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ABSTRACT

In cross-silo federated learning (FL), sensitive text datasets remain confined
to local organizations due to privacy regulations, making repeated training for
each downstream task both communication-intensive and privacy-demanding. A
promising alternative is to generate differentially private (DP) synthetic datasets
that approximate the global distribution and can be reused across tasks. However,
pretrained large language models (LLMs) often fail under domain shift, and fed-
erated finetuning is hindered by computational heterogeneity: only resource-rich
clients can update the model, while weaker clients are excluded, amplifying data
skew and the adverse effects of DP noise. We propose a flexible participation
framework that adapts to client capacities. Strong clients perform DP federated
finetuning, while weak clients contribute through a lightweight DP voting mech-
anism that refines synthetic text. To ensure the synthetic data mirrors the global
dataset, we apply control codes (e.g., labels, topics, metadata) that represent each
client’s data proportions and constrain voting to semantically coherent subsets.
This two-phase approach requires only a single round of communication for weak
clients and integrates contributions from all participants. Experiments show that
our framework improves distribution alignment and downstream robustness under
DP and heterogeneity.

1 INTRODUCTION

In cross-silo federated learning (FL), sensitive text data are distributed across organizations and must
remain local due to privacy regulations (Huang et al., 2022). Each client (e.g., a hospital, company,
or organization) often stores thousands to tens of thousands of text samples collected from individ-
uals (Sheller et al., 2018; Dayan et al., 2021), making it essential to train models collaboratively
without sharing raw data. However, each downstream task typically requires initiating a new FL
process, which incurs substantial communication overhead, additional privacy cost, and places extra
burden on compute-constrained clients. A promising alternative is to generate synthetic datasets that
act as privacy-preserving surrogates of the global dataset, thereby reducing both communication and
privacy risks (Stadler et al., 2022; Yoon et al., 2020; Little et al., 2023). The objective of this work
is to generate high-quality synthetic text that faithfully reflects the global distribution in cross-silo
FL while providing rigorous differential privacy guarantees.

A straightforward solution is to directly generate texts from a pretrained language model (Hou et al.,
2024) in FL. However, in many practical scenarios, such text exhibits low quality because the pre-
trained distribution diverges from the target global distribution. This issue arises, for example, when
data distributions evolve over time or when domain adaptation is required (Gururangan et al., 2020;
Cohen-Wang et al., 2024; Arakelyan et al., 2023). In this case, finetuning is essential to adapt the
model for high-quality text generation.

Finetuning large language models (LLMs) in federated settings, however, faces a critical obstacle:
computational heterogeneity (Bai et al., 2024; Liu et al., 2025; Wang et al., 2025). LLM finetuning
demands substantial local resources, yet many clients in cross-silo FL lack the necessary computing
capacity. As a result, only a fraction of clients with strong computing capacity can participate in
model updates in a timely manner. This imbalance exacerbates the effects of data heterogeneity,
as the global model is skewed toward the distributions of stronger clients while underrepresenting
weaker ones. The situation is further worsened when differential privacy (DP) is enforced: DP-
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Figure 1: To perform DP synthetic text generation in cross-silo FL, we aim to address two chal-
lenges: heterogeneity in computational resources and data distributions. Our approach enables flex-
ible participation through DP federated finetuning of the generator model on well-resourced clients
and DP voting on generated synthetic text on the remaining clients.

SGD (Abadi et al., 2016) protects individual samples by injecting random noise into local updates.
Reduced participation in local training can amplify the negative effect of DP noise, which hampers
convergence and further degrades the quality of generated text (Wei et al., 2020).

To address these challenges brought by computational heterogeneity, we propose a flexible partici-
pation strategy that adapts to the computational capacities of clients in cross-silo FL. While clients
with sufficient resources still engage in DP federated finetuning of the global generative model,
weaker clients—those unable to perform expensive local updates—contribute through a lightweight
voting mechanism. The key insight is that even partial finetuning allows the model to capture essen-
tial language patterns, while the voting stage refines the generated text according to the local data
on weaker clients so that the negative effect of biased finetuning can be mitigated. An illustration of
the framework can be found in Figure 1.

A challenge lies in characterizing data distributions so that the final synthetic dataset can effectively
mirror the global population. To solve this, we adopt control codes (Keskar et al., 2019) (e.g., labels,
topics, or metadata) to explicitly structure the data. Control codes partition texts into semantically
meaningful subsets and serve two key roles in our framework. First, they represent each client’s
local distribution through control code proportions, which guide the allocation of synthetic samples
across codes. Second, they constrain voting to samples within the same control code, ensuring that
refinement is based on semantically coherent and relevant texts.

Overall, our framework proceeds in two phases. Phase 1 (DP federated finetuning): strong clients
update the global model using DP-SGD, adapting it to domain-specific data while preserving pri-
vacy. This finetuned model, though imperfect, captures broad patterns of the data. Phase 2 (re-
finement via DP voting): weak clients contribute indirectly by providing DP-perturbed control
code profiles and casting votes on synthetic text samples generated under each control code. The
server aggregates these noisy votes to reweight and resample candidates, producing a final synthetic
dataset that better aligns with the global population. Importantly, this refinement requires no back-
ward propagation and only a single round of communication, making it efficient and inclusive even
for clients with limited resources.

We evaluate our approach on benchmark datasets under both IID and non-IID settings with DP.
The results show that even with a small proportion of strong clients (1–10%), partial finetuning
improves the quality of synthetic data over zero-shot generation from pretrained models. More
importantly, the refinement stage consistently boosts performance, mitigating the negative effects of
biased finetuning and DP noise.

2 BACKGROUND

2.1 FEDERATED LEARNING

In FL, N clients collaboratively train a model θ to minimize the averaged loss function:

min
θ

f(θ) :=
1

N

N∑
i=1

fi(θ), (1)

2
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where fi(θ) = ℓ(θ;Di) is the local loss function of client i, and Di is the local data distribution of
client i. At the beginning of the r-th training round, each participating client receives the current
global model parameters θr from a central server. Each client then performs τ steps of local model
updates based on its own data. After completing local training, clients send their model updates
back to the server, which aggregates these updates to form a refined global model for the next round.

When finetuning LLMs in federated settings, computational and data heterogeneity present sig-
nificant challenges. Computational heterogeneity restricts the timely participation of resource-
constrained clients due to the high computational demand of LLM training. At the same time,
this partial finetuning may lead to bias for the finetuned model. In our algorithm, the text generated
by the biased model will be refined further using non-training method to balance the negative effect
of data heterogeneity.

2.2 DIFFERENTIAL PRIVACY

In this work, DP will be applied both in finetuning and in refinement to guarantee the privacy of
local data. Below is the formal definition of differential privacy.

Definition 1 (Differential Privacy (Dwork et al., 2014)) A randomized algorithm M : D → S is
(ε, δ) differentially private if any two neighboring datasets D,D′ ∈ D that differ exactly in a single
data sample, and for all sets S ∈ S:

P[M(D) ∈ S] ≤ eεP[M(D′) ∈ S] + δ. (2)

In the definition, ε determines the privacy budget and δ is the probability of failure.

