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Abstract

In this paper, we present empirical evidence of skills and directed exploration
emerging from a simple RL algorithm long before any successful trials are observed.
For example, in a manipulation task, the agent is given a single observation of the
goal state (see Fig.[T) and learns skills, first moving its end-effector, then pushing
the block, and finally lifting and placing the block. These skills emerge before the
agent has ever successfully placed the block at the goal location and without the aid
of any reward functions, demonstrations, or manually-specified distance metrics.
Implementing our method involves a simple modification of prior work and does
not require density estimates, ensembles, or any additional hyperparameters. We
lack a clear theoretical understanding of why the method works so effectively,
though our experiments provide some hints.

Videos and code: https://graliuce.github.io/sgcrl
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Figure 1: Skills and Directed Exploration Emerge. In this bin picking task, we provide the agent with a single
goal observation where the green block is in the left bin. The agent never receives any rewards. Throughout
the course of training, the agent learns skills that increase in complexity. Easier skills seem to enable the agent
to unlock more complex skills: moving the hand is a prerequisite for pushing the object; closing the gripper
is a prerequisite for picking up the object, which is a prerequisite for moving the object. Figures [7]and[g]in
Appendix [D|show similar progress milestones for other tasks.

1 Introduction

Exploration is one of the grand challenges in reinforcement learning (RL) [69]. While there is a long
history of exploration methods, even today’s best methods fail to explore in settings with sufficiently
sparse rewards, and the complexity of sophisticated exploration techniques means that most methods
employ limited exploration techniques (e.g., adding random noise to actions 142])). In this
paper, we focus on a specific type of RL problem [[6] [32] [37]]: the agent is given an observation of the
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single desired goal state, which it tries to reach. This problem setting is exceedingly challenging for
standard RL methods, as the agent does not receive any reward feedback about how it should solve
the task. Because of the difficulty of this exploration problem, prior work typically assumes that
a human user can provide a dense reward function [27, [77] (or distance metric/threshold [6} 154} [74])
or a set of easier training goalsﬂ [18]. A more comprehensive discussion of prior work can be found
in Appendix section[Al Our paper lifts the assumptions of prior work by considering a setting that
is easier for human users but significantly more challenging for RL agents: a single goal state is
provided and is used for both training and evaluation.

We present a simple RL algorithm where skills and directed exploration emerge long before any
successful trials are ever observed. Implementing this method involves a simple modification of prior
work and does not require density estimates, ensembles, or any additional hyperparameters. Our
method works by learning a goal-conditioned value function via contrastive RL (CRL) [18]] and using
that value function to train a goal-conditioned policy. The key ingredient is embarrassingly simple:
when doing exploration, always condition the goal-conditioned policy on the single target goal.

Empirically, we evaluate our approach on tasks ranging from bin picking to peg insertion to maze
navigation, finding that it significantly outperforms prior methods that use a manually-designed
curricula of subgoals [[18], methods that automatically propose subgoals for training [6]], and even
methods that use dense rewards [26]. While we still lack a theoretical understanding of why this
approach is so effective, experiments highlight that (/) the contrastive representations used to express
the value function are important, and that (2) the gains are not caused by “overfitting” the policy or
the value function to the single target goal.

2 Single-Goal Exploration with Contrastive RL

2.1 Preliminaries

Notation. We consider a controlled Markov process (i.e., an MDP without a reward function)
defined by time-indexed states s; and actions a;. Our experiments will use continuous states and
actions. The initial state is sampled so ~ po(so) and subsequent states are sampled from the
Markovian dynamics $¢+1 ~ p(st41 | St, ar). Without loss of generality, we assume that episodes
have an infinite horizon. We assume that the algorithm is given as input the single target goal state s*
and aims to learn a policy 7(a; | s;) by interacting with the environment. Unlike prior work, we do
not assume that a distribution of goals for exploration is given; we do not assume that either a dense
or sparse reward function is given.

Following prior work [[16,61]], we define the objective as maximizing the probability of reaching
the goal. Formally, define the y-discounted state occupancy measure [L1 30, [67]] as p™ (sy) =
(1 —9) X720 PF(se = sy), where pf (s, = sy) is the probability of being at state sy at time
step ¢. In continuous settings, pJ (ss) is a probability density. The objective is to find a policy that
maximizes the likelihood of the single target goal under this occupancy measure: max, p” (s; = s*).
In discrete settings, this objective is equivalent to the standard discounted reward objective with a
reward function r(s¢, a;) = 1(s; = s*); in continuous settings, it is equivalent to using a reward
function r(sy, a;) = p(s’ = sT | 54, a4).

Contrastive RL. Our method builds on contrastive RL [18]], prior work that uses temporal con-
trastive learning to solve goal-conditioned RL problems. Contrastive RL is an actor-critic method.
The critic C(s, a, s¢) is learned so that it outputs the (relative) likelihood that an agent starting at
state s and taking action a will visit state sy. Following prior work, we parameterize the critic
as the dot product between two learned representations, ¢(s,a)?(s) and learn these representa-
tions using the infoNCE contrastive objective [45]] together with a LogSumExp regularization. In
practice, this loss is implemented by sampling a random (s¢, a;) pair from the replay buffer and
then sampling a future state sy = s¢4 A by looking A ~ GEOM(1 — 7) steps ahead. The negative
examples are obtained by shuffling the future states. Once learned, the representations encode a
Q-value [18]: ¢(s,a)T¢(s¢) = log Q(s,a, sy) —log p(sy). The policy is learned to maximize this
(log) Q-value: maxy Ey(s)p(g)n(als,g) |0(5,a)T¥(sy) + aH(m(-|s,sy))], where a is an adaptive
entropy coefficient.

