
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

G-SPARC: SPECTRAL ARCHITECTURES TACKLING
THE COLD-START PROBLEM IN GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs play a central role in modeling complex relationships across various do-
mains. Most graph learning methods rely heavily on neighborhood information,
raising the question of how to handle cold-start nodes — nodes with no known
connections within the graph. These models often overlook the cold-start nodes,
making them ineffective for real-world scenarios. To tackle this, we propose G-
SPARC, a novel framework addressing cold-start nodes, that leverages general-
izable spectral embedding. This framework enables extension to state-of-the-art
methods making them suitable for practical applications. By utilizing a key idea of
transitioning from graph representation to spectral representation, our approach is
generalizable to cold-start nodes, capturing the global structure of the graph with-
out relying on adjacency data. Experimental results demonstrate that our method
outperforms existing models on cold-start nodes across various tasks like node
classification, node clustering, and link prediction. G-SPARC provides a break-
through built-in solution to the cold-start problem in graph learning. Our code will
be publicly available upon acceptance.

1 INTRODUCTION

Graphs have advanced deep learning techniques across various domains, enabling tasks such as
node classification, node clustering, and link prediction (Kipf & Welling, 2016a; Battaglia et al.,
2018; LeCun et al., 1989; Yao et al., 2019; Chen et al., 2019). By incorporating both node features
and structural relationships, graph-based models address complex relational patterns that traditional
methods struggle to capture, positioning graph learning at the center of modern machine learning.

A major, yet often overlooked, challenge in graph learning is generalizing to nodes that emerge
without initial connections. This scenario frequently occurs in real-world applications but is poorly
addressed by existing methods. This issue, commonly referred to as the cold-start problem, is
particularly crucial in dynamic environments where new nodes regularly appear without any links.
For instance, on social media platforms, new users often join without any initial connections or
followers. Despite having detailed profiles, these users do not have the connections that graph-
based methods rely on to make predictions. As real-world graphs are not static; they are constantly
evolving as new nodes may appear without connections, necessitating models that can adapt to these
changes.

While state-of-the-art methods, such as message-passing (Gilmer et al., 2017; Wu et al., 2020),
graph convolutional networks (Kipf & Welling, 2016b; Chiang et al., 2019), and graph transformers
(Chen et al., 2022; Fu et al., 2024), excel on benchmark datasets, they fall short when applied to
real-world scenarios that involve cold-start nodes. These models heavily rely on the neighborhood
information, leaving a significant gap in their ability to make accurate predictions for cold-start
nodes. This limitation represents a major obstacle to deploying graph-based solutions in practical
settings.

To address the limitations of traditional graph learning methods, we leverage a fundamental con-
cept in graph theory by transitioning from a graph representation defined by the adjacency matrix to
its spectral representation captured through the eigenvectors of the Laplacian matrix. Spectral em-
bedding represents the location of the node in the manifold coordinate system (Lafon et al., 2006;
Belkin & Niyogi, 2003). We infer neighborhood from the spectral embedding for cold-start nodes,
bypassing the need for explicit adjacency information.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our approach uses a generalizable spectral embedding framework that provides spectral embedding
for the cold-start nodes allowing isolated nodes to be seamlessly integrated into the graph struc-
ture. Our approach involves training a neural network to map node features to their corresponding
spectral embeddings. During training, adjacency information is used to guide this mapping, but the
model is generalizable to cold-start nodes during inference when no connections are available. This
parametric mapping enables us to compute spectral embeddings that reflect the graph’s underlying
structure, even in the absence of adjacency data for the cold-start nodes.

In this paper, we propose a novel spectral-based framework specifically designed to handle cold-
start node predictions across multiple downstream tasks. Rooted in spectral theory, our architectures
leverage generalizable spectral embeddings to support a wide range of graph learning applications.
We demonstrate the effectiveness of our framework across three key applications: node classifica-
tion, node clustering, and link prediction. Our contributions address a critical gap in the current
landscape of graph learning and offer a key extension for current methods to handle cold-start nodes
making them suitable for real-world applications. Our framework is adaptable and can be seamlessly
integrated into existing and future graph learning models to support cold-start nodes. Additionally,
we show that our generalizable spectral embedding can be used for graph partitioning, enabling an
effective mini-batching strategy that is well-suited for GCN methods.

2 RELATED WORK

In graph machine learning, most state-of-the-art algorithms assume the graph structure is fixed (e.g.
Kipf & Welling (2016b); Veličković et al. (2017); Hamilton et al. (2017a); Xu et al. (2018); Gasteiger
et al. (2018); Wu et al. (2019); Chiang et al. (2019); Chen et al. (2022); Thorpe et al. (2022); Mo
et al. (2022); Liu et al. (2023)), thereby bypassing the cold-start problem. While these algorithms are
effective on benchmark datasets, they are limited to real-world applications, where new cold-start
nodes are common, making it crucial to develop models that can handle evolving graphs.

While the issue of cold-start nodes is often overlooked, few methods have been developed to ad-
dress similar problems (Liu et al., 2020; 2021; Rong et al., 2019; Zhao et al., 2022; Hu et al., 2022),
focusing on tail nodes - nodes with low-connectivity. A few methods specifically developed for han-
dling cold-start scenarios include GraphSAGE (Hamilton et al., 2017a) and Cold-Brew (Zheng et al.,
2021). Cold-Brew introduces a distillation technique where a trained ”teacher” GCN model imparts
knowledge to a ”student” model, enabling the student to predict the low-dimensional embedding
learned by the teacher. GraphSAGE learns a cluster-based representation of the graph by aggre-
gating features from neighboring nodes to create an inductive representation. Unlike these methods
that focus on representing the graph’s structure, our approach learns a representation of the manifold
from which the graph is drawn, utilizing spectral embeddings. Grounded in spectral graph theory,
which is based on sound mathematical principles, these embeddings preserve both global and local
structures, enabling the generation of meaningful representations for cold-start nodes while main-
taining the overall topology. As a result, our method enhances the ability to capture the graph’s
structure, leading to improved performance and more accurate predictions in downstream tasks.

