

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FLEXIBLE PARTICIPATION FOR DIFFERENTIALLY PRI- VATE SYNTHETIC TEXT GENERATION IN CROSS-SILO FEDERATED LEARNING

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 In cross-silo federated learning (FL), sensitive text datasets remain confined
014 to local organizations due to privacy regulations, making repeated training for
015 each downstream task both communication-intensive and privacy-demanding. A
016 promising alternative is to generate differentially private (DP) synthetic datasets
017 that approximate the global distribution and can be reused across tasks. However,
018 pretrained large language models (LLMs) often fail under domain shift, and fed-
019 erated finetuning is hindered by computational heterogeneity: only resource-rich
020 clients can update the model, while weaker clients are excluded, amplifying data
021 skew and the adverse effects of DP noise. We propose a flexible participation
022 framework that adapts to client capacities. Strong clients perform DP federated
023 finetuning, while weak clients contribute through a lightweight DP voting mech-
024 anism that refines synthetic text. To ensure the synthetic data mirrors the global
025 dataset, we apply control codes (e.g., labels, topics, metadata) that represent each
026 client’s data proportions and constrain voting to semantically coherent subsets.
027 This two-phase approach requires only a single round of communication for weak
028 clients and integrates contributions from all participants. Experiments show that
029 our framework improves distribution alignment and downstream robustness under
DP and heterogeneity.

030 1 INTRODUCTION

031 In cross-silo federated learning (FL), sensitive text data are distributed across organizations and must
032 remain local due to privacy regulations (Huang et al., 2022). Each client (e.g., a hospital, company,
033 or organization) often stores thousands to tens of thousands of text samples collected from individ-
034 uals (Sheller et al., 2018; Dayan et al., 2021), making it essential to train models collaboratively
035 without sharing raw data. However, each downstream task typically requires initiating a new FL
036 process, which incurs substantial communication overhead, additional privacy cost, and places extra
037 burden on compute-constrained clients. A promising alternative is to generate synthetic datasets that
038 act as privacy-preserving surrogates of the global dataset, thereby reducing both communication and
039 privacy risks (Stadler et al., 2022; Yoon et al., 2020; Little et al., 2023). The objective of this work
040 is to generate high-quality synthetic text that faithfully reflects the global distribution in cross-silo
041 FL while providing rigorous differential privacy guarantees.

042 A straightforward solution is to directly generate texts from a pretrained language model (Hou et al.,
043 2024) in FL. However, in many practical scenarios, such text exhibits low quality because the pre-
044 trained distribution diverges from the target global distribution. This issue arises, for example, when
045 data distributions evolve over time or when domain adaptation is required (Gururangan et al., 2020;
046 Cohen-Wang et al., 2024; Arakelyan et al., 2023). In this case, finetuning is essential to adapt the
047 model for high-quality text generation.

048 Finetuning large language models (LLMs) in federated settings, however, faces a critical obstacle:
049 computational heterogeneity (Bai et al., 2024; Liu et al., 2025; Wang et al., 2025). LLM finetuning
050 demands substantial local resources, yet many clients in cross-silo FL lack the necessary computing
051 capacity. As a result, only a fraction of clients with strong computing capacity can participate in
052 model updates in a timely manner. This imbalance exacerbates the effects of data heterogeneity,
053 as the global model is skewed toward the distributions of stronger clients while underrepresenting
weaker ones. The situation is further worsened when differential privacy (DP) is enforced: DP-

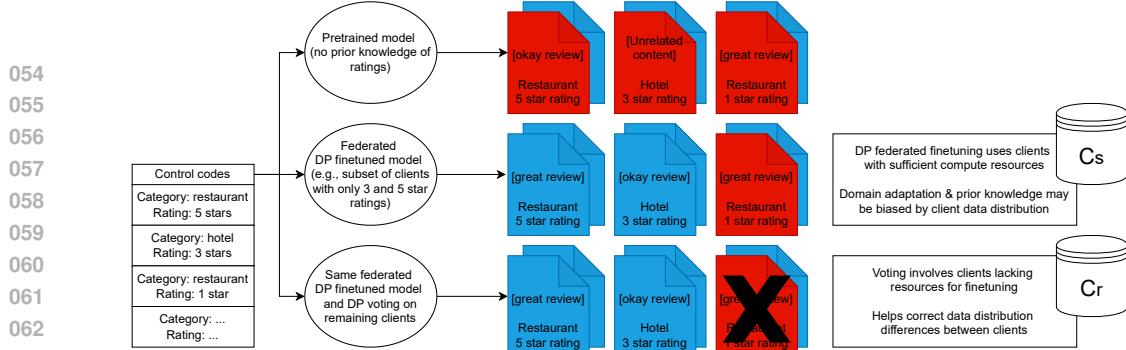


Figure 1: To perform DP synthetic text generation in cross-silo FL, we aim to address two challenges: heterogeneity in computational resources and data distributions. Our approach enables flexible participation through DP federated finetuning of the generator model on well-resourced clients and DP voting on generated synthetic text on the remaining clients.

SGD (Abadi et al., 2016) protects individual samples by injecting random noise into local updates. Reduced participation in local training can amplify the negative effect of DP noise, which hampers convergence and further degrades the quality of generated text (Wei et al., 2020).

To address these challenges brought by computational heterogeneity, we propose a flexible participation strategy that adapts to the computational capacities of clients in cross-silo FL. While clients with sufficient resources still engage in DP federated finetuning of the global generative model, weaker clients—those unable to perform expensive local updates—contribute through a lightweight voting mechanism. The key insight is that even partial finetuning allows the model to capture essential language patterns, while the voting stage refines the generated text according to the local data on weaker clients so that the negative effect of biased finetuning can be mitigated. An illustration of the framework can be found in Figure 1.

A challenge lies in characterizing data distributions so that the final synthetic dataset can effectively mirror the global population. To solve this, we adopt control codes (Keskar et al., 2019) (e.g., labels, topics, or metadata) to explicitly structure the data. Control codes partition texts into semantically meaningful subsets and serve two key roles in our framework. First, they represent each client’s local distribution through control code proportions, which guide the allocation of synthetic samples across codes. Second, they constrain voting to samples within the same control code, ensuring that refinement is based on semantically coherent and relevant texts.

Overall, our framework proceeds in two phases. **Phase 1 (DP federated finetuning)**: strong clients update the global model using DP-SGD, adapting it to domain-specific data while preserving privacy. This finetuned model, though imperfect, captures broad patterns of the data. **Phase 2 (refinement via DP voting)**: weak clients contribute indirectly by providing DP-perturbed control code profiles and casting votes on synthetic text samples generated under each control code. The server aggregates these noisy votes to reweight and resample candidates, producing a final synthetic dataset that better aligns with the global population. Importantly, this refinement requires no backward propagation and only a single round of communication, making it efficient and inclusive even for clients with limited resources.

We evaluate our approach on benchmark datasets under both IID and non-IID settings with DP. The results show that even with a small proportion of strong clients (1–10%), partial finetuning improves the quality of synthetic data over zero-shot generation from pretrained models. More importantly, the refinement stage consistently boosts performance, mitigating the negative effects of biased finetuning and DP noise.

2 BACKGROUND

2.1 FEDERATED LEARNING

In FL, N clients collaboratively train a model θ to minimize the averaged loss function:

$$\min_{\theta} f(\theta) := \frac{1}{N} \sum_{i=1}^N f_i(\theta), \quad (1)$$

108 where $f_i(\theta) = \ell(\theta; D_i)$ is the local loss function of client i , and D_i is the local data distribution of
 109 client i . At the beginning of the r -th training round, each participating client receives the current
 110 global model parameters θ^r from a central server. Each client then performs τ steps of local model
 111 updates based on its own data. After completing local training, clients send their model updates
 112 back to the server, which aggregates these updates to form a refined global model for the next round.

113 When finetuning LLMs in federated settings, computational and data heterogeneity present sig-
 114 nificant challenges. Computational heterogeneity restricts the timely participation of resource-
 115 constrained clients due to the high computational demand of LLM training. At the same time,
 116 this partial finetuning may lead to bias for the finetuned model. In our algorithm, the text generated
 117 by the biased model will be refined further using non-training method to balance the negative effect
 118 of data heterogeneity.

120 2.2 DIFFERENTIAL PRIVACY

121 In this work, DP will be applied both in finetuning and in refinement to guarantee the privacy of
 122 local data. Below is the formal definition of differential privacy.

124 **Definition 1 (Differential Privacy (Dwork et al., 2014))** *A randomized algorithm $M : \mathcal{D} \rightarrow \mathcal{S}$ is
 125 (ε, δ) differentially private if any two neighboring datasets $D, D' \in \mathcal{D}$ that differ exactly in a single
 126 data sample, and for all sets $S \in \mathcal{S}$:*

$$127 \quad \mathbb{P}[M(D) \in S] \leq e^\varepsilon \mathbb{P}[M(D') \in S] + \delta. \quad (2)$$

129 In the definition, ε determines the privacy budget and δ is the probability of failure.

131 To protect the privacy of each individual, we consider sample-level DP, ensuring that the output of
 132 each client is independently perturbed for every data sample. In finetuning, DP-SGD (Abadi et al.,
 133 2016) is applied in local training on strong clients, where Gaussian noise is added to the gradients.
 134 In refinement, analytical Gaussian mechanism (Balle & Wang, 2018) is applied, where the profiles
 135 and votes of local data are perturbed.

