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ABSTRACT

Factorized layers—operations parameterized by products of two or more
matrices—occur in a variety of deep learning contexts, including compressed
model training, certain types of knowledge distillation, and multi-head self-
attention architectures. We study how to initialize and regularize deep nets con-
taining such layers, examining two simple, understudied schemes, spectral ini-
tialization and Frobenius decay, for improving their performance. The guiding
insight is to design optimization routines for these networks that are as close as
possible to that of their well-tuned, non-decomposed counterparts; we back this
intuition with an analysis of how the initialization and regularization schemes im-
pact training with gradient descent, drawing on modern attempts to understand the
interplay of weight-decay and batch-normalization. Empirically, we highlight the
benefits of spectral initialization and Frobenius decay across a variety of settings.
In model compression, we show that they enable low-rank methods to significantly
outperform both unstructured sparsity and tensor methods on the task of training
low-memory residual networks; analogs of the schemes also improve the perfor-
mance of tensor decomposition techniques. For knowledge distillation, Frobenius
decay enables a simple, overcomplete baseline that yields a compact model from
over-parameterized training without requiring retraining with or pruning a teacher
network. Finally, we show how both schemes applied to multi-head attention lead
to improved performance on both translation and unsupervised pre-training.

1 INTRODUCTION

Most neural network layers consist of matrix-parameterized functions followed by simple opera-
tions such as activation or normalization. These layers are the main sources of model expressivity,
but also the biggest contributors to computation and memory cost; thus modifying these layers to
improve computational performance while maintaining performance is highly desirable. We study
the approach of factorizing layers, i.e. reparameterizing them so that their weights are defined as
products of two or more matrices. When these are smaller than the original matrix, the resulting net-
works are more efficient for both training and inference (Denil et al., 2013; Moczulski et al., 2015;
Toannou et al., 2016; Tai et al., 2016), resulting in model compression. On the other hand, if training
cost is not a concern, one can increase the width or depth of the factors to over-parameterize models
(Guo et al., 2020; Cao et al., 2020), improving learning without increasing inference-time cost. This
can be seen as a simple, teacher-free form of knowledge distillation. Factorized layers also arise
implicitly, such as in the case of multi-head attention (MHA) (Vaswani et al., 2017).

Despite such appealing properties, networks with factorized neural layers are non-trivial to train
from scratch, requiring custom initialization, regularization, and optimization schemes. In this paper
we focus on initialization, regularization, and how they interact with gradient-based optimization of
factorized layers. We first study spectral initialization (SI), which initializes factors using singular
value decomposition (SVD) so that their product approximates the target un-factorized matrix. Then,
we study Frobenius decay (FD), which regularizes the product of matrices in a factorized layer rather
than its individual terms. Both are motivated by matching the training regimen of the analogous
un-factorized optimization. Note that SI has been previously considered in the context of model
compression, albeit usually for factorizing pre-trained models (Nakkiran et al., 2015; Yaguchi et al.,
2019; Yang et al., 2020) rather than low-rank initialization for end-to-end training; FD has been used
in model compression using an uncompressed teacher (Idelbayev & Carreira-Perpifidn, 2020).
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We formalize and study the justifications of SI and FD from both the classical perspective—
matching the un-factorized objective and scaling—and in the presence of BatchNorm (Ioffe &
Szegedy, 2015), where this does not apply. Extending recent studies of weight-decay (Zhang et al.,
2019), we argue that the effective step-size at spectral initialization is controlled by the factoriza-
tion’s Frobenius norm and show convincing evidence that weight-decay penalizes the nuclear norm.

We then turn to applications, starting with low-memory training, which is dominated by unstructured
sparsity methods—i.e. guessing “lottery tickets” (Frankle & Carbin, 2019)—with a prevailing trend
of viewing low-rank methods as uncompetitive for compression (Blalock et al., 2020; Zhang et al.,
2020; Idelbayev & Carreira-Perpifian, 2020; Su et al., 2020). Here we show that, without tuning,
factorized neural layers outperform all structured sparsity methods on ResNet architectures (He
et al., 2016), despite lagging on VGG (Simonyan & Zisserman, 2015). Through ablations, we show
that this result is due to using both SI and FD on the factorized layers. We further compare to a recent
evaluation of tensor-decomposition approaches for compressed WideResNet training (Zagoruyko &
Komodakis, 2016; Gray et al., 2019), showing that (a) low-rank approaches with SI and FD can
outperform them and (b) they are themselves helped by tensor-variants of SI and FD.

We also study a fledgling subfield we term overcomplete knowledge distillation (Arora et al., 2018;
Guo et al., 2020; Cao et al., 2020) in which model weights are over-parameterized as overcomplete
factorizations; after training the factors are multiplied to obtain a compact representation of the same
network. We show that FD leads to significant improvements, e.g. we outperform ResNetl10 with
an overcomplete ResNet56 that takes 1.5x less time to train and has 2x fewer parameters at test-time.

Finally, we study Transformer architectures, starting by showing that FD improves translation per-
formance when applied to MHA. We also show that SI is critical for low-rank training of the model’s
linear layers. In an application to BERT pre-training (Devlin et al., 2019), we construct a Frobenius-
regularized variant—FLAMBé—of the LAMB method (You et al., 2020), and show that, much like
for transformers, it improves performance both for full-rank and low-rank MHA layers.

To summarize, our main contributions are (1) motivating the study of training factorized layers via
both the usual setting (model compression) and recent applications (distillation, multi-head atten-
tion), (2) justifying the use of SI and FD mathematically and experimentally, and (3) demonstrating
their effectiveness by providing strong baselines and novel advances in many settings. Code to
reproduce our results is available here: https://github.com/microsoft/fnl_paper.

1.1 RELATED WORK

We are not the first study gradient descent on factorized layers; in particular, deep linear nets are
well-studied in theory (Saxe et al., 2014; Gunasekar et al., 2019). Apart from Bernacchia et al.
(2018) these largely examine existing algorithms, although Arora et al. (2018) do effectively pro-
pose overcomplete knowledge distillation. Rather than the descent method, we focus on the initial-
ization and regularization. For the former, several papers use SI after training (Nakkiran et al., 2015;
Yaguchi et al., 2019; Yang et al., 2020), while Ioannou et al. (2016) argue for initializing factors as
though they were single layers, which we find inferior to SI in some cases. Outside deep learning,
spectral methods have also been shown to yield better initializations for certain matrix and tensor
problems (Keshavan et al., 2010; Chi et al., 2019; Cai et al., 2019). For regularization, Gray et al.
(2019) suggest compression-rate scaling (CRS), which scales weight-decay using the reduction in
parameter count; this is justified via the usual Bayesian understanding of ¢5-regularization (Murphy,
2012). However, we find that FD is superior to any tuning of regular weight-decay, which subsumes
CRS. Our own analysis is based on recent work suggesting that the function of weight-decay is to
aid optimization by preventing the effective step-size from becoming too small (Zhang et al., 2019).

2 PRELIMINARIES ON FACTORIZED NEURAL LAYERS

In the training phase of (self-)supervised ML, we often solve optimization problems of the form
mingeo ﬁ 2iwyres Lfo(x),y) + Q0), where fy : X — Vs a function from input domain X to
output domain ) parameterized by elements 6 € ©, £ : ) x ) — R is a scalar-valued loss function,
Q : © — Ris a scalar-valued regularizer, and S ¢ X x ) is a finite set of (self-)supervised training
examples. We study the setting where fy is a neural network, an L-layer function whose parameters
6 consist of L matrices W; € R™i*™ and whose output fy(x) given input « is defined recursively
using L functions g; via the formula x; = g;(W;, @;_1), with @y = « and fy(x) = x .
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The standard approach to training fj is to specify the regularizer €2, (randomly) pick an initialization
in ©, and iteratively update the parameters using some first-order algorithm such as SGD to optimize
the objective above until some stopping criterion is met. However, in many cases we instead opti-
mize over factorized variants of these networks, in which some or all of the matrices W, € R™:*™i
are re-parameterized as a product W; = Uj; (H;l:1 M;;)V;T for some inner depth d; > 0 and matri-
cesU; e R™i*7i 'V, e R™*7i ‘and M;; € R™*" ¥ j. As discussed in the following examples, this
can be done to obtain better generalization, improve optimization, or satisfy practical computational
or memory constraints during training or inference. For simplicity, we drop the subscript ¢ whenever
re-parameterizing only one layer and only consider the cases when inner depth d is 0 or 1.