3 PRELIMINARIES

Graphs. An undirected graph G = (V, E , X) consists of a set of nodes V , a set of edges E , and X
the nodes features. The adjacency matrix A of G has entries Ai,j = 1 if there is an edge between
nodes vi and vj , and 0 otherwise. The degree matrix D is diagonal, with Di,i =

∑n
j=1 Ai,j . An

isolated node is a node with no known edges, i.e., ∀vj ∈ V, (vi, vj) /∈ E . The normalized graph
Laplacian is defined as L = I −D−1/2AD−1/2.

SpectralNet. SpectralNet (Shaham et al., 2018) is a deep-learning approach designed for spectral
clustering. It maps data points to the approximate k eigenvectors of the Laplacian matrix, which is
constructed from the similarities between the data points. By leveraging the convergence proper-
ties of the Laplacian operator applied in mini-batches (Belkin & Niyogi, 2001; 2003), SpectralNet
enables efficient spectral clustering even for large-scale datasets by utilizing SGD to approximate
the eigenvectors of the Laplacian. One key advantage of SpectralNet is that it learns a parametric
mapping, approximating the eigenfunction of the Laplace-Beltrami operator. This allows a general-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ization to out-of-sample data (OOSE). This makes it possible to compute spectral embeddings for
unseen data points. The learning process involves minimizing a Rayleigh-quotient loss function:
trace

(
Y TLY

)
, s.t. Y TY = I , where Y ∈ Rn×k represents the network outputs, and L is the

graph Laplacian. This method serves as the foundation for our generalizable spectral embedding,
extending spectral techniques to settings of traditional graph-structured data.

Spectral-GCNs. Spectral Graph Convolutional Networks (GCNs) represent a significant advance-
ment in graph-based machine learning by enabling convolution-like operations directly on graph-
structured data. These networks adapt traditional convolutional operations from Euclidean domains
to non-Euclidean spaces, such as graphs, making them highly effective for tasks involving relational
data.

Spectral convolution (Kipf & Welling, 2016b) operates in the spectral domain of the graph, defining
convolution as the multiplication of a signal x ∈ RN by a filter gθ = diag(θ), parameterized by
θ ∈ RN , in the Fourier domain. Specifically, this operation can be expressed as applying the Fourier
transform, followed by its inverse. In this context, U is the matrix of eigenvectors of the graph
Laplacian, which serves as the basis for the graph’s Fourier transform. First, x is transformed into
the spectral domain using UTx. Then, it is multiplied by gθ, a filter defined in the spectral domain.
Finally, the inverse Fourier transform is applied by multiplying with U , transforming the filtered
signal back into the original graph domain. The primary limitation of spectral GCNs is the need to
compute the eigenvectors U of the graph Laplacian. This requires the entire Laplacian matrix to be
available, making the approach unsuitable for incorporating new nodes into the graph. Moreover,
for cold-start nodes, recomputing the Laplacian eigenvectors is not only computationally expensive
but also futile. Since the purpose of the Laplacian in GCNs is to enable convolution over connected
nodes, nodes without any connections will not benefit from this operation. Making spectral-GCNs
unsuitable for the generalization of cold-start nodes.

Graph Transformers. Transformers (Vaswani et al., 2017), originally developed for natural lan-
guage processing, have been successfully adapted to handle graph data. A key development in this
area is the Graph Transformer (Dwivedi & Bresson, 2020), which extends the transformer architec-
ture to graph structures. This approach incorporates spectral embeddings for positional encoding,
enabling the model to capture the relative positions of nodes within a graph.

However, standard transformer architectures face scalability issues when applied to large graphs due
to the high computational complexity of the attention mechanism. This challenge has highlighted
the need for more efficient methods that can handle large-scale graph data while maintaining the ad-
vantages of transformer-based models. State-of-the-art methods such as NAGphormer (Chen et al.,
2022) and VCR-Graphormer (Fu et al., 2024) address this by creating token lists for each node,
which aggregate key information from their neighborhoods. By focusing only on the most relevant
data for each node, these approaches significantly reduce the computational load of the attention
mechanism. While these methods excel in performance and scalability, they rely on adjacency in-
formation during inference, limiting their applicability in real-world environments where new nodes
lack initial connections. Our work builds on these advancements by introducing a generalizable so-
lution that supports cold-start nodes, enabling predictions without requiring adjacency information.

4 G-SPARC

In this section, we present the proposed G-SPARC framework in detail. To address the cold-start
problem in graph learning, we begin by introducing our generalizable spectral embedding frame-
work. Sections 4.2 and 4.3 then demonstrate how we adapt state-of-the-art architectures to handle
cold-start nodes by integrating our generalizable spectral embeddings for the node classification
task. Finally, we highlight additional applications of our approach for other graph-based down-
stream tasks.

4.1 SPARC - GENERALIZABLE EMBEDDING

It is reasonable to assume that graph data is drawn from an unknown manifold M, with the graph
G serving as a discrete approximation of this manifold. Spectral embeddings map the manifold
M by computing the first k eigenvectors of the graph’s Laplacian matrix. These eigenvectors

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(u1, u2, . . . , uk), corresponding to the smallest eigenvalues, offer a low-dimensional representation
of the graph. In this space, Euclidean distances approximate the diffusion distance of the underlying
manifold M (Lafon et al., 2006).

