
RS.

• C-PREP (ours) - The C-PREP context representation
without a CTL context representation

In Appendix A we show additional experiments using
PCG context representations in lieu of CTL.

Reported Metrics: During each training session, we eval-
uate the source, target, and transferred policies on the con-
text set on which it is trained at 100 uniformly spaced evalu-
ation points. At each evaluation point, we record the policy’s
average return on 50 sampled contexts. Each training session
is repeated 5 times, using different random seeds. From the
computed average returns, we calculated the transfer utilities
defined in Section 2: JS, TT, and TR (see Appendix F for the
formula used to compute these measures). We aggregate the
results using interquartile mean (IQM) and calculated the
standard deviation and stratified bootstrap 95% confidence
intervals (Agarwal et al. 2021b). To report results for dif-
ferent performance thresholds, we plot the TT as a function
of the threshold. We measure the IQM area under the curve
(AUC) of this function, denoted TTAUC .

4.2 Results
First, to examine the performance over the entire trans-
fer session, Table 1 shows the interquartile mean (IQM)
and standard deviation of the measured transfer utilities
(TTAUC , JS, TR) for all tested configurations using a CTL
context representation. The best results for each CMDP
(row) are marked in bold. Negative TR values that indicate
non-beneficial transfer are colored red.

Our method performed best in terms of TTAUC and JS in
all but two CMDPs: (1) in GN (shortest horizon) with both
context spaces (EL and CM), CTL+LTL+RS performs best
in terms of TTAUC ; (2) in GN with EL context space, us-
ing CTL alone performs best in terms of JS. Notably, in PD,
which is the longest horizon task, our method outperforms
all other configurations. Compared to the highest perform-
ing baseline, we see TTAUC improvements of 22.84% in the
context space CM and 42.31% in the context space EL, and
JS improvements of 11.86% in CM and 36.5% in EL. TR
results show low and negative TR values for most configura-
tions. Our method is the only one with positive TR through-
out all tasks. In the PO environment (longest horizon), we
see a performance improvement of over 300% when using
C-PREP compared to the next best configuration.

Next, we examine the achieved threshold performance
throughout training. Fig. 3 visualizes the IQM TT results,
measured in training progress (percentage) as a function of
the threshold, i.e., the curve from which we derive TTAUC .
The shaded areas are stratified bootstrap 95% confidence in-
tervals. Each row corresponds to a context space. Each col-
umn corresponds to an environment. Agents using RS in en-
vironments tested with the CM and EL context show simi-
lar performance in GN, but a performance gap (in favor of
our method) widens as the task horizon grows. In the PO
environment, our method is the only one that can be seen
converging to a high performing policy.



Table 1: IQM and standard deviation transfer utilities of configurations with CTL.

Utility Context Space Environment CTL CTL+RS CTL+LTL+RS CTL+C-PREP (ours) C-PREP (ours)
T
T
A
U
C

EL
GN 25.41 ± 7.27 6.37 ± 0.71 6.21 ± 0.42 6.42 ± 0.44 42.15 ± 3.95
MP 94.77 ± 6.02 44.78 ± 12.06 19.88 ± 9.36 18.32 ± 9.27 86.43 ± 1.89
PD 97.39 ± 1.57 95.18 ± 3.98 37.58 ± 23.38 21.68 ± 6.55 88.35 ± 1.59

CM
GN 42.18 ± 1.58 16.30 ± 2.35 7.14 ± 1.41 7.64 ± 1.72 32.98 ± 0.68
MP 71.90 ± 10.62 26.48 ± 15.51 14.24 ± 8.85 13.64 ± 8.60 47.74 ± 11.46
PD 86.30 ± 18.81 54.19 ± 21.64 37.52 ± 25.46 28.95 ± 24.15 51.02 ± 15.46