2.1 FULLY-CONNECTED LAYERS

A fully-connected layer takes an n-dimensional input x;_; and outputs an m-dimensional vector
x; = c(Wx,;_1), where o : R"™ +— R™ is an element-wise activation function. Here, decomposing
W e R™*" into the product UV, where U € R™*" V € R™ " and setting r « min{m,n} re-
duces computation and memory costs from O(mn) to O(mr +nr). We refer to this setting as model
compression. Standard learning theory suggests that a small rank 7 also improves generalization, e.g.
for a factorized fully-connected ReLU network, applying |[W||%/|W |3 < rank(W) to Neyshabur

et al. (2018, Theorem 1) and substituting W; = U;V;” gives a w.h.p. margin-bound O(y/mr/[S])
suggesting that generalization error varies with the square root of the rank (see Corollary A.1).

Alternatively, by setting » > min{m,n} and/or including an inner matrix M € R"*", we can
attempt to take advantage of improved optimization due to increased width (Du & Hu, 2019) and/or
increased depth (Arora et al., 2018). Crucially, this does not increase inference costs because we can
recompose the matrix after training and just use the product. As the goal is to obtain a better small
model by first training a large one, we refer to this setting as overcomplete knowledge distillation; of
course, unlike regular distillation it is much simpler since there is no student-teacher training stage.

2.2 CONVOLUTIONAL LAYERS

A 2d convolutional layer takes an h X w X ¢;_1-dimensional input &;_; and outputs a h x w x ¢;-
dimensional output x; defined by convolving c; different k¥ x £ filters over each of c;_; input chan-
nels. Often the result is passed through a nonlinearity. 2d convolutional layers are parameterized by
¢; X ¢i—1 X k x k tensors and require O(k2 ¢ic;—1) memory and compute. A straightforward way of
factorizing this tensor without using tensor decomposition is to reshape it into a ¢;k x ¢;_1 k matrix
W, which can then be decomposed as W = UV for U € R%¥*" V e R¢%-1%*" and some rank
r > 0. As in the fully-connected case, we can either set the rank r to be small in order to reduce the
number of parameters or alternatively increase the width (r) or the depth (d) of the factorization to
do overcomplete knowledge distillation.

Note that in the low-rank case a naive approach does not save computation since we must first
multiply U and VT, reshape the product UV'T, and then use the resulting tensor in a regular 2d
convolution of the original size and complexity. However, as shown by Tai et al. (2016), applying
the 2d k£ x k convolution with ¢;_; input channels and ¢; output channels obtained by reshaping
UV is equivalent to a composition of two 1d convolutions: the first defined by V7 e R7*¢ci-1k
consists of 7 output channels and filters of size k along one input dimension and the second defined
by U € R%**" consists of ¢; output channels and filters of size k along the other input dimension.
Together the two 1d convolutions require O(kr(c; + ¢;—1)) memory and computation, which is
significantly better than the O(k?c;c;_1) cost of the unfactorized case if 7 « kmin{c;, c;_1}.

2.3 MULTI-HEAD ATTENTION

An MHA layer (Vaswani et al., 2017) with H attention heads and hidden dimension d can be ex-
pressed as being parameterized with 4 H matrices: one each of Q;,, K;,, V,, Oy, € R*4/H for each
head h. Then for a length-T input & € R”*? it outputs

H
KT T
)" Softmax QK@ zV;, 07 (1)
P Vd/H

MHA combines 2H quadratic forms QK T VhO}f of rank = d/H, each a product of matrices,
i.e. a factorized layer. We refer to the first form as “Query-Key” and the second as “Output-Value.”
Note that r can be varied independently of d to change expressivity, memory, and computation.
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Figure 1: Average nuclear norm across factorized layers of ResNet20 during CIFAR-10 training
when initialized regularly (left) and using SI (center); the dotted line is the upper bound on the
nuclear norm regularized by weight-decay (2). The right plot track the same quantities for the case
of regular weight-decay across different rank-scales. “no decay (normalized)” normalizes matrix
factors after each step to have the same norm as “Frobenius decay ” (detailed in Section 3.3).

3 INITIALIZATION AND REGULARIZATION

We now define the initialization and regularization schemes we study as natural extensions of tech-
niques for non-factorized models. They thus require no tuning when an existing training imple-
mentation of a non-factorized deep net is available. We later discuss how to justify these schemes
when layers are normalized, e.g. using BatchNorm (Ioffe & Szegedy, 2015). In all experiments with
convolutional models in this and subsequent sections we factorize all layers except the first and last,
which are small, and determine layer ranks by multiplying a uniform scaling factor by the product
of a layer’s output channels and kernel width. This rank-scale can be varied to attain the desired
number of parameters. Note that our approach may be further improved via a more sophisticated or
adaptive rank-assignment scheme (Idelbayev & Carreira-Perpifidn, 2020).

3.1 SPECTRAL INITIALIZATION

Initialization is a major focus of deep learning research (He et al., 2015; Mishkin & Matas, 2016;
Yang & Schoenholz, 2017). A common approach is to prevent compounding changes in the norms
of the intermediate representations across layers caused by repeated multiplication by the weight
matrices. The spectral initialization scheme for initializing low-rank factorized layers attempts to
inherit, when possible, this property from an existing initialization by using SVD to ensure that the
resulting product matrix is as close as possible to the original parameter:

Definition 3.1. Let W € R™*" be a parameter of an unfactorized layer. For r < min{m,n} the
spectral initialization (SI) of the factors U € R™*",V € R"*" of the corresponding factorized
layer sets U = UNS and V- = VA, for U, %,V = SVD,.(W) given by the rank-r SVD of W.

SI preserves the largest singular value of W, so if the original scheme did not suffer from a com-
pounding increase in representation norm then neither will spectral initialization. On the other hand,
while low-rank layers impose a nullspace, SI aligns it with the directions minimized by W.

3.2 FROBENIUS DECAY

Weight-decay is a common regularizer for deep nets, often implemented explicitly by adding
Q0) = 3D wep IW|% to the objective for some A > 0. Classically, it is thought to improve
generalization by constraining model capacity. When training factorized layers parameterized by

U(H?:1 M;)V'T, the easiest approach to implement is to replace each %HWHQF term in () by
3 <||U 1%+ |V]% + 25:1 [ M J||%) However, this yields a very different optimization problem:

for example, if we consider the case of d = 0 then this regularizer is in fact an upper bound on the
nuclear norm of the recomposed matrix UVT (Srebro & Shraibman, 2005, Lemma 1):

A A -
S (UlE+1VIF) = min (HUH% + HVH%) =AUV’ (2)
uvT=uvT

In fact, Figure 1 shows that for weight-decay this upper bound is tight throughout the training of
factorized ResNet20 across a variety of ranks and initializations, suggesting that the naive approach
is indeed regularizing the nuclear norm rather than the Frobenius norm.
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Figure 2: Comparison of weight-decay and FD at different regularization levels (left) and different
rank-scales (center and right) when training factorized ResNets on CIFAR.