To protect the privacy of each individual, we consider sample-level DP, ensuring that the output of
each client is independently perturbed for every data sample. In finetuning, DP-SGD (Abadi et al.,
2016) is applied in local training on strong clients, where Gaussian noise is added to the gradients.
In refinement, analytical Gaussian mechanism (Balle & Wang, 2018) is applied, where the profiles
and votes of local data are perturbed.

3 METHOD

3.1 PROBLEM FORMULATION

We consider text generation in the FL scenario, where each of the N clients maintains a local text
dataset Di,∀i ∈ [N ]. Due to the data heterogeneity, the local datasets Di may differ substantially
across clients. The global dataset is defined as D := ∪Ni=1Di. The objective is to generate a
synthetic dataset D̃ that closely approximates the global dataset D with DP guarantee. The setups
of the clients and the server are detailed as follows:

Clients. Due to computational heterogeneity, only a subset of clients can efficiently perform local
finetuning of LLMs in a timely manner. Let Cs ⊆ [N ] denote the set of clients with sufficient
computational resources, where |Cs| = M, 1 ≤ M ≤ N . The set of remaining clients is denoted
as Cr = [N ] \ Cs. Although clients in Cr do not directly participate in federated finetuning, they
can contribute indirectly by sending DP statistical profiles (e.g., summary statistics or votes) of their
local data to the server for the potential improvement on the text generation.

Server. The server initializes and maintains a pretrained language model. Since the distribution of
pretrained model pθ(·) might not be aligned with the current global dataset D due to the domain dif-
ference or the distribution change over time, the pretrained model has to be finetuned over the current
data for generating consistent text. The server coordinates the federated finetuning by aggregating
private model updates from clients in Cs and broadcasting the latest global model to Cs clients. The
server then leverages the resulting global model to produce synthetic text data representative of the
global data distribution.

The main challenge is ensuring that the synthetic dataset captures the distributions of both Cs and
Cr clients despite differences in data and computation. Federated finetuning enables the model to
learn from Cs data, but the generated text may not be representative of the data from Cr. The key
question is how to also model the data from Cr without direct finetuning. In Section 3.2, we address
this by using controllable text generation, allowing clients in Cr to guide the generation process via
their statistical profiles. 3
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Algorithm 1: Federated Controllable Text Generation with Refinement
Input : Control codes C ; client sets Cs, Cr; initial model θ0; FL rounds R, local iteration τ ;

DP params: (εtrain, δtrain), (εprof, δprof), (εvote, δvote); number of synthetic samples s,
sentence transformer g(·), sampling rate r, number of votes K.

Output: Synthetic dataset D̃.
Stage 1: Federated DP finetuning on Cs
Server: θ⋆ ← Federated Finetuning(θ0, Cs, R, τ, εtrain, δtrain).
Stage 2: DP profiling from clients
foreach i ∈ [N ] do

Compute control-code counts Pi ←
[
|D1

i |, . . . , |D
|C|
i |

]
with Di = ∪|C|

j=1D
j
i

P̃i ← Analytical Gaussian Mechanism(Pi, εprof, δprof)

Server: Form a global target profile P̃ ←
∑N

i=1 P̃i .
Stage 3: Synthetic generation guided by profiles
for j = 1 to |C| do

For D̃j , generate sj samples using model pθ⋆(· | cj) with sj = Round
(
s · P̃ [j]

)
Server: Set initial synthetic dataset D̃ ← ∪|C|

j=1D̃
j .

Stage 4: DP voting-based refinement using Cr
foreach i ∈ Cr do

ṽi ← Local Voting(D̃,Di, C, g,K, ϵvote, δvote)

Server: Aggregate the votes ṽ ←
∑N

i=1 ṽi.
for j = 1 to |C| do

pj ← ṽ[Ij ]/∥ṽ[Ij ]∥1 with Ij = {i|D̃[i] ∈ D̃j}
Ĩj ←Sampling Without Replacement(Ij , r, pj)

Return D̃∗ ← ∪|C|
j=1D̃[Ĩj ]

3.2 ALGORITHM

In our algorithm, we consider conditional language modeling (Keskar et al., 2019):

pθ(x|c) =
L∏

l=1

pθ(xl|x<l, c), (3)

where L is the length of the sequence and c is the control code. When generating texts after finetun-
ing, the control code is used as the prompt for controllable generation. This approach offers two key
benefits: (i) prompts do not need to be hand-designed, since the control code captures the training
data distribution, and (ii) in FL, control codes can also represent local data distributions of clients
in Cr, enabling the generation of text corresponding to their profiles without further finetuning. The
details of controllable generation in FL are as follows.

On client i ∈ [N ], the local data distribution can be decomposed by a set of control codes C =
{c1, c2, . . . , c|C|}. The set of control codes is situational dependent and may correspond to the
labels, the topics, or the features of the training data. Following Yue et al. (2022), we assume that
the control codes are not private. As mentioned above, all clients share the same set of the control
codes C, which is predetermined. Each example in the local datasets is associated with exactly
one control code c ∈ C for local finetuning. We use Dj

i to denote the set of local data related to
the control code cj on client i and we have ∪|C|

j=1D
j
i = Di. Then given C, we can represent the

distribution of the local dataset using the following vector

Pi =
[
|D1

i |, |D2
i |, . . . , |D

|C|
i |

]
,∀i ∈ [N ]. (4)

The global distribution is P =
∑N

i=1 Pi. With control codes, data heterogeneity in FL can be
expressed in a hierarchical manner. At the first level, the control code distributions Pi vary across

4
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clients, reflecting differences in how data categories are represented locally. These Pi vectors are
used to determine the amount of synthetic data to generate for each control code, ensuring that the
synthetic dataset matches the overall distribution. At the second level, even within a given control
code cj , the underlying data across clients may differ. Since data from Cr clients are not directly
involved in the federated finetuning process, we introduce a refinement step to better capture their
distributions and reduce potential bias in the generated text after federated finetuning. The overall
workflow is summarized in Algorithm 1, and its key stages are described in detail below.

Federated Finetuning. The local objective function of client i ∈ Cs is given by

fi(θ) = Lθ(Di) = −
1

|Di|

|C|∑
j=1

∑
x∈Dj

i

log pθ(x|cj),∀i ∈ Cs, (5)

where Lθ(·) is the loss function. During this stage, clients in Cs periodically perform local DP-SGD
and send the local model to the server for the aggregation. This stage can be found in Algorithm A.3.

Profiling. After federated finetuning, the global model has captured knowledge of the current text
pattern. To account for client-specific heterogeneity, the server generates synthetic text conditioned
on local data profiles defined by control codes. Specifically, each client i sends its profile vector Pi

perturbed by DP noise to the server, and the amount of text generated under each control code is
proportional to the corresponding entries of Pi. The server then generates the initial synthetic texts
according to Pi and broadcasts them to Cr clients for refinement.

Refinement. The finetuned model may still struggle to generate high-quality synthetic data due
to limitations inherent in FL. First, data heterogeneity implies that the local datasets of clients in
Cs may be biased, preventing the model from fully representing the global distribution. Second, the
application of DP-SGD during local updates introduces random noise, which can hinder convergence
and further degrade text quality.

