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Abstract

Lifelong sequence generation (LSG), a prob-001
lem in continual learning, aims to continually002
train a model on a sequence of generation tasks003
to learn constantly emerging new generation004
patterns while avoiding the forgetting of previ-005
ous knowledge. Existing LSG methods mainly006
focus on maintaining old knowledge while pay-007
ing little attention to knowledge transfer across008
tasks. In contrast, humans can better learn new009
tasks by leveraging previously acquired knowl-010
edge from similar tasks. Inspired by the learn-011
ing paradigm of humans, we propose Dynamic012
Module Expansion and Adaptation (DMEA),013
which enables the model to dynamically deter-014
mine the architecture for acquiring new knowl-015
edge based on task correlation and select the016
most similar previous tasks to facilitate adapta-017
tion to new tasks. In addition, as the learning018
process can easily be biased towards the cur-019
rent task which might cause more severe for-020
getting of previously learned knowledge, we021
propose dynamic gradient scaling to balance022
the learning of the current task and replayed023
tasks. With extensive experiments, we demon-024
strate that DMEA can consistently outperform025
existing methods in different LSG settings.026

1 Introduction027

With the recent advancements in pre-trained lan-028

guage models (LMs), current sequence generation029

methods have achieved impressive performance030

on a variety of generation tasks (Radford et al.,031

2019; Raffel et al., 2020). Typically, these models032

are trained on a fixed corpus, assuming the un-033

derlying data distribution to be static (Ham et al.,034

2020; El-Kassas et al., 2021). However, real cog-035

nitive tasks are generally more complex involving036

changing contexts and dynamic environments. The037

ever-changing data distribution causes the models038

to face challenges in acquiring new knowledge,039

while retaining the prior knowledge. Speaking040

about what is next for NLP, Kathleen McKeown041

Human Learning Paradigm
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Figure 1: Illustration of human learning. Given three
learned skills, i.e., swimming, running and boating, hu-
mans can determine that these skills are not sufficient
for diving. And after realizing that swimming is the
most similar learned skill, they only need to learn the
new aspect, i.e., how to safely jump off the diving plat-
form to master the new diving skill.

in a recent interview said: “Most models are static. 042

But the world changes every minute, every second. 043

Dealing with a dynamic world is a new area that’s 044

up and coming.” (Source) 045

A potential solution is to formalize sequence 046

generation as lifelong sequence generation or LSG 047

(Sun et al., 2020), where the model is expected to 048

learn sequentially from a stream of generation tasks 049

with potentially different data distributions. In such 050

cases of distribution shift, the model might forget 051

previously acquired knowledge upon learning new 052

tasks, a phenomenon known as catastrophic forget- 053

ting (McCloskey and Cohen, 1989). Previous LSG 054

methods (Mi et al., 2020; Sun et al., 2020; Madotto 055

et al., 2021) mainly explore different ways to al- 056

leviate forgetting. Recently, Zhang et al. (2022) 057

propose Adaptive Compositional Modules (ACM) 058

which dynamically adds modules for new tasks 059

depending on whether there are reusable previous 060

modules, achieving SOTA performance on LSG. 061

Despite its effectiveness, ACM has several key 062

limitations. First, it pays little attention to knowl- 063

edge transfer across tasks which is as important 064

for continual learning as preventing forgetting (Ke 065
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et al., 2020). In fact, a hallmark of human intel-066

ligence is that humans can better learn new tasks067

by leveraging previously acquired knowledge from068

similar tasks (Lake et al., 2017). They can not only069

determine whether previously acquired skills are070

sufficient to solve a new task, but also exploit the071

most similar learned skills to facilitate the learning072

of the task; see Fig. 1 for an illustration. Second,073

ACM does not consider the correlation between074

learned tasks and the new task when adding mod-075

ules, which might hinder finding the optimal ar-076

chitecture. Finally, the learning process in ACM077

can be biased towards the new task as the gradient078

norm of the new task on reused modules is typically079

much larger than that of replayed tasks, which may080

affect previously acquired knowledge.081

Inspired by the learning paradigm of humans and082

to address the above limitations of ACM, in this083

work we propose Dynamic Module1 Expansion084

and Adaptation (DMEA). We divide the learning085

process of a new task into three stages: expan-086

sion, selection and adaptation. In the expansion087

stage, DMEA determines whether to reuse mod-088

ules of previous tasks or insert new modules for089

learning novel knowledge. Inspired by Zhang et al.090

(2022), it utilizes differentiable architecture search091

(Liu et al., 2019) to enable the model to dynami-092

cally determine the architecture for solving the new093

task. To leverage the correlation between tasks, the094

learnable coefficients in architecture search are ini-095

tialized based on the cosine similarity of word fre-096

quency distributions between learned tasks and the097

new task. In the selection stage, DMEA selects the098

top-K most similar previous tasks through input099

subspace (Lin et al., 2022b). Finally, in the adap-100

tation stage, it utilizes the selected similar tasks to101

facilitate adaptation to the new task. The output102

of selected similar tasks is fused with that of the103

new task using learnable coefficients in every trans-104

former layer to enable forward knowledge transfer.105

This is indeed an instance of mixture-of-experts106

(Masoudnia and Ebrahimpour, 2014).107

In addition, when the model learns a new task,108

DMEA also incorporates pseudo-sample replay109

(Sun et al., 2020) to further mitigate catastrophic110

forgetting. To address the “bias to the new task” in111

the gradient update, we introduce dynamic gradi-112

ent scaling to balance the learning of the new task113

and replayed tasks. To verify the effectiveness of114

1Following Zhang et al. (2022), we use an Adapter
(Houlsby et al., 2019) as the insertable module.