Cold-start nodes—those without any existing connections in the graph—still lie on the manifold M
despite their missing adjacency information. Let vcold represent a cold-start node. While identifying
neighbors based solely on the graph structure is impossible for such nodes, one straightforward
approach is to estimate their neighborhood purely by feature similarity. However, this naive method
fails to capture the intrinsic geometry of the graph. As shown in Section 5.1, the feature space does
not naturally align with the graph’s manifold, resulting in suboptimal performance.

We address the cold-start challenge by introducing a parametric mapping, Fθ : Rd → Rk, which ap-
proximates the first k eigenfunctions of the Laplace-Beltrami operator, thereby forming the spectral
embeddings of the nodes. This mapping takes node features as input and projects cold-start nodes
onto the graph’s manifold, enabling the identification of relevant neighbors through Euclidean dis-
tance in the spectral embedding space.

Crucially, the graph structure is only used during training. This enables the learned spectral embed-
ding to generalize to cold-start nodes. During inference, for cold-start nodes with only node features,
we compute approximate spectral embeddings. This allows us to identify their nearest neighbors in
the graph spectral space (see Figure 1). This generalizable spectral embedding framework enables
cold-start nodes to be integrated into various downstream tasks, such as node classification and clus-
tering, even in the absence of adjacency information. In this paper, we incorporate our generalizable
spectral embedding into two state-of-the-art architectures for node classification and demonstrate its
straightforward application to link prediction and node clustering. This approach enables accurate
predictions for cold-start nodes across these tasks, even in the absence of adjacency information.

Figure 1: The pipeline of our SPARC embedding model for learning spectral embeddings in both
training and inference phases. Left: During training, the input consists of node features, and the
model outputs the spectral embedding of these nodes. The model uses the graph structure through
the Laplacian matrix, which is incorporated into the loss function during the training (see loss func-
tion of Section 3). The model maps nodes close in the graph to also be close in the embedding, ef-
fectively transitioning the graph from a discrete to a continuous space. Right: During inference, for
cold-start nodes, the input is only the node’s features. The trained model generates the approximate
spectral embedding of the cold-start node, allowing us to infer its neighborhood and relationships
based solely on node features.

4.2 SPARC-GCN

Spectral-GCN (Kipf & Welling, 2016b) applies graph convolutional networks in the spectral domain,
utilizing spectral embeddings to perform convolution-like operations on graph-structured data. The
convolution is formally defined as:

Xl+1 = UgϕU
TXl

Where U denotes the matrix of eigenvectors of the graph Laplacian, gϕ is the spectral filter, and X
represents the nodes’ features. This method enables effective feature aggregation across the graph.

A significant limitation arises for cold-start nodes. For a cold-start node v with features x, traditional
convolution becomes impossible. Furthermore, the computing of U with cold start nodes is futile as
the convolution applies only to connected nodes.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To overcome these limitations, we propose a modification to the Spectral-GCN architecture. We
replace the spectral embedding U with the output of a parametric map Fθ denoted as Uθ, a function
on the feature space. Our modified convolution is defined as:

Xl+1 = Uθ(X)gϕUθ(X)TXl

Where Uθ(X) is the approximated spectral embedding using features X , and gϕ is a learnable diago-
nal matrix. This modification preserves the advantages of spectral-GCN while enhancing practicality
for deployment during inference.

For a cold-start node v with features x but no connections, we: (1) Find the spectral embedding of
the cold-start node, denoted as Uθ(x). (2) Perform convolution over the new set X̂ = [X;x] that
includes the new node. The node is processed using both its features and the spectral embedding:
xl+1 = Uθ(x)gϕUθ(X̂)T X̂l. This approach effectively eliminates the need for adjacencies from
cold-start nodes, enabling predictions through convolution on such nodes.

To handle larger graphs where training in a single batch is infeasible, we developed a mini-batching
strategy for spectral GCNs. This approach, detailed in Section 4.4, enables scalable training by
partitioning the graph into manageable sub-graphs.

4.3 SPARCPHORMER

NAGphormer (Chen et al., 2022), a scalable graph transformer architecture, introduces a novel ap-
proach in which each node is assigned a token list, constructed by aggregating features from its
neighbors. Self-attention is then applied exclusively within this token list, rather than across all
node pairs, capturing dependencies and relationships between the nearest neighbors. This approach
significantly improves scalability and enables efficient training of graph transformers.

T (vi) = [h0(vi), h1(vi), . . . , hk(vi)]

hj(vi) =
∑
v∈V

X[v] · 1 (dist(v, vi) <= j)

The token list T (vi) for node vi consists of aggregated feature representations hj(vi) for each node
v that is exactly j hops away from vi. Here, X[v] represents the feature vector of node v, and
1 (dist(v, vi) = j) is an indicator function that returns 1 if node v is within j hops away from vi,
and 0 otherwise. The sum is computed over all nodes v in the graph. This construction enables
neighborhood aggregation over multiple hops in the graph.

However, NAGphormer is not suitable for cold-start nodes, as it relies on adjacency information,
which is unavailable for nodes without initial connections.

Our model extends the NAGphormer architecture by incorporating generalizable spectral embed-
dings, allowing us to address the cold-start problem. We modify the token list creation process
by using the node features of the nearest neighbors in the spectral embedding space (measured by
Euclidean distance), instead of relying on adjacency information.

T (vi) = [g0(vi), g1(vi), . . . , gk(vi)]

gj(vi) =
∑
v∈V

X[v] · 1
(
∥Fθ(vi)−Fθ(v)∥2 is within the nearest 2j neighbors in Fθ(X)

)
The token list T (vi) for node vi is constructed from aggregated feature vectors gj(vi) based on
the nearest neighbors in the spectral embedding space. Here, gj(vi) aggregates the features X[v])
of nodes v that are among the 2j closest nodes to vi in the spectral embedding space, where the
distance is measured by Euclidean distance ∥Fθ(vi)−Fθ(v)∥2. The mapping Fθ is parameterized
by a neural network, and 1(·) is an indicator function.