To mitigate these issues, we leverage the local data on clients in Cr. Although they do not participate
directly in federated finetuning, their local data can still influence text generation through a voting
mechanism. The key idea is that, within each control code, each example of the local data on Cr casts
K votes for candidate synthetic samples generated under the same control code. After collecting all
the votes, the analytical Gaussian mechanism is applied to guarantee DP. The aggregated DP votes
is then used to resample and refine the synthetic data, aligning it more closely with the global data
distribution. The pseudocode of local voting can be found in Algorithm A.2.

4 EXPERIMENTS

Datasets. We evaluate our approach on two text corpora: Yelp Reviews (Yelp, Inc.) and PubMed
abstracts (National Center for Biotechnology Information (NCBI)). Both datasets are partitioned into
clients to simulate the cross-silo FL setting. Following the setup in Yue et al. (2022), we perform
DP finetuning and synthetic text generation on the Yelp dataset, while PubMed serves as a domain-
specific corpus to evaluate domain adaptation after finetuning. For Yelp, we use business categories
and rating stars as control codes. For PubMed, we select five medical subject headings (MeSH terms
from (Rogers, 1963)) as control codes and represent each abstract with a binary indicator (0/1) for
whether it belongs to a given MeSH term. The five selected MeSH terms are Anatomy (abbreviated
‘A’), Diseases (‘C’), Chemicals and Drugs (‘D’), Persons (‘M’), and Healthcare (‘N’). We keep a
part of held-out data as the test datasets and evaluation datasets.

Data Partition. We consider both IID and non-IID partitionings. To be consistent with the cross-
silo setting in FL, we partition each dataset into tens or one hundred clients, each with more that
one thousand individual examples. Specifically, the Yelp dataset is partitioned into 100 clients, each
with 15000 examples. The PubMed dataset is partitioned into 20 clients, each with 2250 examples.
The percentage of Cs clients is varied across experiments. For IID cases, we uniformly partition
both the Yelp and PubMed datasets into clients. For non-IID cases, we use different strategies for
Yelp and PubMed according to their attributes. The goal is to show the data heterogeneity between
Cs data and Cr data. In particular, for Yelp, when partitioning data for Cs clients, we fix one label
then vary the number of classes of another label. For PubMed, we vary the number of MeSH terms
covered by Cs data. Then we uniformly partition the remaining data into Cr clients.

5
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Table 1: Experimental results for downstream tasks using Yelp synthetic data with IID setting. The
results are partitioned into three parts according the conditions of DP and refinement. For each
part, differenet percentages of Cs client are considered. Pre. means the synthetic data are directly
generated from a pretrained model. Acc.-1 and F1-1 represent the accuracy and F1 score for category
classification. Acc.-2 and F1-2 represent the accuracy and F1 score for rating classification.

Cs%
ε = ∞ ε = 8 ↓ ε = 8 with refinement ↑

Acc.-1 F1-1 Acc.-2 F1-2 Acc.-1 F1-1 Acc.-2 F1-2 Acc.-1 F1-1 Acc.-2 F1-2

Pre. 0.7044 0.6240 0.4414 0.2704 — — — — 0.7356 0.6818 0.4632 0.3295
1% 0.7367 0.7129 0.6541 0.6289 0.6815 0.6729 0.5113 0.3755 0.7126 0.6981 0.6149 0.5755
5% 0.7485 0.7299 0.6644 0.6455 0.6968 0.6842 0.6145 0.5656 0.7110 0.6978 0.6277 0.5942

10% 0.7487 0.7288 0.6661 0.6460 0.7123 0.6959 0.6280 0.5819 0.7252 0.7068 0.6326 0.6002
20% 0.7469 0.7280 0.6707 0.6519 0.7158 0.6941 0.6328 0.5937 0.7247 0.7060 0.6464 0.6285
30% 0.7458 0.7266 0.6717 0.6611 0.7130 0.6935 0.6306 0.6058 0.7243 0.7097 0.6470 0.6357
40% 0.7474 0.7242 0.6744 0.6630 0.7261 0.7011 0.6428 0.6168 0.7349 0.7162 0.6446 0.6314

Table 2: Experimental results for downstream tasks using PubMed synthetic data with IID setting.
Classification results for Chemicals and Drugs (D) and Healthcare (N) are provided. More classifi-
cation results can be found in Section E.

Cs%
ε = ∞ ε = 8↓ ε = 8 with refinement↑

Acc.(D) F1(D) Acc.(N) F1(N) Acc.(D) F1(D) Acc.(N) F1(N) Acc.(D) F1(D) Acc.(N) F1(N)

Pre. 0.6456 0.5881 0.5364 0.5179 — — — — 0.6464 0.5472 0.5864 0.5696
5% 0.6672 0.6113 0.6996 0.6996 0.6220 0.5019 0.5908 0.5854 0.8028 0.8024 0.7368 0.7326
10% 0.6904 0.6460 0.7164 0.7159 0.6332 0.5203 0.6076 0.6086 0.8100 0.8074 0.7348 0.7341
20% 0.7968 0.7913 0.7140 0.7144 0.6304 0.5346 0.6220 0.6179 0.8268 0.8280 0.7368 0.7374
30% 0.8612 0.8605 0.7432 0.7438 0.6380 0.5577 0.6284 0.6187 0.8312 0.8318 0.7400 0.7406
40% 0.8788 0.8788 0.7496 0.7498 0.6400 0.5765 0.6384 0.6293 0.8426 0.8448 0.7436 0.7442

Models. We finetune GPT-2 (Radford et al., 2019) to generate synthetic Yelp reviews. We finetune
GPT-2-large to generate synthetic PubMed abstracts for its better capacity of domain adaptation.
We use stsb-roberta-base-v2 (Reimers & Gurevych, 2019) to generate the sentence embedding used
in refinement for both Yelp and PubMed. We use RoBERTa-base (Liu et al., 2019) to perform
downstream tasks for Yelp dataset. We use BERT (Devlin et al., 2019) to perform downstream tasks
for PubMed.

Metrics. We evaluate the quality of synthetic data from two perspectives: (i) downstream utility,
measured by classification accuracy and F1 score on tasks trained with synthetic data, and (ii) dis-
tributional alignment, measured by similarity between original and synthetic text as well as domain
adaptation performance.

For Yelp, we evaluate downstream utility by reporting classification accuracy and F1 score on ratings
and categories with synthetic reviews using RoBERTa. We evaluate the distributional alignment by
computing the MAUVE score (Pillutla et al., 2021) between original and synthetic texts using GPT-
2/GPT-2-large embeddings. For PubMed, we evaluate downstream utility by reporting classification
accuracy and F1 score on medical categories with synthetic abstracts using BERT. We evaluate
domain adaptation by reporting the macro F1 score for medical named entity recognition (NER)
task using BERT.

Baselines. We compare against two main baselines. (i) To quantify the effect of partial finetuning,
we report results from pretrained models without any finetuning. Since prompt design and control
codes are orthogonal, and can even be combined as shown by Keskar et al. (2019), we adopt zero-
shot generation with pretrained models for a fair comparison. (ii) To isolate the impact of differential
privacy, we additionally provide results from models trained without DP. Together, these baselines
allow us to evaluate both the benefits of finetuning and the trade-offs introduced by DP. Further
details on the experimental setup and hyperparameters are provided in the Appendix.

