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Abstract

Real-life test-time decision making frequently ne-
cessitates the acquisition of additional features,
which can often be costly. For instance, diagnos-
ing a patient may require conducting laboratory
tests or performing imaging scans. The acquisition
of these potentially expensive features on a per-
instance basis enables the efficient and effective
allocation of resources. However, existing acquisi-
tion functions often pose computational challenges,
necessitating the use of approximations. To address
this issue, we introduce MEASURES, a framework
for test-time active feature selection. Our approach
harnesses the tractability and expressive efficiency
of Probabilistic Circuits (PCs), a class of deep
tractable probabilistic models, to compute other-
wise intractable acquisition functions. Our exper-
iments demonstrate the superior effectiveness of
tractable acquisition functions compared to exist-
ing approaches.

1 INTRODUCTION

Consider the task of diagnosing a patient with diseases.
Healthcare personnel typically rely on easily acquirable at-
tributes of the patient, such as age, body mass index (BMI),
and current symptoms, to initiate the diagnostic process.
Subsequently, they might conduct specific medical examina-
tions or ask targeted questions about the patient’s condition
to assist in the diagnosis. These medical examinations and
questions are tailored to each patient, enabling efficient
diagnoses without the need for wasteful examinations or
irrelevant questions. Moreover, obtaining all possible fea-
tures, including examinations and questions, would be both
prohibitively expensive and potentially unnecessary. Taking
inspiration from this scenario, the test-time active feature
selection (AFS) [9] problem aims to automate this tailored

feature selection process while adhering to a predefined
budget.

In this work, we propose a novel test-time AFS framework,
MEASURES, based on the expected variance (EV) of a clas-
sifier w.r.t to a joint distribution over the complete set of
observable features. While the computation of this metric is
intractable for arbitrary pairs of classifiers and joint models,
we leverage the tractability and expressiveness of Probabilis-
tic Circuits (PCs) - a class of deep tractable probabilistic
models - to render this computation tractable. Our contribu-
tions can be summarized as follows: (1) We propose EV as
a novel acquisition function for test-time AFS. (2) We pro-
pose an algorithm for exactly computing variance VAR of
an omni-compability probabilistic classifier w.r.t a smooth
and decomposable PC (see sections 3 and 4). (3) We evalu-
ate our proposed approach on the MNIST dataset and show
its superior effectiveness over four simple baselines.

2 RELATED WORK

Active Feature Selection (AFS): Active feature selection
is an important problem that has been studied extensively
along with related problems such as Active Feature Acquisi-
tion (AFA) [13] and Active Feature Elicitation (AFE) [10].
In the AFS setting, the goal is to select features to acquire
during test-time that optimize an objective that is often used
as a proxy for test set accuracy. Notably, we assume the
presence of an immutable classifier initially, and our focus
is solely on selecting features that would most effectively
enhance the model’s prediction. Lewenberg et. al. [7] tackle
the active survey problem, wherein the task is to sequen-
tially select the next survey question to ask. Ma et. al. [9]]
tackle the problem of active variable selection, wherein they
sequentially select the next variable based on the current
(partial) set of observed variables. Our work differs from
this in that we propose a greedy feature selection algorithm
instead of employing an RL-based dynamic feature selector.

Probilistic Circuits(PC): Probabilistic circuits (PCs) [2]
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are computational graphs with sums, products and tractable
distributions as operations. Imposing structural constraints
on PCs allows for tractable computation of various prob-
abilistic queries such as marginals (MAR), conditionals
(CON), maximum a posteriori probability (MAP) etc. They
have garnered great interest over the last decade due to their
expressiveness and tractability. Recently, Vergari et. al. [[14]]
proposed a characterization of the tractability of simple PC
transformations —sums, products, quotients, powers, loga-
rithms, and exponentials—in terms of sufficient structural
constraints of the circuits. Our work builds upon this to
characterize and construct tractable PCs for tractable com-
putation of acquisition functions for the test-time active
feature selection (AFS) task. In this regard, our work closely
relates to Khosravi et. al. [3]]. They consider the necessary
structural constraints for tractable computation of moments
of a PC w.r.t another PC. Our work differs from theirs in
that we consider different structural constraints and apply it
to the test-time AFS task.

