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ABSTRACT

The sparse Mixture-of-Experts (Sparse-MoE) is a promising framework for effi-
ciently scaling up model capacity. This framework consists of a set of experts
(subnetworks) and one or more routers. The routers activate only a small sub-
set of the experts on a per-example basis, which can save on resources. Among
the most widely used sparse routers are Top-k and its variants, which activate k
experts for each example during training. While very effective at model scaling,
these routers are prone to performance issues because of discontinuous nature of
the routing problem. Differentiable routers have been shown to mitigate the per-
formance issues of Top-k, but these are not k-sparse during training, which limits
their utility. To address this challenge, we propose MOESART: a novel k-sparse
routing approach, which maintains k-sparsity during both training and inference.
Unlike existing routers, MOESART aims at learning a good k-sparse approxima-
tion of the classical, softmax router. We achieve this through carefully designed
sampling and expert weighting strategies. We compare MOESART with state-of-
the-art MoE routers, through large-scale experiments on 14 datasets from various
domains, including recommender systems, vision, and natural language process-
ing. MOESART achieves up to 16% (relative) reduction in out-of-sample loss on
standard image datasets, and up to 15% (relative) improvement in AUC on stan-
dard recommender systems, over popular k-sparse routers, e.g., Top-k, V-MoE,
Expert Choice Router and X-MoE. Moreover, for distilling natural language pro-
cessing models, MOESART can improve predictive performance by 0.5% (abso-
lute) on average over the Top-k router across 7 GLUE and 2 SQuAD benchmarks.

1 INTRODUCTION

Scaling up model capacity is a promising way to achieve better performance on a wide range of
problems such as language model pre-training (Radford et al., 2019; Raffel et al., 2020; Lewis et al.,
2020; Lample & Conneau, 2019), and visual representation learning (Dosovitskiy et al., 2021; Bao
et al., 2022). However, high capacity in neural networks typically requires significant computational
resources during both training and inference, which may be prohibitive. This computational re-
quirement is mainly due to the dense nature of computation in neural networks, i.e., a model uses all
its parameters to process each input example. To address this limitation, sparsely activated models
present a viable solution (Bengio et al., 2016; Shazeer et al., 2017; Chen et al., 2020; Zuo et al.,
2022a). Sparsely activated models use a subset of parameters to process each input.

The Sparse Mixture of Experts (Sparse MoE) (Shazeer et al., 2017) is a promising framework for
obtaining sparsely activated models. Sparse-MoE consists of a set of trainable experts (neural net-
works) and a trainable router. The router adaptively selects an appropriate subset of experts on a
per-input basis during model training and inference. This adaptive selection makes it possible to
train Sparse MoE models that are orders of magnitude larger than densely activated models without
significant increase in training costs (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2022).
In addition, these sparsely activated models can learn faster than their compute-matched dense mod-
els. For example, Switch Transformers (Fedus et al., 2022), based on the Top-k router, can learn
7× faster than dense T5 model (Raffel et al., 2020)—the number of FLOPs used per-input during
training and inference is the same for both models. Such Sparse MoE models have shown state-of-
the-art performance in natural language processing (NLP) (Shazeer et al., 2017; Fedus et al., 2022;
Du et al., 2022; Artetxe et al., 2022), vision (Ruiz et al., 2021), and distillation (Zuo et al., 2022b).
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The choice of router plays a central role in Sparse-MoEs. For efficient training, the literature in
Sparse-MoEs has been primarily based on Top-k routing (Shazeer et al., 2017), which selects k
out of n experts using a top-k operation. Top-k routing is simple and efficient because it allows
conditional training: in backpropagation, for each input example, only the gradients of the loss
with respect to k experts need to be computed. With a customized implementation, conditional
training can lead to large computational savings. There have been various follow-up works that have
proposed variants of Top-k routing (Ruiz et al., 2021; Lepikhin et al., 2021; Zhou et al., 2022; Zoph
et al., 2022; Chi et al., 2022). These approaches fundamentally rely on a top-k operation to exploit
conditional training. Prior literature (Ruiz et al., 2021; Hazimeh et al., 2021; Fedus et al., 2022)
has highlighted performance and stability issues with Top-k routing, primarily attributing it to the
discontinuous nature of Top-k operation, which implies that gradient does not exist at certain inputs.
Hence, some differentiable routing approaches (Hazimeh et al., 2021; Ibrahim et al., 2023; Sander
et al., 2023) were proposed to mitigate these issues. However, these approaches are more expensive
per training step as they require gradients with respect to more than k experts.

In this paper, we focus on improving k-sparse routing in Sparse MoEs. Specifically, we propose
MOESART (Mixture of Experts with SAmpling based RouTing, inspired from Mozart and pro-
nounced “mow-saart”): a novel sampling-based approach for conditional training in Sparse MoEs.
We model the routing function as a learnable parameterized softmax distribution. To achieve spar-
sity, we sample k times from the parameterized distribution, identifying the selected experts per-
input. We then assign weights to the selected experts; these weights are adjusted to ensure that
the resulting prediction is a good approximation of the standard softmax router. Although the sam-
pling process is itself non-differentiable, the adjustment strategy on the weights ensures a gradient
is passed to the parameterized router distribution, in particular to the elements associated with the
selected expert indices. In expectation, the adjusted router weights serve as a good sparse approxi-
mation of the router probabilities of the dense softmax.

Although Top-k is considered to be a k-sparse approximation of the classical (dense) MoE models
(Clark et al., 2022), we empirically show that our k-sparse approximation approach appears to be
superior than Top-k based approximations for learning routing. The greedy nature of Top-k leads
to a biased estimation strategy. Top-k routing can potentially suffer from selection bias (Ovaisi
et al., 2020), where a suitable expert is ranked too low by the router for an input example to be
sufficiently exposed to during training. This approach may ignore potentially informative experts
whose contribution is overshadowed by the top-k operation. Consequently, it might not fully lever-
age the diversity and richness of the expert pool, while optimizing the combinatorially challenging
routing problem. In contrast, our approach can mitigate this selection bias as any expert can be
selected because of sampling during the course of training. Our experiments indicate that MOE-
SART outperforms the Top-k router and many of its variants on datasets from various domains:
vision, recommender systems, and NLP.

Contributions. Our technical contributions can be summarized as follows:

• We propose MOESART: a novel k-sparse routing approach, which maintains k-sparsity during
both training and inference, hence allowing for conditional training and inference. Conditional
training allows sparse backpropagation, where for each input example, only the gradients of the
loss w.r.t. k experts need to be computed. This is similar to Top-k routing (Shazeer et al., 2017).

• Unlike existing routers, MOESART aims at learning a good k-sparse approximation of the classi-
cal, softmax router (Jacobs et al., 1991). We achieve this through sampling and expert reweighting
strategies. We empirically show that our sampling-based training approach learns a better sparse
approximation of the classical (dense) MoE models than Top-k style routers.

• On standard recommender systems and vision datasets, MOESART substantially improves perfor-
mance of MoE models over several SOTA k-sparse routers: Top-k (Shazeer et al., 2017), V-MoE
(Ruiz et al., 2021), Expert Choice Router (Zhou et al., 2022), and X-MoE (Chi et al., 2022) .

• In distillation of pre-trained natural language processing models, MOESART consistently im-
proves over Top-k in distilling BERT into MoEBERT on 7 GLUE and 2 SQuAD benchmarks.

2 RELATED WORK

The MoE framework was introduced by Jacobs et al. (1991). More recently, Shazeer et al. (2017)
proposed a Sparse-MoE framework which routes each input to a subset of experts and showed good
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performance on NLP tasks. This sparked off a series of works on routing strategies in the Sparse-
MoE paradigm. These can be categorized and summarized as follows:

• Sparse routing. Sparse routers exactly activate a user-specified number of experts in each train-
ing step on a minibatch of inputs. Shazeer et al. (2017) proposed Top-k routing, which selects
k experts per input. Ruiz et al. (2021) reordered softmax and top-k operation in Top-k router
and showed better performance on vision tasks. Chi et al. (2022) proposed to compute routing
scores on a low-dimensional hypersphere. Zhou et al. (2022) proposed to let experts select top
inputs. Recently, Sander et al. (2023) proposed a differentiable relaxation of the Top-k operator.
Their smoothing approach does not always guarantee exact k-sparsity. It also requires solving an
optimization subproblem per-input during inference, which can be more costly.