4.1 IID RESULTS

We first analyze the performance of our algorithm under the IID setting. In particular, we investigate
the effect of varying percentages of Cs clients and the refinement step. We show that even partial
finetuning when only 1% of Cs clients participate can improve the data quality over the pretrained
model and the refinement step can mitigate the negative effect of DP significantly.

6
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Figure 2: MAUVE score for Yelp IID results and NER macro F1 score for PubMed IID results.

Table 1 reports the two downstream task results using Yelp synthetic data: business category classi-
fication and rating classification. Overall, as we add more training data, we observe that increasing
the Cs clients percentage consistently improves both accuracy and F1 score. Notably, performance
saturates quickly: even with only 10% Cs clients, the accuracy and F1 scores become comparable to
higher Cs clients levels.

Comparing the results across privacy settings, DP leads to a substantial performance drop relative to
the ε =∞ baseline, due to the random noise introduced by DP-SGD. However, our refinement step
mitigates this effect, yielding consistent improvements. For instance, at just 1% Cs clients, refine-
ment improves rating classification accuracy by 0.1 and F1 score by 0.2, making the performance
comparable to 10% Cs clients under DP without refinement. Similarly, with 20% Cs clients and
refinement, accuracy and F1 exceed those of 40% Cs clients under DP without refinement. These
findings demonstrate that even a single round of refinement substantially reduces the negative impact
of DP noise. A closer look at the refinement behavior via voting statistics is shown in Figure A.3.

Table 1 also highlights differences in prior knowledge embedded in the pretrained model between the
business category and rating tasks. Without DP, the pretrained model already achieves competitive
accuracy on business category classification, surpassing the 1% and 5% Cs clients cases under DP
without refinement. However, for the rating prediction task (Acc.-2 and F1-2), the pretrained model
essentially defaults to predicting the majority class, which accounts for 44% of the data, leading to
poor F1 performance. After refinement, the pretrained model’s accuracy on the business categories
task even surpasses that of the 30% Cs clients case with refinement, while its performance on ratings
remains below all other settings. This suggests that the pretrained model carries useful prior knowl-
edge for the majority classes in the business categories task, but not for minority business category
classes or the ratings task, and that low-Cs-percentage DP finetuning can sometimes erode this prior
knowledge.

Table 2 shows experimental results with synthetic data generated from PubMed for two downstream
tasks: Chemicals and Drugs (D) and Healthcare (N) medical subject classification. In the ε = ∞
baseline setting, accuracy improves with the increased percentage of Cs clients for both tasks but
does not saturate as quickly as with Yelp. Adding DP with ε = 8 dramatically decreases learning,
with accuracy at 40% Cs clients in federated finetuning not matching 5% Cs clients on the baseline.
However, applying refinement to the ε = 8 case changes this behavior; not only does accuracy
significant improve across both tasks but it exceeds the ε = ∞ baseline for low rates of Cs clients.
For instance, performance at 5% Cs clients for ε = 8 with refinement exceeds that of 20% Cs clients
for ε = ∞. Although this trend does not persist at higher Cs percentages, ε = 8 with refinement
remains competitive with the baseline for the Chemicals and Drugs classification task and matches
it for Healthcare classification. Results from the other three downstream tasks are shown in Section
E and exhibit broadly similar trends.

Figure 2 reports MAUVE scores for Yelp and NER macro F1 score for PubMed. Results without
DP serve as an upper bound, while with DP the scores consistently improve after refinement. For
Yelp, both GPT-2 and GPT-2-large show that fidelity increases with finetuning and more Cs clients.
Notably, the evaluation method affects interpretation: with GPT-2, DP with refinement appears
comparable to non-private generation, but GPT-2-large reveals persistent gaps, which might be due
to the capacity of the larger model can capture more nuance. For PubMed, only the scores for DP
results are consistently increasing with additional Cs clients, indicating that under DP, only 5% Cs
clients with refinement can achieve competitive scores in this case.
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Table 3: Experimental results for downstream tasks using Yelp synthetic data with non-IID setting.
Two classes of experiments are presented; one where the rating classes between clients are varied
and one where the business category classes between clients are varied.

Rating Category ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
classes classes Acc.-2 F1-2 Acc.-2 F1-2 Acc.-2 F1-2 Acc.-2 F1-2

1 & 3 stars All 0.5394 0.4007 0.5898 0.4899 0.5266 0.3895 0.5790 0.4778
1 & 5 stars All 0.5701 0.4971 0.6234 0.6017 0.5658 0.4853 0.6008 0.5876
3 & 5 stars All 0.5748 0.5394 0.6023 0.6116 0.5632 0.5155 0.5904 0.5828

1, 3, & 5 stars All 0.6475 0.6174 0.6563 0.6321 0.6084 0.5740 0.6232 0.6078

Rating Category ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
classes classes Acc.-1 F1-1 Acc.-1 F1-1 Acc.-1 F1-1 Acc.-1 F1-1

All 2 Categories 0.7006 0.6699 0.7064 0.6768 0.6713 0.6540 0.6762 0.6689
All 4 Categories 0.7302 0.7021 0.7324 0.7083 0.7118 0.6896 0.7154 0.6932
All 6 Categories 0.7315 0.7073 0.7335 0.7113 0.7123 0.6904 0.7153 0.6982
All 8 Categories 0.7445 0.7178 0.7447 0.7241 0.7157 0.6936 0.7248 0.7040

Table 4: Experimental results for downstream tasks using PubMed synthetic data in non-IID setting.
Classification results for Anatomy (A), Chemicals and Drugs (D) and Diseases (C) are provided in
three settings where only the subset of classes list in the Bias column are represented on clients
participating in federated finetuning. More classification results can be found in Section E.

Bias ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
Acc.(A) F1(A) Acc.(A) F1(A) Acc.(A) F1(A) Acc.(A) F1(A)

M, N 0.5588 0.5526 0.6324 0.6222 0.4827 0.4719 0.5246 0.5123
C, M, N 0.5812 0.5757 0.6536 0.6536 0.5128 0.5035 0.5835 0.5732

D, C, M, N 0.6420 0.6405 0.6724 0.6725 0.5729 0.5617 0.6139 0.6044

Bias ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
Acc.(D) F1(D) Acc.(D) F1(D) Acc.(D) F1(D) Acc.(D) F1(D)

M, N 0.5696 0.5217 0.6840 0.6819 0.5034 0.4688 0.5662 0.5337
C, M, N 0.6052 0.5770 0.7304 0.7254 0.5437 0.5264 0.6638 0.6429

D, C, M, N 0.6980 0.6984 0.7548 0.7544 0.6338 0.6135 0.7047 0.6828

Bias ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
Acc.(C) F1(C) Acc.(C) F1(C) Acc.(C) F1(C) Acc.(C) F1(C)

M, N 0.6628 0.6357 0.6720 0.6750 0.6023 0.5836 0.6435 0.6248
C, M, N 0.8656 0.8663 0.8732 0.8739 0.7824 0.7719 0.8237 0.8142

D, C, M, N 0.7580 0.7345 0.8400 0.8380 0.7021 0.6934 0.7835 0.7754

4.2 NON-IID RESULTS

In this section, we analyze the performance of our algorithm with non-IID setting. In particular, we
fix the percentage of Cs clients as 10% then investigate the performance of our algorithm under data
heterogeneity and DP. Experimental results show that our algorithm can mitigate both the negative
effect of data heterogeneity and of DP. Notably, in some cases, after refinement, the accuracy and
F1 score of ε = 8 can be better than those of ε =∞.