PO ON 98.04 ± 0.00 95.15 ± 7.66 97.50 ± 5.59 32.93 ± 10.21 22.54 ± 1.57

JS

EL
GN 0.28 ± 0.11 0.06 ± 0.06 0.07 ± 0.09 0.05 ± 0.05 0.01 ± 0.05
MP 0.03 ± 0.06 0.26 ± 0.15 0.48 ± 0.26 0.49 ± 0.17 0.01 ± 0.02
PD 0.02 ± 0.02 0.03 ± 0.01 0.34 ± 0.20 0.38 ± 0.12 0.00 ± 0.01

CM
GN 0.42 ± 0.03 0.55 ± 0.06 0.73 ± 0.05 0.75 ± 0.08 0.49 ± 0.06
MP 0.23 ± 0.09 0.49 ± 0.14 0.66 ± 0.11 0.68 ± 0.10 0.42 ± 0.10
PD 0.08 ± 0.19 0.28 ± 0.19 0.38 ± 0.27 0.52 ± 0.25 0.31 ± 0.19

PO ON 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.14 ± 0.26 0.75 ± 0.02

T
R

EL
GN -0.11 ± 0.10 0.13 ± 0.04 0.08 ± 0.03 0.07 ± 0.03 0.04 ± 0.02
MP -0.99 ± 0.01 0.24 ± 0.08 0.24 ± 0.18 0.16 ± 0.12 0.06 ± 0.11
PD -1.00 ± 0.00 -0.99 ± 0.21 -0.14 ± 0.38 0.14 ± 0.09 -0.05 ± 0.12

CM
GN -0.11 ± 0.04 0.08 ± 0.04 0.11 ± 0.01 0.11 ± 0.01 0.08 ± 0.04
MP -0.85 ± 0.32 0.29 ± 0.13 0.26 ± 0.06 0.21 ± 0.06 0.07 ± 0.05
PD -0.94 ± 0.25 -0.06 ± 0.29 -0.05 ± 0.20 0.06 ± 0.19 0.07 ± 0.07

PO ON 0.00 ± 0.00 2.04 ± 6.942 -0.87 ± 0.90 0.69 ± 0.20 0.31 ± 0.03

Appendix A shows results of experiments wherein we re-
place the CTL representations with uninformative PCG rep-
resentations. TT and JS results are similar to those presented
with CTL representations. TR results show that for all con-
figurations, it is non-beneficial to use PCG representations
for transfer due to severe overfitting.

Appendix B presents results for an ablation study that
shows that all components of C-PREP are required to
achieve the best results. Appendix H shows results for ad-
ditional experiments on sample efficiency (in terms of num-
ber of contexts) and generalization capabilities of C-PREP
using PCG.

4.3 Discussion
Results demonstrate that C-PREP improves transfer per-
formance in more complex tasks without hindering perfor-
mance on simpler tasks. As visualized in Fig. 3a, all methods
perform similarly in the GN environment (short horizon),
but C-PREP opens a performance gap in TT that increases
with the difficulty of the environment. The TR results show
that only our method is beneficial for transfer in all tasks, as
is evidenced by the negative TR values reported for all other
configurations. In the PO environment, only agents using C-
PREP are able to achieve threshold greater than 0.2. Fur-
thermore, since the RM in this case differentiates all tasks,
it is preferable to use C-PREP without CTL. We observe
that the JS performance is approximately 93% of the max-
imum achieved performance threshold, which is reached in
less than 20% of the training progress.

We examine the performance of C-PREP using partial res-
olution RMs, i.e., some tasks may be represented with the

same RM. For this we remove CTL and use C-PREP alone.
In the GN, MP, and PD environments, the agent will achieve
a threshold performance of no more than 50% of C-PREP’s
performance with CTL. Fig. 3a shows that C-PREP without
CTL achieves medium to low performance depending on the
environment and context space. We attribute this to the low
coverage of tasks with the partial RM resolution. These RMs
(describe in detail in Appendix D) cover approximately 25%
of the tasks in GN and approximately 6% of the MP and PD
tasks. We conclude from this that C-PREP with partial res-
olution RMs cannot compensate for missing contextual in-
formation. However, Fig. 3b shows that in the ON environ-
ment, where the RMs are of full resolution, it is preferable
to use C-PREP without additional context. We hypothesize
that this is due to the large overlap in contextual data be-
tween the C-PREP context representation and CTL, making
the information in CTL irrelevant. C-PREP’s zero-shot re-
sults in this setting compared to other baselines. This use of
local context illustrate the advantage of solving the context
as a series of smaller, simpler contexts.