DMEA, we conduct extensive experiments on vari- 115

ous generation tasks in different LSG settings. The 116

empirical results show that DMEA can consistently 117

outperform previous state-of-the-art baselines. 118

In summary, our main contributions are: 119

• To the best of our knowledge, we are the first 120

to explore solving LSG from the perspective of 121

human learning. We propose DMEA, a novel 122

method based on dynamic module expansion and 123

adaptation, to alleviate catastrophic forgetting 124

and facilitate knowledge transfer in LSG. 125

• With extensive experiments and analysis, we 126

demonstrate the effectiveness of our method com- 127

pared to existing ones in different LSG settings. 128

Our code base is available at <redacted>. 129

2 Related Work 130

Lifelong Learning (LL) aims to continually learn 131

knowledge from a sequence of tasks with different 132

distributions. The goal is twofold: alleviate catas- 133

trophic forgetting (McCloskey and Cohen, 1989) 134

of learned tasks, and facilitate knowledge transfer 135

(Lopez-Paz and Ranzato, 2017) across tasks. 136

Catastrophic forgetting typically means that the 137

model forgets previously acquired knowledge after 138

learning new tasks. Prior LL methods mainly fo- 139

cus on mitigating this problem and can be divided 140

into three categories. First, regularization-based 141

methods constrain the update of parameters that 142

are important to learned tasks to retain previous 143

knowledge (Kirkpatrick et al., 2017; Li and Hoiem, 144

2017; Zenke et al., 2017; Ritter et al., 2018). Sec- 145

ond, architecture-based methods dynamically ad- 146

just the model architecture to acquire new informa- 147

tion while preventing the forgetting of previously 148

learned tasks (Rusu et al., 2016; Chen et al., 2016; 149

Fernando et al., 2017; Madotto et al., 2021; Zhang 150

et al., 2022). Finally, memory-based methods keep 151

a number of key samples from previous tasks in 152

memory to alleviate forgetting (Rebuffi et al., 2017; 153

Shin et al., 2017; Chaudhry et al., 2019; Qin and 154

Joty, 2022). The memory data can be either real ex- 155

amples (Han et al., 2020) or generated by language 156

models (Sun et al., 2020). 157

More recently, researchers have considered ex- 158

ploring knowledge transfer in LL, i.e., learning on 159

a task can benefit from learning on another task by 160

transferring related knowledge. This includes CTR 161

(Ke et al., 2021) and CUBER (Lin et al., 2022a). 162

Despite their effectiveness, these methods mainly 163

focus on classification tasks, while generation tasks 164
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typically have more complex label space. Note165