Non-IID results for downstream tasks with Yelp can be found in Table 3. As expected, privacy
and data heterogeneity affect the utility of the synthetic data for downstream prediction. Overall,
as Cs data become more diverse, the accuracy and the F1 score increase. It can be observed from
ε = ∞ with refinement results that refinement can improve accuracy and F1 score deteriorated by
data heterogeneity. In cases of rating class partition, except 1, 3, & 5 stars, the accuracy and the F1
score under DP with refinement can even be better than those without DP.

Similar trends are apparent in Table 4 for downstream tasks with PubMed. For classification for
Anatomy (A), Chemicals and Drugs (D), and Dieases (C), increasingly diverse Cs data improves
accuracy and F1 scores in the ε = ∞ baseline even when not related to the particular classification
task. Refinement provides consistent improvements in the baseline case, particularly for Diseases
classification. Scores for ε = 8 with refinement match or exceed the baseline for Disease, and
perform nearly as well for the other two tasks.

Table 5 reports MAUVE scores for Yelp synthetic data under non-IID settings, which align with
the corresponding classification results. Compared to the ε =∞ baseline, applying DP moderately
reduces scores across both models. Refinement without DP brings performance closer to IID levels
(Figure 2), while refinement with DP yields substantial gains—matching the ε = ∞ baseline for
non-IID rating classes but still trailing for non-IID category classes. Table 6 provided NER macro
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Table 5: MAUVE score for Yelp non-IID setting evaluated with embeddings generated from pre-
trained GPT-2 and GPT-2-large. The experimental setting is the same as the setting in Table 3.

Rating Category ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
classes classes GPT-2 GPT-2-l GPT-2 GPT-2-l GPT-2 GPT-2-l GPT-2 GPT-2-l

1 & 3 stars All 0.1404 0.1430 0.1907 0.1969 0.1105 0.1180 0.1493 0.1552
1 & 5 stars All 0.1617 0.2204 0.2128 0.2675 0.1444 0.1988 0.1915 0.2374
3 & 5 stars All 0.1634 0.2312 0.2258 0.2785 0.1501 0.1921 0.1987 0.2372

1, 3, & 5 stars All 0.1924 0.3465 0.2463 0.3658 0.1975 0.2425 0.1982 0.2600

All 2 Categories 0.1808 0.2912 0.2414 0.2808 0.1414 0.2016 0.1911 0.2174
All 4 Categories 0.2092 0.3520 0.2510 0.3640 0.1456 0.2122 0.1907 0.2410
All 6 Categories 0.2047 0.3381 0.2543 0.3702 0.1426 0.2110 0.1946 0.2474
All 8 Categories 0.2266 0.3487 0.2674 0.3751 0.1457 0.2298 0.1952 0.2586

Table 6: NER macro F1 score for PubMed non-IID results.

Setting
ε = ∞ ε = 8

M,N C,M,N D,C,M,N M,N C,M,N D,C,M,N
No refine / Refine 0.5783 / 0.6529 0.8344 / 0.8402 0.8641 / 0.8739 0.8035 / 0.8521 0.8052 / 0.8513 0.8199 / 0.8523

F1 scores for PubMed non-IID results. Refinement consistently improves the performance under
DP and heterogeneity. However, it is worth noting that when only M, N data are on Cs clients, the
scores of ε = ∞ are worse than those of ε = 8. One possible reason could be that the non-private
model overfits their skewed distribution, whereas DP-SGD’s clipping and noise act as implicit reg-
ularization for NER task.

5 RELATED WORK

Federated learning. Since the introduction of FL (McMahan et al., 2017), extensive work has
addressed its two core challenges: data heterogeneity (Li et al., 2020; Karimireddy et al., 2020)
and computational heterogeneity (Lai et al., 2021; Nguyen et al., 2022). Recently, for adapting
LLMs in FL, parameter-efficient fine-tuning (PEFT) with adapters/LoRA (Wu et al., 2025) reduces
compute and communication but still requires backpropagation on participating clients including
FLoRA (Wang et al., 2024) and other approaches (Ghiasvand & colleagues, 2024; Hao et al., 2024).
However, these approaches typically presume broad client participation for finetuning.

Synthetic text generation in FL. Prior work uses public LLMs to generate synthetic texts that
pretrain or warm-start smaller on-device models (Wang et al., 2023; Wu et al., 2024). PrE-Text
is proposed in Hou et al. (2024), training small models on PrE-Text data generated by pretrained
LLMs. Follow-up work frames private on-device learning as preference optimization to improve DP
synthetic data quality (Hou et al., 2025). However, these methods are primarily designed for cross-
device FL with many clients holding very small local datasets and generally rely on prompting
pretrained LLMs rather than adapting them to domain shift; consequently, distribution drift and
domain adaptation are not directly addressed, and limited per-client data constrain the effectiveness
of any local finetuning.

6 CONCLUSION

We tackled the problem of generating DP synthetic text in cross-silo FL, where computational and
data heterogeneity pose significant challenges. Our framework combines DP federated finetuning
on strong clients with a lightweight voting mechanism from weak clients, guided by control codes.
This two-phase design allows partial finetuning to capture broad patterns of the global dataset, while
refinement incorporates weak-client distributions to reduce bias and mitigate the adverse effects of
DP noise. Experiments on benchmark datasets under both IID and non-IID settings demonstrate
that our approach consistently improves downstream utility and distributional fidelity under DP and
data heterogeneity. Looking ahead, combining control codes with prompt-based methods offers a
promising direction for further improving quality of synthetic data, while richer profiling strategies
could enhance the role of weak clients in shaping high-fidelity synthetic datasets.
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7 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We use only publicly available benchmark
datasets (Yelp Reviews and PubMed abstracts), with no human subjects or sensitive personal data
involved. Our methods focus on privacy-preserving text generation in federated learning and do not
raise additional ethical concerns beyond standard considerations for text generation models.

8 REPRODUCIBILITY STATEMENT

The full implementation of our framework, including DP federated finetuning and the refinement
step, is provided in the supplementary materials as anonymized code. Hyperparameter choices,
training configurations are included in the appendix. Dataset partitioning strategies for both IID and
non-IID settings are mentioned in the main paper.
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A DISCUSSION ABOUT RELATED WORK

In this section, we further clarify the relationship between our paper and prior work about applying
LoRA and Private Evolution (PE) related.