By eliminating the dependency on adjacency information, we enable predictions for cold-start nodes,
effectively overcoming the limitations of previous graph-based transformers. Utilizing node features

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

in the spectral embedding space allows the model to focus on the most relevant neighbors while
maintaining low computational complexity. Applying self-attention in this way ensures accurate
predictions for new nodes and enhances scalability and robustness, extending the applicability of
graph transformers to cold-start scenarios.

4.4 ADDITIONAL APPLICATIONS

Clustering and Mini-Batching. When applying Euclidean methods like k-means on spectral em-
beddings to partition the graph C = k-means(Fθ(X), k) —a process known as spectral cluster-
ing—nodes are partitioned into k clusters with small intra-cluster diffusion distances and large
inter-cluster distances. This technique effectively partitions the graph into sub-graphs, which of-
fer valuable insights into the graph’s structure. The partitioning retains essential, close connections
between nodes, while minimizing the loss of less significant, distant connections, making it ideal
for tasks that require dividing the graph into meaningful substructures while preserving as much
information as possible.

We found that spectral partitioning is particularly useful for mini-batching in GCNs, where maintain-
ing local neighborhoods and graph structure during training is essential. GCNs rely on aggregating
information from neighboring nodes within each batch, and splitting important connections across
different mini-batches can hinder the network’s ability to learn meaningful node representations.
Spectral partitioning overcomes this issue by clustering highly connected nodes into the same mini-
batch, preserving local structural information and improving the efficiency of the learning process.

(a) Random Selection (b) 2-Hop Neighbor Se-
lection

(c) ClusterGCN Selec-
tion

(d) SPARC Clustering
Selection

Figure 2: Visualization of node sampling using common selection methods and our proposed spec-
tral clustering method. Red indicates nodes selected for the batch. (a) shows random node selection,
where meaningful convolution is unlikely due to the disconnection between nodes.(b) select random
node along with its hop-1 and hop-2 neighbors, ensuring connectivity between nodes in the batch,
but potentially from an irrelevant cluster. (c) depicts the node selection using the ClusterGCN par-
titioning, where each batch includes small, connected node groups. (d) demonstrates our spectral
partition method, optimized for convolution, ensuring that each node interacts with other nodes in
the same cluster, enhancing the effectiveness of convolution.

This approach also enhances computational efficiency by reducing the need for information ex-
change across batches. As a result, spectral partition in mini-batching allows GCNs to scale more
effectively to larger graphs while maintaining strong predictive performance by preserving essential
connectivity within each batch. In Figure 2, we illustrate the challenges of node sampling methods
that are not based on diffusion distance, where nodes can extend beyond their cluster boundaries in
the graph.

Link Prediction. Using the parametric map Fθ has the capability to reconstruct the graph connec-
tions for cold-start nodes effortlessly. By simply ranking the Euclidean distance from the embedding
of cold-start node uθ = Fθ(x) to the top r nodes in rank R, where d(uθ, uR1

) ≤ d(uθ, uR2
) ≤ . . . ≤

d(uθ, uRn
) in the spectral embedding. Notably, the embedding is not trained to the specific task of

link prediction but our single embeddings apply for various tasks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

Cold-Start Nodes. A subset of nodes from the graph is isolated by masking their adjacency con-
nections. Test nodes are defined as nodes that were not included in the training phase but still retain
full adjacency information.

Table 1: Data statistics.

Dataset Nodes Edges Classes Features
Cora 2,708 5,429 7 1,433

Citeseer 3,312 4,732 6 3,703
Pubmed 19,717 44,338 3 500
Reddit 232,965 11,606,919 41 602

Datasets. The statistical properties
of all datasets are summarized in Ta-
ble 1. The Cora (Baum et al., 1972),
Citeseer (Giles et al., 1998), and
Pubmed (Sen et al., 2008) datasets
are citation network datasets where
nodes represent documents and edges
represent citation links. For the Cora
and Citeseer datasets, node features
are represented using a bag-of-words
approach. In contrast, the Pubmed dataset uses Term Frequency-Inverse Document Frequency (TF-
IDF) values to represent node features. The Reddit dataset (Hamilton et al., 2017b) consists of posts
from September 2014, with nodes representing individual posts and edges indicating interactions
between posts by the same user.

5.1 RESULTS

Cold-Start Classification. The results in Table 2 summarize the node classification performance
over the cold-start set, which consists of nodes without connections.

While the overall accuracy on test node remains comparable to traditional methods like Spectral-
GCN and NAGphormer (see Appendix D), our approach uniquely enables accurate classification of
cold-start nodes, effectively addressing the isolated node problem. The results for these architectures
are not included, as they are not designed to handle cold-start nodes. Moreover, although methods
like Cold-BREW 1 and GraphSAGE can handle isolated nodes, they exhibit a significant drop in
accuracy compared to our approach. This underscores the strength of our method, which adapts
state-of-the-art architectures to cold-start nodes by leveraging generalizable spectral embeddings
and capturing the graph’s global structural information, resulting in more effective classification of
cold-start nodes.

Our proposed methods, SPARC-GCN and SPARCphormer, demonstrate competitive results. The
variation in performance across datasets can be attributed to the inherent strengths of each method,
as neither Spectral-GCN nor NAGphormer consistently outperforms the other in all scenarios, high-
lighting the need for adaptable approaches depending on the dataset characteristics. We evaluate
classification accuracy across different datasets, with the accuracy on isolated nodes serving as a
key indicator of our framework’s effectiveness in addressing the cold-start problem.