137 3 METHOD

139 3.1 PROBLEM FORMULATION

141 We consider text generation in the FL scenario, where each of the N clients maintains a local text
 142 dataset $D_i, \forall i \in [N]$. Due to the data heterogeneity, the local datasets D_i may differ substantially
 143 across clients. The global dataset is defined as $D := \bigcup_{i=1}^N D_i$. The objective is to generate a
 144 synthetic dataset \tilde{D} that closely approximates the global dataset D with DP guarantee. The setups
 145 of the clients and the server are detailed as follows:

146 **Clients.** Due to computational heterogeneity, only a subset of clients can efficiently perform local
 147 finetuning of LLMs in a timely manner. Let $\mathcal{C}_s \subseteq [N]$ denote the set of clients with sufficient
 148 computational resources, where $|\mathcal{C}_s| = M, 1 \leq M \leq N$. The set of remaining clients is denoted
 149 as $\mathcal{C}_r = [N] \setminus \mathcal{C}_s$. Although clients in \mathcal{C}_r do not directly participate in federated finetuning, they
 150 can contribute indirectly by sending DP statistical profiles (e.g., summary statistics or votes) of their
 151 local data to the server for the potential improvement on the text generation.

152 **Server.** The server initializes and maintains a pretrained language model. Since the distribution of
 153 pretrained model $p_\theta(\cdot)$ might not be aligned with the current global dataset D due to the domain dif-
 154 ference or the distribution change over time, the pretrained model has to be finetuned over the current
 155 data for generating consistent text. The server coordinates the federated finetuning by aggregating
 156 private model updates from clients in \mathcal{C}_s and broadcasting the latest global model to \mathcal{C}_s clients. The
 157 server then leverages the resulting global model to produce synthetic text data representative of the
 158 global data distribution.

159 The main challenge is ensuring that the synthetic dataset captures the distributions of both \mathcal{C}_s and
 160 \mathcal{C}_r clients despite differences in data and computation. Federated finetuning enables the model to
 161 learn from \mathcal{C}_s data, but the generated text may not be representative of the data from \mathcal{C}_r . The key
 question is how to also model the data from \mathcal{C}_r without direct finetuning. In Section 3.2, we address
 this by using controllable text generation, allowing clients in \mathcal{C}_r to guide the generation process via
 their statistical profiles.

Algorithm 1: Federated Controllable Text Generation with Refinement

Input : Control codes C ; client sets $\mathcal{C}_s, \mathcal{C}_r$; initial model θ^0 ; FL rounds R , local iteration τ ; DP params: $(\varepsilon_{\text{train}}, \delta_{\text{train}})$, $(\varepsilon_{\text{prof}}, \delta_{\text{prof}})$, $(\varepsilon_{\text{vote}}, \delta_{\text{vote}})$; number of synthetic samples s , sentence transformer $g(\cdot)$, sampling rate r , number of votes K .

Output: Synthetic dataset \tilde{D} .

Stage 1: Federated DP finetuning on \mathcal{C}_s

Server: $\theta^* \leftarrow \text{Federated_Finetuning}(\theta^0, \mathcal{C}_s, R, \tau, \varepsilon_{\text{train}}, \delta_{\text{train}})$.

Stage 2: DP profiling from clients

foreach $i \in [N]$ **do**

- Compute control-code counts $P_i \leftarrow [|D_i^1|, \dots, |D_i^{|C|}|]$ with $D_i = \bigcup_{j=1}^{|C|} D_i^j$
- $\tilde{P}_i \leftarrow \text{Analytical_Gaussian_Mechanism}(P_i, \varepsilon_{\text{prof}}, \delta_{\text{prof}})$

Server: Form a global target profile $\tilde{P} \leftarrow \sum_{i=1}^N \tilde{P}_i$.

Stage 3: Synthetic generation guided by profiles

for $j = 1$ **to** $|C|$ **do**

- For \tilde{D}^j , generate s_j samples using model $p_{\theta^*}(\cdot \mid c^j)$ with $s_j = \text{Round}(s \cdot \tilde{P}[j])$

Server: Set initial synthetic dataset $\tilde{D} \leftarrow \bigcup_{j=1}^{|C|} \tilde{D}^j$.

Stage 4: DP voting-based refinement using \mathcal{C}_r

foreach $i \in \mathcal{C}_r$ **do**

- $\tilde{v}_i \leftarrow \text{Local_Voting}(\tilde{D}, D_i, C, g, K, \varepsilon_{\text{vote}}, \delta_{\text{vote}})$

Server: Aggregate the votes $\tilde{v} \leftarrow \sum_{i=1}^N \tilde{v}_i$.

for $j = 1$ **to** $|C|$ **do**

- $p^j \leftarrow \tilde{v}[\mathcal{I}^j] / \|\tilde{v}[\mathcal{I}^j]\|_1$ with $\mathcal{I}^j = \{i \mid \tilde{D}[i] \in \tilde{D}^j\}$
- $\tilde{\mathcal{I}}_j \leftarrow \text{Sampling_Without_Replacement}(\mathcal{I}^j, r, p^j)$

Return $\tilde{D}^* \leftarrow \bigcup_{j=1}^{|C|} \tilde{D}[\tilde{\mathcal{I}}_j]$

3.2 ALGORITHM

In our algorithm, we consider conditional language modeling (Keskar et al., 2019):

$$p_\theta(x|c) = \prod_{l=1}^L p_\theta(x_l|x_{<l}, c), \quad (3)$$

where L is the length of the sequence and c is the control code. When generating texts after finetuning, the control code is used as the prompt for controllable generation. This approach offers two key benefits: (i) prompts do not need to be hand-designed, since the control code captures the training data distribution, and (ii) in FL, control codes can also represent local data distributions of clients in \mathcal{C}_r , enabling the generation of text corresponding to their profiles without further finetuning. The details of controllable generation in FL are as follows.

On client $i \in [N]$, the local data distribution can be decomposed by a set of control codes $C = \{c^1, c^2, \dots, c^{|C|}\}$. The set of control codes is situational dependent and may correspond to the labels, the topics, or the features of the training data. Following Yue et al. (2022), we assume that the control codes are not private. As mentioned above, all clients share the same set of the control codes C , which is predetermined. Each example in the local datasets is associated with exactly one control code $c \in C$ for local finetuning. We use D_i^j to denote the set of local data related to the control code c^j on client i and we have $\cup_{j=1}^{|C|} D_i^j = D_i$. Then given C , we can represent the distribution of the local dataset using the following vector

$$P_i = \left[|D_i^1|, |D_i^2|, \dots, |D_i^{|C|}| \right], \forall i \in [N]. \quad (4)$$

The global distribution is $P = \sum_{i=1}^N P_i$. With control codes, data heterogeneity in FL can be expressed in a hierarchical manner. At the first level, the control code distributions P_i vary across

216 clients, reflecting differences in how data categories are represented locally. These P_i vectors are
 217 used to determine the amount of synthetic data to generate for each control code, ensuring that the
 218 synthetic dataset matches the overall distribution. At the second level, even within a given control
 219 code c^j , the underlying data across clients may differ. Since data from \mathcal{C}_r clients are not directly
 220 involved in the federated finetuning process, we introduce a refinement step to better capture their
 221 distributions and reduce potential bias in the generated text after federated finetuning. The overall
 222 workflow is summarized in Algorithm 1, and its key stages are described in detail below.

223 **Federated Finetuning.** The local objective function of client $i \in \mathcal{C}_s$ is given by

$$225 \quad f_i(\theta) = \mathcal{L}_\theta(D_i) = -\frac{1}{|D_i|} \sum_{j=1}^{|C|} \sum_{x \in D_i^j} \log p_\theta(x|c^j), \forall i \in \mathcal{C}_s, \quad (5)$$

226 where $\mathcal{L}_\theta(\cdot)$ is the loss function. During this stage, clients in \mathcal{C}_s periodically perform local DP-SGD
 227 and send the local model to the server for the aggregation. This stage can be found in Algorithm A.3.

228 **Profiling.** After federated finetuning, the global model has captured knowledge of the current text
 229 pattern. To account for client-specific heterogeneity, the server generates synthetic text conditioned
 230 on local data profiles defined by control codes. Specifically, each client i sends its profile vector P_i
 231 perturbed by DP noise to the server, and the amount of text generated under each control code is
 232 proportional to the corresponding entries of P_i . The server then generates the initial synthetic texts
 233 according to P_i and broadcasts them to \mathcal{C}_r clients for refinement.

234 **Refinement.** The finetuned model may still struggle to generate high-quality synthetic data due
 235 to limitations inherent in FL. First, data heterogeneity implies that the local datasets of clients in
 236 \mathcal{C}_s may be biased, preventing the model from fully representing the global distribution. Second, the
 237 application of DP-SGD during local updates introduces random noise, which can hinder convergence
 238 and further degrade text quality.

239 To mitigate these issues, we leverage the local data on clients in \mathcal{C}_r . Although they do not participate
 240 directly in federated finetuning, their local data can still influence text generation through a voting
 241 mechanism. The key idea is that, within each control code, each example of the local data on \mathcal{C}_r casts
 242 K votes for candidate synthetic samples generated under the same control code. After collecting all
 243 the votes, the analytical Gaussian mechanism is applied to guarantee DP. The aggregated DP votes
 244 is then used to resample and refine the synthetic data, aligning it more closely with the global data
 245 distribution. The pseudocode of local voting can be found in Algorithm A.2.