Our paper is orthogonal to prior work about apply LoRA in FL. LoRA-based federated adaptation
is indeed highly relevant as a communication-efficient approach to LLM finetuning. However, these
methods still assume that participating clients can perform local backpropagation in a timely manner;
they primarily reduce the number of trainable and communicated parameters, not the local compute
requirement. Our work explicitly targets a setting where only a subset of clients have sufficient
compute for any form of local finetuning, and the remaining clients can only afford inference and
lightweight similarity computations. In this sense, LoRA and related PEFT approaches are comple-
mentary to our framework: they can be used within Phase 1 as an alternative finetuning mechanism
for strong clients, while Phase 2 (DP voting from weak clients) remains necessary to incorporate
low-resource participants. We include LoRA-based finetuning results for strong clients and observe
that our refinement mechanism continues to provide consistent gains on top of PEFT-style updates
as shown in Table A.13.

PE and prompt-based are important related work, but they target a different setting and objective
than ours. The details are as follows.

Finetuning vs. no finetuning. Our work explicitly addresses scenarios with domain shift / data drift,
where the generator must adapt to new domains before synthetic data are useful. We therefore focus
on DP finetuning of LLMs in FL and subsequent refinement. In contrast, PE-style methods typically
assume generation directly from a fixed pretrained model without federated finetuning.

Cross-silo vs. cross-device FL and privacy accounting. Our setting is cross-silo FL, where each
client is an institution holding thousands–tens of thousands of samples, and we target sample-level
DP. PE is developed for cross-device FL, where clients are individual users with very few samples
and the target is client-level DP. The communication patterns, participation assumptions, and privacy
accounting are therefore quite different.

Prompting a finetuned model vs. a purely pretrained model. In PE and its variants, a pretrained
model is prompted to generate synthetic data, and substantial prompt engineering may still be re-
quired to locate the desired distribution. In our framework, we prompt a finetuned model that has
already been adapted to the target domain, and control codes are used to select the appropriate con-
ditional distribution without additional prompt tuning.

B ADDITIONAL ALGORITHMS

Additional algorithms used in this paper are provided in Algorithms A.3, A.2, and A.4. For the
analytic Gaussian mechanism, we follow Balle & Wang (2018, Algorithm 1).

Algorithm A.2: Local Voting

Input: Synthetic set D̃, local set Di, control codes C, encoder g(·), neighbors K, DP params
(ε, δ).

Output: DP votes ṽi of client i.
1. Initialization: vi← [0, 0, . . . , 0] ∈ R|D̃|

2. Embedding: Encode all samples: Zsyn← g(D̃), Zloc← g(Di).
3. KNN voting: For each control code cj :

• Identify local embeddings Zj
loc and synthetic embeddings Zj

syn within cj .

• For each z ∈ Zj
loc:

– Find the K nearest neighbors in Zj
syn and get their indices I.

– Add votes to neighbors: vi[I]← vi[I] + 1.
4. Add noise: ṽi ← Analytical Gaussian Mechanism(vi, ε, δ).
return ṽi.
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Algorithm A.3: Federated Finetuning

Input: Pretrained model θ0, client set Cs, FL rounds R, local iteration τ , DP params
(εtrain, δtrain).

Output: Finetuned model θ⋆
for r = 1 to R do

Server: Broadcasts model θr−1 and hyperparameters to clients in Cs.
Clients in Cs:

1. Local initialization: θr−1
i ← θr−1.

2. For local iteration e = 1, . . . , τ do
(a) Iterate over minibatches B of samples (x, cj) from local data Di

(b) Compute sample-level gradients gi=∇θL from loss L = log pθr−1,e−1
i

(x|cj)
(c) Clip the gradients: g̃i ← gi

max
(
1,

∥gi∥2
cg

) with gradient clipping norm cg

(d) Apply Gaussian noise to the average: ḡ ← 1
B (

∑B
i=1 g̃i + N (0, σ2

sc
2
gI))

(e) Take a gradient step: θr−1,e
i ← θr−1,e−1

i − γḡ

3. Compute local update: ∆i ← θr−1,E
i − θr−1.

4. Send local updates ∆k to Server.
Server: Aggregate local updates ∆ = 1

N

∑
i ∆i

Server: Perform global update: θr ← θr + η∆.
end

Algorithm A.4: Sampling without Replacement

Input: Index set Ik denoting elements of initial synthetic dataset D̃k associated with control
codes ck, sampling rate r, probability distribution pk

Output: Index set Ĩk denoting synthetic data elements associated with control codes ck
selected for inclusion in final synthetic dataset

Set count M ← max{1, ⌊r |Ik|⌋}; then M ← min{M, |Ik|}.
Initialize Q← Ik; Ĩk ← {};W ←

∑
q∈Q pkq

for m = 1 to M do

Sample i⋆ from R with Pr(i⋆ = i) =


wi

W
, if W > 0,

1

|R|
, if W = 0,

i ∈ R

Add i⋆ to Ĩk; set W ←W − wi⋆ ; remove i⋆ from R.
end

C ADDITIONAL EXPERIMENTAL DETAILS

Federated Finetuning. For Yelp, we choose the max length as 128 for both finetuning and gen-
eration. This follows the setting in Yue et al. (2022) For PubMed, we choose the max length as
512 for both finetuning and generation, given that the abstracts are longer. For federated finetuning
without DP, the learning rates are chosen as γ = 5e-6, η = 5e-5 for GPT-2, and γ = 3e-6, η =
2e-5 for GPT-2-large. In this case, we choose R = 100, τ = 50, and batch size as 32 for GPT-2
and R = 100, τ = 20 and batch size as 32 for GPT-2-large, then output the model with minimal
evaluation loss. For experiments with DP, the learning rates are chosen as γ = 5e-4, η = 1e-3 for
GPT-2, and γ = 4e-5, η = 8e-4 for GPT-2-large. In this case, we choose R = 200, τ = 50, and
batch size as 256 for GPT-2 and R = 50, τ = 20, and batch size as 256 for GPT-2-large.

For federated finetuning Llama 7B with DP, the learning rates are chosen as η = 0.005 and γ =
0.001. The batch size is 64 and the clipping constant is 1. The number of local updates is 50 and the
number of rounds is 50.
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Generation. We generate 10000 synthetic examples for Yelp and 1000 synthetic examples for
PubMed in the main results. The sampling rate in refinement is 0.2. The temperature is 1.0.

Evaluation. For classification using RoBERTa, the learning rate is 2e-5. For classification using
BERT, the learning rate is 2e-5. For NER task using BERT, the learning rate 1e-4. For all experi-
ments in evaluation, the batch size is 64.

Dataset. For Yelp, we use 1.5M examples as the global training set, 5000 examples as test set, and
another 5000 examples as evaluation test. We use PubMed dataset prepared by Ahmad (2023). In
particular, we use 45000 examples as the global training set, 2500 examples as test set, and another
2500 examples as evaluation set.

Environment. All experiments were conducted on an NVIDIA DGX system equipped with 8 H100
GPUs (80GB memory each), 2 AMD EPYC 9654 CPUs, and 2TB of system memory. We im-
plemented our framework in PyTorch with Hugging Face Transformers, and used the Opacus li-
brary for differentially private training. Unless otherwise specified, experiments were run in mixed-
precision mode to improve efficiency, and distributed training was managed with PyTorch’s native
data-parallel utilities.