Since compression already constrains capacity, in the low-rank case one might favor just reducing
regularization, e.g. multiplying A by the compression rate (Gray et al., 2019). However, Figure 2
shows that this can lead to worse performance, and the approach still penalizes the nuclear norm.
Frobenius decay avoids this issue by simply penalizing the squared norm of the entire factorization:

Definition 3.2. For A = 0 let %H W |2 be the contribution of an unfactorized layer parameterized by
W € R"™*"™ to the penalty term. Then the Frobenius decay (FD) penalty on matrices U € R™*",

2
V e R"™", and M € R™*" of the corresponding factorized layer is % HU(H?:1 Mj)VTHF.

By substituting the factorization directly, FD makes the least change to the problem: rank-r optima
of the non-factorized objective will also minimize the factorized one. We can also bound general-

ization error of the ReLU net from Section 2.1 by a term O (\/% ZiLzl |\Ui(]_[?:1 Mw)VzT||§:>

varying directly with the quantity penalized by FD (see Corollary A.2). Notably, FD is a stronger
penalty than the nuclear norm implicitly regularized by weight-decay, yet it still yields better models.

3.3 INITIALIZATION AND REGULARIZATION IN THE PRESENCE OF NORMALIZATION

The use of spectral initialization and Frobenius decay is largely motivated by the norms of the
recomposed matrices: SI prevents them increasing feature vector norms across layers, while FD
constrains model capacity via parameter norms. However, normalization layers like BatchNorm
(Ioffe & Szegedy, 2015) and others (Ba et al., 2016) largely negate the forward-pass and model-
capacity effects of the norms of the weights parameterizing the layers they follow. Thus for most
modern models we need a different explanation for the effectiveness of SI and FD.

Despite the fact that most layers’ norms do not affect inference or capacity, weight-decay remains
useful for optimizing deep nets. Recently, Zhang et al. (2019) extended the analysis of Hoffer et al.
(2018) to argue that the effective step-size of the weight direction W' is roughly n/|W |2, where
7 is the SGD step-size. Thus by preventing the norm of W from growing too large weight-decay
maintains a large-enough effective step-size during training. We draw on this analysis to explore the
effect of ST and FD on factorized models. For simplicity, we define a normalized layer to be one that
does not depend on the scale of its parameter. Ignoring stability offset terms, this definition roughly
holds for normalized linear layers, convolutional layers in ResNets, and the Output-Value quadratic
form in Transformers if the residual connection is added after rather than before normalization.

Definition 3.3. A normalized layer (W, x) parameterized by W € R™*™ is one that satisfies
g(W.x) = g(pW, x) for all W € R™*" and all positive scalars p.

Because the output does not depend on the magnitude of UV T, what matters is the direction of the
composed matrix. During an SGD step this direction is updated as follows (proof in Appendix B):

Claim 3.1. At all stepst = 0 let g be a normalized layer of a differentiable model fg, : X — Y
parameterized by U, V,T for U, € R™*" VI € R"*" r > 1. Suppose we update P = U and
P =V by SGD, setting P11 «— P;—nV p, using a gradient V p, = ﬁ Z(w’y)eg Ve l(fo,(x),y)

over batch B < (X,Y) and n > 0 sufficiently small. Then for Vi = VWtV}VtT + UtUtTVWt we
have that the vectorized direction w; = Vec(Wt) of Wy = UtVt'T is updated as

Wypp1 — Wy — m (Lpp — iy} ) vee(Vy) + O(1) 3)

5
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Figure 3: Traces depicting training of low-rank ResNet-20 with different decay settings; “no decay
(normalized)” normalizes matrix factors after each step to have the same norm as “Frobenius decay.”
The effective step size (right) is the average over convolution layers i of /||U; V;T'|2..

Note that (1) we ignore decay because A = O(n) so any resulting term is O(n?) and (2) the update
rule is almost the same as that obtained for the unfactorized case by Zhang et al. (2019), except
they have V, as the true gradient of the direction. Thus, apart from a rank-one correction, W, is
approximately updated with step-size 7/||W;|% multiplying a linear transformation of its gradient.
To understand the nature of this transformation, note that at spectral initialization we have that
VOV(')T = UOUOT = Y, are diagonal matrices of singular values of the full-rank initialization W
furthermore, if W is a Gaussian ensemble with scale 1/4/n, which roughly aligns with common
initialization schemes (He et al., 2015), then its singular values are roughly distributed around 1 and
supported on [0, 2] (Bai & Yin, 1993). Since Vi =V tVtV + UtUTVW , this suggests that, at

spectral initialization, an effective learning rate of 7/||W||% is a reasonable approximation for the
factorized update. This points to the role of SI being to initialize the factorization at an appropriate

scale and perhaps also to make the first update more aligned with the gradient w.r.t. Wy,

As in the unfactorized case, our analysis suggests that, the main role of decay may be to maintain
a large effective learning rate n/| W |%; furthermore, FD may be more effective than regular decay
because it provides stronger regularization and directly penalizes the quantity of interest. We support
this hypothesis using experiments analogous to Zhang et al. (2019) by comparing training a low-rank
ResNet-20 with FD to training it with no decay but at each step normalizing all BatchNormed layers
to have the same Frobenius norm as the FD run. In Figure 3 we see that the latter scheme closely
tracks the former in terms of both the training loss and the test accuracy. Figure 3 also shows that
FD maintains a higher effective step-size than regular weight-decay throughout training.

4 COMPRESSED MODEL TRAINING: LOW-RANK, SPARSE, AND TENSORIAL

We first study SI and FD for training factorized models with low-rank convolutional layers, com-
paring against the dominant approaches to low-memory training: sparse layers and tensor decom-
position. For direct comparison we evaluate models with near-identical parameter counts; note that
by normalizing by memory we disadvantage the low-rank approach, which often has a comparative
advantage for speed. All models are trained for 200 epochs with the same optimizer settings as for
the unfactorized models; the weight-decay coefficient is left unchanged when replacing by FD.

Low-Rank and Sparse Training: We train modified ResNet32 and VGG19 used in the lottery-
ticket-guessing literature (Wang et al., 2020; Su et al., 2020). Motivated by Frankle & Carbin (2019),
such methods fix a sparsity pattern at initialization and train only the unpruned weights. While they
achieve high parameter savings, their computational advantages over full models are less clear, as
software and accelerators often do not efficiently implement arbitrary sparsity (Paszke et al., 2019;
NVIDIA, 2020). In contrast, we do see acceleration via low-rank convolutions, almost halving the
time of ResNet’s forward and backward pass at the highest compression. For completeness, we also
show methods that vary the sparsity pattern (dynamic), prune trained models (pruning), and prune
trained models and retrain (lottery); note that the latter two require training an uncompressed model.

In Table 1 we see that the low-rank approach, with SI & FD, dominates at the higher memory
settings of ResNet across all three datasets considered, often outperforming even approaches that
train an uncompressed model first. It is also close to the best compressed training approach in the
lowest memory setting for CIFAR-100 (Krizhevksy, 2009) and Tiny-ImageNet (Deng et al., 2009).
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Table 1: Comparison of low-rank and sparse training in a common evaluation setting for “ticket-
guessing” (Wang et al., 2020; Su et al., 2020). Best results overall are ifalicized; best results from
full low-memory training are bolded. For complete results and deviations see Tables 5 and 6.