246 4 EXPERIMENTS

247 **Datasets.** We evaluate our approach on two text corpora: Yelp Reviews (Yelp, Inc.) and PubMed
 248 abstracts (National Center for Biotechnology Information (NCBI)). Both datasets are partitioned into
 249 clients to simulate the cross-silo FL setting. Following the setup in Yue et al. (2022), we perform
 250 DP finetuning and synthetic text generation on the Yelp dataset, while PubMed serves as a domain-
 251 specific corpus to evaluate domain adaptation after finetuning. For Yelp, we use business categories
 252 and rating stars as control codes. For PubMed, we select five medical subject headings (MeSH terms
 253 from (Rogers, 1963)) as control codes and represent each abstract with a binary indicator (0/1) for
 254 whether it belongs to a given MeSH term. The five selected MeSH terms are Anatomy (abbreviated
 255 ‘A’), Diseases (‘C’), Chemicals and Drugs (‘D’), Persons (‘M’), and Healthcare (‘N’). We keep a
 256 part of held-out data as the test datasets and evaluation datasets.

257 **Data Partition.** We consider both IID and non-IID partitionings. To be consistent with the cross-
 258 silo setting in FL, we partition each dataset into tens or one hundred clients, each with more than
 259 one thousand individual examples. Specifically, the Yelp dataset is partitioned into 100 clients, each
 260 with 15000 examples. The PubMed dataset is partitioned into 20 clients, each with 2250 examples.
 261 The percentage of \mathcal{C}_s clients is varied across experiments. For IID cases, we uniformly partition
 262 both the Yelp and PubMed datasets into clients. For non-IID cases, we use different strategies for
 263 Yelp and PubMed according to their attributes. The goal is to show the data heterogeneity between
 264 \mathcal{C}_s data and \mathcal{C}_r data. In particular, for Yelp, when partitioning data for \mathcal{C}_s clients, we fix one label
 265 then vary the number of classes of another label. For PubMed, we vary the number of MeSH terms
 266 covered by \mathcal{C}_s data. Then we uniformly partition the remaining data into \mathcal{C}_r clients.

270 Table 1: Experimental results for downstream tasks using Yelp synthetic data with IID setting. The
 271 results are partitioned into three parts according the conditions of DP and refinement. For each
 272 part, different percentages of \mathcal{C}_s client are considered. Pre. means the synthetic data are directly
 273 generated from a pretrained model. Acc.-1 and F1-1 represent the accuracy and F1 score for category
 274 classification. Acc.-2 and F1-2 represent the accuracy and F1 score for rating classification.

\mathcal{C}_s %	$\varepsilon = \infty$				$\varepsilon = 8 \downarrow$				$\varepsilon = 8$ with refinement \uparrow			
	Acc.-1	F1-1	Acc.-2	F1-2	Acc.-1	F1-1	Acc.-2	F1-2	Acc.-1	F1-1	Acc.-2	F1-2
Pre.	0.7044	0.6240	0.4414	0.2704	—	—	—	—	0.7356	0.6818	0.4632	0.3295
1%	0.7367	0.7129	0.6541	0.6289	0.6815	0.6729	0.5113	0.3755	0.7126	0.6981	0.6149	0.5755
5%	0.7485	0.7299	0.6644	0.6455	0.6968	0.6842	0.6145	0.5656	0.7110	0.6978	0.6277	0.5942
10%	0.7487	0.7288	0.6661	0.6460	0.7123	0.6959	0.6280	0.5819	0.7252	0.7068	0.6326	0.6002
20%	0.7469	0.7280	0.6707	0.6519	0.7158	0.6941	0.6328	0.5937	0.7247	0.7060	0.6464	0.6285
30%	0.7458	0.7266	0.6717	0.6611	0.7130	0.6935	0.6306	0.6058	0.7243	0.7097	0.6470	0.6357
40%	0.7474	0.7242	0.6744	0.6630	0.7261	0.7011	0.6428	0.6168	0.7349	0.7162	0.6446	0.6314

283 Table 2: Experimental results for downstream tasks using PubMed synthetic data with IID setting.
 284 Classification results for Chemicals and Drugs (D) and Healthcare (N) are provided. More classifi-
 285 cation results can be found in Section E.

\mathcal{C}_s %	$\varepsilon = \infty$				$\varepsilon = 8 \downarrow$				$\varepsilon = 8$ with refinement \uparrow			
	Acc.(D)	F1(D)	Acc.(N)	F1(N)	Acc.(D)	F1(D)	Acc.(N)	F1(N)	Acc.(D)	F1(D)	Acc.(N)	F1(N)
Pre.	0.6456	0.5881	0.5364	0.5179	—	—	—	—	0.6464	0.5472	0.5864	0.5696
5%	0.6672	0.6113	0.6996	0.6996	0.6220	0.5019	0.5908	0.5854	0.8028	0.8024	0.7368	0.7326
10%	0.6904	0.6460	0.7164	0.7159	0.6332	0.5203	0.6076	0.6086	0.8100	0.8074	0.7348	0.7341
20%	0.7968	0.7913	0.7140	0.7144	0.6304	0.5346	0.6220	0.6179	0.8268	0.8280	0.7368	0.7374
30%	0.8612	0.8605	0.7432	0.7438	0.6380	0.5577	0.6284	0.6187	0.8312	0.8318	0.7400	0.7406
40%	0.8788	0.8788	0.7496	0.7498	0.6400	0.5765	0.6384	0.6293	0.8426	0.8448	0.7436	0.7442

295 **Models.** We finetune GPT-2 (Radford et al., 2019) to generate synthetic Yelp reviews. We finetune
 296 GPT-2-large to generate synthetic PubMed abstracts for its better capacity of domain adaptation.
 297 We use stsb-roberta-base-v2 (Reimers & Gurevych, 2019) to generate the sentence embedding used
 298 in refinement for both Yelp and PubMed. We use RoBERTa-base (Liu et al., 2019) to perform
 299 downstream tasks for Yelp dataset. We use BERT (Devlin et al., 2019) to perform downstream tasks
 300 for PubMed.

301 **Metrics.** We evaluate the quality of synthetic data from two perspectives: (i) downstream utility,
 302 measured by classification accuracy and F1 score on tasks trained with synthetic data, and (ii) dis-
 303 tributional alignment, measured by similarity between original and synthetic text as well as domain
 304 adaptation performance.

305 For Yelp, we evaluate downstream utility by reporting classification accuracy and F1 score on ratings
 306 and categories with synthetic reviews using RoBERTa. We evaluate the distributional alignment by
 307 computing the MAUVE score (Pillutla et al., 2021) between original and synthetic texts using GPT-
 308 /GPT-2-large embeddings. For PubMed, we evaluate downstream utility by reporting classification
 309 accuracy and F1 score on medical categories with synthetic abstracts using BERT. We evaluate
 310 domain adaptation by reporting the macro F1 score for medical named entity recognition (NER)
 311 task using BERT.

312 **Baselines.** We compare against two main baselines. (i) To quantify the effect of partial finetuning,
 313 we report results from pretrained models without any finetuning. Since prompt design and control
 314 codes are orthogonal, and can even be combined as shown by Keskar et al. (2019), we adopt zero-
 315 shot generation with pretrained models for a fair comparison. (ii) To isolate the impact of differential
 316 privacy, we additionally provide results from models trained without DP. Together, these baselines
 317 allow us to evaluate both the benefits of finetuning and the trade-offs introduced by DP. Further
 318 details on the experimental setup and hyperparameters are provided in the Appendix.

319 4.1 IID RESULTS

321 We first analyze the performance of our algorithm under the IID setting. In particular, we investigate
 322 the effect of varying percentages of \mathcal{C}_s clients and the refinement step. We show that even partial
 323 finetuning when only 1% of \mathcal{C}_s clients participate can improve the data quality over the pretrained
 324 model and the refinement step can mitigate the negative effect of DP significantly.

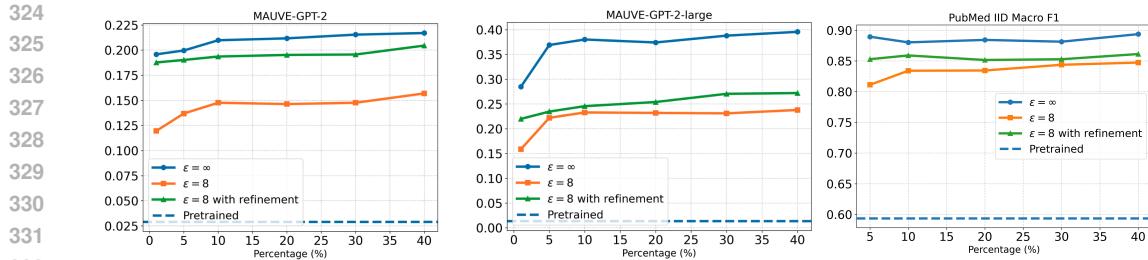


Figure 2: MAUVE score for Yelp IID results and NER macro F1 score for PubMed IID results.

Table 1 reports the two downstream task results using Yelp synthetic data: business category classification and rating classification. Overall, as we add more training data, we observe that increasing the C_s clients percentage consistently improves both accuracy and F1 score. Notably, performance saturates quickly: even with only 10% C_s clients, the accuracy and F1 scores become comparable to higher C_s clients levels.