Algorithm 1 MEASURES

Input: Observed variables z, classifier /, PC P modeling
probability distribution Pr over variables X, budget B

Output: Set of features Z to observe

7+ 0
1: fori=1..B do

2:  z; + argmin, ComputeEV (x, F,P, z,5)
3: Z +— Z Uz

4: Eu — Eu\Zl

5 E,+ E,U z

6: end for

3 PRELIMINARIES

In this section, we introduce PCs and their relevant structural
properties.

We adapt the following definition of PCs from Peharz et.
al. [[L1].

Definition 1. (Probabilistic Circuit). Given a set of random
variables X, a PC is a tuple(G, 1), where G is a directed
acyclic graph (DAG) with vertices V and edges E and
Y : V — 2% is the scope function, a mapping from each
node to a subset of X. The scope of any internal node
N € V equals the union of the scopes of its children, i.e.
Y(N) = Unrecn(n)y¥(N'). Each leaf node of G computes
a probability density over its scope. All internal nodes of G
are either sum nodes (S) or product nodes (P). A sum node
S computes a convex combination of its children, i.e. S =
Y nveen(s) Ws,N' N and VN' € ch(S)ws,ns > 0. A sum
node is said to be normalized if the weights of its children

addup 10 1, i.e. 3 nvcop(s) Ws,n' = 1. A product node P
computes a product of its children, i.e. P = HN,ECh(P) N’

PCs can be interpreted as neural networks where input lay-
ers compute non-linear functions as probability densities
over subsets of X and all internal nodes compute either
affine combinations or products of their inputs. Inputs to
each node N are limited to its scope (V). Imposing addi-
tional structural constraints on the computational graph G of
a PC allows tractable computation of various probabilistic
queries such as marginals, conditionals, Maximum A Poste-
riori (MAP) estimates as well as tractable representations
of circuit operations such as products of PCs. Next, we will
introduce the structural constraints relevant to our work.

Definition 2. (Decomposability). A product node P is
decomposable if the scope of its children are pairwise
disjoint i.e. YN, N' € ch(P),N # N' it holds that
Y(N)NY(N') = 0. A PC is decomposable if all its product
nodes are decomposable.

Decomposability is a desirable property as it allows for
tractable computation of marginals [12} 2]. Essentially, de-
composability allows for integrals at product nodes to be
computed as the product of integrals of its children. This,
when applied recursively, necessitates integrals to be com-
puted only at the leaves, which we assume to be tractable.

Definition 3. (Smoothness). A sum node S is smooth if the
scope of its children are the same i.e. VN, N' € ch(S) it
holds that (N) = ¢¥(N'). A PC is smooth if all its sum

nodes are smooth.

While smoothness is not required for tractable computation
of marginals, smooth and normalized sum nodes afford
well-defined probabilistic semantics to PCs. Smooth and
decomposable PCs are also known as sum-product networks
(SPNs) [12].

Smoothness and decomposability ensure that PCs can com-
pute marginals tractably but more advanced circuit opera-
tions such as tractable representation of products of PCs,
which is required for computation of moments of distribu-
tions, as we consider in this work, still remain intractable
for arbitrary smooth and decomposable PCs.

Definition 4. (Compatability). Two smooth and decompos-
able circuits P and () are compatible if any pair of product
nodes N € P and M € Q with the same scope can be rear-
ranged into compatible binary products that decompose the
same way i.e. p(N;) = (M;), N; and M; are compatible
for some rearrangement of the children of N into N1, No
and M into My, Ms. A smooth and decomposable circuit is
omni-compatible if it is combatible with all decomposable
circuits.



4 MEASURES

In our AFS setting, we are given two models over variables
(X, y) 1. a generative model P modeling the joint proba-
bility Pr(X,y) and 2. a classifier 7 modeling Pr(y|X).
At test-time, we are given a data instance with partially ob-
served set of features x C X and we aim to select the next
feature to observe such that an acquisition function is maxi-
mized. We will introduce other notations in the remainder
of the paper, as necessary.

First, we introduce the notion of variance of F w.r.t P when
x is observed for a data instance:

Definition 5. Variance of a classifier F w.r.t a joint distri-
bution Pr when a partial set of features x are observed is
defined as follows:

VARPT[fa X] = EmNPr(m\z)[]:(Xm)Q]
- [EmNPr(m\x)f(Xm)]z

We propose selecting the feature that maximizes the reduc-
tion in the variance of F after it is observed. Intuitively,
continuing with the medical example, we want to perform
the laboratory test on a patient, knowing the results of which,
a diagnosis can be made irrespective of the results of any
other tests.