We show additional results in experiments using PCG in
place of CTL in Appendix A to examine the case of unin-
formative global context representations. Here, we notice
that in 60% of the runs, it was more beneficial to train
from scratch in Ctgt than to transfer from Csrc. Fig. 4 in
the appendix visualizes TT performance of PCG configu-
rations and shows hindered performance compared to those
in Fig. 3a that use CTL representations.

Ablation results (found in Appendix B) show the impor-
tance of every component of C-PREP. We notice that both
TTAUC and JS can be improved by up to 12% in five out
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Figure 3: The IQM TT of configurations using CTL as a function of the threshold.

of seven tasks by adding the LTL modification to CTL+C-
PREP in the most complex task. We hypothesize that this
will yield an even greater benefit in scenarios where it is
harder to infer the current abstraction label.

Additional results in Appendix H reveal two interesting
capabilities of C-PREP. First, C-PREP is more sample effi-
cient in terms of the number of source contexts it is trained
on, that is, C-PREP needs to train on less source contexts
to achieve similar or better transfer performance than other
tested configurations. Second, adding RM information when
using PCG significantly improves generalization capabilities
in the beginning of training. We see a spike in performance
in the first 1M training steps, hinting at the potential of using
RMs for learning generalized state representations.

5 Related Work
DRL agents are extremely susceptible to overfitting to the
context in which they were trained. Leike et al. (2017) show
that small changes to a single detail or obstacle could result
in performance degradation. Danesh et al. (2021) demon-
strate that simple RL agents overfit to the training settings
such that they completely ignore observations. One solution
is to train the agent on a distribution of contexts, rather than
a single one (Zhang et al. 2018). However, once the context
distribution departs from the training distribution, the perfor-
mance drops despite the knowledge obtained during training
(Agarwal et al. 2021a). We focus on transferring knowledge
to expedite training in novel tasks.

There are several approaches to improve transfer learn-
ing in DRL. Some meta-learning methods (Eghbal-zadeh,
Henkel, and Widmer 2021; Papoudakis, Christianos, and Al-
brecht 2021; Zintgraf et al. 2020; Wang et al. 2017; Duan
et al. 2016) attempt to learn to estimate a context representa-
tion based on accumulated experiences while exploring. The
model-agnostic approach (Finn, Abbeel, and Levine 2017)
directly optimizes its parameters to minimize the number of

gradient steps required to adapt the parameters to the cur-
rent context. Model-based methods (Shrestha et al. 2020;
Tamar et al. 2017) attempt to learn an approximate model
of the world, use classical planning on them, and utilize the
plan either explicitly or implicitly through another learning
component. In this case, different contexts will induce differ-
ent plans within the model. Techniques for improving explo-
ration (Dorfman, Shenfeld, and Tamar 2021; Zintgraf et al.
2020) use Bayesian-adaptive RL to learn how to best explore
the environment based on past episodes. All of the above
rely on additional exploration to determine the context be-
fore learning to solve it. In contrast, we use contextual infor-
mation to understand the task a priori to reduce exploration.
Using CMDPs, we view the context as additional input to
the agent (Langford 2017; Hallak, Di Castro, and Mannor
2015).

To improve few-shot transfer, our method represents dif-
ferent contexts as RMs (Toro Icarte et al. 2022). Previous
work shows that RMs can be used to expedite learning of a
single context (Toro Icarte et al. 2022; Camacho et al. 2021).
We utilize RMs to represent contextual information, result-
ing in better sample efficiency and few-shot transfer learning
capabilities in multi-context settings.

6 Conclusion
We presented Contextual PRE-Planning (C-PREP) as a
novel context representation function and showed how it can
enhance zero-shot and few-shot transfer capabilities of DRL
agents. C-PREP exploits RMs by planning on them and pro-
viding the agent with a representation of the next desired
transition. Our empirical evaluation demonstrates C-PREP’s
ability to improve sample efficiency and different transfer
utilities, with an increased benefit for tasks of increasing dif-
ficulty.