Table 2: Classification accuracy of cold-start nodes

METHOD Cora Citeseer Pubmed Reddit
G-SAGE 66.02 ± 1.18 51.46 ± 1.30 69.87 ± 1.10 85.63 ± 0.66
C-BREW 68.92 ± 1.13 53.13 ± 0.24 72.32 ± 0.87 OOM
SPARC-GCN 73.88 ± 6.27 64.90 ± 3.19 82.78 ± 2.05 91.46 ± 0.92
SPARCphormer 68.49 ± 0.89 66.35 ± 0.92 84.66 ± 0.25 74.92 ± 0.23

Cold-Start Clustering. The results of node clustering are presented in Figure 3 for both connected
nodes and cold-start nodes. Our proposed method, SPARC-Clustering, matches the performance of
state-of-the-art techniques on the connected set while demonstrating superior effectiveness for cold-
start nodes. Other methods considered include k-means, which disregards the graph structure; spec-
tral clustering; and SSGC (Zhu & Koniusz, 2021), which utilize spectral methods but are unsuitable

1Code lacks support for large datasets, causing memory issues.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

for cold-start scenarios. Additionally, R-GAE (Mrabah et al., 2022) employs an auto-encoder that
is more appropriate for cold-start nodes; however, its loss calculation relies on Euclidean clustering
methods that may be ill-fitting when graph features are non-convex. Our method is both general-
izable for cold-start nodes and capable of clustering even when the features are non-convex. We
measured the clustering accuracy for both connected and cold-start nodes.

Figure 3: Clustering accuracy for train-connected nodes (light blue) and new cold-start nodes (blue)
is evaluated. While spectral models yield adequate performance on the graph, they are unsuitable for
cold-start scenarios. In contrast, Euclidean methods generalize better but perform well only when
the graph features show convexity.

Table 3: GCN classification accuracy

METHOD Cora Citeseer Pubmed
Random-Batches 73.45 ± 5.44 61.33 ± 3.55 75.90 ± 3.93
SPARC-Batches 84.31 ± 1.24 70.57 ± 1.39 81.64 ± 1.56
% Gain 14.77% 15.08% 7.56%

Mini-Batching. We experi-
mented with training a simple
GCN (Y = σ(AXW )) in two
mini-batches, in the first exper-
iment having a random partition
over the dataset. In the second
experiment training the same
model with our mini-batching
method. Random partition
versus SPARC partition of the graph (trained on mini-batch SGD) results are shown in Table 3. Our
spectral clustering partition leads to better performance since it removes fewer between-partition
links. Measuring node classification accuracy in both settings.

Figure 4: Our spectral partition versus
METIS and random mini-batching parti-
tions. The spectral clustered mini-batches
convergence is faster at the beginning of the
training process

In Figure 4 we show an experiment training Cluster-
GCN (Chiang et al., 2019) with three mini-batching
partitions for node classifaction. The mini-batching
is by assigning each node a cluster out of 1500 and
training 20 clusters in each batch. First having a
random assignment. Second, using the ClusterGCN
proposed method with METIS (Karypis & Kumar,
1997) partition, an algorithm that creates a tree out
of the graph and parting the graph to sub-graphs of
the immediate neighbors. Third, spectral clustering
using SPARC over the Reddit graph dataset and us-
ing these clusters as the partition. We can see faster
convergence using our method of training the same
model.

Cold-Start Link Prediction. The results of link
prediction are presented in Table 4. Link prediction
for cold-start nodes is not well-researched; there-
fore, we compare our method to two approaches out-
lined in (Guo et al., 2023). LLP utilizes relational
knowledge distillation and cross-modeling of two
networks: MLP and GNN.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Link Prediction

METHOD Cora Citeseer Pubmed
LLP-MLP 22.90 ± 2.22 28.21 ± 3.75 38.01 ± 1.67
LLP 27.87 ± 1.24 34.05 ± 2.45 50.48 ± 1.52
Ours 31.25 ± 2.63 34.25 ± 2.78 48.07 ± 1.50

While our approach achieves comparable results to state-of-the-art methods in the link prediction
task, it is important to highlight that this performance is a natural extension of our generalizable
spectral embedding method. Unlike more specialized models designed specifically for link predic-
tion, our method does not require any additional architectural modifications or complex adjustments.
The ability to perform link prediction comes inherently from the core spectral embedding frame-
work, making it a byproduct of our main approach. In this sense, the comparable results we obtain
are achieved with a simpler and more generalizable architecture, demonstrating the versatility and
robustness of our method without requiring further optimizations specifically for link prediction.

We measure cold-start link prediction by computing the mean reciprocal rank (MRR). We rank the
closest nodes in our embedding to the cold-start node and calculate the intersections in the top 20
nodes.

LIMITATIONS OF FEATURE-BASED SIMILARITIES

Most graph-based methods utilize both node features and graph structure to make node-level predic-
tions. The SPARC embedding, developed to address cold-start nodes, approximates the eigenvectors
of the graph Laplacian captures only the graph structure. However, incorporating node affinities, de-
noted as W , introduces a distinct form of a Laplacian that for some tasks may be beneficial.

Similarity solely on the feature space in graphs often fails to capture the true underlying structure,
leading to misleading results when used for graph analysis tasks. While node features can reflect
shared characteristics or common properties, they do not necessarily correspond to the actual con-
nectivity patterns within the graph. This arises because features may be unrelated to the graph
topology, resulting in nodes with high feature similarity that are not directly linked or nodes that are
closely connected but have divergent features. Consequently, relying on feature similarities alone
can obscure critical structural information, undermining the effectiveness of algorithms that depend
on understanding the graph’s inherent organization. Therefore, integrating structural information is
essential to accurately capture the relationships and dependencies in graph-based models.