that this line of research is different from transfer166

learning (Ruder et al., 2019), which mainly focuses167

on exploring better ways to reuse learned knowl-168

edge which is usually static, e.g., a frozen language169

model. In contrast, the acquired knowledge is con-170

tinually accumulated in lifelong learning.171

Lifelong Sequence Generation (LSG) enables the172

model to learn sequentially from a stream of gen-173

eration tasks. Sun et al. (2020) propose LAMOL174

which formalizes different types of tasks as ques-175

tion answering and utilizes pseudo-sample replay176

to alleviate forgetting. Chuang et al. (2020) fur-177

ther improve LAMOL by knowledge distillation178

(Hinton et al., 2015). AdapterCL (Madotto et al.,179

2021) inserts task-specific modules into every trans-180

former layer to learn new tasks while keeping the181

pre-trained LM and previous modules frozen. On182

the basis of AdapterCL, Zhang et al. (2022) in-183

troduce ACM which dynamically adds modules184

for learning new tasks depending on whether there185

are reusable previously inserted modules. Though186

ACM can enable knowledge transfer to some extent187

via module sharing, there is no explicit mechanism188

to encourage knowledge transfer across tasks, a189

common phenomenon of human learning.190

Summary. Existing work in LSG mainly focuses191

on mitigating the catastrophic forgetting of previ-192

ously learned knowledge while paying little atten-193

tion to knowledge transfer across tasks. In contrast194

to these lines of work, we aim to explicitly encour-195

age forward knowledge transfer in LSG inspired by196

the way humans learn (Lake et al., 2017).197

3 Problem Formulation198

LSG involves learning from a stream of sequence199

generation tasks T = (T 1, ..., T n), where every200

task T i has its own training set Di
train, validation set201

Di
valid, and test set Di

test. Every dataset D contains202

a set of examples {(Xj , Yj)}|D|
j=1, where Xj and Yj203

denote the input and output texts, respectively. At204

time step k, the model is trained on the training set205

Dk
train of task T k and has no access to real samples206

of previously learned tasks.207

After the training on Dk
train, the model is ex-208

pected to perform well on all the tasks learned so209

far, i.e., T 1, ..., T k, and will be evaluated on the210

test set Di
test of each task T i(1 ≤ i ≤ k) with corre-211

sponding evaluation metrics separately. Therefore,212

to achieve the goal of LSG, the model is required to213

alleviate the forgetting of acquired knowledge and214

better learn new patterns through possible forward 215

knowledge transfer. 216

3.1 Data Format 217

Given an input-output text pair (X,Y ) for a task, 218

the model learns to decode the output text Y af- 219

ter reading the input X . Following Zhang et al. 220

(2022), a natural language question Q describing 221

the purpose of each task (task instruction) is in- 222

serted after the input to form a triple (X,Q, Y ); 223

see Appendix A.1 for an example. To learn a new 224

task, the model is optimized to decode Y given X 225

and Q. Denoting the concatenation of X,Q and Y 226

as A, the autoregressive training objective is: 227

Ltask = −
n∑

j=m+1

log pθ(Aj |A<j) (1) 228

where n is the total number of tokens in A and 229

(A1, ..., Am) is the concatenation of X and Q, and 230

θ denotes the model parameters. 231

4 Methodology 232

Inspired by how humans learn a new task (Fig. 1), 233

DMEA divides the learning process into three stages. 234

The expansion stage (§4.1) first determines the 235

model architecture dynamically. The selection 236

stage (§4.2) then selects the top-K most similar 237

previous tasks which are utilized in the final adap- 238

tation stage (§4.3) to facilitate adaptation to the 239

new task. We also employ pseudo-sample replay 240

along with a dynamic gradient scaling method to 241

balance the learning of the new and replayed tasks. 242

4.1 Expansion Stage 243

Humans are able to determine whether previously 244

acquired skills are sufficient to solve a new task. 245

Our method DMEA aims to mimic this learning 246

process in the expansion stage. It can dynamically 247

decide whether to reuse modules of previous tasks 248

or insert a new module in every transformer layer 249

to learn novel knowledge. Inspired by Zhang et al. 250

(2022), we utilize differentiable architecture search 251

(Liu et al., 2019) to achieve this goal. 252

Specifically, assuming that there are k modules 253

(i.e., Adapter (Houlsby et al., 2019)) {ml
1, ...,m

l
k} 254

in layer l of the transformer model before learning 255

a new task T j , we temporarily insert a new module 256

ml
k+1 into this layer at the beginning of the expan- 257

sion stage. For each forward pass, after calculating 258

the output hlt of every module ml
t in the layer sepa- 259

rately, we fuse all outputs {hl1, ..., hlk+1} through 260
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Figure 2: Overview of the proposed DMEA method. In the expansion stage (left), after inserting a new module
(adapter) into each layer, DMEA dynamically determines the architecture by differentiable architecture search.
The learnable coefficients are initialized based on the cosine similarity between word frequency distributions of
learned tasks and the new task to leverage the correlation between tasks. After training, the module with the
largest coefficient in every layer is selected for the new task. Newly added modules that are not selected will be
discarded. In the selection stage (right), DMEA selects the top-K most similar previous tasks through input subspace
to facilitate adaptation to a new task. Finally, during adaptation, the output of the selected similar tasks is fused
with that of the new task in every layer to enable forward knowledge transfer. Note that only newly added modules
and modules selected for the new task are learnable modules in the expansion and adaptation stages, respectively. In
addition, DMEA introduces dynamic gradient scaling to balance the learning of the new task and replayed tasks.

learnable coefficients {λl
1, ..., λ

l
k+1} as follows.261

ĥl =
k+1∑
t=1

eλ
l
t∑k+1

s=1 e
λl
s

hlt (2)262

The weighted average ĥl is then passed to the next263

part of the model for learning. After training the264

model on Dj
train for several epochs using Ltrain (de-265

fined in §4.3), we select the module with the largest266

coefficient in every layer for the new task T j .267

Different from Zhang et al. (2022) which initial-268

ize {λl
1, ..., λ

l
k+1} with predefined hyperparame-269

ters, we propose to dynamically initialize learnable270

coefficients based on the correlation between the271

learned tasks T 1, ..., T j−1 and new task T j . De-272

noting the word frequency distribution of T i as f i273

and all previous tasks sharing the module ml
t as Z l

t ,274

the learnable coefficient λl
t is initialized as:275

λl
t =


max
T i∈Zl

t

cos(f i, fk+1), 1 ≤ t ≤ k

min
1≤i≤k

λl
i, t = k + 1

(3)276

where cos is the cosine similarity function and f i 277

is calculated based on the training set Di
train. In 278

this way, a previous module shared by tasks with 279

higher word frequency distribution similarity to the 280

new task has a larger initial coefficient, increasing 281

the tendency to reuse it. In addition, the coeffi- 282

cient λl
k+1 of the newly added module ml

k+1 is 283

initialized to the minimum value of the initial coef- 284

ficients {λl
1, ..., λ

l
k} of previously added modules 285

{ml
1, ...,m

l
k} to encourage module reuse. 286

The selected module in layer l can be either from 287

previous modules {ml
1, ...,m

l
k} or the newly added 288

one ml
k+1 and will be tuned in the adaptation stage 289

to accommodate new knowledge. We then discard 290

newly added modules that are not selected. Note 291

that only newly added modules and coefficients are 292

learnable in the expansion stage; the pre-trained 293

LM and previous modules are kept frozen. 294

4.2 Selection Stage 295

As humans, we can better acquire new knowledge 296

by recognizing and utilizing knowledge from pre- 297

viously learned tasks that are similar (Lake et al., 298
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2017). Based on the observation that the corre-299