VGG19NFC (full model)* CIFAR-10 (93.75+0.48)  CIFAR-100 (73.42+0.17)  Tiny-ImageNet (62.19+0.74)

Regime Compressed (from ~20M) 0.10 0.05 0.02 0.10 0.05 0.02 0.10 0.05 0.02
Regular Pruning® 9383 93.69 9349 73.83 73.07 71.69 61.21  60.49 55.55
Training  Lottery’ (w. hybrid/rewind) ~ 94.14 ~ 93.99  93.52  74.06  73.10 71.61 61.19  60.57 56.18
Dynamic Sparsityi 9375 93.86 9313 7236 7198 70.70 62.49  59.81 58.36
Low Fixed Sparsity* 93.77 9343 9245 72.84 71.83 68.98 61.02  59.50 57.28
Memory Low-Rank* 90.71 88.08  80.81 6232 5497 42.80 48.50  46.98 36.57
Training Low-Rank (SD)* 90.99  88.61 82.53  63.77 5851 45.02 49.87  46.73 37.25
Low-Rank (FD)* 91.57 88.16 8281 64.07 59.34 4573 5393 4795 35.63
Low-Rank (SI & FD)* 91.58 88.98 8327 65.61 60.1 46.43 53.53  47.60 35.68
ResNet32* (full model)* CIFAR-10 (94.494+0.29)  CIFAR-100 (75.41+1.26)  Tiny-ImageNet (63.0240.94)
Regime Compressed (from ~7.5M) 0.10 0.05 0.02 0.10 0.05 0.02 0.15 0.10 0.05
Regular Pruning® 94.21 93.29  90.31 7234  68.73 60.65 58.86  57.62 51.70
Training LotteryT (w. hybrid/rewind) ~ 94.14  93.02  90.85  72.41 69.28 63.44 60.31 57.77 51.21
Dynamic Sparsity~ 9297 91.61 8846 69.66  68.20 62.25 57.08  57.19 56.18
Low Fixed Sparsity* 9297 91.60 89.10 69.70  66.82 60.11 5725 5553 51.41
Memory Low-Rank* 9359 9245 8795 7271  67.86 61.08 60.82  58.72 55.39
Training Low-Rank (SD)* 9252  91.72 8736  71.71 67.41 60.79 59.53  57.60 55.00
Low-Rank (FD)* 9292 8944 8305 71.85  66.89 55.31 5945  57.24 54.15
Low-Rank (SI & FD)* 9434 9290 8797 7441 7022 61.40 62.24  60.25 55.97
T Best of (LeCun et al., 1990; Zeng & Urtasun, 2019), obtained from Wang et al. (2020).
" Best of (Frankle & Carbin, 2019; Renda et al., 2020; Su et al., 2020), obtained from Wang et al. (2020) and Su et al. (2020).
#Best of (Mostafa & Wang, 2019; Mocanu et al., 2018; Bellec et al., 2018), obtained from Wang et al. (2020).
, Bestof (Lee et al., 2018; Wang et al., 2020; Su et al., 2020), obtained from Wang et al. (2020) and Su et al. (2020).

Our method or our reproduction; results averaged over three random trials.

Table 2: Comparison of low-rank and tensor-decomposition training of WideResNet28-10 on
CIFAR-10 (mean of 3 trials) with different regularization and initialization. Best errors bolded.

compression decomposition® wDT wDT & SI CRs# CRS* & SI FD FD & SI
none (~36.5M param.) 3.21+0.22
0.01667 Low-Rank 7.62+0.08  7.72+0.11 8.631+0.87 8.834+0.17 7.2340.32  7.264+0.45
(~0.61M param.) Tensor-Train 8.55+4.22 7.72+0.46 7.01+0.35 6.521+0.17 7.26+0.73 6.22+0.50
0.06667 Low-Rank 5314+0.06  5.49+042  5.8610.22 5.534+0.72 3.894+0.17  3.86+0.22
(~2.4M param.) Tensor-Train 7.33+£0.27  6.49+0.30  5.20+0.37 4.7940.15 5.0240.15  5.104+0.35

* See Table 7 for results using the Tucker decomposition, which generally performs worse than Tensor-Train at the same compression.
Regular weight-decay with A = 0.005.
Regular weight-decay with coefficient scaled by the compression rate (Gray et al., 2019).

On the other hand, the low-rank approach is substantially worse for VGG; nevertheless, ResNet is
both smaller and more accurate, so if the goal is an accurate compressed model learned from scratch
then one should prefer the low-rank approach. Our results demonstrate a strong, simple baseline not
frequently compared to in the low-memory training literature (Frankle & Carbin, 2019; Wang et al.,
2020; Su et al., 2020). In fact, since it preserves the top singular components of the original weights,
SI can itself be considered a type of (spectral) magnitude pruning. Finally, Table 1 highlights the
complementary nature of SI and FD, which outperform regular low-rank training on both models,
although interestingly they consistently decrease ResNet performance when used separately.

Matrix and Tensor Decomposition: We next compare against tensor decompositions, another
common approach to small model training (Kossaifi et al., 2020a;b). A recent evaluation of ten-
sors and other related approaches by Gray et al. (2019) found that Tensor-Train decomposition
(Oseledets, 2011) obtained the best memory-accuracy trade-off on WideResNet; we thus compare
directly to this approach. Note that, while we normalize according to memory, Tensor-Train must
be expanded to the full tensor prior to convolution and thus increases the required compute, unlike
low-rank factorization. In Table 2 we show that at 6.7% of the original parameters the low-rank
approach with FD and SI significantly outperforms Tensor-Train. Tensor-Train excels at the highly
compressed 1.7% setting but is greatly improved by leveraging tensor analogs of SI—decomposing
a random initialization rather than randomly initializing tensor cores directly—and FD—penalizing
the squared Frobenius norm of the full tensor. We also compare to CRS (Gray et al., 2019), which
scales regular weight-decay by the compression rate. It is roughly as beneficial as FD across differ-
ent evaluations of Tensor-Train, but FD is significantly better for low-rank factorized neural layers.



Published as a conference paper at ICLR 2021

Table 3: Overcomplete ResNet performance (mean of 3 trials). Best at each depth is bolded; cases
where we match the next deeper network with around the same training memory are underlined.

ResNet unfactorized ~ DO-Conv* full deep wide

data depth metric WD WD WD FD WD FD WD FD
test accuracy (%) 92.66 N/A 9211 9332 91.37 9311 9226  93.36

32 training param. (M) 0.46 N/A 0.95 0.95 1.43 1.43 2.84 2.84

testing param. (M) 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
CIFAR test accuracy (%) 93.15 93.38 92.95 94.13 9252 9389 93.08 93.83
10 56 training param. (M) 0.85 N/A 1.72 1.72 2.59 2.59 5.16 5.16
testing param. (M) 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
test accuracy (%) 93.61 93.93 9373 9428 9325 9442 9353 9413
110 training param. (M) 1.73 N/A 3.47 3.47 5.21 5.21 10.39 10.39

testing param. (M) 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73
test accuracy (%) 68.17 N/A 68.84 7032 67.84 7025 6923  70.53

32 training param. (M) 0.47 N/A 0.95 0.95 1.44 1.44 2.84 2.84

testing param. (M) 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
CIFAR test accuracy (%) 70.25 70.78 70.6 72779  69.62 7228  70.69  73.01
100 56 training param. (M) 0.86 N/A 1.73 1.73 2.60 2.60 5.17 5.17
testing param. (M) 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
test accuracy (%) 72.11 72.22 7233 7398 7128 7417 1.7 73.69
110 training param. (M) 1.73 N/A 3.48 3.48 522 5.22 10.40  10.40

testing param. (M) 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73

Validation accuracies from Cao et al. (2020) are averages over the last five epochs across five training runs.