(a) Toy Graph (b) Random Features (c) Random Edges

Figure 5: (a) Toy non-convex dataset with two distinct clusters, converted into a graph by connecting
each node to its 4 nearest neighbors. (b) The same graph with randomized features—models using
the adjacency matrix A will yield identical predictions as in (a). (c) Randomized edges with original
features—models using an affinity matrix on the features W will still produce the same predictions
as (a). Suggesting that real-world graphs are likely within this spectrum.

Based on the visualizations shown in figure 5, it is evident that different Laplacian matrices can
offer advantages depending on the graph structure and the relationship between node features and
connectivity. For example, as depicted in Figure 5c, when node features significantly influence

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the graph structure, utilizing a Features-Edges View Laplacian matrix (see Appendix C), which
integrates both feature similarity and adjacency information, can be advantageous.

We quantify this relationship through what we call the ”Feature Weighting Factor”, which assesses
the extent to which node features correspond to the structural connectivity. This ratio guides the
selection of the Laplacian type—balancing between feature-driven and adjacency-driven represen-
tation. It is crucial to note, however, that feature similarity alone does not guarantee an accurate
reflection of the underlying graph structure, which underscores the importance of choosing the right
Laplacian framework based on the specific characteristics of the graph and its features.

Figure 6: Clustering accuracy, α controls the ratio be-
tween adjacency and affinity matrix. Feature affinities
enhance the embedding’s performance in the clustering
task; however, using features alone is insufficient.

Results. The plot in Figure 6 showcases
how the accuracy changes with differ-
ent values of α feature weight, where α
balances the contribution of features and
edges in the Laplacian matrix. Notably,
using only features (α = 1) results in a
decrease in performance, indicating that
while features provide valuable informa-
tion, they are insufficient on their own
for optimal graph structure representation.
However, a combination of features and
edges (α values between 0 and 1) gener-
ally leads to improved performance, with
an optimal α varying by dataset.

These observations underscore the deli-
cate balance required in configuring the
Laplacian matrix to harness both the graph
structure and graph features effectively.
While node features alone do not capture
the complete picture, their integration with
structural data at an optimal level signifi-
cantly enhances performance.

6 CONCLUSION

In this work, we introduced G-SPARC, a novel spectral-based method designed to address the cold-
start problem in graph learning. Our approach effectively integrates cold-start nodes into state-of-
the-art graph learning methods, enabling accurate predictions for cold-start nodes. Experimental
results demonstrate that G-SPARC outperforms existing models in handling cold-start nodes, pro-
viding a solution for real-world applications where new nodes frequently appear. The adaptability
of our method allows it to be seamlessly integrated into existing and future graph learning frame-
works, enhancing their capability to manage evolving graphs. In this paper, we introduced two novel
adaptations, SPARC-GCN and SPARCphormer, to existing state-of-the-art methods, enabling them
to effectively manage cold-start nodes and making them suitable for real-world applications.

A limitation of our method is its dependency on the meaningful node features. G-SPARC may
not perform optimally if the node features are random or lack any relationship with the graph’s
manifold. However, it is generally safe to assume that in practical scenarios, the features will have
some correlation with the graph structure, which supports the applicability of our method.

Our research has primarily focused on the common real-world scenario of homophilous graphs,
where the graph structure plays a crucial role in node-level predictions. We also explored the fea-
ture weighting factor, which becomes particularly significant in heterophilous graphs where node
features drive the predictions. Moving forward, we plan to continue our research to include het-
erophilous graphs, aiming to adapt and refine our approaches.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anonymous. Grease: Generalizable spectral embedding with an application to umap. Under review
ICLR 2024, attached to supplementary, 2024.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Leonard E Baum et al. An inequality and associated maximization technique in statistical estimation
for probabilistic functions of markov processes. Inequalities, 3(1):1–8, 1972.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022.

Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image recognition with
graph convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5177–5186, 2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
257–266, 2019.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich,
Jingrui He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via virtual connec-
tions. arXiv preprint arXiv:2403.16030, 2024.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pp. 89–98, 1998.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and Tong
Zhao. Linkless link prediction via relational distillation. In International Conference on Machine
Learning, pp. 12012–12033. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017a.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017b.

Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and Jure Leskovec.
Tuneup: A training strategy for improving generalization of graph neural networks. 2022.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016a. URL http://arxiv.org/abs/1609.02907.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016b.

Stéphane Lafon, Yosi Keller, and Ronald R. Coifman. Data fusion and multicue data matching by
diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell., 28(11):1784–1797, 2006. doi: 10.1109/
TPAMI.2006.223. URL https://doi.org/10.1109/TPAMI.2006.223.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent CS Lee, and Shirui Pan. Beyond smoothing:
Unsupervised graph representation learning with edge heterophily discriminating. In Proceedings
of the AAAI conference on artificial intelligence, volume 37, pp. 4516–4524, 2023.

Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven CH Hoi. Towards locality-
aware meta-learning of tail node embeddings on networks. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 975–984, 2020.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1109–1119, 2021.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. Simple unsupervised graph rep-
resentation learning. In Proceedings of the AAAI conference on artificial intelligence, volume 36,
pp. 7797–7805, 2022.

Nairouz Mrabah, Mohamed Bouguessa, Mohamed Fawzi Touati, and Riadh Ksantini. Rethinking
graph auto-encoder models for attributed graph clustering. IEEE Transactions on Knowledge and
Data Engineering, 35(9):9037–9053, 2022.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi:
10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/aimagazine/index.php/
aimagazine/article/view/2157.

Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger. Spectralnet:
Spectral clustering using deep neural networks. In International Conference on Learning Repre-
sentations, ICLR, 2018. URL https://openreview.net/forum?id=HJ_aoCyRZ.