• Routing as assignment. Lewis et al. (2021) and Clark et al. (2022) formulate routing as an as-
signment problem using linear programming and optimal transport for balanced routing. Liu et al.
(2023) proposed an optimal transport formulation with support for k-sparsity constraints. All
these approaches are also sparse but more expensive than Top-k style routers.

• Dense-to-Sparse routing. Hazimeh et al. (2021) and Ibrahim et al. (2023) propose differentiable
routers, which improve over Top-k in terms of stability and statistical performance. Although
these routers can allow conditional inference, they are less appealing in terms of conditional train-
ing. These routers can only partially allow for conditional training (during a later stage of training
with customized implementations) and are thus more expensive during training.

• Randomized routing. Some works propose randomized routing strategies to bypass learning the
routing function. Roller et al. (2021) use hashing to randomly assign inputs to different experts
before training. Zuo et al. (2022a) routes all samples in a minibatch to two randomly chosen
experts and forces experts to produce similar predictions. These methods cannot be technically
categorized as MoE models as these do not learn a routing parameterization.

The goal of our work is to propose a new k-sparse routing approach such that the per-minibatch
compute cost is the same as Top-k style routers. In contrast to the above routing approaches, our
approach is the first to explore the idea of sampling in Sparse-MoE.

A related line of work focuses on stochastic k-subset selection in non-MoE settings. Paulus et al.
(2020); Chen et al. (2018); Xie & Ermon (2019) propose differentiable methods for sampling k-
subsets from a categorical distribution, based on generalizations of the Gumbel-softmax trick (Mad-
dison et al., 2017; Jang et al., 2017). If these methods were to be applied to Sparse-MoE, they would
perform dense training (i.e., the gradients of all experts, even if not selected, will be computed
during backpropagation), hence limiting their usefulness for conditional computing. In contrast,
MOESART exploits sparsity for conditional training.

3 ROUTING IN MIXTURE OF EXPERTS

We first review the classical MoE learning paradigm. We assume that the task has an input space
X ⊆ Rp and an output space Y ⊆ Ru. In the MoE framework, the prediction function has two com-
ponents: (i) a set of n experts (neural networks) fi : X → Ru for any i ∈ [n] := {1, 2, . . . , n}, and
(ii) a router g : X → ∆n that outputs weights in the probability simplex ∆n = {g ∈ Rn :

∑
i gi =

1, g ≥ 0}. Given a sample x ∈ X , MoE combines the expert outputs as follows:
∑n

i=1 fi(x)g(x)i.
Recall that classical (dense) MoE minimizes the following objective:

min
{fi},g

Ê

[
ℓ

(
y,
∑

i∈[n]

fi(x)g(x)i

)]
, (1)

where Ê denotes expectation over the training dataset D = {(x1, y1), · · · , (xN , yN )}, ℓ(·) denotes
the loss function used during training, and g(x) is a softmax router, which is typically expressed as
g(x) = Softmax(Ax+ b), where A ∈ Rn×p and b ∈ Rn denote learnable router parameters.

Different from the classical MoE above, Sparse-MoEs use a router that selects a convex combination
of k out of the n experts per-input, where typically k ≪ n. Next, we discuss some state-of-the-art
sparse routers used in sparse-MoE for parameterizing g(·).
• Top-k: The Top-k router (Shazeer et al., 2017) is defined as g(x) := Softmax(Topk(Ax+ b, k)),

where for any vector v, Topk(v, k)i := vi if vi is in the top k elements of v, and −∞ otherwise.
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• V-MoE: Lepikhin et al. (2021); Ruiz et al. (2021) proposed to reorder the Softmax(·) and Topk
operation in the Top-k router. Ruiz et al. (2021) parameterizes the router as follows: g(x) :=
Topk(Softmax(Ax + b + ϵ), k), where ϵ ∼ N (0, 1

n2 ) and for any vector v, Topk(v, k)i := vi if
vi is in the top k elements of v, and Topk(v, k)i := 0 otherwise. We denote this router as V-MoE.

• SMoE: Fedus et al. (2022) parameterize the router in Switch Transformers with multiplicative
noise as follows: g(x) := Topk(Softmax(Axϵ+ b), k), where ϵ ∼ U(0.98, 1.02).

• Expert Choice Router: Zhou et al. (2022) define their sparse router on a minibatch as: G(XB) :=
Topk(Softmax(AXB + b)T , k′)T , where for any vector v, Topk(v, k′)i := vi if vi is in the top k′

elements of v, and Topk(v, k′)i := 0 otherwise. Note that k′ = |B|∗k/n, where k is the (average)
sparsity level per-input such that each expert i ∈ [n] selects k′ samples in a batch of size |B|.

• X-MoE: Chi et al. (2022) estimate the routing scores on a low-dimensional hypersphere by pa-
rameterizing the router as follows: g(x) := Topk(Softmax(((APx)/(∥A∥L2

∥Px∥L2
))/τ), k),

where P ∈ Rn
2 ×p, A ∈ Rn×n

2 , τ > 0 are all learnable parameters.

Both Top-k (or its variants above) and Softmax routers have their pros and cons. Top-k style routers
allow for conditional training, i.e., in the forward pass, for each minibatch of size B, only kB (in-
stead of nB) expert evaluations (i.e., fj(x)) are required, and hence in backpropagation, only the
gradients of the loss with respect to kB elements need to be computed. With a careful implemen-
tation, conditional training can give significant computational savings. However, the discontinuous
nature and selection bias in Top-k can lead to challenges during optimization. On the other hand,
the softmax router is smooth, hence can be easier to optimize. However, the softmax router can be
computationally expensive during both training and inference: the router score for each expert is
non-zero; hence, all experts fi(x) are used per-input x.

Motivation. Our approach tries to combine the benefits of the two approaches. We propose to learn
a sparse approximation of the softmax router via sampling such that it has the following desirable
properties: (i) Per-step training costs are similar to Top-k, which is a central consideration in Sparse
MoE models. (ii) As we demonstrate in our experiments, sampling can reduce the selection bias
prevalent in greedy Top-k based selection approaches, especially in the early stages of optimization,
reducing the likelihood of bad routing solutions.

3.1 THE MOESART APPROACH FOR CONDITIONAL COMPUTING

We formulate a sparse approximation of the classical MoE objective in Problem (1). The goal is to
train a sampled version of the softmax router to approximate the softmax router during the course of
training. The high-level idea can be summarized as follows. For each input x, we sample a subset of
experts from a parameterized distribution g(x), and use a modified version of g(x) on the sampled
set as a sparse approximation for conditional computation. This is shown in Fig. 1.

Let us denote the dense softmax router by the function g(·). For each input x, we sample
k times from the discrete set {1, · · · , n} with distribution g(x). We define a random vector
r(x) = (r1, · · · , rn) ∈ Zn

≥0, which denotes the number of times each expert is sampled. We
denote the unique subset of sampled experts by s(x), which can be derived from r(x) as follows:
s(x) := {i : r(x)i > 0}. The cardinality of set s(x) is given by |s(x)| ≤ k. For instance, as shown
in Fig. 1, s(x) = {3, 6} and r(x) = (0, 0, 1, 0, 0, 1, 0, 0) represents a sample of size k = 2, where
3rd and 6th expert were sampled once. Similarly, s(x) = {1, 5} and r(x) = (1, 0, 0, 0, 2, 0, 0, 0),
depict the case where the first expert was sampled once, and fifth expert was sampled twice. Note
that

∑n
i=1 r(x)i = k.

(E1) (E2) (E7) (E8)

x

x

+
Sparse-MoE Layer with MOESART

(E3) (E4) (E5) (E6)

Sample k 
times from 
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Weights 
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Figure 1: Sparse-MoE with MOE-
SART router.