5 OVERCOMPLETE KNOWLEDGE DISTILLATION

In contrast to compressed model training, in knowledge distillation (KD) we have the capacity to
train a large model but want to deploy a small one. We study what we call overcomplete KD, in
which a network is over-parameterized in such a way that an equivalent small model can be directly
recovered. Similar approaches have been previously studied only with small models (Arora et al.,
2018; Guo et al., 2020) or using convolution-specific methods (Ding et al., 2019; Cao et al., 2020).
We take a simple factorization approach in which we decompose weights W € R™*" to be products
of 2 or 3 matrices while increasing the parameter count, either via depth or width. Here we consider
three cases: the full (rank) setting where W = UV T for U € R™*™ V e R"*™, the deep setting
where W = UMV forU, M € R™*™, V e R"*™, and the wide setting where W = UV T for
U e R™*3m Vv ¢ R"*3m  Agbefore, we factorize all but the first and last layer and train factorized
networks using the same routine as for the base model, except when replacing weight-decay by FD.
We do not study SI here, using the default initialization for U, VT and setting M = I,,.

Table 3 shows the strength of this approach: we can train ResNet32 to beat ResNet56 and ResNet56
to beat ResNet110 while needing about the same number of parameters during training and only
half as many at inference. Note that training ResNet56 using the “full” setting is also 1.5x faster
than training ResNet110 (see Table 8 for timings). Furthermore, we improve substantially upon DO-
Conv (Cao et al., 2020), which obtains much smaller improvements over the unfactorized baseline.
In fact, Table 9 suggests our approach compares favorably even with regular KD methods; combined
with its simplicity and efficiency this suggests that our overcomplete method can be considered as a
baseline in the field. Finally, we also show that Frobenius decay is critical: without it, overcomplete
KD performs worse than regular training. A detailed visualization of this, comparing the CIFAR
performance of factorized ResNets across a range of rank-scale settings covering both the current
high-rank (distillation) case and the previous low-rank (compression) case, can be found in Figure 2.

6 MULTI-HEAD ATTENTION AS FACTORIZED QUADRATIC FORMS

Our final setting is multi-head attention (Transformer) architectures (Vaswani et al., 2017). As dis-
cussed in Section 2, the MHA component is already a factorized layer, consisting of an aggregation
over the output of two quadratic forms per head: the “Query-Key” (QK) forms passed into the soft-
max and the “Output-Value” (OV) forms that multiply the resulting attention scores (c.f. Equation 1).
Transformers also contain large linear layers, which can also be factorized for efficiency.

Improving Transformer Training and Compression: We start with the original Transformer
architecture on the IWSLT-14 translation task (Cettolo et al., 2014) but use an SGD-based training
routine as a baseline (Gehring et al., 2017). As there is no weight-decay by default, we first tune both
this and FD on the non-factorized model; here FD is applied to the implicitly factorized MHA layers.
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transformer small

Table 4: Comparison of BERT unsupervised pretraining
using LAMB (You et al., 2020) and our Frobenius de-
cay scheme FLAMBE. Evaluation is conducted by fine-
tuning the final model on the SQuAD question-answering

IWSLT-14 DE-EN BLEU Score

2 weight-decay task (Rajpurkar et al., 2016). Guided by IWSLT results,
. it FLAMB¢ is applied only to the Output-Value form in
—— e o erykey | MHA; regular weight-decay is used on all other parame-
e ters. Spectral initialization of MHA is used for FLAMBé
transformer small _ as well, but we find the effect minimal. Regularization co-
= efficients for both methods were obtained by tuning on the
| — — uncompressed model, targeting the unsupervised loss.
g compression param.
E » rate count SQuUAD
B weight-decay model optimizer (MHA-only) M) F1 EM
Ezs —=— spectral init
E —e— Frobenius decay LAMB 1.0 110 88.55 81.06
e spectral init LAMB (SI & FD) 1.0 110 8816 8086
& Frobenius decay Bb?:: FLAMBé (SI & FD) 1.0 110 8888  81.54
T ket porameters mtions) * ’ LAMB 0.5 95.7 87.35  79.83
. FLAMBE (SI & FD) 0.5 957  87.69 8042
Figure 4: Transformer performance on
3 : ... BERT LAMB 1.0 340 9141  84.99
IWSLT-14 as a function of regulariza large  FLAMBE (SI & FD) 0.5 2958 9055 83.82

tion (top) and compression (bottom).

In Figure 4 we show that this alone yields an improvement: whereas the effect of weight-decay is
either negligible or negative, tuning FD does improve the BLEU score. Furthermore, we see that
tuning just the OV form in MHA is more robust at higher regularization levels than tuning both OV
and QK. We conclude by examining both SI and FD when reducing the number of parameters by
(1) factorizing all linear and embedding layers and (2) scaling down the embedding dimension in
MHA. In Figure 4 we see that the benefit of Frobenius decay disappears when compressing; on the
other hand, SI provides a strong boost under both types of decay, and is in fact necessary for FD to
work at all. Note that the major effect here is for the factorized linear layers—we found that SI has
minimal effect when applied to MHA, likely because those initializations have already been tuned.

FLAMBEé for Unsupervised BERT Pre-Training: Lastly, we examine BERT (Devlin et al.,
2019), a large transformer trained on a massive unsupervised text corpus and evaluated on down-
stream language tasks. The state-of-the-art training approach is via the LAMB optimizer (You et al.,
2020) using weight-decay based on the AdamW algorithm of Loshchilov & Hutter (2019), in which
An times each parameter is subtracted from itself; this is equivalent to ¢2-regularization for SGD
but not for adaptive methods. We can define a similar Frobenius alternative by subtracting A»n times
the Frobenius gradients UV'V = Vy 3 |[UVT |3 and VUTU = Vy £ [UVT|% from U and V/,
respectively; when used with the LAMB optimizer we call this method FLAMBé. We see in Table 4
that FLAMB¢ outperforms the simple FD modification of LAMB and, as with IWSLT, leads to an
improvement in downstream task performance without changing model size. For BERT, however,
applying FD via FLAMB¢ also leads to better downstream performance when scaling down the
MHA embedding dimension by half. Besides achieving a better compressed model, the success of
FLAMBS¢ also shows the potential of new types of decay schemes for adaptive methods.

7 CONCLUSION

In this paper we studied the design of training algorithms for deep nets containing factorized layers,
demonstrating that two simple specializations of standard initialization and regularization schemes
from the unfactorized case lead to strong improvements for model compression, knowledge distil-
lation, and MHA-based architectures. While we largely focused on the case where the unfactorized
model uses Gaussian initialization and ¢5-regularization, we believe our work provides guidance for
the many cases where other schemes are used to enforce alternative priors or improve optimization.
For example, SI as defined can be applied to any random initialization, while our FD results suggest
that regularizers such as penalty terms and DropConnect (Wan et al., 2013) should be applied on
the product matrix rather than directly on individual factors. The success of SI and FD for both
low-rank and tensor decomposition also suggests that these schemes may be useful for other types
of factorized neural layers, such as ACDC (Moczulski et al., 2015) or K-matrices (Dao et al., 2020).
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A GENERALIZATION ERROR OF FACTORIZED LLAYERS

In this section we briefly discuss how to apply the generalization bounds in Neyshabur et al. (2018)
to factorized models.

Definition A.1. For any v > 0 and distribution D over classification data X x ) the y-margin-loss
of amodel fo : X — Y is defined as {),(fo) = Pz y)~D (fo(x)[y] < v + maxy 4y fo(x)[y']).