lation between input subspaces (the norm of pro-300

jected subspace onto the other subspace) for two301

tasks can serve as a similarity measure between302

the tasks (Lin et al., 2022b), we select the top-K303

most similar previous tasks by input subspace to304

facilitate adaptation to the new task T j . The model305

architecture induced from the expansion stage is306

used for selection and adaptation.307

Similar to Saha et al. (2021), we adopt Sin-308

gular Value Decomposition (SVD) to obtain the309

input subspace of each task. After training the310

model on Dj
train for several epochs in the ex-311

pansion stage, we randomly select n samples312

{X1, ..., Xn} from Dj
train and obtain their rep-313

resentations {X1, ...,Xn} ∈ Rm by forward-314

propagating them through the network before se-315

lecting modules for T j . Following Radford et al.316

(2018), we use the final-layer representation of the317

last non-padding token in the input as the represen-318

tation of the sample.319

After obtaining the representation matrix Rj =320

[X1, ...,Xn] ∈ Rm×n for task T j , we apply SVD321

to Rj , i.e., Rj = U jΣj(V j)
′
, where U j =322

[uj
1, ...,u

j
m] ∈ Rm×m is composed of left-singular323

vectors uj
i , Σ

j ∈ Rm×n is a rectangular diagonal324

matrix with singular values on the diagonal, and325

V j = [vj
1, ...,v

j
n] ∈ Rn×n is composed of right-326

singular vectors vj
i . To obtain the input subspace327

Sj of T j , we select the first k left-singular vec-328

tors in U j to form the bases Bj = [uj
1, ...,u

j
k]329

for Sj , where k is determined by the requirement:330

||Rj
k||

2
F ≥ ϵj ||Rj ||2F with Rj

k being the k-rank ap-331

proximation of Rj , F being the Frobenius norm,332

and ϵj being a predefined threshold.333

Inspired by Lin et al. (2022b), for a new task334

T j , the norm of its subspace projection onto the335

subspace of a previously learned task T i could336

characterize the similarity Qj,i between these two337

tasks. More formally,338

Qj,i =
||ProjSi(Sj)||2

||Bj ||2
(4)339

where ProjSi(Sj) = BjBi(Bi)
′

denotes the sub-340

space projection. After getting the similarity scores341

Qj,i, 1 ≤ i < j of all previous tasks, we pick K342

tasks Tsim = (T 1, ..., T K) with the top-K highest343

scores to facilitate adaptation to the new task T j .344

4.3 Adaptation Stage345

For adaptation to T j , assume that Tall =346

(T 1, ..., T K , T j) contains a total of r modules347

{ml
1, ...,m

l
r} in layer l. During the training on 348

Dj
train using Ltrain (see Eq. (7)), for each sample 349

in Dj
train, we fuse the output hls of each mod- 350

ule ml
s ∈ {ml

1, ...,m
l
r} by learnable coefficients 351

{αl
1, ..., α

l
r} to enable forward knowledge transfer: 352

h̃l =

r∑
s=1

eα
l
s∑r

u=1 e
αl
u
hls (5) 353

The learnable coefficients {αl
1, ..., α

l
r} are equally 354

initialized to 1.0. Similar to the expansion stage, 355

the fused output h̃l is passed to the next part of the 356

model for learning. After training, the learnable 357

coefficients will be saved for inference. Note that 358

we only tune modules selected in the expansion 359

stage (can be modules of previous tasks or newly 360

added modules) and learnable coefficients while 361

keeping the pre-trained language model and other 362

modules frozen. 363

As there is no saved real sample of previously 364

learned tasks when the model adapts to a new task, 365

we also incorporate pseudo-sample replay (Sun 366

et al., 2020) to alleviate the forgetting of acquired 367

knowledge. We achieve this by simultaneously 368

training the model as a task solver (Ltask in §3.1) 369

and as a data generator. When training as a data 370

generator, the model learns to generate the triple 371

(X,Q, Y ) given a task-specific generation token 372

G as input. Then before learning a new task, the 373

model can generate pseudo samples of previous 374

tasks, which are combined with new data for train- 375

ing to mitigate forgetting. Denoting the concatena- 376

tion of G,X,Q and Y as A
′
, the data generation 377

loss is expressed as: 378

Ldata = −
m∑
i=2

log pθ(A
′
i|A

′
<i) (6) 379

where m is the total number of tokens in A
′
. The 380

overall loss that DMEA optimizes for adapting to a 381

new task is: 382

Ltrain = Ltask + µLdata (7) 383

where µ is the weight of data generation loss. 384

After the expansion stage, if the new task reuses 385

some modules of previously learned tasks, the 386

model will generate some pseudo samples of these 387

tasks and train the model using Ltrain on the combi- 388

nation of new data and pseudo data. As the model 389

has not seen new data before, the gradient norm 390

of the new task on reused modules is much larger 391
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Methods Finetune EWC LAMOL Adapter
+LAMOL AdapterCL ACM DMEA