Comparing the results across privacy settings, DP leads to a substantial performance drop relative to the $\epsilon = \infty$ baseline, due to the random noise introduced by DP-SGD. However, our refinement step mitigates this effect, yielding consistent improvements. For instance, at just 1% C_s clients, refinement improves rating classification accuracy by 0.1 and F1 score by 0.2, making the performance comparable to 10% C_s clients under DP without refinement. Similarly, with 20% C_s clients and refinement, accuracy and F1 exceed those of 40% C_s clients under DP without refinement. These findings demonstrate that even a single round of refinement substantially reduces the negative impact of DP noise. A closer look at the refinement behavior via voting statistics is shown in Figure A.3.

Table 1 also highlights differences in prior knowledge embedded in the pretrained model between the business category and rating tasks. Without DP, the pretrained model already achieves competitive accuracy on business category classification, surpassing the 1% and 5% C_s clients cases under DP without refinement. However, for the rating prediction task (Acc.-2 and F1-2), the pretrained model essentially defaults to predicting the majority class, which accounts for 44% of the data, leading to poor F1 performance. After refinement, the pretrained model's accuracy on the business categories task even surpasses that of the 30% C_s clients case with refinement, while its performance on ratings remains below all other settings. This suggests that the pretrained model carries useful prior knowledge for the majority classes in the business categories task, but not for minority business category classes or the ratings task, and that low- C_s -percentage DP finetuning can sometimes erode this prior knowledge.

Table 2 shows experimental results with synthetic data generated from PubMed for two downstream tasks: Chemicals and Drugs (D) and Healthcare (N) medical subject classification. In the $\epsilon = \infty$ baseline setting, accuracy improves with the increased percentage of C_s clients for both tasks but does not saturate as quickly as with Yelp. Adding DP with $\epsilon = 8$ dramatically decreases learning, with accuracy at 40% C_s clients in federated finetuning not matching 5% C_s clients on the baseline. However, applying refinement to the $\epsilon = 8$ case changes this behavior; not only does accuracy significantly improve across both tasks but it exceeds the $\epsilon = \infty$ baseline for low rates of C_s clients. For instance, performance at 5% C_s clients for $\epsilon = 8$ with refinement exceeds that of 20% C_s clients for $\epsilon = \infty$. Although this trend does not persist at higher C_s percentages, $\epsilon = 8$ with refinement remains competitive with the baseline for the Chemicals and Drugs classification task and matches it for Healthcare classification. Results from the other three downstream tasks are shown in Section E and exhibit broadly similar trends.

Figure 2 reports MAUVE scores for Yelp and NER macro F1 score for PubMed. Results without DP serve as an upper bound, while with DP the scores consistently improve after refinement. For Yelp, both GPT-2 and GPT-2-large show that fidelity increases with finetuning and more C_s clients. Notably, the evaluation method affects interpretation: with GPT-2, DP with refinement appears comparable to non-private generation, but GPT-2-large reveals persistent gaps, which might be due to the capacity of the larger model to capture more nuance. For PubMed, only the scores for DP results are consistently increasing with additional C_s clients, indicating that under DP, only 5% C_s clients with refinement can achieve competitive scores in this case.

378 Table 3: Experimental results for downstream tasks using Yelp synthetic data with non-IID setting.
 379 Two classes of experiments are presented; one where the rating classes between clients are varied
 380 and one where the business category classes between clients are varied.

Rating classes	Category classes	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
		Acc.-2	F1-2	Acc.-2	F1-2	Acc.-2	F1-2	Acc.-2	F1-2
1 & 3 stars	All	0.5394	0.4007	0.5898	0.4899	0.5266	0.3895	0.5790	0.4778
1 & 5 stars	All	0.5701	0.4971	0.6234	0.6017	0.5658	0.4853	0.6008	0.5876
3 & 5 stars	All	0.5748	0.5394	0.6023	0.6116	0.5632	0.5155	0.5904	0.5828
1, 3, & 5 stars	All	0.6475	0.6174	0.6563	0.6321	0.6084	0.5740	0.6232	0.6078
Rating classes	Category classes	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
		Acc.-1	F1-1	Acc.-1	F1-1	Acc.-1	F1-1	Acc.-1	F1-1
All	2 Categories	0.7006	0.6699	0.7064	0.6768	0.6713	0.6540	0.6762	0.6689
All	4 Categories	0.7302	0.7021	0.7324	0.7083	0.7118	0.6896	0.7154	0.6932
All	6 Categories	0.7315	0.7073	0.7335	0.7113	0.7123	0.6904	0.7153	0.6982
All	8 Categories	0.7445	0.7178	0.7447	0.7241	0.7157	0.6936	0.7248	0.7040

391 Table 4: Experimental results for downstream tasks using PubMed synthetic data in non-IID setting.
 392 Classification results for Anatomy (A), Chemicals and Drugs (D) and Diseases (C) are provided in
 393 three settings where only the subset of classes list in the Bias column are represented on clients
 394 participating in federated finetuning. More classification results can be found in Section E.

Bias	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
	Acc.(A)	F1(A)	Acc.(A)	F1(A)	Acc.(A)	F1(A)	Acc.(A)	F1(A)
M, N	0.5588	0.5526	0.6324	0.6222	0.4827	0.4719	0.5246	0.5123
C, M, N	0.5812	0.5757	0.6536	0.6536	0.5128	0.5035	0.5835	0.5732
D, C, M, N	0.6420	0.6405	0.6724	0.6725	0.5729	0.5617	0.6139	0.6044
Bias	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
	Acc.(D)	F1(D)	Acc.(D)	F1(D)	Acc.(D)	F1(D)	Acc.(D)	F1(D)
M, N	0.5696	0.5217	0.6840	0.6819	0.5034	0.4688	0.5662	0.5337
C, M, N	0.6052	0.5770	0.7304	0.7254	0.5437	0.5264	0.6638	0.6429
D, C, M, N	0.6980	0.6984	0.7548	0.7544	0.6338	0.6135	0.7047	0.6828
Bias	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
	Acc.(C)	F1(C)	Acc.(C)	F1(C)	Acc.(C)	F1(C)	Acc.(C)	F1(C)
M, N	0.6628	0.6357	0.6720	0.6750	0.6023	0.5836	0.6435	0.6248
C, M, N	0.8656	0.8663	0.8732	0.8739	0.7824	0.7719	0.8237	0.8142
D, C, M, N	0.7580	0.7345	0.8400	0.8380	0.7021	0.6934	0.7835	0.7754

4.2 NON-IID RESULTS

In this section, we analyze the performance of our algorithm with non-IID setting. In particular, we fix the percentage of C_s clients as 10% then investigate the performance of our algorithm under data heterogeneity and DP. Experimental results show that our algorithm can mitigate both the negative effect of data heterogeneity and of DP. Notably, in some cases, after refinement, the accuracy and F1 score of $\varepsilon = 8$ can be better than those of $\varepsilon = \infty$.

Non-IID results for downstream tasks with Yelp can be found in Table 3. As expected, privacy and data heterogeneity affect the utility of the synthetic data for downstream prediction. Overall, as C_s data become more diverse, the accuracy and the F1 score increase. It can be observed from $\varepsilon = \infty$ with refinement results that refinement can improve accuracy and F1 score deteriorated by data heterogeneity. In cases of rating class partition, except 1, 3, & 5 stars, the accuracy and the F1 score under DP with refinement can even be better than those without DP.

Similar trends are apparent in Table 4 for downstream tasks with PubMed. For classification for Anatomy (A), Chemicals and Drugs (D), and Diseases (C), increasingly diverse C_s data improves accuracy and F1 scores in the $\varepsilon = \infty$ baseline even when not related to the particular classification task. Refinement provides consistent improvements in the baseline case, particularly for Diseases classification. Scores for $\varepsilon = 8$ with refinement match or exceed the baseline for Disease, and perform nearly as well for the other two tasks.

Table 5 reports MAUVE scores for Yelp synthetic data under non-IID settings, which align with the corresponding classification results. Compared to the $\varepsilon = \infty$ baseline, applying DP moderately reduces scores across both models. Refinement without DP brings performance closer to IID levels (Figure 2), while refinement with DP yields substantial gains—matching the $\varepsilon = \infty$ baseline for non-IID rating classes but still trailing for non-IID category classes. Table 6 provided NER macro

432 Table 5: MAUVE score for Yelp non-IID setting evaluated with embeddings generated from pre-
 433 trained GPT-2 and GPT-2-large. The experimental setting is the same as the setting in Table 3.

Rating classes	Category classes	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
		GPT-2	GPT-2-l	GPT-2	GPT-2-l	GPT-2	GPT-2-l	GPT-2	GPT-2-l
1 & 3 stars	All	0.1404	0.1430	0.1907	0.1969	0.1105	0.1180	0.1493	0.1552
1 & 5 stars	All	0.1617	0.2204	0.2128	0.2675	0.1444	0.1988	0.1915	0.2374
3 & 5 stars	All	0.1634	0.2312	0.2258	0.2785	0.1501	0.1921	0.1987	0.2372
1, 3, & 5 stars	All	0.1924	0.3465	0.2463	0.3658	0.1975	0.2425	0.1982	0.2600
All	2 Categories	0.1808	0.2912	0.2414	0.2808	0.1414	0.2016	0.1911	0.2174
All	4 Categories	0.2092	0.3520	0.2510	0.3640	0.1456	0.2122	0.1907	0.2410
All	6 Categories	0.2047	0.3381	0.2543	0.3702	0.1426	0.2110	0.1946	0.2474
All	8 Categories	0.2266	0.3487	0.2674	0.3751	0.1457	0.2298	0.1952	0.2586

Table 6: NER macro F1 score for PubMed non-IID results.