~y

Note that £%, is the expected classification loss over the distribution and A
niform(S)

~v-margin-loss. We have the following corollaries:

is the empirical
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Corollary A.1. Let fy be a neural network with L — 1 factorized fully-connected ReLU layers
9:(U; V;T, T;_1) = max {UiViTmi_l, Om} of hidden dimension m and one factorized classifica-
tion layer g1, (U, VLT, x;—1) = Uy VLTa:L_l. Let D be a distribution over B-bounded classifica-
tion data X x Y and suppose we have a finite set S of i.i.d. samples from it. If rank(U; V1) < r
and |U;V.T||3} < o for all i then for any § > 0 we have w.p. 1 — § that

B2L3ma?Lrlog(Lm) [T, |U; VT |2 + log Lis|
0p(f0) < L igormes) + O \/ 72|8|1 2 5 @

Proof. Apply the inequality |[W;|%/|W;|3 < rank(W;) to Neyshabur et al. (2018, Theorem 1)
and substitute W; = U, V,T. O
Corollary A.2. Let fg be a neural network with L — 1 factorized fully-connected ReLU layers
gi(Ui(H;lzl M;;) )V ;1) = max {Ui(l_[?zl M;)\VTiz,; 4, Om} of hidden dimension m and
one factorized classification layer gL(UL(H?:1 MLj)VLT, xr_1) = UL(H?:1 MLj)VLTmL_l.
Let D be a distribution over B-bounded classification data X x Y from which we have a finite set S
of i.i.d. samples. If |U; H?zl M;;V."'||2} < o for all i then for any § > 0 we have w.p. 1 — § that

_ L d L|S
B <@ o B2L2mo?l 2 log(Lm) Y, |Ui([Tj_; Mij) V7|3 + log 25
D\JO) = “Uniform(S) 72|S]

(&)

. L L w2 L
Proof. Apply the equality (Hi:1 HVVzH%> Zi:1 ‘\‘\Wi‘l‘\g = Zi:l HWzH% Hj;&i HW_] H% to Neyshabur

et al. (2018, Theorem 1) and substitute W, = Ui(]_[;l=1 M;; VT O

B PROOF OF CLAIM 3.1

Proof. Let p; = |W}|r be the Frobenius norm of the composed matrix at time ¢. Applying the
update rules for Uy and V; and using the fact that p,Vw, = Vy;, yields

Wi = (U —nVu,)(V" = nVyr) = (U = nVw, Vi) (V" = U] Vi)
N & 2 T (6)
=W, — ;Vt +1n°Vw, W, Vw,
t

Taking the squared norm of both sides yields p? = p? — 21 Tr(VAVtT@t) + O(n?); we can then
take the square root of both sides and use a Tayor expansion to obtain

2 . a JUPEN
prar = pt\/ 1- p—” Te(WIV,) + O(2) = py — pﬁTr(WtTvn +O() (7)
t t

Then, starting from Equation 6 divided by p;1, substituting Equation 7, and applying a Taylor
expansion yields

Wi = 22W, — — LV, + 0(?)

Pt+1 PtPt+1
= IATA Wt— 5 T]ATA @t-I-O(??Q)
I- % Te(W; Vi) pi —nTe(Wi V) ®)
ity e
= <1 + - Tr(WtTVt)> Wt — TVt + 0(772)
Pt Pt
- W, - %(% — (B vec(V))Wy) + O()
¢
Vectorizing and observing that (] vec(V))ab; = ] vec(V,) yields the result. O
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C EXPERIMENTAL DETAILS FOR TRAINING CONVOLUTIONAL NETWORKS

For experiments with regular ResNets on CIFAR we used code provided here: https://
github.com/akamaster/pytorch_resnet_cifarl0. All hyperparameter settings are
the same, except initialization and regularization as appropriate, with the exception that we use a
warmup epoch with a 10 times smaller learning rate for ResNet56 for stability (this is already done
by default for ResNet110).

For comparisons with sparse model training of ResNet32** and VGG19™FC we use code by Wang
et al. (2019, https://github.com/alecwangcqg/EigenDamage—-Pytorch), which is
closely related to that of the lottery-ticket-guessing paper by Wang et al. (2020). All hyperpa-
rameter settings are the same, except (1) initialization and regularization as appropriate and (2) for
Tiny-ImageNet we only train for 200 epochs instead of 300.

For comparisons with tensor decomposition training of WideResNet we use code by Gray et al.
(2019, https://github.com/BayesWatch/deficient—efficient). All hyperparam-
eter settings are the same, except initialization and regularization as appropriate.

D EXPERIMENTAL DETAILS FOR TRAINING TRANSFORMER MODELS

For experiments with Transformer models on machine translation we used code provided here:
https://github.com/StillKeepTry/Transformer—-PyTorch. All hyperparameter
settings are the same, except initialization and regularization as appropriate.

For comparisons with LAMB optimization of BERT, we use an implementation provided by
NVIDIA: https://github.com/NVIDIA/DeeplLearningExamples/tree/master/
PyTorch/LanguageModeling/BERT. All hyperparameter settings are the same, except ini-
tialization and regularization as appropriate. For fine-tuning on SQuAD we apply the same opti-
mization routine to all pre-trained models.

E PAST WORK ON KNOWLEDGE DISTILLATION

We first briefly summarize past work on overcomplete KD. While the use of factorized neural layers
for improving training has theoretical roots (Arora et al., 2018; Du & Hu, 2019), we are aware of
two other works focusing on experimental practicality: ExpandNets (Guo et al., 2020) and DO-
Conv (Cao et al., 2020). As the former focuses on small student networks, numerically we compare
directly to the latter, showing much better improvement due to distillation for both ResNet56 and
ResNet110 on both CIFAR-10 and CIFAR-100 in Table 3. Note that we are also aware of one
paper proposing a related method that also trains an over-parameterized model without increasing
expressivity that can then be collapsed into a smaller “original” model (Ding et al., 2019); their
approach, called ACNet, passes the input to each layer through differently-shaped kernels that can be
composed additively. Note that it is unclear how to express this method as a factorization and it may
not be easy to generalize to non-convolutional networks, so we do not view it as an overcomplete
KD approach.

We now conduct a brief comparison with both these works and more standard approaches to KD.
Direct comparison with past work is made difficult by the wide variety of training routines, teacher
models, student models, and evaluation procedures employed by the community. Comparing our
specific approach is made even more difficult by the fact that we have no teacher network, or at least
not one that is a standard model used in computer vision. Nevertheless, in Table 9 we collect an array
of existing results that can be plausibly compared to our own overcomplete distillation of ResNets.
Even here, note that absolute numbers vary significantly, so we focus on changes in accuracy. As can
be seen from the results, our overcomplete approach yields the largest improvements for ResNet56
and ResNet110 on both CIFAR-10 and CIFAR-100. For ResNet32, the Snapshot Distillation method
of Xu & Liu (2019) outperforms our own, although it does not do so for ResNetl110 and is not
evaluated for ResNet56. On CIFAR-10 the additive ACNet approach also has a larger performance
improvement for ResNet32. Nevertheless, our method is still fairly close in these cases, so the
results in Table 9 together with the simplicity and short (single-stage) distillation routine of our
overcomplete approach suggest that it should be a standard baseline for KD.
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Table 5: Pruning, sparse training, and low-rank training for VGG-19NFC i.e. the model of
Simonyan & Zisserman (2015) with no fully-connected layers, as in Wang et al. (2020).