Given: A classifier F, a probability distribution Pr over X
and a set of partially observed features x for an instance

To Do: Identify the next feature z € X\x that leads to the
largest decrease in the variance of the prediction for zx.

argmax VARp,.[F,x] — VAR p,.[F, xz]

= arg min VAR p, [ F, x2]

However, in real-world situations we do not know the value
of z while computing the above metric for each candidate
feature being considered. So, we propose to use its expected
value instead, as defined below,

Definition 6. Expected variance (EV) of a classifier F w.r.t
a joint distribution Pr for an unobserved feature z is defined
as follows

EVp,.[F,x, 2] = E. pr(zjx) VAR P, [F, x2]

Thus, our objective becomes,
arg max VAR p,[F, x| — EVp,[F, x, 7]

= argmin EVp, [F,x, 7]

Algorithm 2 ComputeEV

Input: Observed variables x, classifier F represented as a
PC, PC P modeling probability distribution Pr over
variables X, candidate feature z, sample size S

Output: EVp,[F,x, 2]

EV <0
1: fori=1...S do
2:  z~ Pr(zlx)
3 PCpyy +— MULTIPLY(P,F)
4:  PCpp, + MULTIPLY(PCy,, F)
5 mePT(mlxz) PChp, (xzm)dm  —
[mePr(m\xz) PCMI (sz)de
6: FEV « FEV +Var
7: end for
8: BV « E—SV
Return: £V

Var <

Unfortunately, computation of VAR[F, x| for arbitrary F
and P is intractable [4]]. This is true for even relatively
simple models, such as when P is a naive Bayes model and
F is a logistic regression model. Khosravi et. al. [4] propose
using compatible logical circuits and regression circuits
to ensure tractable computation of higher moments of F
w.r.t. P. In this work, we propose using an omni-compatible
circuit  and a smooth and decomposable circuit P instead.

Theorem 1. The o moment of an omni-compatible circuit
F over X comprising a sum unit with k inputs w.r.t a smooth
and decomposable circuit P can be computed in O(k*|p|)
time and space.

Corollary 1.1. Variance of an omni-compatible circuit F
over X comprising a sum unit with k inputs w.r.t a smooth
and decomposable circuit P can be computed in O(k?|p|).

This follows direcly from Theorem T}

Theorem 2. Computing the expected variance of an omni-
compatible circuit F over X comprising a sum unit with
k inputs w.r.t a smooth and decomposable circuit P is #P-
hard.

We present all proofs in the appendix [A.T]

In order to address the intractability of computing EV, we
propose sampling x; ~ Pr(z;|z) and using the sample
EV as an approximation for it. Algorithm ] presents MEA-
SURES. It takes as input x, F, P and budget B. Then,
in each iteration, it greedily acquires feature z; that min-
imizes EV p,.[F, X, z;] and adds it to the observed set of
features. Algorithm [2] is used to compute approximate
EV p,[F,x, 2] by sampling z ~ Pr(z|x) S times and com-
puting VAR exactly in each sampling iteration. For details



on the MULTIPLY algorithm we defer the readers to
Vergari et. al. [14].

S EXPERIMENTAL EVALUATION

Our experiments explicitly aim at answering the following
questions,

Q1: Does the proposed MEASURES approach effectively
select features for each instance at test-time?

Q2: How do MEASURES variants of acquisition functions
compare to their sampled approximations?

We evaluate our proposed approach on the MNIST
dataset [6]] where bottom half of each image at test-time
is observed and the task is to select the best set of features
from the top-half of the image while adhering to a bud-
get. We evaluate the approaches using 3 different selection
budgets of 0.1, 0.3 and 0.5 as proportion of unobserved
features.

As shown in Vergari et. al.[14], an additive ensemble of
regression trees can be represented as an omni-compatible
circuit. We choose an ensemble of gradient boosted trees as
F. Additionally, we choose Einsum Networks [11], a class
of smooth and decomposable PCs, as P. This combination
allows for expressive models while retaining tractability of
VAR computation.