Setting	$\varepsilon = \infty$			$\varepsilon = 8$		
	M,N	C,M,N	D,C,M,N	M,N	C,M,N	D,C,M,N
No refine / Refine	0.5783 / 0.6529	0.8344 / 0.8402	0.8641 / 0.8739	0.8035 / 0.8521	0.8052 / 0.8513	0.8199 / 0.8523

449 F1 scores for PubMed non-IID results. Refinement consistently improves the performance under
 450 DP and heterogeneity. However, it is worth noting that when only M, N data are on \mathcal{C}_s clients, the
 451 scores of $\varepsilon = \infty$ are worse than those of $\varepsilon = 8$. One possible reason could be that the non-private
 452 model overfits their skewed distribution, whereas DP-SGD’s clipping and noise act as implicit reg-
 453 ularization for NER task.

5 RELATED WORK

454 **Federated learning.** Since the introduction of FL (McMahan et al., 2017), extensive work has
 455 addressed its two core challenges: data heterogeneity (Li et al., 2020; Karimireddy et al., 2020)
 456 and computational heterogeneity (Lai et al., 2021; Nguyen et al., 2022). Recently, for adapting
 457 LLMs in FL, parameter-efficient fine-tuning (PEFT) with adapters/LoRA (Wu et al., 2025) reduces
 458 compute and communication but still requires backpropagation on participating clients including
 459 FLoRA (Wang et al., 2024) and other approaches (Ghiasvand & colleagues, 2024; Hao et al., 2024).
 460 However, these approaches typically presume broad client participation for finetuning.

461 **Synthetic text generation in FL.** Prior work uses public LLMs to generate synthetic texts that
 462 pretrain or warm-start smaller on-device models (Wang et al., 2023; Wu et al., 2024). PrE-Text
 463 is proposed in Hou et al. (2024), training small models on PrE-Text data generated by pretrained
 464 LLMs. Follow-up work frames private on-device learning as preference optimization to improve DP
 465 synthetic data quality (Hou et al., 2025). However, these methods are primarily designed for cross-
 466 device FL with many clients holding very small local datasets and generally rely on prompting
 467 pretrained LLMs rather than adapting them to domain shift; consequently, distribution drift and
 468 domain adaptation are not directly addressed, and limited per-client data constrain the effectiveness
 469 of any local finetuning.

6 CONCLUSION

470 We tackled the problem of generating DP synthetic text in cross-silo FL, where computational and
 471 data heterogeneity pose significant challenges. Our framework combines DP federated finetuning
 472 on strong clients with a lightweight voting mechanism from weak clients, guided by control codes.
 473 This two-phase design allows partial finetuning to capture broad patterns of the global dataset, while
 474 refinement incorporates weak-client distributions to reduce bias and mitigate the adverse effects of
 475 DP noise. Experiments on benchmark datasets under both IID and non-IID settings demonstrate
 476 that our approach consistently improves downstream utility and distributional fidelity under DP and
 477 data heterogeneity. Looking ahead, combining control codes with prompt-based methods offers a
 478 promising direction for further improving quality of synthetic data, while richer profiling strategies
 479 could enhance the role of weak clients in shaping high-fidelity synthetic datasets.

486 7 ETHICS STATEMENT
487488 This work complies with the ICLR Code of Ethics. We use only publicly available benchmark
489 datasets (Yelp Reviews and PubMed abstracts), with no human subjects or sensitive personal data
490 involved. Our methods focus on privacy-preserving text generation in federated learning and do not
491 raise additional ethical concerns beyond standard considerations for text generation models.
492493 8 REPRODUCIBILITY STATEMENT
494495 The full implementation of our framework, including DP federated finetuning and the refinement
496 step, is provided in the supplementary materials as anonymized code. Hyperparameter choices,
497 training configurations are included in the appendix. Dataset partitioning strategies for both IID and
498 non-IID settings are mentioned in the main paper.
499500 REFERENCES
501502 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
503 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
504 *conference on computer and communications security*, pp. 308–318, 2016.505 Owais Ahmad. Multi-label classification of pubmed articles.
506 <https://www.kaggle.com/code/owaiskhan9654/multi-label-classification-of-pubmed-articles/notebook>, 2023.
507508 Shushan Arakelyan, Rocktim Jyoti Das, Yi Mao, and Xiang Ren. Exploring distributional shifts in
509 large language models for code analysis. *arXiv preprint arXiv:2303.09128*, 2023.
510511 Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, and Yaliang Li. Federated fine-tuning of large
512 language models under heterogeneous tasks and client resources. *Advances in Neural Information*
513 *Processing Systems*, 37:14457–14483, 2024.514 Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: An-
515 analytical calibration and optimal denoising. In *International conference on machine learning*, pp.
516 394–403. PMLR, 2018.
517518 Benjamin Cohen-Wang, Joshua Vendrow, and Aleksander Madry. Ask your distribution shift if
519 pre-training is right for you. *arXiv preprint arXiv:2403.00194*, 2024.
520521 Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili, Anas Z Abidin,
522 Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood, Chien-Sung Tsai, et al. Federated
523 learning for predicting clinical outcomes in patients with covid-19. *Nature medicine*, 27(10):
524 1735–1743, 2021.525 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
526 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
527 *the North American chapter of the association for computational linguistics: human language*
528 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.529 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
530 *and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2014.
531532 S. Ghiasvand and colleagues. Communication-efficient and tensorized federated fine-tuning of llms.
533 *arXiv:2410.13097*, 2024.
534535 Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
536 and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
537 *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp.
538 8342–8360, 2020.539 Jie Hao, Yuman Wu, Ali Payani, Myungjin Lee, and Mingrui Liu. Federated fine-tuning of large
language models under heterogeneous resources. In *OpenReview (ICLR 2025 submission):*
FlexLoRA, 2024.

- 540 Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia
 541 Fanti, and Daniel Lazar. Pre-text: Training language models on private federated data in the age
 542 of llms. *arXiv preprint arXiv:2406.02958*, 2024.
- 543 Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, and Giulia Fanti. Private federated learning
 544 using preference-optimized synthetic data. *arXiv preprint arXiv:2504.16438*, 2025.
- 545 Chao Huang, Jianwei Huang, and Xin Liu. Cross-silo federated learning: Challenges and opportu-
 546 nities. *arXiv preprint arXiv:2206.12949*, 2022.
- 547 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 548 Ananda Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In *Pro-
 549 ceedings of ICML*, 2020.
- 550 Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
 551 Ctrl: A conditional transformer language model for controllable generation. *arXiv preprint
 552 arXiv:1909.05858*, 2019.
- 553 Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient feder-
 554 ated learning via guided participant selection. In *USENIX OSDI*, 2021.
- 555 Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated optimization in hetero-
 556 geneous networks. In *Proceedings of MLSys*, 2020.
- 557 Claire Little, Mark Elliot, and Richard Allmendinger. Federated learning for generating synthetic
 558 data: a scoping review. *International Journal of Population Data Science*, 8(1):2158, 2023.
- 559 Qianli Liu, Zhaorui Zhang, Xin Yao, and Benben Liu. Hlora: Efficient federated learning system
 560 for llm heterogeneous fine-tuning. *arXiv preprint arXiv:2503.00813*, 2025.
- 561 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 562 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 563 approach. *arXiv preprint arXiv:1907.11692*, 2019.
- 564 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 565 Communication-efficient learning of deep networks from decentralized data. In *Proceedings of
 566 AISTATS*, 2017.
- 567 National Center for Biotechnology Information (NCBI). Pubmed. <https://pubmed.ncbi.nlm.nih.gov/>. Bethesda (MD): National Library of Medicine (US). Available from: <https://pubmed.ncbi.nlm.nih.gov/>.
- 568 James Nguyen et al. Federated learning with buffered asynchronous aggregation. In *Proceedings of
 569 ICML (FL Workshop) / JMLR*, 2022.
- 570 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 571 and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
 572 gence frontiers. *Advances in Neural Information Processing Systems*, 34:4816–4828, 2021.
- 573 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 574 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- 575 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 576 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 577 Processing*. Association for Computational Linguistics, 11 2019. URL <http://arxiv.org/abs/1908.10084>.
- 578 Frank B. Rogers. Medical subject headings. *Bulletin of the Medical Library Association*, 51:114–
 579 116, 1963.
- 580 Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon Bakas. Multi-
 581 institutional deep learning modeling without sharing patient data: A feasibility study on brain
 582 tumor segmentation. In *International MICCAI Brainlesion Workshop*, pp. 92–104. Springer, 2018.