Tune Whole Model? ✓ ✓ ✓ ✗ ✗ ✗ ✗

Pseudo-sample Replay? ✗ ✗ ✓ ✓ ✗ ✓ ✓

Similar Tasks

# 1 43.0 56.7 65.6 64.4 63.3 64.7 65.8
# 2 51.6 60.9 65.1 64.7 63.3 64.9 65.5
# 3 45.4 57.6 65.7 64.2 63.3 64.7 65.6
# 4 31.5 46.6 65.6 65.0 63.3 65.3 66.1

Average 42.9 55.5 65.5 64.6 63.3 64.9 65.8

Random Tasks

# 1 33.7 37.7 55.6 53.1 56.1 56.8 57.6
# 2 33.0 38.2 62.4 61.7 64.0 64.9 65.6
# 3 25.8 43.4 54.7 53.9 55.5 56.3 57.4
# 4 34.1 48.8 64.9 62.4 65.6 66.2 67.2

Average 31.7 42.0 59.4 57.8 60.3 61.0 62.0

Table 1: The average performance score for each task sequence after learning all tasks. We run experiments
twice with different random seeds for every sequence. Bold indicates the best score. In each scenario, DMEA
is significantly better than ACM with p-value < 0.05 (paired t-test). Note that while LAMOL is not directly
comparable to other adapter-based methods as its learnable parameters are orders of magnitude larger, DMEA still
outperforms LAMOL in most cases.

than that of replayed tasks. The learning process392

can easily be biased towards the new task which393

may affect previously acquired knowledge.394

Therefore, to balance the learning of the new395

task and replayed tasks, we introduce dynamic gra-396

dient scaling. Specifically, assuming that the new397

task T j reuses s modules {m1, ...,ms} of a pre-398

vious task T i in all layers, we randomly select q399

examples from Dj
train and pseudo samples of T i400

separately and forwards them through the model to401

obtain the gradient of T j and T i using Ltrain with402

regard to reused modules {m1, ...,ms}, denoted as403

gj and gi, respectively. The dynamic scale factor404

ηit is then calculated as:405

ηit = (
||gj ||2
||gi||2

− 1)e−t + 1 (8)406

where t is the number of completed training epochs.407

After dynamic gradient scaling, the total loss for408

jointly learning T j and T i is:409

Ltotal = Lj
train + ηitLi

train (9)410

Note that in the early stage of training, the value411

of t is small. ηt is greater than 1 to balance the412

gradient of the new task T j and the replayed task413

T i. When the model has seen enough new data in414

the late stage of training (no need to balance), ηt is415

approximately equal to 1 as the value of t is large.416

5 Experimental Setup417

In this section, we first describe investigated tasks418

and then introduce methods compared in our work.419

5.1 Tasks 420

Four representative sequence generation tasks are 421

investigated in our work: natural language genera- 422

tion, summarization, task-oriented dialogue and 423

SQL query generation. Following Zhang et al. 424

(2022), we consider two different scenarios: (i) LSG 425

on similar tasks where the model learns a sequence 426

of tasks of the same type but different domains, and 427

(ii) LSG on random tasks where the model learns 428

knowledge from different types of tasks. For LSG 429

on similar tasks, we use five different domains from 430

two natural language generation datasets (RNNLG 431

(Wen et al., 2015) and E2ENLG (Novikova et al., 432

2017)) to form the task sequences. We further incor- 433

porate summarization (CNNDM (See et al., 2017)), 434

task-oriented dialogue (MultiWOZ (Budzianowski 435

et al., 2018)) and SQL query generation (WikiSQL 436

(Zhong et al., 2017)) to form the task sequences 437

for LSG on random tasks. As the task order might 438

influence the performance, we randomly select four 439

different orders for each scenario2 (Appendix A.2). 440

For each order, we report the average of all learned 441

tasks’ performance scores following Zhang et al. 442

(2022), which could reflect whether the model can 443

alleviate catastrophic forgetting while better ac- 444

quiring new knowledge through positive forward 445

knowledge transfer; see Appendix A.3 for details 446

of task-specific evaluation metrics. 447

5.2 Methods Compared 448

Following Zhang et al. (2022), we use GPT-2 449

(Radford et al., 2019) as the backbone model and 450

2Zhang et al. (2022) sample data from the original set for
data balance. To ensure a fair comparison among all methods,
we resample new data for experiments.
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Adapter (Houlsby et al., 2019) as the insertable451