To focus on the effect our RM-based representation has on
transfer, we assumed the RM generation function is given as



input. Future work will include a theoretical analysis of the
conditions under which a context representation is guaran-
teed to enhance transfer and the development of methods
for learning the appropriate RMs through experience. As
a second extension, we intend to examine alternative sym-
bolic representations beyond RMs for enhancing learning
and transfer, as well as consider the effect our suggested
context representation function has in setting in which op-
tions (Sutton, Precup, and Singh 1999; Illanes et al. 2020)
are used to distinguish between sub-tasks. Finally, we plan
to examine our representation in real-world settings in which
transfer may be beneficial.
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A PCG Experiments
Table 2 shows that among configurations that use PCG based
context representation, our CTL+C-PREP performed best in
all CMDPs of the GN, MP, and PD environments in the
TTAUC utility. The near-zero JS values and small (¡0.1)
to negative TR values indicate overfitting and nonbenefi-
cial transfer in all CMDPs for all configurations except
PCG+RS, which is able to show positive transfer in CM for
MP and PD. In the PO environment, using C-PREP without
the PCG context representation shows an improvement of at
least 120% in all CM tasks.

B Ablation Tests
Table 3 shows the results of our ablation tests based on
the C-PREP components. In the GN, MP, and PD envi-
ronments, we used CTL as the base context representa-
tion. The results show that all components are necessary to
achieve the highest transfer performance. As can be seen in
Fig. 5a, configurations that do not use RS show no perfor-
mance improvement during transfer. We further observe that
adding LTL to our representation (CTL+LTL+C-PREP) out-
performs CTL+C-PREP in the TTAUC utility in five out of
six of the CMDPs in these environments. In the ON environ-
ment, due to the success of C-PREP without CTL, we addi-
tionally tested ablations in this environment without CTL.
From the ablation analysis in Fig. 5b we see that without all
C-PREP components, the agent cannot complete the tasks
after transfer, which shows the significance of each com-
ponent. In this setting (ON) LTL+C-PREP performs on par
with C-PREP, showing that our representation is sufficient.

C Context Representations
In our experiments, we use both CTL and PCG context rep-
resentations. CTL representations contain all the informa-
tion required to generate the MDP induced by the context.
In practice, this is part of the observation that is constant
throughout the task. PCG representations are random indices
assigned to each context as an identifier. These indices are
provided to the agent as one-hot-encoding vectors. Fig. 6
illustrates the implementation of the corresponding context
representation functions.

The EL contexts are represented by the location of the en-
tities (passengers and their destinations) in the environment.
This is a pair of row-column coordinates for each entity. The
CM contexts are represented as a binary vector where each
value indicates the existence of a wall at a certain position
in the environment map. The PO contexts are represented by
a single index for each passenger that is the position of the
passenger in the pickup order. Fig. 7a shows two different
contexts in the PD environment coupled with the EL context
space.

D Experiment Reward Machines
In the PO context space, there is an RM generator function
of full resolution that generates simple RMs where the num-
ber of propositional symbols abstract states is equal to the
number of passengers. The RM generator function template

with variables i1,..., i2 that defines the passenger
pickup order is as follows:

Symbols:
P1 - Passenger 1 has been picked up
...
P5 - Passenger 5 has been picked up

Order-i1,i2,i3,i4,i5:
States - u0, ..., u5
Transitions -

(u0, not Pi1) --> next=u0;r=0
(u0, Pi1) --> next=u1;r=0
...
(u4, not Pi5) --> next=u4;r=0
(u2, Pi5) --> next=u5;r=1

For the EL context space, the entities may be anywhere
on the map. This means that an RM generator function that
differentiate between all contexts needs to have use at least
one symbol for every possible position. Because the agent
can potentially visit any of these positions during an episode,
we must have an abstract state for each position in the map
and passenger status (waiting, picked up, delivered). Such an
RM is about the same size as the entire MDP, and so it would
be more beneficial to run VI on the MDP itself and guarantee
a near-optimal policy rather than the RM. Similarly, the CM
contexts determine the locations of obstacles, and so the RM
must account for every possible transition in the map (which
is also about the size of the MDP).