We seek to minimize the following objective:

min
{fi},g

Ê

[
Êr(x)

[
ℓ

(
y,
∑

i∈s(x)

fi(x)g̃(x)i

)]]
, (2)

where the outer expectation in Problem (2) is over the
training set D and the inner expectation is computed with
respect to a subset of experts in the set s(x) for each input
x. g(x) = Softmax(Ax + b) and g̃(x) is a modified
version of g(x) on the set s(x) — more details are given
in Section 3.1.1. Additional regularization can be added
to the objective, which is discussed in Section 3.2.
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Next, we empirically show how our MOESART objective, without any additional regularization,
learns a good k-sparse approximation to the dense softmax router in terms of the empirical loss,
superior than that learnt by Top-k router.
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(a) MOESART: sparse vs dense inference
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(b) MOESART vs Softmax
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(c) Top-k: sparse vs dense inference
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(d) Top-k vs Softmax
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(e) Softmax: sparse vs dense inference
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(f) Out-of-sample loss during training

Figure 2: Comparison of empirical loss distributions on
held-out samples from SVHN dataset when MoE models
are trained with three different objectives: Softmax (clas-
sical MoE), Top-k and MOESART (no additional regular-
ization). The y-axis in 2a-2d is zoomed in to highlight dif-
ferences between distributions. We evaluate with k-sparse
and dense approximations at inference time for all three
models. Wasserstein Distance (WD) is shown to quantify
the distance between loss distributions. We can see that
MOESART provides a good k-sparse approximation to its
dense counterpart (see 2a) as well as to the classical MoE
(see 2b). Note in 2f that classical MoE, MOESART, and
Top-k achieve held-out objective of 0.259, 0.251 (lowest)
and 0.282 respectively.

MOESART is a good k-sparse approxi-
mation. MOESART leads to a more effec-
tive sparse approximation than that learnt
by Top-k. We empirically show this on
SVHN dataset for an MoE architecture with
8 convolutional experts. The details of
the architecture are outlined in Supplement
Section S6.2. We trained MoE models
with 3 different routing strategies: Classical
MoE (softmax), Top-k (sparse) and MOE-
SART (sparse). We optimized with Adam
(Kingma & Ba, 2015) with cross-entropy
loss for 250 epochs. We set k = 2 for Top-k
and MOESART.

We visualize the different loss distributions
on held-out data in Figure 2. In particu-
lar, we visualize the distributions, when each
of the 3 routers are used to perform dense
or sparse inference post-training. We also
show the discrepancy between different dis-
tributions using Wasserstein Distance (Kan-
torovich, 1960; Peyré & Cuturi, 2020). We
can see in Figure 2a that MOESART has
a small distribution discrepancy when the
model performs sparse or dense inference.
In comparison, we can see a much bigger
discrepancy when the model performs dense
inference when the model is trained with
Top-k routing — see Figure 2c. We also see
in Figure 2e that when the model is trained
densely with classical MoE objective, a large
discrepancy between loss distributions oc-
curs when the model performs sparse versus
dense inference — note that we used Top-k
as a sparse approximation at inference time
in this setting. We also compare in Figure 2b
and 2d distribution discrepancy of the loss
distribution of MOESART and Top-k with
that of classical MoE. Interestingly, we see
MOESART is closer to classical MoE loss
distribution than Top-k. Finally, in Figure 2,
we show the out-of-sample loss during the course of training. MOESART achieves a much smaller
objective than Top-k; interestingly, it even surpasses the densely-trained classical MoE.

3.1.1 COMPUTING g̃ DURING TRAINING AND INFERENCE

Here, we outline approaches to compute g̃ during training and inference. g̃ in (2) is a modification
of g on the sampled indices from g, which serves three purposes: (i) g̃ is sparse as it’s only non-zero
on the sampled indices, hence allowing conditional computation. (ii) g̃ allows gradient to back-
propagate to g — recall that just sampling from parameterized distribution g doesn’t allow gradient
computation with respect to router parameters in g. (iii) g̃ aims to approximate g in expectation.

Training. We first introduce some notation. Let {ai} ∈ Rp ∀i ∈ [n] and bi ∈ Rn be learnable
router parameters and τ > 0 be a temperature hyperparameter. Let o(x) = (Ax + b)/τ be router
logits, where A := (a1 · · · an)T . Equivalently, oi(x) := (aTi x + bi)/τ ∀i ∈ [n], and g(x)i :=
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exp(oi(x))/
∑n

j=1 exp(oj(x)). Next, we refer to õ(x) as adjusted logits after the sampling process.
g̃(x) is a softmax-transformed version of adjusted logits õ(x). Note that g̃(x) will be sparse with
cardinality ∥g̃(x)∥0 ≤ k. For notational convenience, we drop the dependence on x, and write
o(x) = o, õ(x) = õ, s(x) = s, g(x) = g, g̃(x) = g̃. We first outline some natural choices for õ
below and highlight their limitations.

(i) õi := {oi if i ∈ s } or {−∞ if i /∈ s}. This corresponds to g̃i = gi/
∑

j∈s gj ∀i ∈ s.
(ii) õi := {oi + log(ri) if i ∈ s } or {−∞ if i /∈ s}. This gives g̃i = giri/

∑
j∈s gjrj ∀i ∈ s.

(iii) õi := {oi + log(ri)− log(kgi) if i ∈ s} or {−∞ if i /∈ s}. This gives g̃i = 1/k ∀i ∈ s.

The above approaches have limitations, which make them either less appealing or ill-posed. If we
first consider (i) and (ii), we get g̃i to be biased estimators of gi — see Supplement Section S3.1 for
examples. If we consider (iii), the adjusted logit corrects the true logit oi by the expected number
of occurrences of an expert i. This correction makes g̃i an unbiased estimator of gi — see proof in
Supplement Section S1; however, the correction makes g̃i independent of gi, causing gradients with
respect to router parameters A and b to be zero — hence router parameters can not be updated.

Therefore, we propose an alternative strategy, which tends to have a smaller bias than the strategy
in (i)-(ii), and has non-zero gradients with respect to router parameters unlike (iii). The idea is to
follow a randomized adjustment strategy for the sampled logits oi ∀i ∈ s. We randomly sample an
index z uniformly in the subset s. We propose the following adjustment strategy:

õi :=


oi + log(ri), i = z

oi + log(ri)− log((k − 1)gi), i ∈ s\{z}
−∞ i /∈ s

(3)

This strategy tends to have a similar bias in comparison with the strategies in (i)-(ii) for uniform
distribution g and have a much smaller bias than (i)-(ii) for non-uniform distributions for g — see
ablation study in Supplement Section S3.1. Note that router probability g is expected to have a
range of distributions across inputs, which makes our proposed strategy less biased during training.
Additionally, this approach has non-zero gradients with respect to the router parameters A and b,
allowing the router to learn unlike the unbiased strategy in (iii) above. We empirically observed
that sampling without replacement performed significantly better than sampling with replacement
in the context of Sparse MoE training — see an ablation study in Section 4.3. We also show that
our proposed strategy in (3) significantly outperforms (i-ii) in the context of Sparse MoE training on
image datasets in Table S1 in Supplement Section S3.2.

Note that all the approaches in (i)-(iii) and the one we propose require k > 1; for k = 1, these
approaches have zero gradients with respect to the router parameters, this issue arises in Top-k
router as well as highlighted by Ruiz et al. (2021); this is why earlier works e.g., Ruiz et al. (2021);
Lepikhin et al. (2021), have proposed k > 1, which we also follow in this work.

Inference. There are two important considerations in Sparse MoE models at inference time: (a)
Similar to conditional training, k-sparse inference is crucial for efficient serving of large-scale MoE
models. As highlighted by the Figure 2a, there is a small discrepancy between the loss distribu-
tions when the models perform sparse or dense inference when trained with MOESART objective.
Hence using k-sparse solution works well at inference. (b) The routing should be deterministic for
better interpretability and reproducibility. Therefore, we follow a k-sparse deterministic strategy at
inference time. Instead of sampling from g(x), we select the indices corresponding to the top k
elements of g(x). We use the adjustment strategy in (iii) above — note that this leads to an equally
weighted average of the top k expert predictions per input. This deterministic inference strategy led
to a smaller out-of-sample loss in comparison to using sampling at inference.

3.2 ADDITIONAL TRIMMED LASSO REGULARIZATION

We can also add (per-input) Trimmed Lasso regularization (Bertsimas et al., 2017) in the objective
(2). Trimmed Lasso regularization is defined as λ

∑
j>k T (g(x))j , where T (v) sorts the elements of

v in descending order, and λ ≥ 0 is a non-negative penalty. This regularization can encourage g(x)
to accumulate router probability mass per-input in the top k elements, making the sampling process
more deterministic per-input by the end of training. Note that this regularization doesn’t affect the
k-sparse training characteristics of the MOESART objective (2).
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4 EXPERIMENTS

We study the performance of MOESART on recommender systems and image datasets in Section
4.1 and NLP tasks in 4.2. We include some ablation studies in Section 4.3.