module, and compare with the following methods:452

• Finetune tunes the whole GPT-2 model only on453

the training data of the new task during the LSG454

process.455

• EWC (Kirkpatrick et al., 2017) constrains the456

update of parameters that are important to previ-457

ously learned tasks to alleviate forgetting.458

• LAMOL (Sun et al., 2020) tunes the whole GPT-459

2 model with pseudo-sample replay.460

• Adapter+LAMOL only inserts adapter modules461

for the first task and tunes these modules with462

pseudo-sample replay while keeping the back-463

bone model frozen.464

• AdapterCL (Madotto et al., 2021) inserts task-465

specific adapter modules for every new task while466

keeping the backbone model and previous mod-467

ules frozen.468

• ACM (Zhang et al., 2022) dynamically adds469

adapter modules for new tasks depending on470

whether there are reusable previous modules471

to improve the performance and parameter ef-472

ficiency of AdapterCL. It is the state-of-the-art473

on LSG.474

6 Results and Analysis475

6.1 Main Results476

Table 1 shows the average performance score for477

each task sequence after learning all tasks (see Ap-478

pendix A.5 for the performance of each task). From479

the results, we can see that DMEA outperforms pre-480

vious baselines in all LSG settings, which demon-481

strates the superiority of our method. Note that482

while the learnable parameters of LAMOL are or-483

ders of magnitude larger, DMEA still achieves better484

performance than LAMOL in 7 out of 8 runs, show-485

ing its effectiveness in LSG.486

Simply fine-tuning the model with new samples487

leads to poor performance due to catastrophic for-488

getting. Although EWC adopts Fisher information489

matrix to alleviate forgetting, its performance is490

still much worse than other memory-based base-491

lines, indicating the importance of pseudo-sample492

replay. When learning from a sequence of simi-493

lar tasks, Adapter+LAMOL performs better than494

AdapterCL as AdapterCL applies parameter iso-495

lation to different tasks which might prevent pos-496

itive knowledge transfer across tasks. However,497

this is not the case when learning from random498

Method Similar Tasks Random Tasks

DMEA 65.8 57.4
w.o. transfer 64.9 56.6
w.o. scaling 65.5 56.9
w.o. initialization 65.4 57.1
w.o. replay 48.3 52.2

Table 2: The average performance score for different ab-
lations: (i) without forward knowledge transfer, (ii) with-
out dynamic gradient scaling, (iii) without dynamic ini-
tialization, and (iv) without pseudo-sample replay. All
components improve the performance of our method.

tasks: AdapterCL achieves much better results than 499

Adapter+LAMOL as AdapterCL can avoid catas- 500

trophic forgetting by assigning different learnable 501

parameters to each task. The performance of ACM 502

is superior to Adapter+LAMOL and AdapterCL 503

in both scenarios, showing the effectiveness of 504

its adaptive compositional architecture. However, 505

ACM has no explicit mechanism to encourage for- 506

ward knowledge transfer in LSG, which is actu- 507

ally the human learning paradigm. Our proposed 508

DMEA consistently outperforms ACM by dynami- 509

cally leveraging previously acquired knowledge to 510

facilitate adaptation to new tasks. 511

6.2 Ablation Study 512

We conduct several ablations to analyze the con- 513

tribution of different components of DMEA. In 514

particular, we investigate four variants of DMEA 515

(a) without selecting similar previous tasks for for- 516

ward knowledge transfer (w.o. transfer), (b) re- 517

moving dynamic gradient scaling (w.o. scaling), 518

(c) without dynamically initializing learnable co- 519

efficients (w.o. initialization), and (d) removing 520

pseudo-sample replay (w.o. replay). For each sce- 521

nario, i.e., similar tasks or random tasks, we ran- 522

domly pick one sequence for experiments. Table 2 523

reports the average performance score after learn- 524

ing all tasks for different ablations. 525

From the results, we can observe that all compo- 526

nents contribute to the average performance. Re- 527

moving forward knowledge transfer leads to a sig- 528

nificant performance drop in both scenarios, in- 529

dicating that selecting top-K most similar previ- 530

ous tasks can indeed discover and transfer useful 531

learned knowledge to facilitate adaptation to the 532

new task. The adoption of dynamic gradient scal- 533

ing yields a moderate performance boost as it can 534

balance the learning of the new task and replayed 535

tasks to mitigate catastrophic forgetting. Dynamic 536

initialization of learnable coefficients also facili- 537

tates performance improvement, demonstrating the 538
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Time Step AdapterCL ACM DMEA

Similar

2 55.8(+0.0) 56.0(+0.1) 56.3(+0.3)
3 58.6(+0.0) 59.1(+0.4) 59.5(+0.6)
4 61.2(+0.0) 62.5(+0.6) 63.2(+0.9)
5 63.3(+0.0) 64.7(+0.3) 65.8(+1.0)

Random

2 55.4(+0.0) 56.3(+0.9) 57.1(+2.1)
3 58.4(+0.0) 58.9(+0.3) 59.7(+1.3)
4 64.0(+0.0) 64.3(+0.7) 65.4(+1.4)
5 64.0(+0.0) 64.9(+0.6) 65.6(+1.1)

Table 3: The average performance score and forward
knowledge transfer (FKT) of different methods at every
time step. FKT is reported in parentheses.

effectiveness of leveraging the similarity of word539

frequency distributions between tasks. Without540

pseudo-sample replay, the performance score drops541

more than 5% due to the severe forgetting of previ-542

ously acquired knowledge.543

6.3 Further Analysis544

Quantify Forward Knowledge Transfer. Fol-545

lowing Ke et al. (2020), we define metrics quanti-546

fying forward knowledge transfer (FKT) at every547

time step t as:548

FWT =
1

t− 1

t∑
i=2

Ri,i − d̄i. (10)549

where Ri,j is the performance score on T j after550

learning T i and d̄i refers to the performance of551

training T i individually, which is actually the re-552

sult of AdapterCL. For each scenario, we randomly553

select one sequence for analysis and report the av-554

erage performance score along with FKT at each555

step in Table 3. From the results, we can see that556

DMEA consistently outperforms ACM in terms of557

the average performance score and FKT at all steps,558

demonstrating that DMEA can better facilitate posi-559

tive knowledge transfer.560

Input Subspace vs. Other Similarity Metrics.561

The ablation (w.o. transfer) in §6.2 demonstrates562

the importance of selecting similar learned tasks.563

To further investigate whether different similarity564

metrics influence the performance of DMEA, we565

conduct controlled experiments with two new met-566

rics: (a) cosine similarity of word frequency dis-567

tributions between different tasks (frequency), and568

(b) cosine similarity of the representations of se-569

lected samples from different tasks3 (representa-570

tion). For each scenario, we use the same sequence571

as §6.2. From the results in Table 4, we can ob-572

serve that selecting similar previous tasks by input573

3For a pair of tasks, we compute the cosine similarity for
every representation pair and use the average as the similarity.