To overcome this issue, we use an RM generator function
that groups adjacent cells into sectors and use symbols that
indicate the agent’s presence in a specific sector. A transi-
tion between sectors is possible if a transition between cells
of those sectors is possible. Fig. 7b illustrates this in the PD
environment. This significantly reduces the size of the gen-
erated RMs, but the RM can only account for transitions be-
tween sectors (partial resolution).

E Training Technical Details
We trained each DQN agent on a single CPU core for four
million steps on Csrc and Ctgt. For the EL context space,
we train on 100 source contexts and transfer to 200 target
contexts. For the CM context space, we train 250 source
contexts and transfer to 500 contexts. The GN environment
contains only 36 possible entity position and so with the EL
context space there are only 36 contexts. Thus, we train on 8
source contexts and transfer to 16 target contexts in this en-
vironment, leaving room for the sampled contexts to change
between runs.

DQN hyperparameters were selected via grid search of
potential candidates, followed by a manual search in areas
of interest. To demonstrate C-PREP’s resilience to hyperpa-
rameters, hyperparameters were chosen to optimize the CTL
configuration and used globally across all other configura-
tions. The Q-value estimator network is comprised of two
hidden linear layers with Rectified Linear Unit (ReLU) acti-
vations, ending with a linear output layer of width equal to
the number of agent actions. The parameters are optimized



Table 2: IQM and standard deviation transfer utilities in tested CMDPS using PCG as the base context representation. The best
results for each CMDP (row) are marked in bold. Negative TR values that indicate non-beneficial transfer are colored red.

Utility Context Space Environment PCG PCG+RS PCG+LTL+RS PCG+C-PREP (ours) C-PREP (ours)

T
T
A
U
C

EL
GN 84.95 +- 3.23 7.12 +- 0.66 5.89 +- 0.22 5.82 +- 0.28 42.15 +- 3.95
MP 98.04 +- 0.00 96.11 +- 1.14 95.02 +- 2.03 61.96 +- 9.37 86.43 +- 1.89
PD 98.04 +- 0.00 98.04 +- 0.00 96.75 +- 0.90 58.97 +- 6.69 88.35 +- 1.59

CM
GN 85.61 +- 12.21 20.01 +- 3.63 16.45 +- 2.37 14.58 +- 2.19 32.98 +- 0.68
MP 98.04 +- 0.00 51.29 +- 12.97 42.41 +- 12.14 32.73 +- 13.21 47.74 +- 11.46
PD 98.04 +- 0.00 55.94 +- 19.14 43.39 +- 16.48 39.95 +- 18.23 51.02 +- 15.46

PO ON 98.04 +- 0.00 92.56 +- 13.58 93.01 +- 3.80 37.65 +- 22.90 22.54 +- 1.57

JS

EL
GN 0.01 +- 0.03 0.00 +- 0.01 0.00 +- 0.01 0.00 +- 0.01 0.01 +- 0.05
MP 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.01 +- 0.02
PD 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.01

CM
GN 0.00 +- 0.05 0.00 +- 0.02 0.18 +- 0.14 0.10 +- 0.18 0.49 +- 0.06
MP 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.02 0.00 +- 0.00 0.42 +- 0.10
PD 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.13 0.31 +- 0.19

PO ON 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.75 +- 0.02

T
R

EL
GN -0.86 +- 0.05 0.05 +- 0.01 0.05 +- 0.02 0.04 +- 0.02 0.04 +- 0.02
MP -1.00 +- 0.00 -0.85 +- 0.03 -0.93 +- 0.13 -0.31 +- 0.21 0.06 +- 0.11
PD -1.00 +- 0.00 -0.84 +- 0.09 -0.94 +- 0.07 -0.33 +- 0.16 -0.05 +- 0.12