DP Setting. To ensure fairness across all clients, we assign each client the same total privacy
budget ε, with the allocation depending on whether the client is strong or weak. We concatenate
the privacy budget of each step according the basic composition theorem Dwork et al. (2014). Each
client will participate in two phases. For each phase, we choose δprof = δtrain = δvote = 1

2N logN

then we have δ = 1
N logN .

Strong clients (Cs). Strong clients participate in DP-SGD training and also provide DP control-
code profiles. Their total privacy budget is

ε = εtrain + εprof .

To allocate more privacy to the component that most strongly affects utility (DP-SGD training), we
use:

ε = 8 : εtrain = 6, εprof = 2,

ε = 4 : εtrain = 3, εprof = 1.

Weak clients (Cr). Weak clients do not run DP-SGD; instead, they contribute through DP control-
code profiling and DP voting during refinement. Thus their total privacy budget is

ε = εvote + εprof .

To maintain consistency across all clients, we use the same profiling budget εprof = 2 as above. The
remaining privacy budget is assigned to voting:

ε = 8 : εvote = 6, εprof = 2,

ε = 4 : εvote = 3, εprof = 1,

These choices ensure (i) fairness (all clients receive the same total ε), (ii) consistency (profiling uses
the same budget across strong and weak clients), and (iii) utility (the larger privacy share is allocated
to training or voting, which are the components that most influence downstream performance).

D SYNTHETIC TEXTS AND PROMPTS

We sampled synthetic texts generated in different cases shown in listings 1–4. For the synthetic texts
generated by pretrained models, we use prompts as follows.

Yelp (X and Y are substituted by the specific business category and the rating):

Please generate a review about business category [X] with
rating star [Y]:\n\n

PubMed (X is substituted by the MeSH terms covered and Y is substituted by the MeSH terms
unrelated):

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Please generate a scientific abstract on a biomedical study that
covers topics [X] but does not cover topics [Y]:\n\n

For the finetuned models, since we use controllable text generation, the labels of Yelp dataset and
the MeSH terms of PubMed dataset are directly used as prompts.

Listing 1: Yelp synthetic examples generated by DP finetuned GPT-2 by IID 10% paricipation.
"I’ve been here a lot. This place is underperforming and there isn’t much

to go back. A nurse told me to get off there, she called again to
make sure that everything was okay. She said she could take a rest. I
have to ask if the doctor was ever out of town. That doesn’t matter.
They were waiting on the line. My husband and I took our baby to the
hospital to check him in there. The whole staff came out to be with

us the whole time. Not a fan.",Business Category: Health & Medical,
Review Stars: 2.0

Listing 2: Yelp synthetic examples generated by DP finetuned GPT-2 with refinement by non-IID 1
& 5 stars.
"This place is wonderful. Everything I ate was delicious. The food was

great. They serve fresh and they put you in a cute box with a little
table on it. It’s perfect for the night. We ordered the veggie
chicken salad, bacon, bacon- a must! The bacon had a little bit of
cheese on it, but it was a nice change from everything I had. I love
this place, it’s just sooo convenient. I recommend ordering more and
not going here.",Business Category: Bars,Review Stars: 4.0

Listing 3: PubMed synthetic examples generated by DP finetuned GPT-2-large by IID 10% Cs
clients.
"The purpose of this study was to evaluate the effects of two different

forms of pomegranate juice (PSJ) on glucose, insulin, and lipid
profile in healthy human volunteers. The study participants included
a non-insulin-dependent diabetic (NIDDM) patient, a patient with mild
to moderate type 2 diabetes mellitus (M2DM), and a healthy, nonobese

, nonsmoking male volunteer. Methods: The subjects consumed 10 g/d of
PSJ for three weeks, for which they were told to drink 1 L/day of a

glucose syrup containing 5 g of glucose (sucrose) and 100 g sucrose,
with 1-way repeated-measures ANOVA with dietary (glucose, fructose)
as the between-subject factor. A post hoc two-sample t-test was used
to assess the differences between the two forms. Blood samples were
collected before and after the dietary intervention. Plasma glucose
and insulin and lipoprotein (C) were measured by enzymatic methods.
Results: Results were expressed as means $\pm$ SEM, while means and
SDs were calculated from multiple linear regression models.
Differences were considered statistically significant at $p < 0.05$."
Anatomy: 1, Diseases: 0, Chemicals and Drugs: 1, Named Groups: 1,

Health Care: 0

Listing 4: PubMed synthetic examples generated by DP finetuned GPT-2-large with refinement by
non-IID including M, N .
"The purpose of this study was to compare the use of a two-component,

structured cognitive task (i.e., the Cognitive Behavioral Therapy/
Prolonged Exposure (CBT-PE/PE) and Brief Cognitive Therapy/Prolonged
Exposure (BCT/PE/PE) therapy, with a 30-day wait-list control group)
in the treatment of depression with and without comorbid personality
disorders in a sample of patients referred for evaluation of clinical
needs for CBT and BCT. Patients were enrolled from a hospital-based

psychiatry hospital. Thirty-five patients completed the study. CBT
was more effective (p = 0.02) in the treatment of depression with or
without personality disorders in comparison to BCT/PE/PE. There was
no evidence of difference between CBT and BCT in comparison to BCT/PE
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(a) Pretrained-hist. (b) Pretrained-dist. (c) 10%-hist. (d) 10%-dist.

Figure A.3: The vote distributions of Yelp synthetic data generated for restaurant and rating stars
3. The left two figures are results only using the pretrained model. The right two figures are results
using finetuned model with 10% Cs clients. Before finetuning, most samples receive similar num-
bers of votes, limiting the effect of refinement. After DP finetuning, however, a long-tail distribution
emerges: certain samples receive significantly more votes than others (Figure A.3d), reflecting the
model’s improved ability to generate text that aligns with the original data distribution. This con-
centration of votes on high-quality samples is precisely what our refinement step exploits to enhance
synthetic data quality.

(a) Pretrained-hist. (b) Pretrained-dist. (c) 10%-hist. (d) 10%-dist.

Figure A.4: The vote distributions of PubMed synthetic data generated for A, D. The left two figures
are results only using the pretrained model. The right two figures are results using finetuned model
with 10% Cs clients. Similar observations as those from Figure A.3 can be obtained.

/PE. These results suggest that, in comparison to CBT and BCT/PE/PE,
CBT might be more efficacious than BCT/PE in the treatment of
depression and the presence of personality disorders.",Anatomy:1,
Diseases:1,Chemicals and Drugs:0,Named Groups:0,Health Care:1

E ADDITIONAL EXPERIMENTAL RESULTS

First, we examine how refinement operates in practice. Figures A.3 and A.4 show the voting distri-
butions for synthetic data generated before finetuning and after finetuning.

Second, then we conducted ablation studies on the refinement step using Yelp dataset. For efficiency,
the number of final synthetic texts is set as 5000. The results can be found in Tables A.7 and A.8

Third, additional experimental results for PubMed can be found in Tables A.10 and A.11.