Metrics Similar Tasks Random Tasks

Input Subspace 65.8 57.4
Frequency 65.3 57.0
Representation 65.2 57.0
w.o. transfer 64.9 56.6

Table 4: The average performance score using different
similarity metrics.

Order 1 Order 2 Order 3 Average60.0

60.5

61.0

61.5

62.0
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DMEA ACM

Figure 3: The average performance score for every order
after learning all 8 tasks of the longer sequence.

subspace consistently outperforms using other sim- 574

ilarity metrics, demonstrating its superiority. 575

Longer Sequence. As mentioned in §5.1, we 576

mainly conduct experiments on sequences consist- 577

ing of 5 tasks following Zhang et al. (2022). To 578

verify whether DMEA can still outperform the base- 579

lines when learning from a larger number of tasks, 580

we further combine all tasks investigated in this 581

work to form a longer sequence of 8 tasks. We eval- 582

uate ACM and DMEA on this longer sequence with 583

3 different orders and report the average perfor- 584

mance score for each order after learning all tasks 585

in Fig. 3. We can see that DMEA is still superior to 586

ACM when learning from longer sequences. 587

In addition, we report results on other types of 588

tasks and evaluate the quality of pseudo data in 589

Appendix A.6 and A.7, respectively. 590

7 Conclusion 591

In this work, we have introduced DMEA for life- 592

long sequence generation (LSG). DMEA uses task 593

correlations to dynamically determine the suitable 594

architecture required to acquire novel knowledge 595

of a new task and select the most similar previous 596

tasks through input subspace to facilitate knowl- 597

edge transfer. It uses pseudo-sample replay along 598

with dynamic gradient scaling to balance the learn- 599

ing of the new task and replayed tasks to further 600

alleviate forgetting. With extensive experiments 601

and analysis we have shown that DMEA consis- 602

tently outperforms previous methods in different 603

LSG settings. In the future, we would like to inves- 604

tigate ways to improve the quality of pseudo data 605

and explore more metrics for task similarity. 606
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Limitations607

Although effective, DMEA has couple of limita-608

tions:609

• DMEA mainly focuses on the setting where every610

task has plenty of training samples. In contrast,611

humans can easily learn to perform new tasks612

with only few data, which is a hallmark of human613

intelligence. We leave how to explore lifelong614

sequence generation in few-shot settings as future615

work.616

• DMEA does not consider machine translation, a617

sequence generation task that might involve vo-618

cabulary changes. One potential solution is to619

use multilingual pre-trained language models.620
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.745
2017. The E2E dataset: New challenges for end-746
to-end generation. In Proceedings of the 18th An-747
nual SIGdial Meeting on Discourse and Dialogue,748
pages 201–206, Saarbrücken, Germany. Association749
for Computational Linguistics.750

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya751
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A Appendix875

A.1 Task Instruction Example876

Following Zhang et al. (2022), we insert a natural877

language question describing the purpose of every878

task (task instruction) after the input of each sample.879

Fig. 4 shows an example of the task instruction for880

E2ENLG (Novikova et al., 2017).881

name[The Vaults], eatType[pub], priceRange[moderate], 
customer rating[1 out of 5], near[Caf Adriatic] what is 
the natural language form? A moderately priced pub, 
named The Vaults, is located near Caf Adriatic. It has a 
customer rating of 1 out of 5.

Figure 4: An example of the task instruction for
E2ENLG. We color the task instruction in blue.

Order Task Sequence

Similar Tasks

# 1 e2e� res� hotel� tv� laptop
# 2 e2e� tv� res� laptop� hotel
# 3 res� hotel� e2e� laptop� tv
# 4 laptop� hotel� res� tv� e2e

Random Tasks

# 1 mwoz� cnn� e2e� res� hotel
# 2 e2e� sql� hotel� mwoz� res
# 3 cnn� hotel� sql� e2e� mwoz
# 4 e2e� mwoz� laptop� sql� tv

Table 5: Different task orders for each scenario. ‘e2e’
stands for E2ENLG. ‘res’, ‘hotel’, ‘laptop’ and ‘tv’
are four domains in RNNLG (restaurant, hotel, laptop
and television). ‘sql’, ‘cnn’ and ‘mwoz’ respectively
stand for ‘WikiSQL’ (SQL query generation), ‘CN-
NDM’ (summarization) and ‘MultiWOZ’ (task-oriented
dialogue).