CM
GN -0.77 +- 0.37 -0.02 +- 0.06 -0.02 +- 0.04 0.00 +- 0.02 0.08 +- 0.04
MP -1.00 +- 0.00 0.11 +- 0.18 -0.03 +- 0.08 -0.02 +- 0.03 0.07 +- 0.05
PD -0.60 +- 0.49 0.21 +- 0.21 0.06 +- 0.19 0.06 +- 0.06 0.07 +- 0.07

PO ON 0.00 +- 0.00 inf3 -0.71 +- 1.79 0.31 +- 0.55 0.31 +- 0.03

with Adam (Kingma and Ba 2015). Table 4 lists all hyper-
parameters.

F Evaluation
Agent policies are evaluated as deterministic policies every
1% of training completed. An additional evaluation occurs
before training to account for zero-shot transfer. Each eval-
uation records the return acquired from running 50 episodes
in randomly sampled contexts from the context set on which
we are training. The source policy is also evaluated in Ctgt
to allow analysis of generalization throughout training. The
returns are averaged to estimate the expected discounted re-
turn, with which we calculate the transfer utilities.

Let hπ be the training history of policy π, that is, a map-
ping from number of timesteps trained to the estimated ex-
pected discounted return of the policy at that time. For some
training configuration (environment, context space, hyper-
parameters, etc.), denote the target and transferred policies
by πCtgt and πCsrc,Ctgt , respectively. Denote some predeter-
mined threshold by τ . We calculate our transfer utilities as
follows:
UTT (π, τ) = min {t|hπ(t) ≥ τ} (Time to Threshold)
UJS(πCsrc,Ctgt , πCtgt) = hπCsrc,Ctgt

(0) (Jumpstart)

UTR(πCsrc,Ctgt , πCtgt) =
AUC(hπCsrc,Ctgt

)−AUC(hπCtgt
)

AUC(hπCtgt
)

(Transfer Ratio)
2Target policy scored close to 0 on all seeds.
3Target policy scored 0 on all seeds.

where AUC is the area under the curve, estimated by the av-
erage of all recorded values on the curve. To provide a single
TT value that considers all thresholds, we also calculate util-
ity UTTAUC

(π) = AUC
τ

(UTT (π, τ)).

G C-PREP with DQN
Algorithm 1 shows the DQN algorithm with C-PREP inte-
gration. A textual description of the algorithm is available in
Section 3.

H Additional Experiments
We perform two additional experiments. The first aims to
show C-PREP’s sample efficiency in terms of the number
of source contexts on which it is trained. For this, we dou-
bled the size of the source context set and rerun the exper-
iments. IQM transfer utlities for this experiment are avail-
able in Table 5. Fig. 8 shows the TT performance over the
achieved threshold for these settings in the GN, MP, and PD
environments. As we can see, the performance gap between
our method and LTL decreased when we doubled the size of
Csrc. We conclude from this that C-PREP is able to maintain
its transfer performance even when the size of the source
context set is shrinks.

The second experiment tested the generalization capabil-
ities of C-PREP using PCG representations. As we saw in
Section 4.2 and analyzed in Section 4.3, we witness severe
overfitting when using PCG. However, we find that using
RM information is not completely futile. Figure Fig. 9 shows
the performance of the source policy during training in Csrc,
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Figure 4: The IQM TT of configurations with PCG base context representations as a function of the threshold.

Table 4: DQN hyperparameters for all baseline configura-
tions.

Parameter Value
Target Q-network update interval 10,000 steps
Exploration time 50% training duration
replay buffer size 1M
Discount factor 0.99
training frequency every 4 steps
gradient steps per training 4
sample batch size 32
Number of hidden layers 2
Hidden layer width 64
Hidden activations ReLU
learning rate 0.0001
Adam β1 0.9
Adam β2 0.999

evaluated in Ctgt in the PD environment with the CM con-
text space. We observe that in the first 30% of training there
is a spike in performance for LTL +RS or C-PREP. These
are the only configurations that use additional context rep-
resentations from RM information to augment the contex-
tual PCG input. The performance spike is far too high to
be “luck” since otherwise other configurations should also
display this phenomenon. This begs the question “What is
learned before overfitting occurs and how can we preserve

this knowledge”? Furthermore, we still do not have a clear
explanation as to why specifically RM information causes
this spike. We believe this has implications for representa-
tion learning, where agents learn latent representations of
the state space in a disentangled manner from the policy.