4.1 EXPERIMENTS ON RECOMMENDER SYSTEMS AND IMAGE DATASETS

We study the performance of MOESART in recommender systems and image datasets. We compare
with state-of-the-art k-sparse routers, including Top-k (Shazeer et al., 2017), V-MoE (Ruiz et al.,
2021), SMoE (Fedus et al., 2022; Zoph et al., 2022), Expert Choice Router (Zhou et al., 2022) and
X-MoE (Chi et al., 2022). Note that Expert Choice Router obeys the k-sparsity on average across
samples in a minibatch. We also include softmax router as a baseline.

Datasets. We consider multitask versions of two recommendation system datasets: MovieLens
(Harper & Konstan, 2015) and Books (Ziegler et al., 2005). For MovieLens and Books, we have two
tasks: classification task predicts whether user watches/reads a particular movie/book, regression
problem predicts user’s rating. For image datasets, we consider two multitask datasets: Multi-
MNIST (Sabour et al., 2017) and Multi-FashionMNIST. There are two multi-class classification
tasks (Hazimeh et al., 2021). Full details about each dataset are in Supplement Section S6.

Experimental setup. Athough our exposition in Section 3 was for a single-task setting, the same
router can be used in multi-task learning — multi-task requires multi-router MoE architecture (Ma

Table 1: Test loss, task-specific metrics and number of experts used per sample (k/s) while training
for MOESART and existing purely sparse routing methods: (1) Top-k (Shazeer et al., 2017), (2) V-
MoE (Ruiz et al., 2021), (3) SMoE (Fedus et al., 2022), (4) Expert Choice Router (Zhou et al., 2022)
and (5) X-MoE (Chi et al., 2022) across various datasets. Bold indicates statistical significance (p-
value<0.05) over the best existing sparse router, using a one-sided unpaired t-test.

Recommender Systems
Dataset Router Test Loss (×10−2) ↓ Task-1 AUC ↑ Task-2 MSE ↓ Training k/s ↓

Books
(TW=(0.1,0.9))

Softmax (Dense) 248.96± 0.11 55.31± 0.08 2.697± 0.001 9
Top-k 246.97± 0.11 56.64± 0.08 2.675± 0.001 4
V-MoE 253.21± 0.15 55.11± 0.06 2.744± 0.002 4
SMoE 249.88± 0.13 56.68± 0.09 2.707± 0.001 4
Expert Choice Router 314.54± 0.49 56.22± 0.10 3.426± 0.005 4
X-MoE 264.16± 0.25 56.18± 0.10 2.866± 0.003 4
MOESART 242.47± 0.09 64.99± 0.13 2.626± 0.001 4

Books
(TW=(0.9,0.1))

Softmax (Dense) 74.69± 0.04 77.48± 0.04 2.697± 0.002 9
Top-k 74.63± 0.03 77.42± 0.02 2.683± 0.002 4
V-MoE 75.96± 0.04 76.89± 0.05 2.768± 0.003 4
SMoE 75.30± 0.05 77.13± 0.05 2.718± 0.002 4
Expert Choice Router 82.83± 0.06 76.75± 0.03 3.403± 0.009 4
X-MoE 78.25± 0.05 75.48± 0.05 2.890± 0.003 4
MOESART 73.68± 0.02 78.03± 0.03 2.641± 0.003 4

MovieLens
(TW=(0.1,0.9))

Softmax (Dense) 73.96± 0.02 86.02± 0.03 0.7701± 0.0002 16
Top-k 77.72± 0.06 86.08± 0.06 0.8121± 0.0007 2
V-MoE 75.67± 0.04 86.79± 0.03 0.7904± 0.0005 2
SMoE 79.47± 0.07 85.36± 0.06 0.8303± 0.0008 2
Expert Choice Router 81.14± 0.04 84.65± 0.05 0.8477± 0.0005 2
X-MoE 77.59± 0.12 86.86± 0.08 0.8119± 0.0013 2
MOESART 73.60± 0.02 87.33± 0.03 0.7684± 0.0002 2

MovieLens
(TW=(0.9,0.1))

Softmax (Dense) 41.93± 0.02 91.06± 0.01 0.7569± 0.0002 16
Top-k 41.90± 0.02 91.17± 0.01 0.7616± 0.0004 2
V-MoE 42.11± 0.03 91.16± 0.01 0.7605± 0.0006 2
SMoE 43.08± 0.06 90.86± 0.03 0.7917± 0.0009 2
Expert Choice Router 44.94± 0.04 89.88± 0.02 0.8216± 0.0006 2
X-MoE 44.66± 0.04 89.80± 0.02 0.7908± 0.0006 2
MOESART 40.89± 0.02 91.61± 0.01 0.7430± 0.0003 2

Image Tasks
Dataset Router Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑ Training k/s ↓

Multi-MNIST
(TW=(0.5,0.5))

Softmax (Dense) 7.16± 0.05 98.16± 0.02 97.57± 0.02 8
Top-k 7.15± 0.05 98.12± 0.02 97.58± 0.02 4
V-MoE 6.98± 0.04 98.16± 0.02 97.68± 0.02 4
SMoE 6.90± 0.05 98.18± 0.02 97.69± 0.02 4
Expert Choice Router 8.57± 0.06 97.80± 0.02 97.22± 0.02 4
X-MoE 7.02± 0.06 98.21± 0.02 97.63± 0.03 4
MOESART 5.86± 0.03 98.40± 0.02 97.92± 0.02 4

Multi-FMNIST
(TW=(0.5,0.5))

Softmax (Dense) 35.01± 0.09 88.10± 0.05 87.46± 0.05 5
Top-k 34.96± 0.09 88.06± 0.05 87.45± 0.05 2
V-MoE 34.43± 0.09 88.04± 0.05 87.53± 0.05 2
SMoE 34.68± 0.09 88.06± 0.04 87.52± 0.06 2
Expert Choice Router 36.41± 0.11 87.50± 0.08 87.03± 0.06 2
X-MoE 33.84± 0.10 88.05± 0.08 87.84± 0.08 2
MOESART 32.85± 0.11 88.56± 0.06 88.02± 0.07 2
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et al., 2018), where each task has a separate trainable router, but tasks have to select from a common
set of experts. Total loss is the convex combination of loss for each task. For recommender systems,
we train the network with a convex combination of the task-specific losses: binary cross-entropy
(for classification) and mean squared error (for regression) with task weights (TW): (α, 1 − α).
We separately present results for two different task weight settings. For Multi-MNIST and Multi-
FashionMNIST, we train with an equally weighted combination of cross-entropy losses. We used
Adam optimizer, and we tuned the key hyperparameters using random grid search. After tuning, we
train each model for 50 repetitions (using random initialization) and report the averaged test loss
and task-specific metrics along with their standard errors. Full details about the respective MoE
architectures and hyperparameter tuning for all routers are given in Supplement Section S6.

Results. In Table 1, we report the test loss, task-specific metrics and the number of experts for each
input used during training across multiple recommender and image datasets. The results indicate that
MOESART lead on all datasets with statistical significance, outperforming all state-of-the-art sparse
routers e.g., Top-k, V-MoE, Expert Choice Router and X-MoE. Notably, MOESART can achieve
16% reduction in test loss on Multi-MNIST over all sparse routers. Similarly, we can observe that
MOESART can achieve 15% (relative) improvement in ROC AUC over existing sparse routers on
Books dataset, when the models are trained with (0.1, 0.9) task weights combination.

4.2 DISTILLATION EXPERIMENTS ON NATURAL LANGUAGE PROCESSING TASKS

In this section, we study the performance of MOESART in the context of large language models
(LLMs) on NLP tasks. In particular, we consider a setting where a pretrained LLM (non-MoE
based) is distilled into an MoE based variant for more efficient inference while preserving or im-
proving the performance. Zuo et al. (2022b) distilled BERT (Devlin et al., 2018) into its Sparse-MoE
based MoEBERT. Specifically, the feedforward layers are replaced with MoE layers — this can re-
sult in a smaller number of (effective) parameters with per-input routing, thus allowing for more
efficient inference. In the MoE layers of MoEBERT model, we consider Top-k router (Shazeer
et al., 2017) and our proposed MOESART router during distillation and evaluate the performance on
the GLUE (Wang et al., 2019) and SQuAD benchmarks (Rajpurkar et al., 2016). We used k = 2
for both routers. More details about the distillation approach, datasets and tuning are summarized in
Supplement Section S7. We adapted the codebase of Zuo et al. (2022b) written in HuggingFace.