- 594 Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data – anonymisation ground-
 595 hog day, 2022. URL <https://arxiv.org/abs/2011.07018>.
- 596
- 597 Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li, H Brendan McMahan, Sewoong Oh, Zheng
 598 Xu, and Manzil Zaheer. Can public large language models help private cross-device federated
 599 learning? *arXiv preprint arXiv:2305.12132*, 2023.
- 600
- 601 Jiayi Wang, John Gounley, and Heidi Hanson. Cafe au lait: Compute-aware federated augmented
 602 low-rank ai training. In *Proceedings of the Platform for Advanced Scientific Computing Conference*, pp. 1–12, 2025.
- 603
- 604 Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li.
 605 FLoRA: Federated fine-tuning large language models with heterogeneous low-rank adaptations.
 606 *arXiv:2409.05976*, 2024.
- 607
- 608 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
 609 and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
 610 analysis. *IEEE transactions on information forensics and security*, 15:3454–3469, 2020.
- 611
- 612 Shanshan Wu, Zheng Xu, Yanxiang Zhang, Yuanbo Zhang, and Daniel Ramage. Prompt pub-
 613 lic large language models to synthesize data for private on-device applications. *arXiv preprint*
 614 *arXiv:2404.04360*, 2024.
- 615
- 616 Y. Wu et al. A survey on federated fine-tuning of large language models. *arXiv:2503.12016*, 2025.
- 617
- 618 Yelp, Inc. Yelp open dataset: Reviews, businesses, users, and related data. <https://business.yelp.com/data/resources/open-dataset/>. Publicly available dataset released by
 619 Yelp for academic and personal use.
- 620
- 621 Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization through data
 622 synthesis using generative adversarial networks (ads-gan). *IEEE journal of biomedical and health
 623 informatics*, 24(8):2378–2388, 2020.
- 624
- 625 Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Hoda Shajari, Huan Sun,
 626 David Levitan, and Robert Sim. Synthetic text generation with differential privacy: A simple and
 627 practical recipe. *arXiv preprint arXiv:2210.14348*, 2022.
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648

A DISCUSSION ABOUT RELATED WORK

649

650 In this section, we further clarify the relationship between our paper and prior work about applying
651 LoRA and Private Evolution (PE) related.

652 Our paper is orthogonal to prior work about applying LoRA in FL. LoRA-based federated adaptation
653 is indeed highly relevant as a communication-efficient approach to LLM finetuning. However, these
654 methods still assume that participating clients can perform local backpropagation in a timely manner;
655 they primarily reduce the number of trainable and communicated parameters, not the *local compute*
656 *requirement*. Our work explicitly targets a setting where only a subset of clients have sufficient
657 compute for any form of local finetuning, and the remaining clients can only afford inference and
658 lightweight similarity computations. In this sense, LoRA and related PEFT approaches are comple-
659 mentary to our framework: they can be used *within Phase 1* as an alternative finetuning mechanism
660 for strong clients, while Phase 2 (DP voting from weak clients) remains necessary to incorporate
661 low-resource participants. We include LoRA-based finetuning results for strong clients and observe
662 that our refinement mechanism continues to provide consistent gains on top of PEFT-style updates
663 as shown in Table A.13.

664 PE and prompt-based are important related work, but they target a different setting and objective
665 than ours. The details are as follows.

666 Finetuning vs. no finetuning. Our work explicitly addresses scenarios with domain shift / data drift,
667 where the generator must adapt to new domains before synthetic data are useful. We therefore focus
668 on DP finetuning of LLMs in FL and subsequent refinement. In contrast, PE-style methods typically
669 assume generation directly from a fixed pretrained model without federated finetuning.

670 Cross-silo vs. cross-device FL and privacy accounting. Our setting is cross-silo FL, where each
671 client is an institution holding thousands–tens of thousands of samples, and we target sample-level
672 DP. PE is developed for cross-device FL, where clients are individual users with very few samples
673 and the target is client-level DP. The communication patterns, participation assumptions, and privacy
674 accounting are therefore quite different.

675 Prompting a finetuned model vs. a purely pretrained model. In PE and its variants, a pretrained
676 model is prompted to generate synthetic data, and substantial prompt engineering may still be re-
677 quired to locate the desired distribution. In our framework, we prompt a finetuned model that has
678 already been adapted to the target domain, and control codes are used to select the appropriate con-
679 ditional distribution without additional prompt tuning.

681

B ADDITIONAL ALGORITHMS

682

683 Additional algorithms used in this paper are provided in Algorithms A.3, A.2, and A.4. For the
684 analytic Gaussian mechanism, we follow Balle & Wang (2018, Algorithm 1).

687

Algorithm A.2: Local Voting

688 **Input:** Synthetic set \tilde{D} , local set D_i , control codes C , encoder $g(\cdot)$, neighbors K , DP params
689 (ε, δ) .

690 **Output:** DP votes \tilde{v}_i of client i .

691 **1. Initialization:** $v_i \leftarrow [0, 0, \dots, 0] \in \mathbb{R}^{|\tilde{D}|}$

692 **2. Embedding:** Encode all samples: $\mathbf{Z}_{\text{syn}} \leftarrow g(\tilde{D})$, $\mathbf{Z}_{\text{loc}} \leftarrow g(D_i)$.

693 **3. KNN voting:** For each control code c^j :

694 • Identify local embeddings $\mathbf{Z}_{\text{loc}}^j$ and synthetic embeddings $\mathbf{Z}_{\text{syn}}^j$ within c^j .

695 • For each $z \in \mathbf{Z}_{\text{loc}}^j$:

696 – Find the K nearest neighbors in $\mathbf{Z}_{\text{syn}}^j$ and get their indices \mathcal{I} .

697 – Add votes to neighbors: $v_i[\mathcal{I}] \leftarrow v_i[\mathcal{I}] + 1$.

698 **4. Add noise:** $\tilde{v}_i \leftarrow \text{Analytical_Gaussian_Mechanism}(v_i, \varepsilon, \delta)$.

699 **return** \tilde{v}_i .

702

Algorithm A.3: Federated Finetuning

703

Input: Pretrained model θ^0 , client set \mathcal{C}_s , FL rounds R , local iteration τ , DP params $(\varepsilon_{\text{train}}, \delta_{\text{train}})$.

705

Output: Finetuned model θ^*

706

for $r = 1$ **to** R **do**

707

Server: Broadcasts model θ^{r-1} and hyperparameters to clients in \mathcal{C}_s .

708

Clients in \mathcal{C}_s :

709

 1. **Local initialization:** $\theta_i^{r-1} \leftarrow \theta^{r-1}$.

710

 2. **For** local iteration $e = 1, \dots, \tau$ **do**

711

 (a) Iterate over minibatches B of samples (x, c^j) from local data D_i

712

 (b) Compute sample-level gradients $g_i = \nabla_{\theta} \mathcal{L}$ from loss $\mathcal{L} = \log p_{\theta_i^{r-1, e-1}}(x|c^j)$

713

 (c) Clip the gradients: $\tilde{g}_i \leftarrow \frac{g_i}{\max(1, \frac{\|g_i\|_2}{c_g})}$ with gradient clipping norm c_g

714

 (d) Apply Gaussian noise to the average: $\bar{g} \leftarrow \frac{1}{B} (\sum_{i=1}^B \tilde{g}_i + \mathcal{N}(0, \sigma_s^2 c_g^2 I))$

715

 (e) Take a gradient step: $\theta_i^{r-1, e} \leftarrow \theta_i^{r-1, e-1} - \gamma \bar{g}$

716

 3. Compute local update: $\Delta_i \leftarrow \theta_i^{r-1, E} - \theta^{r-1}$.

717

 4. Send local updates Δ_i to Server.

718

Server: Aggregate local updates $\Delta = \frac{1}{N} \sum_i \Delta_i$

719

Server: Perform global update: $\theta^r \leftarrow \theta^r + \eta \Delta$.**end**

720

721

722

Algorithm A.4: Sampling without Replacement

723

Input: Index set \mathcal{I}^k denoting elements of initial synthetic dataset \tilde{D}^k associated with control codes c^k , sampling rate r , probability distribution p^k

724

Output: Index set $\tilde{\mathcal{I}}^k$ denoting synthetic data elements associated with control codes c^k selected for inclusion in final synthetic dataset

725

Set count $M \leftarrow \max\{1, \lfloor r |\mathcal{I}^k| \rfloor\}$; then $M \leftarrow \min\{M, |\mathcal{I}^k|\}$.

726

Initialize $Q \leftarrow \mathcal{I}^k$; $\tilde{\mathcal{I}}^k \leftarrow \{\}$; $W \leftarrow \sum_{q \in Q} p_q^k$

727

for $m = 1$ **to** M **do**

728

 Sample i^* from R with $\Pr(i^* = i) = \begin{cases} \frac{w_i}{W}, & \text{if } W > 0, \\ \frac{1}{|R|}, & \text{if } W = 0, \end{cases} \quad i \in R$

729

 Add i^* to $\tilde{\mathcal{I}}^k$; set $W \leftarrow W - w_{i^*}$; remove i^* from R .**end**

730

731

732

733

734

C ADDITIONAL EXPERIMENTAL DETAILS

735

736

737

738

739

740

741

742

743

744

745

Federated Finetuning. For Yelp, we choose the max length as 128 for both finetuning and generation. This follows the setting in Yue et al. (2022) For PubMed, we choose the max length as 512 for both finetuning and generation, given that the abstracts are longer. For federated finetuning without DP, the learning rates are chosen as $\gamma = 5\text{e-}6$, $\eta = 5\text{e-}5$ for GPT-2, and $\gamma = 3\text{e-}6$, $\eta = 2\text{e-}5$ for GPT-2-large. In this case, we choose $R = 100$, $\tau = 50$, and batch size as 32 for GPT-2 and $R = 100$, $\tau = 20$ and batch size as 32 for GPT-2-large, then output the model with minimal evaluation loss. For experiments with DP, the learning rates are chosen as $\gamma = 5\text{e-}4$, $\eta = 1\text{e-}3$ for GPT-2, and $\gamma = 4\text{e-}5$, $\eta = 8\text{e-}4$ for GPT-2-large. In this case, we choose $R = 200$, $\tau = 50$, and batch size as 256 for GPT-2 and $R = 50$, $\tau = 20$, and batch size as 256 for GPT-2-large.