I Multi-Taxi Environment
Multi-Taxi is a highly configurable multi-agent environ-
ment, based on the OpenAI gym taxi environment (Brock-
man et al. 2016), which adheres to the PettingZoo API (Terry
et al. 2021). Fig. 10 shows a visualization of the environ-
ment. The environment’s configurable features allow the
user to set the number of passengers and taxis, the taxi’s ca-
pacity and fuel requirements, the actions’ stochasticity, the
sensor function, and more. We note that while multi-taxi is
natively a multi-agent environment, we explore it as a single-
agent setting. By leveraging the domain’s customizability
we define seven very different environment settings of vary-
ing complexity levels based on three context spaces chang-
ing different aspects of the environment between tasks. The
code is provided in the supplementary materials.
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Figure 5: The IQM TT of ablation test configurations as a function of the threshold.

Algorithm 1: Training DQN with C-PREP

Input: π = Qθ - initial DQN policy
Input: C - contexts set
Input: N - number of episodes to train
Input: G - RM generator function
Input: L - transition labeling function
D ← empty experience replay buffer
for i ∈ [N ] do
c← sampleUniform(C)
⟨U, δu, δr⟩ ← generated RM for c
V ← value iteration on RM
δr(u, l) ← δr(u, l) + γV (δu(u, l)) − V (u) {reward
shaping}
u← u0

for each step in episode ofMc do
l∗ ← argmax

l∈2P
δr(u, l) + γV (δu(u, l))

ŝ← ⟨s, l∗⟩ {using augmented state space}
q ← Qθ(ŝ)
a← ϵ-greedy(q)
s′ ←Mc.step(a)
u′ ← δu(u, L(s, a, s

′))
r ← δr(u, L(s, a, s

′)) {using RM reward}
l∗′ ← argmax

l∈2P
δr(u

′, l) + γV (δu(u
′, l))

ŝ′ ←
〈
s′, l∗′

〉
D.store(ŝ, a, r, ŝ′)
ŝ, a, r, ŝ′ ← D.sampleBatch()
l←

∑
batch

(r +maxa′ {Qθ(ŝ
′)[a′]} −Qθ(ŝ)[a])

2

θ ← ∇θl
s, u← s′, u′

end for
end for
Return Qθ
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Figure 6: Baseline context representation functions. (a) Controllable (CTL) environment context representation function. Each
context is represented using the original informative context representation offered by the environment. (b) Procedural content
generation (PCG) context representation function. Contexts have unique indices that are converted into binary indicator vectors
(one-hot-encoding) for the source and target contexts together. One-hot encoding context representations are limited to a maxi-
mum number of supported contexts, determined ahead of time.

(a) Two different EL contexts in the PD environ-
ment. The taxi icon is the acting agent, the person
icon is the passenger to be picked up, and the flag
icon is passenger’s destination. The agent can nav-
igate to any adjacent cell, but cannot cross thick
walls.

Start

(b) An example abstraction of a task in the PD environment on a 4 × 4 grid. The envi-
ronment is environment is split into four sectors of 2× 2 cells. We say that the agent is
in sector i if it is currently located in one of the cells within the sector. Symbol Si indi-
cates the agent is in sector i. Symbols P and D indicate the passenger has been picked
up or dropped off, respectively. The colors match abstract states to their corresponding
sectors.

Figure 7



Table 5: IQM and standard deviation transfer utilities for all tested configurations (environment-context space pairs) using CTL
as the base context representation trained on doubly sized source context set before transfer, aggregated over all seeds. The best
results for each CMDP (row) are marked in bold. Negative TR values that indicate non-beneficial transfer are colored red.