Results. We report the performance metrics in Table 2 for 7 GLUE and 2 SQuAD benchmarks.
MOESART consistently outperforms Top-k on all GLUE and SQuAD benchmarks. On average,
MOESART improves over Top-k in prediction performance metrics by 0.5%.

Table 2: Performance metrics for distillation of BERT into MoEBERT with different routers on the
GLUE and SQuAD development sets.

GLUE SQuAD
RTE
Acc ↑

CoLA
Mcc ↑

MRPC
F1 ↑

SST-2
Acc ↑

QNLI
Acc ↑

QQP
F1 ↑

MNLI
m/mm ↑

v1.1
F1 ↑

v2.0
F1 ↑

MoEBERT with Top-k 68.95 57.86 86.76 92.78 91.63 88.10 85.14 88.38 78.73
MoEBERT with MOESART 70.40 58.20 88.24 93.12 91.95 88.27 85.21 88.43 79.02

4.3 ABLATION STUDIES FOR MOESART

We perform multiple ablation studies to show different elements of MOESART: (i) Effect of sam-
pling strategies during training on out-of-sample generalization on SVHN. (ii) Effect of varying k
on model’s performance on SVHN. (iii) Spatial structure of learnt embeddings on MovieLens. Ad-
ditional ablation studies studying (a-b) bias and performance of different adjustment strategies, (c)
effect of trimmed lasso regularization on performance, and (d) performance under additional load
balancing requirements for MOESART are included in Supplement Section S3.

Effect of sampling strategy. We first study the effect of different sampling strategies on perfor-
mance of Sparse MoE. We consider two options: (a) sampling with replacement (b) sampling with-
out replacement. For this ablation study, we consider MOESART with k = 2 on SVHN dataset. We
show the evolution of out-of-sample loss during the course of training in Figure 3. We can observe
that sampling without replacement appears to be more stable and achieves better out-of-sample loss.
We hypothesize that the sub-optimal performance of sampling with replacement can be attributed to
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two reasons: (a) The variance is smaller for sampling without replacement, (b) For sampling with
replacement, with k = 2, if the same expert gets sampled twice for an input, this example is unable
to contribute to the gradient update of the router parameters.
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Figure 3: Out-of-sample loss
for MOESART for different
sampling strategies on SVHN.
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Figure 4: Out-of-sample loss
achieved by MOESART and
Top-k for different k on SVHN.

Effect of varying k. Here, we study the effect of k on MoE per-
formance. Note that number of experts is fixed to 8. We train
Sparse MoE models for different values of k = {2, 4, 6} and
visualize the generalization performance in Figure 4. For com-
parison, we visualize the results for both Top-k and MOESART.
We also show the performance of softmax router. We observe
that both sparse routers improve in performance as k is increased.
Notably, we consistently see a significant gap in performance be-
tween Top-k and MOESART for each k setting.

Spatial structure of learnt embeddings. We consider Movie-
Lens dataset and the same multi-task MoE-based architecture as
detailed in Section S6.2 — however, we use 4 experts for this
exercise. The architecture has user and movie learnable embed-
ding layers, which are concatenated and fed into an MoE layer
with 4 experts, followed by a task-specific head for classification
task and regression task. We set k = 2 for Top-k and MOE-
SART . We optimize with Adam with 5× 10−5 learning rate with
a 512 batch size. We visualize the embeddings learnt by Top-k
and MOESART routers in Figure 5. We use Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018)
to project the concatenated embeddings of each input to a two-
dimensional space. Each data point represents an input to be
routed. Each color stands for the top expert that each input is
assigned to. MOESART seems to provide better specialization of
experts, where the distinct distribution handled by each expert is
much clearer (5a,5b) in comparison to that for Top-k router (5c,5d). The learnt embeddings are more
disentangled for MOESART in comparison to Top-k.

(a) MOESART (Task-1) (b) MOESART (Task-2) (c) Top-k (Task-1) (d) Top-k (Task-2)

Figure 5: UMAP projection of user/movie embeddings learnt by the different routers on (multi-task) Movie-
Lens. Each data point represents an embedding input to be routed. Color denotes expert index. MOE-
SART seems to provide better specialization of experts, where the distinct distribution handled by each expert
is much clearer (5a,5b) in comparison to that for Top-k router (5c,5d).

5 CONCLUSION

We proposed a sampling-based routing mechanism with MOESART. Our approach aims to learn a
sparse approximation of the softmax based classical MoE. We achieve this through sampling and
novel expert reweighting strategies. The sparse approximation learnt by our approach appears to be
substantially better than that learnt by Top-k router and its variants. MOESART allows conditional
training as it is k-sparse during training similar to Top-k style routing strategies. We performed
large-scale experiments on 14 datasets from various domains. On standard vision and recommender
systems, MOESART achieves up to 16% (relative) smaller out-of-sample loss and up to 15% (rela-
tive) improvement in ROC AUC over state-of-the-art k-sparse routers, e.g., Top-k, V-MoE, Expert
Choice Router and X-MoE. Moreover, for distillation in NLP tasks, MOESART router can consis-
tently outperform Top-k router in MoEBERT model on GLUE and SQuAD benchmarks.
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Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020.

Alec Radford, Jeff Wu, Rewon Child, et al. Language models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN 1532-4435.

11



Under review as a conference paper at ICLR 2024

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, et al. SQuAD: 100,000+ questions for machine compre-
hension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for
SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 784–789, Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-2124.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, et al. Hash layers for large sparse models. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021.

Carlos Riquelme Ruiz, Joan Puigcerver, Basil Mustafa, et al. Scaling vision with sparse mixture of experts.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 3859–3869,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Michael E. Sander, Joan Puigcerver, Josip Djolonga, et al. Fast, differentiable and sparse top-k: a convex
analysis perspective. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, et al. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In International Conference on Learning Representations, 2017.

Richard Socher, Alex Perelygin, Jean Wu, et al. Recursive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Lin-
guistics.

Alex Wang, Amanpreet Singh, Julian Michael, et al. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In International Conference on Learning Representations, 2019.

Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, et al. Small towers make big differences. ArXiv,
abs/2008.05808, 2020.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural Network Acceptability Judgments. Trans-
actions of the Association for Computational Linguistics, 7:625–641, 09 2019. ISSN 2307-387X. doi:
10.1162/tacl a 00290.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence un-
derstanding through inference. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa-
pers), pp. 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101.

Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relaxations. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, pp. 3919–3925.
AAAI Press, 2019. ISBN 9780999241141.

Yuan Xie, Shaohan Huang, Tianyu Chen, et al. Moec: Mixture of expert clusters. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(11):13807–13815, Jun. 2023. doi: 10.1609/aaai.v37i11.26617.

Yanqi Zhou, Tao Lei, Hanxiao Liu, et al. Mixture-of-experts with expert choice routing. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, et al. Improving recommendation lists through
topic diversification. In Proceedings of the 14th International Conference on World Wide Web, WWW ’05,
pp. 22–32, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595930469. doi:
10.1145/1060745.1060754.

Barret Zoph, Irwan Bello, Sameer Kumar, et al. St-moe: Designing stable and transferable sparse expert
models. 2022.

12



Under review as a conference paper at ICLR 2024

Simiao Zuo, Xiaodong Liu, Jian Jiao, et al. Taming sparsely activated transformer with stochastic experts. In
International Conference on Learning Representations, 2022a.

Simiao Zuo, Qingru Zhang, Chen Liang, et al. MoEBERT: from BERT to mixture-of-experts via importance-
guided adaptation. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1610–1623, Seattle, United States, July
2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.116.

13



Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL.

S1 PROOF FOR g̃i IN (III) BEING AN UNBIASED ESTIMATOR OF gi

In this section, we study the biasness of adjustment strategy ((iii) in the main paper), as given by

õi :=

{
oi + log(ri)− log(kgi) i ∈ s,

−∞ i /∈ s,
(S1)

Recall that g̃i = exp(õi)/
∑

l∈[n] exp(õl). We present the following theorem:

Theorem 1 For each i ∈ [n], if sampling (with replacement) is performed from the softmax proba-
bility, gi ∝ exp(oi), then g̃i (corresponding to õi defined in (S1) is an unbiased estimator of gi, i.e.,
E[g̃i] = gi.