754

755

For federated finetuning Llama 7B with DP, the learning rates are chosen as $\eta = 0.005$ and $\gamma = 0.001$. The batch size is 64 and the clipping constant is 1. The number of local updates is 50 and the number of rounds is 50.

756 **Generation.** We generate 10000 synthetic examples for Yelp and 1000 synthetic examples for
 757 PubMed in the main results. The sampling rate in refinement is 0.2. The temperature is 1.0.
 758

759 **Evaluation.** For classification using RoBERTa, the learning rate is 2e-5. For classification using
 760 BERT, the learning rate is 2e-5. For NER task using BERT, the learning rate 1e-4. For all experi-
 761 ments in evaluation, the batch size is 64.

762 **Dataset.** For Yelp, we use 1.5M examples as the global training set, 5000 examples as test set, and
 763 another 5000 examples as evaluation test. We use PubMed dataset prepared by Ahmad (2023). In
 764 particular, we use 45000 examples as the global training set, 2500 examples as test set, and another
 765 2500 examples as evaluation set.

766 **Environment.** All experiments were conducted on an NVIDIA DGX system equipped with 8 H100
 767 GPUs (80GB memory each), 2 AMD EPYC 9654 CPUs, and 2TB of system memory. We im-
 768 plemented our framework in PyTorch with Hugging Face Transformers, and used the Opacus li-
 769 brary for differentially private training. Unless otherwise specified, experiments were run in mixed-
 770 precision mode to improve efficiency, and distributed training was managed with PyTorch’s native
 771 data-parallel utilities.

772 **DP Setting.** To ensure fairness across all clients, we assign each client the same total privacy
 773 budget ϵ , with the allocation depending on whether the client is strong or weak. We concatenate
 774 the privacy budget of each step according the basic composition theorem Dwork et al. (2014). Each
 775 client will participate in two phases. For each phase, we choose $\delta_{\text{prof}} = \delta_{\text{train}} = \delta_{\text{vote}} = \frac{1}{2N \log N}$
 776 then we have $\delta = \frac{1}{N \log N}$.
 777

778 **Strong clients (\mathcal{C}_s).** Strong clients participate in DP-SGD training and also provide DP control-
 779 code profiles. Their total privacy budget is

$$\epsilon = \epsilon_{\text{train}} + \epsilon_{\text{prof}}.$$

780 To allocate more privacy to the component that most strongly affects utility (DP-SGD training), we
 781 use:
 782

$$\begin{aligned} \epsilon = 8 : \quad \epsilon_{\text{train}} &= 6, \quad \epsilon_{\text{prof}} = 2, \\ \epsilon = 4 : \quad \epsilon_{\text{train}} &= 3, \quad \epsilon_{\text{prof}} = 1. \end{aligned}$$

783 **Weak clients (\mathcal{C}_r).** Weak clients do not run DP-SGD; instead, they contribute through DP control-
 784 code profiling and DP voting during refinement. Thus their total privacy budget is

$$\epsilon = \epsilon_{\text{vote}} + \epsilon_{\text{prof}}.$$

785 To maintain consistency across all clients, we use the same profiling budget $\epsilon_{\text{prof}} = 2$ as above. The
 786 remaining privacy budget is assigned to voting:
 787

$$\begin{aligned} \epsilon = 8 : \quad \epsilon_{\text{vote}} &= 6, \quad \epsilon_{\text{prof}} = 2, \\ \epsilon = 4 : \quad \epsilon_{\text{vote}} &= 3, \quad \epsilon_{\text{prof}} = 1, \end{aligned}$$

788 These choices ensure (i) fairness (all clients receive the same total ϵ), (ii) consistency (profiling uses
 789 the same budget across strong and weak clients), and (iii) utility (the larger privacy share is allocated
 790 to training or voting, which are the components that most influence downstream performance).
 791

800 D SYNTHETIC TEXTS AND PROMPTS

801 We sampled synthetic texts generated in different cases shown in listings 1–4. For the synthetic texts
 802 generated by pretrained models, we use prompts as follows.

803 Yelp (X and Y are substituted by the specific business category and the rating):
 804

805 Please generate a review about business category [X] with
 806 rating star [Y]:\n\n

807 PubMed (X is substituted by the MeSH terms covered and Y is substituted by the MeSH terms
 808 unrelated):
 809

810 Please generate a scientific abstract on a biomedical study that
 811 covers topics [X] but does not cover topics [Y]:\n\n
 812

813 For the finetuned models, since we use controllable text generation, the labels of Yelp dataset and
 814 the MeSH terms of PubMed dataset are directly used as prompts.

815 Listing 1: Yelp synthetic examples generated by DP finetuned GPT-2 by IID 10% participation.

816
 817 "I've been here a lot. This place is underperforming and there isn't much
 818 to go back. A nurse told me to get off there, she called again to
 819 make sure that everything was okay. She said she could take a rest. I
 820 have to ask if the doctor was ever out of town. That doesn't matter.
 821 They were waiting on the line. My husband and I took our baby to the
 822 hospital to check him in there. The whole staff came out to be with
 823 us the whole time. Not a fan.",Business Category: Health & Medical,
 824 Review Stars: 2.0

825 Listing 2: Yelp synthetic examples generated by DP finetuned GPT-2 with refinement by non-IID 1
 826 & 5 stars.

827
 828 "This place is wonderful. Everything I ate was delicious. The food was
 829 great. They serve fresh and they put you in a cute box with a little
 830 table on it. It's perfect for the night. We ordered the veggie
 831 chicken salad, bacon, bacon- a must! The bacon had a little bit of
 832 cheese on it, but it was a nice change from everything I had. I love
 833 this place, it's just sooo convenient. I recommend ordering more and
 834 not going here.",Business Category: Bars,Review Stars: 4.0

835 Listing 3: PubMed synthetic examples generated by DP finetuned GPT-2-large by IID 10% \mathcal{C}_s
 836 clients.

837
 838 "The purpose of this study was to evaluate the effects of two different
 839 forms of pomegranate juice (PSJ) on glucose, insulin, and lipid
 840 profile in healthy human volunteers. The study participants included
 841 a non-insulin-dependent diabetic (NIDDM) patient, a patient with mild
 842 to moderate type 2 diabetes mellitus (M2DM), and a healthy, nonobese
 843 , nonsmoking male volunteer. Methods: The subjects consumed 10 g/d of
 844 PSJ for three weeks, for which they were told to drink 1 L/day of a
 845 glucose syrup containing 5 g of glucose (sucrose) and 100 g sucrose,
 846 with 1-way repeated-measures ANOVA with dietary (glucose, fructose)
 847 as the between-subject factor. A post hoc two-sample t-test was used
 848 to assess the differences between the two forms. Blood samples were
 849 collected before and after the dietary intervention. Plasma glucose
 850 and insulin and lipoprotein (C) were measured by enzymatic methods.
 851 Results: Results were expressed as means \pm SEM, while means and
 852 SDs were calculated from multiple linear regression models.
 853 Differences were considered statistically significant at $p < 0.05$."
 854 Anatomy: 1, Diseases: 0, Chemicals and Drugs: 1, Named Groups: 1,
 855 Health Care: 0

856 Listing 4: PubMed synthetic examples generated by DP finetuned GPT-2-large with refinement by
 857 non-IID including M, N .

858
 859 "The purpose of this study was to compare the use of a two-component,
 860 structured cognitive task (i.e., the Cognitive Behavioral Therapy/
 861 Prolonged Exposure (CBT-PE/PE) and Brief Cognitive Therapy/Prolonged
 862 Exposure (BCT/PE/PE) therapy, with a 30-day wait-list control group)
 863 in the treatment of depression with and without comorbid personality
 864 disorders in a sample of patients referred for evaluation of clinical
 865 needs for CBT and BCT. Patients were enrolled from a hospital-based
 866 psychiatry hospital. Thirty-five patients completed the study. CBT
 867 was more effective ($p = 0.02$) in the treatment of depression with or
 868 without personality disorders in comparison to BCT/PE/PE. There was
 869 no evidence of difference between CBT and BCT in comparison to BCT/PE

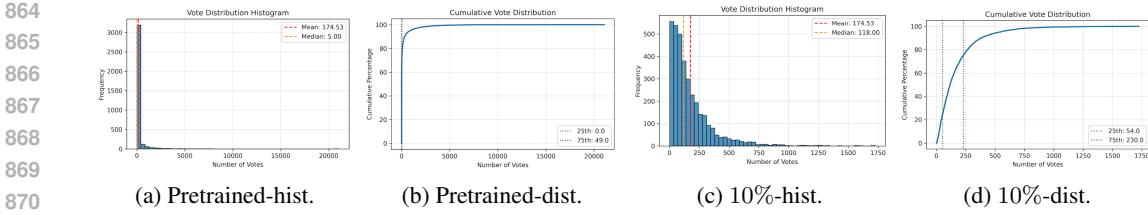


Figure A.3: The vote distributions of Yelp synthetic data generated for restaurant and rating stars 3. The left two figures are results only using the pretrained model. The right two figures are results using finetuned model with 10% \mathcal{C}_s clients. Before finetuning, most samples receive similar numbers of votes, limiting the effect of refinement. After DP finetuning, however, a long-tail distribution emerges: certain samples receive significantly more votes than others (Figure A.3d), reflecting the model’s improved ability to generate text that aligns with the original data distribution. This concentration of votes on high-quality samples is precisely what our refinement step exploits to enhance synthetic data quality.