CIFAR-10 uncompressed 0.1 0.05 0.02
baseline® 94.23

baseline 93.70

baseline (reproduced) 93.754+0.48

OBD* LeCun et al. (1990) 93.74 93.58 93.49
MLPrune* (Zeng & Urtasun, 2019) 93.83 93.69 93.49
LT*, original initialization 93.51 92.92 92.34
LT*, reset to epoch 5 93.82 93.61 93.09
LR RewindingT (Renda et al., 2020) 94.14+£0.17  93.9940.15 10.00+0.00
Hybrid Tickets (Su et al., 2020) 94.00+0.12  93.83+0.10  93.52+0.28
DSR* (Mostafa & Wang, 2019) 93.75 93.86 93.13
SET* (Mocanu et al., 2018) 92.46 91.73 89.18
Deep-R* (Bellec et al., 2018) 90.81 89.59 86.77
SNIP* (Lee et al., 2018) 93.63+0.06 93.43+0.20 92.05+0.28
GraSP* (Wang et al., 2020) 92.5940.10 91.01+0.21 87.51+0.31
Random Tickets' (Su et al., 2020) 93.774£0.10  93.4240.22 92.45+0.22
Low-Rank 90.71+0.42  88.08+0.14  80.81+0.85
Low-Rank (SI) 90.99+0.34 88.61+0.95 82.53+0.14
Low-Rank (FD) 91.57+£0.26  88.16+0.50 82.81+0.37
Low-Rank (SI & FD) 91.58+0.27 88.98+0.18  83.27+0.56
CIFAR-100 uncompressed 0.1 0.05 0.02
baseline™® 74.16

baseline’ 72.60

baseline (reproduced) 73.4240.17

OBD* LeCun et al. (1990) 73.83 71.98 67.79
MLPrune* (Zeng & Urtasun, 2019) 73.79 73.07 71.69
LT*, original initialization 72.78 71.44 68.95
LT*, reset to epoch 5 74.06 72.87 70.55
LR RewindingT (Renda et al., 2020) 73.73+£0.18  72.394+0.40  1.00+£0.00
Hybrid Tickets' (Su et al., 2020) 73.53+0.20 73.10£0.11 71.61+0.46
DSR* (Mostafa & Wang, 2019) 72.31 71.98 70.70
SET* (Mocanu et al., 2018) 72.36 69.81 65.94
Deep-R* (Bellec et al., 2018) 66.83 63.46 59.58
SNIP* (Lee et al., 2018) 72.84+0.22 71.83£0.23 58.46+1.10
GraSP* (Wang et al., 2020) 71.95+£0.18 71.234+0.12  68.90+0.47
Random Tickets' (Su et al., 2020) 72.554+0.14 71.3740.09 68.98+0.34
Low-Rank 62.32+0.26 54974528 42.80+3.14
Low-Rank (SI) 63.77+0.93 58.51+1.90 45.02+3.24
Low-Rank (FD) 64.07+£1.58 59344297 45.734+2.62
Low-Rank (SI & FD) 65.61+1.48 60.1+1.29 46.43+1.26
Tiny-ImageNet uncompressed 0.1 0.05 0.02
baseline™ 61.38

baseline 61.57

baseline (reproduced) 62.194+0.74

OBD* LeCun et al. (1990) 61.21 60.49 54.98
MLPrune* (Zeng & Urtasun, 2019) 60.23 59.23 55.55
LT¥*, original initialization 60.32 59.48 55.12
LT*, reset to epoch 5 61.19 60.57 56.18
DSR* (Mostafa & Wang, 2019) 62.43 59.81 58.36
SET* (Mocanu et al., 2018) 62.49 59.42 56.22
Deep-R* (Bellec et al., 2018) 55.64 52.93 49.32
SNIP* (Lee et al., 2018) 61.02+0.41 59.2740.39 48.95+1.73
GraSP* (Wang et al., 2020) 60.76+0.23  59.50+0.33  57.284+0.34
Random Tickets' (Su et al., 2020) 60.94+0.38 59.48+0.43 55.87+0.16
Low-Rank 48.50+3.43 46.98+1.68 36.57+1.03
Low-Rank (SI) 49.87+1.39 46.73£2.83  37.25+0.19
Low-Rank (FD) 53.93+0.66 47.95+1.13 35.63+0.71
Low-Rank (ST & FD) 53.53+0.45 47.60+0.51 35.68+0.64

* Obtained from Wang et al. (2020).
Obtained from Su et al. (2020).
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Table 6: Pruning, sparse training, and low-rank training for ResNet-32*2, i.e. the model of
He et al. (2016) with twice the number of filters, as in Wang et al. (2020).

CIFAR-10 uncompressed 0.1 0.05 0.02
baseline™® 94.80

baseline 94.62

baseline (reproduced) 94.4940.29

OBD* LeCun et al. (1990) 94.17 93.29 90.31
MLPrune* (Zeng & Urtasun, 2019) 94.21 93.02 89.65
LT*, original initialization 92.31 91.06 88.78
LT*, reset to epoch 5 93.97 92.46 89.18
LR Rewinding' (Renda et al., 2020) 94.14+0.10  93.024+0.28 90.83+0.22
Hybrid Tickets' (Su et al., 2020) 93.98+0.15 92.96+0.13  90.85+0.06
DSR* (Mostafa & Wang, 2019) 92.97 91.61 88.46
SET* (Mocanu et al., 2018) 92.30 90.76 88.29
Deep-R* (Bellec et al., 2018) 91.62 89.84 86.45
SNIP* (Lee et al., 2018) 92.594+0.10 91.01£0.21 87.51£0.31
GraSP* (Wang et al., 2020) 92.38+0.21 91.39+£0.25 88.81+0.14
Random Tickets' (Su et al., 2020) 92.97+0.05 91.60+£0.26 89.10+0.33
Low-Rank 93.5940.12 92.454+0.69 87.95+0.91
Low-Rank (SI) 92.524+0.66 91.72+0.63  87.36+0.65
Low-Rank (FD) 92.924+0.29 89.444+0.25 83.05+1.02
Low-Rank (SI & FD) 94.34+0.34  92.90+0.43  87.97+0.86
CIFAR-100 uncompressed 0.1 0.05 0.02
baseline™ 74.64

baseline’ 74.57

baseline (reproduced) 75.41+1.26

OBD* LeCun et al. (1990) 71.96 68.73 60.65
MLPrune* (Zeng & Urtasun, 2019) 72.34 67.58 59.02
LT*, original initialization 68.99 65.02 57.37
LT*, reset to epoch 5 71.43 67.28 58.95
LR RewindingT (Renda et al., 2020) 72.41+£0.49 67.2243.42 59.22+1.15
Hybrid Tickets' (Su et al., 2020) 71.47+£0.26 69.28+0.40 63.44+0.34
DSR* (Mostafa & Wang, 2019) 69.63 68.20 61.24
SET* (Mocanu et al., 2018) 69.66 67.41 62.25
Deep-R* (Bellec et al., 2018) 66.78 63.90 58.47
SNIP* (Lee et al., 2018) 68.89+0.45 65.22+0.69 54.81+1.43
GraSP* (Wang et al., 2020) 69.244+0.24 66.504+0.11 58.434+0.43
Random Tickets' (Su et al., 2020) 69.70+0.48 66.82+0.12 60.114+0.16
Low-Rank 72.711£0.43 67.86£091 61.08+0.76
Low-Rank (SI) 71.71£1.46 67.41+1.12 60.79+0.26
Low-Rank (FD) 71.85+£0.39 66.89+0.73 55.31+0.61
Low-Rank (SI & FD) 74.41+0.67 70.224+0.64 61.40+0.96
Tiny-ImageNet uncompressed 0.15 0.1 0.1
baseline™ 62.89

baseline 62.92

baseline (reproduced) 63.024+0.94

OBD* LeCun et al. (1990) 58.55 56.80 51.00
MLPrune* (Zeng & Urtasun, 2019) 58.86 57.62 51.70
LT*, original initialization 56.52 54.27 49.47
LT*, reset to epoch 5 60.31 57.77 51.21
DSR* (Mostafa & Wang, 2019) 57.08 57.19 56.08
SET* (Mocanu et al., 2018) 57.02 56.92 56.18
Deep-R* (Bellec et al., 2018) 53.29 52.62 52.00
SNIP* (Lee et al., 2018) 56.33+0.24  55.43+0.14 49.574+0.44
GraSP* (Wang et al., 2020) 57.25+40.11 55.53+0.11 51.344+0.29
Random Tickets' (Su et al., 2020) N/A 55.26+0.22 51.414+0.38
Low-Rank 60.82+0.72  58.72+0.53  55.394+1.02
Low-Rank (SI) 59.53+1.41 57.60+£0.88  55.004+0.90
Low-Rank (FD) 59.45+0.82 57.24+0.61 54.15+1.22
Low-Rank (SI & FD) 62.24+0.39 60.25+1.02 55.9740.48