Before, we can show the proof for Theorem 1, we present the following result:

Lemma 1 For õi defined as in (S1), the following equality holds:∑
j∈[n]

exp(õj) =
∑
l∈[n]

exp(ol). (S2)

Proof for Lemma 1:∑
j∈[n]

exp(õj) =
∑
j∈s

exp(õj) +
∑
j /∈s

exp(õj) =
∑
j∈s

exp(õj) (S3)

=
∑
j∈s

exp(oj − log(kgj) + log(rj)) =
∑
j∈s

rjexp(oj)
kgj

(S4)

=
∑
j∈s

rjexp(oj)
k

∑n
l=1 exp(ol)
exp(oj)

(S5)

=
1

k

∑
j∈s

rj

( n∑
l=1

exp(ol)

)
=

1

k
(k)

(
n∑

l=1

exp(ol)

)
(S6)

=

n∑
l=1

exp(ol). ■ (S7)

Proof for Theorem 1:

Er [g̃j ] = Er

[
exp(õi)∑

l∈[n] exp(õl)

]
(S8)

= Er

[
exp(õi)∑n
l=1 exp(ol)

]
using Lemma 1 (S9)

= Er

[
exp(oi − log(kgi) + log(ri))∑n

l=1 exp(ol)

]
(S10)

=
1

k
Er

[
ri
gi

exp(oi)∑n
l=1 exp(ol)

]
(S11)

=
1

k
Er[ri] =

1

k
(kgi) = gi. ■ (S12)
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S2 VECTORIZED MINI-BATCH SAMPLING FOR MOESART

Algorithm 1 Vectorized mini-batched sampling with/without replacement
Input: G ∈ RB,n — Expert probability mass function g(x) for each sample x in batch B in matrix
form.
Output: R ∈ ZB,n

≥0 — Count Matrix, which records number of times each expert is sampled for
each input in the minibatch. R is used to get the indices set S.
Hyperparameters: k, replace.

1: Denote sample indices in mini-batch, B = {1, . . . , B}
2: Initialize count matrix, R = 0 ∈ ZB,n

≥0 .
3: for ℓ = 1, . . . , k do
4: Initialize Rl = 0 ∈ ZB,n

≥0 .
5: Sample u ∈ RB ∼ U(0, 1).
6: Compute: C[b, i] =

∑i
q=1 G[b, q] ∀i ∈ [n], ∀b ∈ B.

7: Define s such that s[b] = argmaxi∈[n] 1{u[b] < C[b, i]} ∀b ∈ B.
8: Update Rl[b, s[b]] = 1 ∀b ∈ B.
9: Find indices Z ⊆ B such that

∑
i G[z, i] = 0 ∀z ∈ Z .

10: Update Rl[z, s[z]] = 0 ∀z ∈ Z
11: Update R← R+Rl.
12: if not replace then
13: Update G[b, s[b]] = 0 ∀b ∈ B.
14: Row-sum normalize G← G⊘ (G · 1n · 1T

n ).
15: end if
16: end for

S3 ADDITIONAL ABLATION STUDIES

1 2 3 4 5 6 7 8
Category

0.0

0.1

0.2

0.3

0.4

0.5
g

[g] for (i),    || [g] g||2 = 0.0019
[g] for (ii),   || [g] g||2 = 0.0016
[g] for (3),   || [g] g||2 = 0.0016

(a) Uniform g
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(b) Random g
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(c) Exponentially Decaying g

Figure S1: Comparison of bias
of different adjustment strategies (i)-
(iii) and the proposed strategy in (3)
for different g.

In this section, we show four ablation studies:

(a) Bias of different adjustment strategies in (i)-(ii) and pro-
posed strategy in (3).

(b) Performance comparison of MOESART with different ad-
justment strategies in (i)-(ii) and (3) for training of Sparse-
MoE on Image datasets.

(c) Effect of trimmed lasso regularization on performance of
MOESART on Recommender Systems.

(d) Performance of MOESART under additional load balancing
requirements.

S3.1 BIAS OF DIFFERENT ADJUSTMENT STRATEGIES
IN (I)-(II) AND OUR PROPOSED STRATEGY IN (3)

In this ablation study, we empirically study the bias of differ-
ent adjustment strategies in (i)-(ii) and the proposed strategy in
(3). For this study, we consider different choices for g: uni-
form, random, decaying. We measure the bias with the metric
∥E[g̃]− g∥2. To be precise, this metric ∥E[g̃]− g∥2 is defined
as:

∥(E[g̃1], · · · ,E[g̃n])− (g1, · · · , gn)∥2 (S13)

We show the metric in Fig. S1 for different distribution shapes
for g. For uniform setting, we observe the bias to be very similar
across different adjustment strategies. However, for sufficiently
non-uniform distributions, we can observe that there can be a
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significant gap in the bias for proposed strategy in (3) and the adjustment strategies in (i)-(ii). In
Sparse MoE, the distribution g(x) can be very different across different inputs, hence our proposed
strategy is expected to have a lower bias overall across samples. A smaller bias can lead to improved
learning. We observe this to be the case in Sparse MoE, which we show in the next ablation study.

S3.2 PERFORMANCE COMPARISON OF OUR PROPOSED ADJUSTMENT IN (3) VERSUS (I)-(II)
ON IMAGE DATASETS.

In this ablation study, we compare the performance of MOESART under different adjustment strate-
gies for computing g̃. In particular, we compare the proposed strategy in (3) without replacement
against the strategies in (i)-(ii) without replacement. Note that (i) and (ii) are equivalent when sam-
pling without replacement.

We show results for different adjustment strategies in Table S1 on multi-task image datasets. We also
include Top-k for comparison. We can see our proposed strategy in (3) can be significantly better
than the strategies in (i)-(ii). We can also observe that both sampling-based strategies (i-ii) and (3)
significantly outperform Top-k routing. This potentially highlights that Top-k greedy routing has a
large selection bias, which is reduced by sampling based approaches.

Table S1: Comparison of test loss and task-specific metrics for MOESART with the proposed ad-
justment strategy in (3) against other strategies in (i)-(ii). We also include Top-k for reference.

Image Tasks
Dataset Model Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑ Training k/s ↓
Multi-MNIST
(TW=(0.5,0.5))

Top-k 7.15± 0.05 98.12± 0.02 97.58± 0.02 4
MOESART with (i),(ii) 6.15± 0.05 98.33± 0.02 97.92± 0.02 4
MOESART with (3) 5.86± 0.03 98.40± 0.02 97.92± 0.02 4

Multi-FMNIST
(TW=(0.5,0.5))

Top-k 34.96± 0.09 88.06± 0.05 87.45± 0.05 2
MOESART with (i),(ii) 34.15± 0.09 88.19± 0.05 87.71± 0.05 2
MOESART with (3) 32.85± 0.11 88.56± 0.06 88.02± 0.07 2

S3.3 EFFECT OF TRIMMED LASSO REGULARIZATION ON PERFORMANCE ON
RECOMMENDER SYSTEMS

In this section, we perform ablation study for the trimmed lasso regularization on recommender
systems datasets i.e., MovieLens and Books. We had performed a large set of 500 tuning trials,
which tuned over multiple hyperparameters including the trimmed lasso regularization λ in the set
{0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. We identify the best tuning trial for both cases λ = 0 and
λ > 0 based on the validation set and report the test performance for the two cases in Table S2. We
can observe that for both datasets, trimmed lasso regularization can provide some performance gain
over the case without trimmed lasso regularization.

Table S2: Comparison of test loss for best trial for MOESART without and with Trimmed Lasso
Regularization on Recommender system datasets.

Dataset Model Test Loss (×10−2) ↓
MovieLens MOESART without Trimmed Lasso 73.85

MOESART with Trimmed Lasso 73.40

Books MOESART without Trimmed Lasso 246.50
MOESART with Trimmed Lasso 243.02

S3.4 PERFORMANCE UNDER LOAD BALANCING

Load balancing is also another important consideration for efficiency in Sparse MoE models. Load
balancing requires similar number of examples to be routed to each expert. Traditionally, an auxil-
iary loss is added explicity to achieve load balancing. Shazeer et al. (2017) and Fedus et al. (2022)
proposed two different auxiliary losses to achieve load balancing. Many follow-up works on Top-k
based routing (Zoph et al., 2022; Chi et al., 2022; Xie et al., 2023) impose one of these auxiliary
losses. We add an auxiliary loss as the one imposed by Fedus et al. (2022) to Top-k router and
MOESART router and compare the performance of these methods when the load balancing regu-
larization is designed to achieve 99% load balancing. We also compare against the Expert Choice

16



Under review as a conference paper at ICLR 2024

Router by Zhou et al. (2022), which is designed to achieve 100% load balancing across experts. We
again consider (multi-task) MovieLens dataset. MOESART with load balancing achieves the best
performance as shown in Table S3.