Matthew Thorpe, Tan Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher, and
Bao Wang. Grand++: Graph neural diffusion with a source term. ICLR, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

12

http://arxiv.org/abs/1609.02907
https://doi.org/10.1109/TPAMI.2006.223
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://openreview.net/forum?id=HJ_aoCyRZ


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 7370–7377, 2019.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In International Conference on Machine Learning, pp. 26911–26926.
PMLR, 2022.

Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik
Subbian. Cold brew: Distilling graph node representations with incomplete or missing neighbor-
hoods. arXiv preprint arXiv:2111.04840, 2021.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International conference on
learning representations, 2021.

A DATASETS

Table 5: Characteristics of the datasets in our experiments

Dataset Nodes Edges Classes Feats Avg Deg Cold-Start
Cora 2,708 5,429 7 1,433 4.89 3%

Citeseer 3,312 4,732 6 3,703 3.77 3%
Pubmed 19,717 44,338 3 500 5.49 3%
Reddit 232,965 11,606,919 41 602 492 3%

B SPARC PRAMETRIC MAP

The generalization process borrows key ideas from SpectralNet (Shaham et al., 2018) and spectral
clustering to achieve a scalable and generalizable method for the first k eigenvectors of the graph
Laplacian. A key idea in spectral clustering is that embedding of the first k eigenvectors (where
k << n) captures the most significant variations in the graph structure.

We computes the Laplacian matrix for a mini-batch using the graph adjacencies to find the paramet-
ric map using a neural network with orthogonal enforcement in the last layer. The training process is
in a coordinated descent fashion, where we alternate between orthogonalization and gradient steps.
Each of these steps uses a different mini-batch (possibly of different sizes), sampled from the train-
ing set X .

To learn the spectral embeddings of the graph, we use the following Rayleigh-quotient loss:

LRQ = trace
(
Y TLY

)
s.t. Y TY = I (1)

Where Y is the network output and L is the sub-Laplacian. A rotation and reflection ambiguity
of the loss refrains a straight transformation to create a spectral embedding. Such rotation can be
eliminated by computing the eigendecomposition of the estimated eigenvalues on k × k matrix
(Anonymous, 2024)).

The map learning process is detailed in Algorithm 1 and visually represented in Figure 7. The
resulting embeddings correspond to the top k eigenvectors of the Laplacian matrix. Furthermore,
the model is optimized to handle future nodes without incorporating any edge information during
training.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 7: Learning a parametric map from the feature space X to the first k vectors of the Laplacian
and undergoes QR decomposition to ensure orthogonality

Algorithm 1 Fθ Training

Require: X ∈ Rd, number of vectors k, batch size m
Ensure: Embedding y1, . . . , yn ∈ Rk

1: Part X to mini-batches of size m with neighbors
2: Randomly initialize the network weights θ
3: while LRQ not converged do
4: Orthogonalization step:
5: Sample a mini-batch X of size m and the corresponding A size m×m;
6: Forward propagate X and compute inputs to orthogonalization layer Ŷ
7: Compute the QR factorization LLT = Ŷ T Ŷ
8: Set the weights of the orthogonalization layer to be

√
m(L−1)T

9: Gradient step:
10: Sample a mini-batch X of size m and the corresponding A;
11: Forward propagate x1, . . . , xm to get y1, . . . , ym
12: Compute the loss LRQ

13: Use the gradient of LRQ to tune all F weights, except those of the output layer
14: end while
15: Forward propagate x1, . . . , xn and obtain Fθ outputs y1, . . . , yn

C EXPLORING DIFFERENT LAPLACIANS

Spectral eigendecompositions are typically performed solely on the graph structure, oblivious to any
additional information associated with the graph. However, in most deep-learning models, differ-
ent Laplacian matrices can yield better results for specific tasks to enhance unsupervised spectral
embeddings. In our study, we explored two key approaches:

K-Power Random Walk. The k-power random walk method captures context from the k-hop
neighbors within a graph by leveraging the k-power of the normalized adjacency matrix. The key
idea lies in summing up these normalized matrices for each step, resulting in a new matrix de-
noted as Ak-power =

∑k
i normalized(Ai), where A is the graph adjacency matrix and normalization

defined as D−1/2AD−1/2. This operation effectively simulates multiple convolutions, leading to
smoother graphs with tighter clusters. In essence, the k-power random walk bridges local and global
information, enhancing the expressive power of the graph.

Figure 8b evaluates the effect of increasing the power k of the adjacency matrix, which integrates
increasingly distant neighborhood information into the graph representation. Initially, as k in-
creases, performance improves, reflecting the benefits of incorporating broader contextual infor-
mation. However, beyond a certain point, further increases in k lead to performance degradation,
evident from the sharp declines for all datasets at higher k values. This phenomenon, known as
oversmoothing, occurs because the node representations begin to lose their distinctive characteris-
tics, converging to a similar state that dilutes the useful signals for the learning tasks.

Features-Edges View. In graph-based data, we construct simulated graphs with both node features
and connections. In the context of node clustering, nodes may have defining features that indicate

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

labels, neighborhood-defining labels, or a combination of both. Adapting ideas from traditional
spectral clustering methods of constructing an affinity matrix based on the nodes’ features. Given
n data points, an affinity matrix W is an n × n matrix whose Wi,j entry represents the similarity

between xi and xj . A popular choice for W is the Gaussian kernel: Wi,j = exp
(
−∥xi−xj∥2

2σ2

)
where σ is a defined bandwidth. We construct the Laplacian matrix for a linear combination of the
original adjacency matrix A and the affinity matrix W : Afeat-edge = α ∗W + (1− α) ∗ A, where α
depends on the characteristic of the nodes’ features.

The results are presented in Section 5.1.

(a) Clustering accuracy as a product of α (b) Clustering accuracy as a product of k

Figure 8: Visualization of node clustering demonstrating the effects of over-smoothing and the effect
of using solely feature affinities or adjacencies.