* Obtained from Wang et al. (2020).
Obtained from Su et al. (2020).
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Table 7: Comparison of low-rank and tensor-decomposition training (mean of 3 trials) of
WideResNet28-10 on CIFAR-10. The best error for each compression-decomposition setting
is bolded; in addition, the best error at each compression level is underlined.

initialization
compression decomposition decay (A = 0.005) default spectral
none (~36.5 param.) 3.21+0.22
regular 7.62+0.08 7.7240.11
Low-Rank CRS* 8.631+0.87 8.83+0.17
Frobenius 7.23+0.32  7.26+0.45
0.01667 regular 8.55+4.22  7.72+0.46
(~0 6iM param.) Tensor-Train CRS* 7.01£0.35 6.5240.17
' ' Frobenius 7.26+0.73  6.224+0.50
regular 10.67£7.68 9.91+6.71
Tucker CRS* 8.2840.05  6.79+0.34
Frobenius 8.65+0.27 7.07+0.28
regular 5.31+0.06  5.4940.42
Low-Rank CRS* 5.86+0.22  5.53+0.72
Frobenius 3.894+0.17 3.86+0.22
0.06667 regular 7.33+0.27  6.494+0.30
(~2 M param.) Tensor-Train CRS* 5.2040.37 4.79+0.15
' ’ Frobenius 5.0240.15 5.10+0.35
regular 5.64+0.19 5.611+0.46
Tucker CRS* 5.30+£0.35 5.15+0.23
Frobenius 5.30+0.12  5.24+0.21

* Regular weight-decay with coefficient scaled by the compression rate (Gray et al., 2019).
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Table 8: Overcomplete ResNet performance (mean of 3 trials). The best accuracy at each depth is
bolded; cases where we match the next deeper network with around the same training memory are
underlined. Note that training times are reported for roughly similar machine types; all ResNet56
and ResNet110 times are reported on identical machine types.

CIFAR-10 factorization type
depth decay type/metric unfactorized full deep wide
WD test accuracy 92.66 £+0.34 92.11+0.36 91.37+0.09 92.26 +0.35
training time (H) 1.51 £0.17 1.86 £0.23 2.10£0.14 2.20 £0.22
32 FD test accuracy 93.32+£0.07 93.11£0.13 93.36+0.11
training time (H) 1.60 + 0.22 2.40 +£0.16 1.97 +0.23
training param. (M) 0.46 0.95 1.43 2.84
WD test accuracy 93.15+0.56 92.95+0.24 92524+0.13  93.08 +0.23
training time (H) 1.39 £ 0.04 2.12 +0.00 2.45 +0.12 3.51 +0.09
56  FD test accuracy 9413 £0.16 93.89+0.13 93.83 £0.10
training time (H) 2.224+0.07 2.89 +0.05 3.65+0.14
training param. (M) 0.85 1.72 2.59 5.16
WD test accuracy 93.61 £0.28 93.73+0.16 93.25+0.07  93.53 +0.07
training time (H) 3.51 £ 0.06 3.86 + 0.13 4.92+0.15 6.37 £0.21
110  FD test accuracy 94.28 +£0.06 94.42+0.09 94.13+0.05
training time (H) 4.18 £ 0.04 9.77+0.22 6.55 +£0.18
training param. (M) 1.73 3.47 5.21 10.39
CIFAR-100 factorization type
depth metric unfactorized full deep wide
WD test accuracy 68.17+0.48 68.84+0.27 67.84+0.50 69.23 +£0.32
training time (H) 1.60 + 0.21 1.80 £0.23 1.61 +0.04 2.48 +£0.19
32 FD test accuracy 70.32 + 0.41 70.25+0.46 70.53 + 0.07
training time (H) 1.61 £ 0.10 2.13+£0.20 2.61 £0.18
training param. (M) 0.47 0.95 1.44 2.84
WD test accuracy 70.25 £ 0.30 70.6 £ 0.53 69.62 + 0.35 70.69 + 0.21
training time (H) 1.39+0.04 2.09 £0.04 2.59+£0.04 3.48 +£0.27
56 FD test accuracy 72.79 £ 0.37 7228 +0.26 73.01 +£0.39
training time (H) 2.30 + 0.05 2.96 +0.17 3.33 £ 0.19
training param. (M) 0.86 1.73 2.60 5.17
WD test accuracy 7211 +£0.37  72.33 £ 0.57 71.28 £ 0.62 71.70 + 0.55
training time (H) 3.87 £0.08 3.78 £ 0.04 4.95 £0.23 6.12 +£0.25
110  FD test accuracy 73.98+0.22 74.17+0.23 73.69£0.72
training time (H) 4.46 + 0.07 5.66 + 0.18 6.81 +0.18
training param. (M) 1.73 3.48 5.22 10.40
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Table 9: Comparison of our knowledge distillation approach with past work in which the same
student network attains roughly similar performance.

CIFAR-10 reported reported  change
baseline baseline  distilled in
depth  method (source) teacher accuracy accuracy —accuracy
SD (Xu & Liu, 2019) self 92.78 93.68 +0.90
32 ACNet (Ding et al., 2019) additive 94.31 95.09 +0.78
wide factorization w. FD (ours) overcomplete 92.66 93.36 +0.70
KD-fn (Xu et al., 2020) ResNet110 93.63 94.14 +0.51
56 DO-Conv (Cao et al., 2020) overcomplete 93.26 93.38 +0.12
full factorization w. FD (ours) overcomplete 93.15 94.13 +0.98
SD (Xu & Liu, 2019) self 94.00 94.43 +0.43
110 DO-Conv (Cao et al., 2020) overcomplete 93.72 93.93 +0.21
deep factorization w. FD (ours) overcomplete 93.61 94.42 +0.81
CIFAR-100 reported reported  change
baseline baseline  distilled in
depth  method (source) teacher accuracy accuracy —accuracy
CRD (Tian et al., 2020) ResNetl110 71.14 73.48 +2.34
SD (Xu & Liu, 2019) self 68.99 71.78 +2.79
32 Snapshot (Yang et al., 2019) self 68.39 69.84 +1.45
ACNet (Ding et al., 2019) additive 73.58 74.04 +0.46
wide factorization w. FD (ours) overcomplete 68.17 70.53 +2.36
FT (Kim et al., 2018) ResNet110 71.96 74.38 +2.42
56 Snapshot (Yang et al., 2019) self 70.06 70.78 +0.72
DO-Conv (Cao et al., 2020) overcomplete 70.15 70.78 +0.63
wide factorization w. FD (ours) overcomplete 70.25 73.01 +2.76
SD (Xu & Liu, 2019) self 73.21 74.96 +1.75
110 Snapshot (Yang et al., 2019) self 71.47 72.48 +1.01
DO-Conv (Cao et al., 2020) overcomplete 72.00 72.22 +0.22
deep factorization w. FD (ours) overcomplete 72.11 74.17 +2.06

20



	Introduction
	Related Work

	Preliminaries on Factorized Neural Layers
	Fully-Connected Layers
	Convolutional Layers
	Multi-Head Attention

	Initialization and Regularization
	Spectral Initialization
	Frobenius Decay
	Initialization and Regularization in the Presence of Normalization

	Compressed Model Training: Low-Rank, Sparse, and Tensorial
	Overcomplete Knowledge Distillation
	Multi-Head Attention as Factorized Quadratic Forms
	Conclusion
	Generalization Error of Factorized Layers
	Proof of Claim 3.1
	Experimental Details for Training Convolutional Networks
	Experimental Details for Training Transformer Models
	Past Work on Knowledge Distillation