A.2 Task Orders 882

We present different task orders for two LSG sce- 883

narios in Table 5. 884

A.3 Task-specific Evaluation Metrics 885

We report details of task-specific evaluation metrics 886

in Table 6. 887

A.4 Implementation Details 888

All methods are implemented with Py- 889

Torch/Transformers library (Wolf et al., 2020). 890

We adopt AdapterHub (Pfeiffer et al., 2020) to 891

implement adapter modules. For hyperparameters, 892

we mainly follow the settings in (Zhang et al., 893

2022) to have a fair comparison. In the expansion 894

stage, we train the model for 6 epochs before 895

selecting modules. In the adaptation stage, we set 896

the number (n) of samples selected to obtain the 897

input subspace as 100. The threshold ϵ is set as 898

0.95 for selecting left-singular vectors. We adopt 1 899

for the number of similar tasks K. For dynamic 900

gradient scaling, we set 100 for the number (q) of 901

examples selected to calculate the gradient. 902

A.5 Performance of Each Task 903

Table 7 shows the performance of each task for 904

every task sequence after learning all tasks. 905
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Dataset Metric

RNNLG
A-RGE2ENLG

CNNDM
WikiSQL lfEM
MultiWOZ dsEM

Table 6: Details of task-specific evaluation metrics. ‘A-
RG’, ‘lfEM’ and ‘dsEM’ respectively stand for ‘average
of ROUGE-1, ROUGE-2 and ROUGE-L scores’, ‘exact
match of logical forms’ and ‘exact match of dialogue
state’.

name[The Cricketers], eatType[restaurant], food[French], 
priceRange[moderate], near[Rainbow Vegetarian Cafe] what 
is the natural language form? The Cricketers is a French 
restaurant next to the Rainbow Vegetarian Cafe with 
moderate prices and a French taste.

High-quality Data

the table has columns week number, date, opponent, result, 
record and key words max, min, count, sum, avg, =, >, <, op, 
select, where, and, col, table, caption - - who the opponent was 
on the weekend where the record was 0 – 0? what is the 
translation from english to sql? select opponent from table 
where record = 0

Noisy Data

Figure 5: Some examples of generated pseudo data. We
color the task instruction in blue and output text in gray.
Missing/wrong information is colored in red.

A.6 Other Types of Tasks906

To explore whether the performance gain of DMEA907

is consistent on other types of tasks, we further908

include three new tasks: sentiment analysis (SST909

(Socher et al., 2013)), semantic role labeling (SRL910

(He et al., 2015)) and question answering (SQuAD911

(Rajpurkar et al., 2016)). We randomly select two912

tasks from the original task set three times and913

combine them with new tasks to form three task914

sequences. From the results shown in Table 8, we915

can observe that DMEA performs better than ACM916

on all sequences, showing its robustness to task917

types.918

A.7 Quality of Pseudo Data919

The ablation study in §6.2 demonstrates the impor-920

tance of pseudo-sample replay. We further show921

several pseudo samples generated by DMEA in922

Fig. 5. We can see that DMEA can indeed gen-923

erate high-quality pseudo samples to mitigate the924

forgetting of previously learned knowledge. How-925

ever, the generated pseudo data could also be noisy926

as shown at the bottom of the figure, which might927

Similar #1 e2e res hotel tv laptop Avg

ACM 49.6 65.5 65.8 71.6 71.0 64.7
DMEA 49.2 67.1 68.1 72.5 72.0 65.8

Similar #2 e2e tv res laptop hotel Avg

ACM 48.7 74.0 64.4 72.6 65.0 64.9
DMEA 47.8 74.7 64.9 74.0 65.9 65.5

Similar #3 res hotel e2e laptop tv Avg

ACM 65.8 67.6 48.6 72.0 69.6 64.7
DMEA 66.9 66.6 49.5 73.9 71.1 65.6

Similar #4 laptop hotel res tv e2e Avg

ACM 72.8 66.6 66.9 72.4 47.5 65.3
DMEA 74.5 67.6 67.3 72.9 48.0 66.1

Random #1 mwoz cnn e2e res hotel Avg

ACM 81.7 26.1 47.6 64.6 64.2 56.8
DMEA 81.7 26.6 48.2 65.8 65.5 57.6

Random #2 e2e sql hotel mwoz res Avg

ACM 48.4 62.7 64.6 84.8 64.0 64.9
DMEA 48.7 64.9 64.9 84.9 64.6 65.6

Random #3 cnn hotel sql e2e mwoz Avg

ACM 26.3 63.2 62.1 47.8 82.4 56.3
DMEA 26.6 65.0 63.3 48.2 83.8 57.4

Random #4 e2e mwoz laptop sql tv Avg

ACM 48.6 80.5 70.3 63.5 68.2 66.2
DMEA 48.9 82.6 71.4 64.1 68.9 67.2

Table 7: The performance of each task for every se-
quence after learning all tasks.

Method Sequence Average
(i) (ii) (iii)

ACM 68.4 63.6 71.8 67.9
DMEA 69.5 64.4 73.0 69.0

Table 8: The average performance score for every se-
quence after learning all new types of tasks.

hinder further performance improvement. 928

A.8 Hyperparameter Search 929

We select the number of training epochs before 930

modules selection from {6, 9, 12}, the number (n) 931

of samples picked to obtain the input subspace from 932

{50, 100, 200, 500} and the threshold ϵ for select- 933

ing left-singular vectors from {0.90, 0.95, 0.99}. 934

The number of similar previous tasks K is selected 935

from {1, 2, 3}. The number (q) of examples for cal- 936

culating the gradient in dynamic gradient scaling 937

is selected from {20, 50, 100, 200}. 938
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