F LLM USE

We made limited use of LLMs in preparing this manuscript. Specifically, the models were only
applied at the sentence level for minor polishing to improve readability and clarity of expression.
They were not involved in formulating research ideas, designing methodology, analyzing data, or
generating substantive content. All conceptual, technical, and scientific contributions were made
entirely by the authors.
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Table A.7: Downstream results with DP Yelp synthetic texts with refinement for different sampling
rates r while the number of final synthetic texts is fixed. It can be seen that lower sampling rate,
equivalent to higher number of initial synthetic texts, can bring better accuracy and F1 score.

Acc.-1 F1-1 Acc.-2 F1-2
r = 0.5 0.6878 0.6807 0.5627 0.5389
r = 0.25 0.7046 0.6948 0.5713 0.5561
r = 0.17 0.7127 0.7020 0.5904 0.5678

Table A.8: Downstream results with DP Yelp synthetic texts with refinement for different sampling
rates K while other hyperparameters are fixed. Different from r, there is no consistent pattern as K
increases. One possible reason could be when the number of votes is sufficiently large, increasing
votes might not be able to improve the results further.

Acc.-1 F1-1 Acc.-2 F1-2
K = 1 0.7099 0.6989 0.5721 0.5496
K = 3 0.6940 0.6891 0.5786 0.5600
K = 5 0.7046 0.6948 0.5713 0.5561

Table A.9: Downstream results with DP Yelp synthetic texts with refinement for different tempera-
ture while other hyperparameters are fixed.

Temp. Acc.-1 F1-1 Acc.-2 F1-2
0.8 0.7096 0.6968 0.5609 0.5486
1.0 0.7046 0.6948 0.5713 0.5561
1.2 0.6958 0.6891 0.5611 0.5518

Table A.10: Experimental results for downstream tasks using PubMed synthetic data with IID set-
ting. Classification results for Anatomy (A), Disease (C) and Persons (M) are provided.

Part. ε = ∞
Acc.(A) F1(A) Acc.(C) F1(C) Acc.(M) F1(M)

Pre. 0.5280 0.3738 0.5604 0.4978 0.5708 0.5226
5% 0.6000 0.5965 0.6384 0.6375 0.7204 0.7173
10% 0.5960 0.5742 0.6760 0.6704 0.7796 0.7804
20% 0.6468 0.6468 0.7528 0.7513 0.7900 0.7910
30% 0.7180 0.7166 0.7688 0.7691 0.8056 0.8060
40% 0.7204 0.7206 0.7648 0.7651 0.8152 0.8159

Part. ε = 8

Acc.(A) F1(A) Acc.(C) F1(C) Acc.(M) F1(M)

Pre. — — — — — —
5% 0.5224 0.5099 0.5496 0.4283 0.5744 0.5293
10% 0.5621 0.5155 0.5464 0.4618 0.5824 0.5471
20% 0.5628 0.5296 0.5448 0.4884 0.6044 0.5489
30% 0.5636 0.5321 0.5632 0.5358 0.6092 0.5904
40% 0.5664 0.5392 0.5652 0.5484 0.6144 0.6064

Part. ε = 8 with refinement
Acc.(A) F1(A) Acc.(C) F1(C) Acc.(M) F1(M)

Pre. 0.5536 0.4474 0.6736 0.6656 0.5804 0.5580
5% 0.5836 0.5495 0.6828 0.6821 0.7884 0.7893
10% 0.6024 0.5797 0.6896 0.6874 0.8000 0.8008
20% 0.6200 0.6026 0.6984 0.6960 0.8080 0.8073
30% 0.6224 0.6154 0.7180 0.7100 0.8156 0.8166
40% 0.6272 0.6320 0.7220 0.7219 0.8136 0.8146
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Table A.11: Experimental results for downstream tasks using PubMed synthetic data in non-IID
setting. Classification results for Persons (M), and Healthcare (N) are provided in three settings
where only the subset of classes list in the Bias column are represented on clients participating in
federated finetuning.

Bias ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
Acc.(M) F1(M) Acc.(M) F1(M) Acc.(M) F1(M) Acc.(M) F1(M)

M, N 0.7336 0.7307 0.7408 0.7315 0.6927 0.6831 0.7134 0.7046
C, M, N 0.7316 0.7327 0.8124 0.8125 0.6932 0.6918 0.7521 0.7432

D, C, M, N 0.7744 0.7742 0.8152 0.8155 0.7326 0.7245 0.7731 0.7638

Bias ε = ∞ ε = ∞ with refinement ε = 8 ε = 8 with refinement
Acc.(N) F1(N) Acc.(N) F1(N) Acc.(N) F1(N) Acc.(N) F1(N)

M, N 0.6652 0.6605 0.7368 0.7256 0.6029 0.5921 0.6437 0.6325
C, M, N 0.7084 0.7089 0.7336 0.7307 0.6627 0.6523 0.7038 0.6936

D, C, M, N 0.7136 0.7141 0.7560 0.7526 0.6731 0.6642 0.7242 0.7135

Table A.12: Experimental results for downstream tasks using Yelp synthetic data with non-IID
setting for ε = 4. Cs clients takes up 10%.

Rating Category ε = 4 ε = 4 with refinement
classes classes Acc.-2 F1-2 Acc.-2 F1-2

All All 0.6008 0.5460 0.6147 0.6160

1 & 3 stars All 0.5124 0.3758 0.5869 0.5153

1 & 5 stars All 0.4725 0.3324 0.5558 0.5558

3 & 5 stars All 0.4460 0.2963 0.5014 0.4784

1, 3, & 5 stars All 0.6003 0.5487 0.6047 0.6117

Table A.13: Experimental results for downstream tasks using Yelp synthetic data with non-IID
setting with LLaMA. Cs clients takes up 10%.

Rating Category ε = 8 ε = 8 with refinement
classes classes Acc.-2 F1-2 Acc.-2 F1-2

All All 0.6682 0.6489 0.6772 0.6509

1 & 3 stars All 0.6596 0.6220 0.6631 0.6483

1 & 5 stars All 0.6346 0.5692 0.6410 0.6188

3 & 5 stars All 0.6520 0.6248 0.6619 0.6310

1, 3, & 5 stars All 0.6595 0.6399 0.6613 0.6444

Table A.14: Experimental results for downstream tasks using Yelp synthetic data with non-IID
setting for ε = 8 with uniform sampling. The number of generated samples is 50000. Then 10000
samples are uniformly sampled to do downstream tasks. Results without sampling and results with
refinement are included for the ease of comparison. Cs clients takes up 10%.

Rating Category ε = 8 ε = 8 with uniform sampling ε = 8 with refinement
classes classes Acc.-2 F1-2 Acc.-2 F1-2 Acc.-2 F1-2

All All 0.6280 0.5819 0.6076 0.5566 0.6326 0.6002

1 & 3 stars All 0.5266 0.3895 0.5158 0.3800 0.6326 0.6002

1 & 5 stars All 0.5658 0.4853 0.5623 0.4662 0.6008 0.5876

3 & 5 stars All 0.6280 0.5819 0.6076 0.5566 0.6326 0.6002

1, 3, & 5 stars All 0.6084 0.5740 0.5996 0.5544 0.6232 0.6078
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