D ADDITIONAL RESULTS

We present classification accuracy for two scenarios: ’Test’, where nodes have full adjacency infor-
mation, and ’Cold-Start’, where connectivity data is missing. Our results show competitive perfor-
mance with state-of-the-art models in the ’Test’ scenario, while significantly outperforming existing
methods in handling cold-start nodes. This highlights our method’s unique capability to extend
graph learning applications to effectively manage isolated nodes.

Table 6: Classification

METHOD Cora Citeseer Pubmed Reddit
Test Cold Start Test Cold Start Test Cold Start Test Cold Start

Spectral-GCN 87.94 ± 0.85 NS 77.92 ± 0.61 NS 86.20 ± 0.41 NS OOM NS
NAGphoremer 89.55 ± 0.48 NS 76.32 ± 0.52 NS 88.30 ± 0.29 NS 93.75 ± 0.03 NS
G-SAGE 83.92 ± 1.25 66.02 ± 1.18 71.78 ± 2.67 51.46 ± 1.30 82.16 ± 1.92 69.87 ± 1.10 94.32 ± 0.00 85.63 ± 0.66
C-BREW 84.66 ± 0.00 69.62 ± 0.00 71.18 ± 0.00 53.17 ± 0.00 86.81 ± 0.00 72.33 ± 0.00 OOM OOM
SPARC-GCN 84.46 ± 1.51 73.88 ± 6.27 65.44 ± 4.23 63.66 ± 0.00 86.46 ± 3.77 82.78 ± 2.05 93.04 ± 0.87 91.46 ± 0.92
SPARCphormer 69.41 ± 1.65 68.49 ± 0.89 70.87 ± 0.43 66.35 ± 0.92 85.12 ± 0.46 84.66 ± 0.25 78.95 ± 0.76 74.92 ± 0.23

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E ALGORITHMS

Algorithm 2 SPARC-GCN Training

Require: Node features X ∈ Rn×d, batch size m, labels y for training nodes
Ensure: Predicted labels ŷ1, . . . , ŷn

1: Compute spectral embeddings U for all nodes in X (generalizable to cold-start nodes)
2: Randomly initialize model parameters θ
3: while LSpectral-GCN(θ) not converged do
4: Sample a mini-batch of near-neighbors in the spectral space U
5: Forward propagate Specral-GCN-Layers and Linear Layers get final embeddings z1, . . . , zm

6: Apply a linear layer to predict labels ŷ1, . . . , ŷm

7: Compute the loss LSpectral-GCN(θ) using the ground-truth labels y
8: Update the model parameters θ using gradient descent
9: end while

10: Cold Start Inference: x̂
11: Predict Û spectral embedding of the cold start node
12: Identify the k nearest neighbors of x̂ in the spectral embedding space U
13: Forward propagating the new inference batch

Algorithm 3 SPARCphormer Training

Require: Node features X ∈ Rn×d, number of neighbors k, labels y for training nodes
Ensure: Predicted labels ŷ1, . . . , ŷn

1: Compute our SPARC embeddings for all nodes in X
2: for each node v ∈ V do
3: Identify the 2k nearest neighbors of v in the spectral embedding space
4: Construct token list for v using features of the 2k nearest neighbors as described in 4.3
5: end for
6: Randomly initialize model parameters θ
7: while Lnll(θ) not converged do
8: Sample a mini-batch of training nodes and their token lists
9: Forward propagate token lists through the self-attention mechanism to get final embeddings

z1, . . . , zm
10: Apply a linear layer to predict labels ŷ1, . . . , ŷm

11: Compute the loss Lnll(θ) using the ground-truth labels y
12: Update the model parameters θ using gradient descent
13: end while

F TECHNICAL DETAIL AND HYPER-PARAMETERS.

For fairness, we run each of the compared algorithms ten times on the above datasets, recording both
the mean and standard deviation of their performance. The same backbones are employed across all
methods and datasets. All external algorithms provided hyper-parameters and so each run consists
of the reported parameters.

Table 7: Hyperparameters for SPARC-Embeddings

Parameter Cora Citeseer Pubmed Reddit
Hidden Dimension 512, 256, 32 512, 256, 32 512, 256, 32 512, 256, 64
K eigenvectors 32 32 32 64
Peak Learning Rate 0.1 0.1 0.1 0.1
Weight Decay 1e− 5 1e− 5 1e− 5 1e− 5

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters for SPARC-GCN

Parameter Cora Citeseer Pubmed Reddit
Dropout 0.1 0.1 0.1 0.1
Hidden Dimension 64, 256, 7 64, 256, 6 64,256, 3 64, 256, 41
Peak Learning Rate 0.1 0.1 0.1 0.1
Weight Decay 1e− 5 1e− 5 1e− 5 1e− 5

Table 9: Hyperparameters for SPARCphormer

Parameter Cora Citeseer Pubmed Reddit
Dropout 0.1 0.1 0.1 0.1
Hidden Dimension 512 512 512 512
Token List Size 5 7 10 13
Number of Heads 8 8 8 8
Peak Learning Rate 0.001 0.001 0.001 0.001
Weight Decay 1e− 5 1e− 5 1e− 5 1e− 5

G OS AND HARDWARE

The training procedures were executed on Rocky Linux 9.3, utilizing Nvidia 578 GPUs including
GeForce GTX 1080 Ti and A100 80GB PCIe.

17


	Introduction
	Related Work
	Preliminaries
	G-SPARC
	SPARC - Generalizable Embedding
	SPARC-GCN
	SPARCphormer
	Additional Applications

	Experiments
	Results

	Conclusion
	Datasets
	SPARC Prametric Map
	Exploring Different Laplacians
	Additional Results
	algorithms
	Technical Detail and Hyper-parameters.
	OS and Hardware