Table |1 presents prediction accuracy on MNIST dataset,
comparing our proposed approach MEASURES to 4 base-
lines, 1. Random feature selection, 2. Using a fixed set of
best features to acquire for all instances, as determined by
feature importance w.r.t the classifier. For gradient boosted
trees the feature importance is considered proportional to the
total number of times a feature is split on in the ensemble of
trees, 3. K LD - Features z; with highest KL-divergence [5]]
between Pr(m|x) and Pr(m/|xz;), where m = X\x and
m’ = X\{x U z;} and 4. SampleEV - Features with the
lowest sample expected variance in the output of the classi-
fier. Clearly, MEASURES performs significantly better than
all our baselines across the 3 budgets. We speculate that
the poor performance of SampleEV is due to the sam-
pling required for computation of sample variance which
MEASURES overcomes by enabling tractable computation
of variance.

6 CONCLUSION

In this work we present MEASURES, a novel strategy for
test-time AFS that involves exact computation of the vari-
ance of a probabilistic classifier w.r.t a tractable joint model
- in this case, a smooth and decomposable PC. Through
our experiments on the MNIST dataset across 3 different
selection budgets we show that MEASURES outperforms 4

Strategy 0.1 | 03 | 05
Random 0.68 | 0.83 | 0.94
SING 0.72 | 0.86 | 0.95
KLD 0.79 | 0.88 | 0.96
SampleEV 0.67 | 0.83 | 0.92
MEASURES (Ours) | 0.81 | 0.91 | 0.96

Table 1: Prediction accuracy on MNIST dataset using a
greedy selection strategy (when applicable) and for 3 acqui-
sition budgets: 0.1, 0.3 and 0.5. We compare our proposed
approach MEASURES to 4 baselines: random feature acqui-
sition (Random), single best set of features to acquire for
all instances (SING), feature z; that maximize the expected
KL-Divergence between Pr(m|x) and Pr(m’|xz;), where
m and m’ represent the set of unobserved features and sam-
ple variance based feature acquisition (SampleEV)

baselines significantly. As far as we are aware, this is the
first work that leverages tractable computation of advanced
probabilistic queries such as variance of classifiers through
PCs for the task of test-time AFS.

Our future research directions include validating our pro-
posed approach on additional datasets, including real-world
medical datasets. We also plan to compare our method
against stronger AFS baselines [9, [1]], explore the use of
tractable computation for measures like KL-divergence in
the context of test-time AFS, and compare them against
their approximate variants. Additionally, we aim to incor-
porate MEASURES within existing RL-based AFS frame-
works [[13}[8]].
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A APPENDIX
A.1 THEORETICAL RESULTS

Theorem 1. The o' moment of an omni-compatible circuit
F over X comprising a sum unit with k inputs w.r.t a smooth
and decomposable circuit P can be represented as a smooth
and decomposable circuit constructed in O(k*|p|) time and
space.

Proof. We use the known result that the product of an omni-
compatible circuit 7 over X comprising a sum unit with &
inputs w.r.t a smooth and decomposable circuit P can be rep-
resented as a smooth and decomposable circuit constructed
in O(k|p|) time and space, where |p| is the size of the cir-
cuit P[14]]. Subsequently, F*.P can be represented as a
smooth and decomposable circuit constructed in O(k*|p|)
time and space. Finally, the a-th moment of F can be com-
puted through a marginal query over F“.P in linear time in
the size of the circuit. O

Theorem 2. Computing the expected variance of an omni-
compatible circuit F over X comprising a sum unit with
k inputs w.r.t a smooth and decomposable circuit P is #P-
Hard.

Proof. Let F be an omni-compatible circuit over X com-
prising a sum unit with %k inputs and P be a smooth and
decomposable PC. We denote the a-th moment of F w.r.t
P as M%(F) and F*.P as PCyy,. Using Theorem|[I] we
know that PC'y,, is smooth and decomposable.

Now, consider the following # P— H ard problem: Let p and
q be two decomposable circuits over variables X. Comput-
ing their product m(X) = p(X).¢q(X) as a decomposable
circuit is #P — Hard.

Using this result, we see that representing the product
of marginal PCs Mar(PCyy, ).Mar(PChy, ) as a smooth
and decomposable PCs, which is required for computing
EVp.(F,x,z), is #P — Hard, rendering our expected
variance problem # P — Hard. U
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