Table S3: Test loss with load balancing on MovieLens.

Model Test Loss (×10−2) ↓
Top-k 77.72± 0.03
Expert Choice Router 81.14± 0.04
MOESART 74.04 ± 0.03

S4 COMPARISON WITH DIFFERENTIABLE ROUTERS

In this section, we compare our routing approach with some state-of-the-art differentiable routers. In
particular, we compare with two routers: (i) DSelect-k (Hazimeh et al., 2021), (ii) COMET (Ibrahim
et al., 2023). We tuned these differentiable routers for their respective hyperparameters with random
search over 500 tuning trials and report the averages across 50 runs for their best hyperparameters.
We compare across various datasets and report the performance metrics in Table S4.

Table S4: Comparison of test loss and task-specific metrics for MOESART against differentiable
routing methods: (1) DSelect-k (Hazimeh et al., 2021), (2) COMET (Ibrahim et al., 2023), across
various datasets. Note that these differentiable routers can only support conditional training partially
with customized implementations, hence they are more expensive during training.

Recommender Systems
Dataset Model Test Loss (×10−2) ↓ Task-1 AUC ↑ Task-2 MSE ↓
Books
(TW=(0.1,0.9))

Softmax (Dense) 248.96± 0.11 55.31± 0.08 2.697± 0.001
DSelect-k 241.64± 0.14 59.05± 0.14 2.615± 0.002
COMET 241.13± 0.11 66.13± 0.09 2.612± 0.001
MOESART 242.47± 0.09 64.99± 0.13 2.626± 0.001

Books
(TW=(0.9,0.1))

Softmax (Dense) 74.69± 0.04 77.48± 0.04 2.697± 0.002
DSelect-k 74.22± 0.03 77.61± 0.02 2.632± 0.002
COMET 74.29± 0.03 77.30± 0.02 2.636± 0.002
MOESART 73.68± 0.02 78.03± 0.03 2.641± 0.003

MovieLens
(TW=(0.1,0.9))

Softmax (Dense) 73.96± 0.02 86.02± 0.03 0.7701± 0.0002
DSelect-k 73.81± 0.03 87.79± 0.03 0.7715± 0.0003
COMET 74.19± 0.03 87.67± 0.07 0.7756± 0.0004
MOESART 73.60± 0.02 87.33± 0.03 0.7684± 0.0002

MovieLens
(TW=(0.9,0.1))

Softmax (Dense) 41.93± 0.02 91.06± 0.01 0.7569± 0.0002
DSelect-k 41.40± 0.03 91.44± 0.01 0.7582± 0.0005
COMET 41.25± 0.04 91.45± 0.02 0.7563± 0.0008
MOESART 40.89± 0.02 91.61± 0.01 0.7430± 0.0003

Image Tasks
Dataset Model Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑
Multi-MNIST
(TW=(0.5,0.5))

Softmax (Dense) 7.16± 0.05 98.16± 0.02 97.57± 0.02
DSelect-k 6.93± 0.06 98.14± 0.02 97.68± 0.03
COMET 6.83± 0.06 98.21± 0.02 97.63± 0.03
MOESART 5.86± 0.03 98.40± 0.02 97.92± 0.02

Multi-FMNIST
(TW=(0.5,0.5))

Softmax (Dense) 35.01± 0.09 88.10± 0.05 87.46± 0.05
DSelect-k 36.88± 0.21 87.37± 0.07 86.61± 0.09
COMET 34.88± 0.13 87.97± 0.06 87.42± 0.06
MOESART 32.85± 0.11 88.56± 0.06 88.02± 0.07

MOESART appears to be quite competitive with differentiable routers. Surprisingly, MOESART can
sometimes even outperform differentiable routers. We hypothesize that this maybe due to the choice
of parameterization. These routers rely on a particular activation function (Smooth-Step function
(Hazimeh et al., 2020)) to achieve binary state for sparse inference. The binary gates snap into place
across samples reaching a permanent state of 0 or 1 as training progresses. This is understandably a
desired property of Smooth-Step activation for conditional computation, however it means that the
model cannot update decisions regarding the choice of expert once this permanent state is reached.
In contrast, our sampling-based approach can allow for exploration throughout training, which can
be beneficial.
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We would like to remind the reader that although these routers can allow conditional inference,
they are less appealing in terms of conditional training. These routers are dense-to-sparse routers,
and hence can only partially allow for conditional training (during a later stage of training with
customized implementations). Hence, these routers are more expensive as during the dense phase
of training they require computing gradients with respect to a larger set of experts. In contrast,
our proposed routing approach MOESART completely allows conditional training and conditional
inference.

S5 SENSITIVITY OF MOESART TO HYPERPARAMETER TUNING

Here, we study the sensitivity of MOESART to hyperparameter tuning and show that router can be
beneficial in terms of hyperparameter tuning over Top-k style routers. We perform a large set of
tuning trials and perform a bootstrapping procedure to see whether MOESART helps in reducing the
hyperparameter tuning overload. We first describe the bootstrapping procedure.

Bootstrapping procedure for studying hyperparameter tuning We performed 500 tuning trials
for each router optimizing over various different hyperparameters and performed a bootstrapping
procedure as outlined below:

• Randomly sample s (s ∈ {1, 2, 5, 10, 15, · · · , 250}) trials from the bag of a larger set of 500 trials.
• Find the trial with the best validation loss.
• Compute the test loss for that trial.
• Repeat this exercise for 1000 times.
• Compute the average test loss across the best selected trials.

We visualize the impact of number of trials on performance in Figure S2. MOESART can achieve the
same level of performance as Top-k router with much lesser number of hyperparameter trials. This
indicates that MOESART is not too heavily dependent on a very restricted set of hyperparameter
values. We visualize this for various datasets in Fig. S2. We see tuning reduction by a factor of
100× for MOESART over Top-k. Alternatively, even a small number of trials e.g., 2-10 can show a
significant gain over Top-k router.
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Figure S2: Sensitivity of MOESART to hyperparameter tuning. MOESART can achieve the same
level of performance as Top-k with significantly lesser number of hyperparameter trials. We see
tuning reduction by 100× for MOESART over Top-k.
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S6 ADDITIONAL DETAILS FOR SECTION 4.1

S6.1 DATASETS

SVHN. We consider Street View Housing Numbers (SVHN) (Netzer et al., 2011) dataset. SVHN
is a dataset of ∼ 600, 000 images obtained from house numbers in Google Street View images.
We used the original training (#train: 73257) and test (#test: 26032) splits. We subsampled 50,000
samples from the extra split as validation dataset.

MovieLens. MovieLens (Harper & Konstan, 2015) is a movie recommendation dataset containing
records for∼ 4, 000 movies and∼ 6, 000 users. Following Wang et al. (2020), for every user-movie
pair, we construct two tasks. Task 1 is a binary classification problem for predicting whether the
user will watch a particular movie. Task 2 is a regression problem to predict the user’s rating (in
{1, 2, · · · , 5}) for a given movie. We use 1.6 million samples for training and 200, 000 for each of
the validation and testing sets.

Books. Books (Ziegler et al., 2005) is a book recommendation dataset containing records for ∼
105k users and ∼ 340k books. We filter users and books with each atleast 5 records. This gives
a subset of 18, 960 users and 31, 070 books. This gives a subset of 556,724 records. Similar to
MovieLens above, for every user-book pair, we construct two tasks. Task 1 is a binary classification
problem for predicting whether the user will read a particular book. Task 2 is a regression problem
to predict the user’s rating (in {1, 2, · · · , 10}) for a given book. We use 389,706 samples for training
and 83,509 for each of the validation and testing sets.

Multi-MNIST and Multi-FashionMNIST. We consider multi-task variants of MNIST and Fash-
ionMNIST (Deng, 2012). The datasets are constructed in a similar fashion as given in Sabour et al.
(2017); Hazimeh et al. (2021): (i) uniformly sample two images from MNIST and overlay them
on top of each other, and (ii) shift one digit towards the top-left corner and the other digit towards
the bottom-right corner (by 4 pixels in each direction). This procedure leads to 36 × 36 images
with some overlap between the digits. We consider two classification tasks: Task 1 is to classify the
top-left item and Task 2 is to classify the bottom-right item. We use 100,000 samples for training,
and 20, 000 samples for each of the validation and testing sets.