Utility Context Space Environment CTL CTL+RS CTL+LTL+RS CTL+C-PREP (ours) C-PREP (ours)

T
T
A
U
C

EL
GN 19.07 ± 3.10 6.26 ± 0.51 5.92 ± 0.27 6.13 ± 0.70 43.95 ± 4.74
MP 86.27 ± 7.70 18.63 ± 6.06 10.03 ± 0.69 10.24 ± 0.92 87.03 ± 1.74
PD 94.12 ± 15.42 68.17 ± 24.76 12.96 ± 3.58 11.70 ± 0.58 87.92 ± 1.39

CM
GN 37.99 ± 1.16 10.22 ± 2.15 5.40 ± 0.88 5.52 ± 1.09 34.74 ± 4.14
MP 67.83 ± 13.45 20.97 ± 16.25 10.96 ± 6.24 10.85 ± 4.82 49.75 ± 9.38
PD 78.22 ± 22.00 44.16 ± 23.82 27.30 ± 27.32 22.16 ± 19.23 48.33 ± 15.64

PO ON 98.04 ± 0.00 97.10 ± 16.40 96.31 ± 6.65 23.29 ± 12.84 22.69 ± 1.48

JS

EL
GN 0.42 ± 0.15 0.21 ± 0.06 0.08 ± 0.15 0.26 ± 0.12 0.00 ± 0.02
MP 0.13 ± 0.08 0.69 ± 0.04 0.87 ± 0.02 0.86 ± 0.04 0.03 ± 0.02
PD 0.06 ± 0.16 0.19 ± 0.23 0.78 ± 0.09 0.80 ± 0.03 0.00 ± 0.02

CM
GN 0.52 ± 0.06 0.76 ± 0.05 0.93 ± 0.01 0.91 ± 0.04 0.53 ± 0.06
MP 0.31 ± 0.13 0.66 ± 0.19 0.83 ± 0.11 0.84 ± 0.09 0.29 ± 0.14
PD 0.12 ± 0.23 0.43 ± 0.23 0.67 ± 0.29 0.66 ± 0.28 0.36 ± 0.17

PO ON 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.74 ± 0.31 0.78 ± 0.01

T
R

EL
GN -0.02 ± 0.07 0.14 ± 0.04 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.04
MP -0.98 ± 0.12 0.56 ± 0.36 0.33 ± 0.07 0.27 ± 0.07 0.11 ± 0.15
PD -0.98 ± 0.03 0.61 ± 0.64 0.43 ± 0.48 0.32 ± 0.05 -0.00 ± 0.14

EL
GN -0.05 ± 0.07 0.23 ± 0.02 0.13 ± 0.01 0.14 ± 0.01 0.09 ± 0.04
MP -0.75 ± 0.30 0.36 ± 0.07 0.30 ± 0.09 0.28 ± 0.05 0.10 ± 0.04
PD -0.29 ± 0.37 0.36 ± 0.31 0.11 ± 0.24 0.26 ± 0.06 0.08 ± 0.04

PO ON 0.00 ± 0.00 0.45 ± 0.88 -0.80 ± 7.12 0.83 ± 0.34 0.33 ± 0.08
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Figure 8: The IQM TT, measured in percentage of completed training, as a function of the threshold in environments GN, MP,
PD, with doubley sized Csrc. Each color represents a different configuration, specified in the legend. The shaded areas indicate
stratified bootstrap 95% confidence intervals. Each row corresponds to a different context space, indicated to the left of the row.
Each column corresponds to a different environment, indicated above the column.
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Figure 9: The IQM performance of the source policy, evalu-
ated on the target context set. in environment PD and context
space CM with PCG configurations. Each color represents a
different configuration, specified in the legend. The shaded
areas indicate stratified bootstrap 95% confidence intervals.
Each row corresponds to a different context space, indicated
to the left of the row. Each column corresponds to a different
environment, indicated above the column.



Figure 10: A visualization of the Multi-Taxi environment. Colored rectangles are taxi agents, P and D symbols indicate the
location of a passenger and its corresponding destination (respectively). ’X’ and ’—’ values indicate different kinds of obstacles.
’F’ and ’G’ are two different kinds of fuel stations.