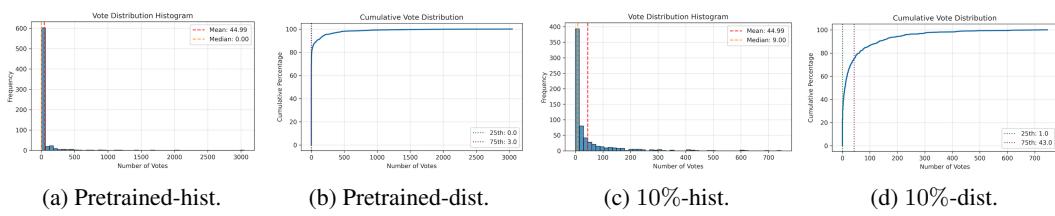


Figure A.4: The vote distributions of PubMed synthetic data generated for A, D. The left two figures are results only using the pretrained model. The right two figures are results using finetuned model with 10% \mathcal{C}_s clients. Similar observations as those from Figure A.3 can be obtained.

/PE. These results suggest that, in comparison to CBT and BCT/PE/PE, CBT might be more efficacious than BCT/PE in the treatment of depression and the presence of personality disorders.", Anatomy:1, Diseases:1, Chemicals and Drugs:0, Named Groups:0, Health Care:1

E ADDITIONAL EXPERIMENTAL RESULTS

First, we examine how refinement operates in practice. Figures A.3 and A.4 show the voting distributions for synthetic data generated before finetuning and after finetuning.

Second, then we conducted ablation studies on the refinement step using Yelp dataset. For efficiency, the number of final synthetic texts is set as 5000. The results can be found in Tables A.7 and A.8

Third, additional experimental results for PubMed can be found in Tables A.10 and A.11.

F LLM USE

We made limited use of LLMs in preparing this manuscript. Specifically, the models were only applied at the sentence level for minor polishing to improve readability and clarity of expression. They were not involved in formulating research ideas, designing methodology, analyzing data, or generating substantive content. All conceptual, technical, and scientific contributions were made entirely by the authors.

918

919 Table A.7: Downstream results with DP Yelp synthetic texts with refinement for different sampling
 920 rates r while the number of final synthetic texts is fixed. It can be seen that lower sampling rate,
 921 equivalent to higher number of initial synthetic texts, can bring better accuracy and F1 score.

922

	Acc.-1	F1-1	Acc.-2	F1-2
$r = 0.5$	0.6878	0.6807	0.5627	0.5389
$r = 0.25$	0.7046	0.6948	0.5713	0.5561
$r = 0.17$	0.7127	0.7020	0.5904	0.5678

923

924

925 Table A.8: Downstream results with DP Yelp synthetic texts with refinement for different sampling
 926 rates K while other hyperparameters are fixed. Different from r , there is no consistent pattern as K
 927 increases. One possible reason could be when the number of votes is sufficiently large, increasing
 928 votes might not be able to improve the results further.

929

930

931

932

	Acc.-1	F1-1	Acc.-2	F1-2
$K = 1$	0.7099	0.6989	0.5721	0.5496
$K = 3$	0.6940	0.6891	0.5786	0.5600
$K = 5$	0.7046	0.6948	0.5713	0.5561

933

934

935

936

937

938

939

940 Table A.9: Downstream results with DP Yelp synthetic texts with refinement for different tempera-
 941 ture while other hyperparameters are fixed.

942

943

944

945

946

947

948

949 Table A.10: Experimental results for downstream tasks using PubMed synthetic data with IID set-
 950 ting. Classification results for Anatomy (A), Disease (C) and Persons (M) are provided.

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Part.	$\varepsilon = \infty$					
	Acc.(A)	F1(A)	Acc.(C)	F1(C)	Acc.(M)	F1(M)
Pre.	0.5280	0.3738	0.5604	0.4978	0.5708	0.5226
5%	0.6000	0.5965	0.6384	0.6375	0.7204	0.7173
10%	0.5960	0.5742	0.6760	0.6704	0.7796	0.7804
20%	0.6468	0.6468	0.7528	0.7513	0.7900	0.7910
30%	0.7180	0.7166	0.7688	0.7691	0.8056	0.8060
40%	0.7204	0.7206	0.7648	0.7651	0.8152	0.8159
Part.	$\varepsilon = 8$					
	Acc.(A)	F1(A)	Acc.(C)	F1(C)	Acc.(M)	F1(M)
Pre.	—	—	—	—	—	—
5%	0.5224	0.5099	0.5496	0.4283	0.5744	0.5293
10%	0.5621	0.5155	0.5464	0.4618	0.5824	0.5471
20%	0.5628	0.5296	0.5448	0.4884	0.6044	0.5489
30%	0.5636	0.5321	0.5632	0.5358	0.6092	0.5904
40%	0.5664	0.5392	0.5652	0.5484	0.6144	0.6064
Part.	$\varepsilon = 8$ with refinement					
	Acc.(A)	F1(A)	Acc.(C)	F1(C)	Acc.(M)	F1(M)
Pre.	0.5536	0.4474	0.6736	0.6656	0.5804	0.5580
5%	0.5836	0.5495	0.6828	0.6821	0.7884	0.7893
10%	0.6024	0.5797	0.6896	0.6874	0.8000	0.8008
20%	0.6200	0.6026	0.6984	0.6960	0.8080	0.8073
30%	0.6224	0.6154	0.7180	0.7100	0.8156	0.8166
40%	0.6272	0.6320	0.7220	0.7219	0.8136	0.8146

972
973
974
975
976
977

Table A.11: Experimental results for downstream tasks using PubMed synthetic data in non-IID setting. Classification results for Persons (M), and Healthcare (N) are provided in three settings where only the subset of classes list in the Bias column are represented on clients participating in federated finetuning.

Bias	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
	Acc.(M)	F1(M)	Acc.(M)	F1(M)	Acc.(M)	F1(M)	Acc.(M)	F1(M)
M, N	0.7336	0.7307	0.7408	0.7315	0.6927	0.6831	0.7134	0.7046
C, M, N	0.7316	0.7327	0.8124	0.8125	0.6932	0.6918	0.7521	0.7432
D, C, M, N	0.7744	0.7742	0.8152	0.8155	0.7326	0.7245	0.7731	0.7638

Bias	$\varepsilon = \infty$		$\varepsilon = \infty$ with refinement		$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
	Acc.(N)	F1(N)	Acc.(N)	F1(N)	Acc.(N)	F1(N)	Acc.(N)	F1(N)
M, N	0.6652	0.6605	0.7368	0.7256	0.6029	0.5921	0.6437	0.6325
C, M, N	0.7084	0.7089	0.7336	0.7307	0.6627	0.6523	0.7038	0.6936
D, C, M, N	0.7136	0.7141	0.7560	0.7526	0.6731	0.6642	0.7242	0.7135

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992Table A.12: Experimental results for downstream tasks using Yelp synthetic data with non-IID setting for $\varepsilon = 4$. \mathcal{C}_s clients takes up 10%.

Rating classes	Category classes	$\varepsilon = 4$		$\varepsilon = 4$ with refinement	
		Acc.-2	F1-2	Acc.-2	F1-2
All	All	0.6008	0.5460	0.6147	0.6160
1 & 3 stars	All	0.5124	0.3758	0.5869	0.5153
1 & 5 stars	All	0.4725	0.3324	0.5558	0.5558
3 & 5 stars	All	0.4460	0.2963	0.5014	0.4784
1, 3, & 5 stars	All	0.6003	0.5487	0.6047	0.6117

993
994
995
996
997
998
999
1000
1001
1002
1003
1004Table A.13: Experimental results for downstream tasks using Yelp synthetic data with non-IID setting with LLaMA. \mathcal{C}_s clients takes up 10%.

Rating classes	Category classes	$\varepsilon = 8$		$\varepsilon = 8$ with refinement	
		Acc.-2	F1-2	Acc.-2	F1-2
All	All	0.6682	0.6489	0.6772	0.6509
1 & 3 stars	All	0.6596	0.6220	0.6631	0.6483
1 & 5 stars	All	0.6346	0.5692	0.6410	0.6188
3 & 5 stars	All	0.6520	0.6248	0.6619	0.6310
1, 3, & 5 stars	All	0.6595	0.6399	0.6613	0.6444

1011
1012
1013
1014
1015
1016
1017
1018Table A.14: Experimental results for downstream tasks using Yelp synthetic data with non-IID setting for $\varepsilon = 8$ with uniform sampling. The number of generated samples is 50000. Then 10000 samples are uniformly sampled to do downstream tasks. Results without sampling and results with refinement are included for the ease of comparison. \mathcal{C}_s clients takes up 10%.

Rating classes	Category classes	$\varepsilon = 8$		$\varepsilon = 8$ with uniform sampling		$\varepsilon = 8$ with refinement	
		Acc.-2	F1-2	Acc.-2	F1-2	Acc.-2	F1-2
All	All	0.6280	0.5819	0.6076	0.5566	0.6326	0.6002
1 & 3 stars	All	0.5266	0.3895	0.5158	0.3800	0.6326	0.6002
1 & 5 stars	All	0.5658	0.4853	0.5623	0.4662	0.6008	0.5876
3 & 5 stars	All	0.6280	0.5819	0.6076	0.5566	0.6326	0.6002
1, 3, & 5 stars	All	0.6084	0.5740	0.5996	0.5544	0.6232	0.6078

1025