S6.2 ARCHITECTURES

SVHN. We use an architecture with an MoE-layer followed by a stack of 3 dense layers: the first
two have 50 ReLU-activated units and the third has 10 units followed by a softmax. The MoE layer
consists of 8 experts, each of which is a CNN that is composed (in order) of: (i) convolutional layer
1 (kernel size = 5, #filters = 10, ReLU-activated) followed by max pooling, (ii) convolutional layer
2 (kernel size=5, #filters = 20, ReLU-activated) followed by max pooling, and (iii) a sequence of 2
ReLU-activated dense layers with 50 units each.

Multi-MNIST and Multi-FashionMNIST. We use a multi-router MoE with 8 and 5 experts for
Multi-MNIST and Multi-FashionMNIST respectively. Each of the experts is a CNN that is com-
posed (in order) of: (i) convolutional layer 1 (kernel size = 5, #filters = 10, ReLU-activated) followed
by max pooling, (ii) convolutional layer 2 (kernel size=5, #filters = 20, ReLU-activated) followed
by max pooling, and (iii) a sequence of 2 ReLU-activated dense layers with 50 units each. The
subnetwork specific to each of the 2 tasks is composed of a stack of 3 dense layers: the first two
have 50 ReLU-activated units and the third has 10 units followed by a softmax.

MovieLens. We consider a multi-router MoE architecture, where each task is associated with a
separate router. The MoE architecture consists of a shared bottom subnetwork comprising two
embedding layers (for users and movies). The 128-dimensional embeddings from both layers are
concatenated and fed into an MoE Layer of 16 experts, where each expert is a ReLU-activated dense
layer with 256 units, followed by a dropout layer (with a dropout rate of 0.5). For each of the two
tasks, the corresponding convex combination of the experts is fed into a task-specific subnetwork.
The subnetwork is composed of a dense layer (ReLU-activated with 256 units) followed by a single
unit that generates the final output of the task.
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Books. We consider a multi-router MoE architecture, where each task is associated with a separate
router. The MoE architecture consists of a shared bottom subnetwork comprising two embedding
layers (for users and books/jokes). The 64-dimensional embeddings from both layers are concate-
nated and fed into an MoE Layer of 9 experts, where each expert is a ReLU-activated dense layer
with 128 units, followed by a dropout layer (with a dropout rate of 0.5). For each of the two tasks,
the corresponding convex combination of the experts is fed into a task-specific subnetwork. The
subnetwork is composed of a dense layer (ReLU-activated with 256 units) followed by a single unit
that generates the final output of the task.

S6.3 HYPERPARAMETERS AND TUNING

We performed 500 tuning trials for each router with a random search over the hyperparameter space
described below (for each dataset). For each router, we tune the optimization and router-specific hy-
perparameters and use the validation loss as the tuning metric. After tuning, we train each model for
50 repetitions (using random initializations) and report the averaged results along with the standard
errors in Table 1.

SVHN.

• Learning Rates: 1× 10−4 for Adam.
• Batch-size: 512.
• Epochs: 250 with early stopping (patience=50) based on validation set.
• Trimmed Lasso, λ: 0.0 for MOESART.
• n (number of experts): 8.
• k: 2 for all sparse (trainable) routers.
• Number of tuning trials per router: 1

MovieLens.

• Learning Rates: Uniform in the log range [5× 10−5, 5× 10−4] for Adam.
• Batch-size: 512.
• Epochs: 100 with early stopping (patience=25) based on validation set.
• Trimmed Lasso, λ: Discrete uniform in the set {0.0, 0.01, 0.1, 1, 10} for MOESART.
• n (number of experts): 16.
• k: 2 for all sparse (trainable) routers.
• Number of tuning trials per router: 500

Books.

• Learning Rates: Uniform in the log range [5× 10−5, 5× 10−4] for Adam.
• Batch-size: 2048.
• Epochs: 100 with early stopping (patience=25) based on validation set.
• Trimmed Lasso, λ: Discrete uniform in the set {0.0, 0.01, 0.1, 1, 10} for MOESART.
• n (number of experts): 9.
• k: 4 for all sparse (trainable) routers.
• Number of tuning trials per router: 500

Multi-MNIST.

• Learning Rates: Uniform in the log range [1× 10−4, 1× 10−3] for Adam.
• Batch-size: 512.
• Epochs: 200 with early stopping (patience=25) based on validation set.
• Trimmed Lasso, λ: Discrete uniform in the set {0.0, 0.01, 0.1, 1, 10} for MOESART.
• n (number of experts): 8.
• k: 4 for all sparse (trainable) routers.
• Number of tuning trials per router: 500

Multi-FashionMNIST.

• Learning Rates: Uniform in the log range [1× 10−4, 1× 10−3] for Adam.
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• Batch-size: 512.
• Epochs: 200 with early stopping (patience=25) based on validation set.
• Trimmed Lasso, λ: Discrete uniform in the set {0.0, 0.01, 0.1, 1, 10} for MOESART.
• n (number of experts): 5.
• k: 2 for all sparse (trainable) routers.
• Number of tuning trials per router: 500

S7 ADDITIONAL DETAILS FOR SECTION 4.2

S7.1 DATASETS

GLUE. General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), is a
collection of natural language understanding tasks. Following previous works on model distillation,
we consider SST-2 (Socher et al., 2013), CoLA (Warstadt et al., 2019), MRPC (Dolan & Brock-
ett, 2005), STSB (Cer et al., 2017), QQP, and MNLI (Williams et al., 2018) and exclude STS-B
(Cer et al., 2017) and WNLI (Levesque et al., 2012) in the experiments. The datasets are briefly
summarized below:

• SST-2 (Socher et al., 2013) is a binary single-sentence classification task that classifies
movie reviews to positive or negative;

• CoLA (Warstadt et al., 2019) is a linguistic acceptability task;
• MRPC (Dolan & Brockett, 2005) is a paraphrase detection task;
• QQP is a duplication detection task;
• MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), and RTE (Dagan et al., 2006)

are natural language inference tasks.

Dataset details are summarized in Table S5.

Table S5: Summary of GLUE benchmark.

Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews correlation
SST-2 Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

SQuAD. We evaluate our sparse routing approaches on SQuAD benchmarks (Rajpurkar et al.,
2016; 2018). This task is treated as a sequence labeling problem, where we predict the probability
of each token being the start and end of the answer span. Statistics of the question answering datasets
are summarized in Table S6.

Table S6: Summary of SQuAD benchmark.

Corpus Task #Train #Dev Metrics
SQuAD v1.1 Question Answering 87.6k 10.6k F1/EM
SQuAD v2.0 Question Answering 130k 11.9k F1/EM

S7.2 TUNING PROCEDURE FOR MOEBERT

Following Zuo et al. (2022b), we followed the 3-step process as outlined in the MoEBERT code-
base1:

1https://github.com/SimiaoZuo/MoEBERT
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• Finetune BERT on downstream task. We used finetuned BERT from HuggingFace on each
downstream task.

• Compute importance weights in FFN layers to construct an MoEBERT model, where FFN
layers are replaced with MoE layers with the weight assignment strategy in (Zuo et al.,
2022b).

• Distill BERT into MoEBERT on the downstream task with a combination of cross-entropy
loss and layer-wise discrepancy loss. For MoEBERT with Top-k and MOESART, we per-
formed a tuning procedure and picked the best results based on development datasets. We
performed a grid search over the following sets of hyperparameters:

– Learning Rate: We used same learning rates as the optimal ones reported for each
dataset in Table 7 of Zuo et al. (2022b).

– Batch size: We used same batch sizes as the optimal ones reported for each dataset in
Table 7 of Zuo et al. (2022b).

– Weight Decay: Discrete uniform over the set {0, 0.01, 0.1}
– Distillation Regularization (λdistill in (Zuo et al., 2022b)): Discrete uniform over the

set {1, 2, 3, 4, 5}.
– k: 2
– τ (for MOESART): 1.0.
– λ (for Trimmed Lasso regularization for MOESART): Discrete uniform over the set
{0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}.

– Epochs: 10. Best model was recovered at best checkpoint based on development set.
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