2Some prior methods automatically propose training goals [20} 211, 46, [63]], yet these methods require
additional machinery and are primarily evaluated on settings where subgoals lie on a 2-dimensional manifold.



2.2 Our Approach

Our approach is a simple modification of contrastive RL: rather than manually providing training
goals for exploration, we always command the policy to collect data with the single hard goal s*.
No other modifications are made. We will call this method “single [hard] goal CRL.” Note that this
is a multi-task algorithm because multiple goals are used for training the actor, even though it only
ever collects data conditioned on a single goal and success is evaluated on a single goal. Ablation
experiments (Fig.[d) show that only training the actor on the single goal decreases performance.

3 Experiments

The main aim of our experiments is to evaluate the performance of single-goal contrastive RL
compared to its multi-goal counterpart as well as prior baselines. We do so on four exploration-heavy,
goal-reaching tasks, involving robotic manipulation and maze navigation. All experiments were run
with five random seeds, and error bars in the plots depict the standard error. Hyperparameters can
be found in Appendix |C|and code to reproduce our results is available online: https://graliuce,
github.io/sgcrl

Tasks. We measure the efficacy of our method on four goal-reaching tasks taken from prior
work [15]], which are chosen to measure long horizon exploration. The tasks include three robotic
manipulation environments [77]] and one maze navigation environment [[17]]. The robotic manipulation
tasks require controlling a sawyer robot to grasp an object and accurately place it in a predetermined
location. The point spiral task is a 2D maze navigation task. We quantify success in each episode by
whether the agent reached sufficiently close to the goal in at least one state in an episode.

3.1 Single-goal Exploration is Exceedingly Effective.

A single goal works well. We find that Contrastive RL effectively solves these four tasks: equipped
only with a single target goal, the agent automatically explores the environments and learns complex
manipulation skills (see Fig. [2). We compare this method to an “oracle” variant that is trained
on human-designed goals that vary in difficulty, ranging from easy goals to the single hard goal.
Surprisingly, our proposed method significantly outperforms this “range of difficulties” method.

Directed exploration emerges. Not only does single-goal CRL consistently achieve high success
rates on manipulation tasks, but it also demonstrates complex and directed exploration techniques
during early training. To observe the agent’s behavior throughout training, we saved learning
checkpoints at fixed intervals and visualized the agent’s behavior at each checkpoint (see Figure[I]and
Figures[7] [§]in Appendix D). We found that the agent learns simple skills before complex ones. For
example, in all three environments, the agent (/) first learns how to move its end-effector to varying
locations, (2) then learns how to nudge and slide the object, and (3) finally learns to pick up and direct
the object. We also observe a wide array of exploratory behavior in early training that is not directly
connected to the goal. Refer to Appendix section [D]for a more detailed account of skill development.

3.2 The RL Algorithm is Key

Baselines. We compare single-goal CRL against prior methods that aim to address the sparse
reward problem by making additional assumptions or employing additional machinery for exploration.
Reinforcement learning with imagined subgoals (RIS) [[6] maintains a high-level policy that predicts
subgoals halfway to the end goal. We also employ a few variants of Soft Actor-Critic (SAC) with
additional assumptions: SAC with sparse rewards, SAC+HER with sparse rewards, and SAC with
dense rewards. In the dense reward setting, the agent receives a continuous reward tailored to the
environment, using the distance to the goal for the spiral task and the Metaworld [77]] reward function
for sawyer tasks. Refer to Table[2]in appendix [C|for a summary of the assumptions for each method.

Results. As shown in Fig. [3|single-goal contrastive RL significantly outperforms these alternative
methods, showing that the underlying RL algorithm is important for single goal exploration. Prior
methods rarely reach the goal at all, with the exception of RIS on the simplest task (point spiral).

3.3 Why does Single-Goal Exploration Work?

The effectiveness of single-goal exploration is not explained by overfitting. One possible
explanation for the method’s success is that the algorithm overfits its policy parameters on the single-
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Figure 2: Single goal Exploration is Highly Effec-
tive. We compare single hard goal exploration (com-
mand the single hard goal in every trial) to “range of
difficulties” exploration (sampling uniformly from a
human-provided set of easy/medium/hard goals). In
each of the four environments, single-goal exploration
yields considerably higher success rates, all while be-
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Figure 4: Ablation experiments. While our method
uses an actor loss that uses many goals, alternatives
that train the policy with a single goal perform no
better.
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Figure 3: The RL Algorithm Matters. We compare
several underlying RL algorithms all using single-goal
exploration. CRL outperforms these prior methods,
showing that (i) single-goal exploration is only effec-
tive with the right underlying RL algorithm and that
(ii) with this algorithm, we can achieve considerably
higher performance while making fewer assumptions
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Figure 5: The importance of representations. Sin-
gle goal exploration is less effective with using a
monolithic critic architecture (as opposed to an inner
product architecture), suggesting that the contrastive
representations may drive exploration.

goal task. To test this hypothesis, we compared our method (which randomly samples different goals)
with a variant that always uses the single hard goal in the actor loss. Note that this single hard goal
is the one that is used for evaluation.The results in Fig.[d]show that when data are collected with a
single goal, using a single goal in the actor loss degrades performance (purple vs. blue (ours)). When
data are collected with multiple goals, using a single goal in the actor loss gives only a slight boost in
performance (red vs. black). These results imply that the effectiveness of single-goal exploration is
not explained by policy overfitting.

Representations are important. We also study how the representations might drive exploration.
We replaced the inner product critic function (¢(s,a)T1(sy)) with a monolithic critic function
(Q(s,a, sy)), which takes as input a concatenated array of the state, action, and goalﬂ The results,
shown in Fig. [5]indicate that single-goal exploration is not effective with using a monolithic critic
network. This experiment suggests that the contrastive representations ¢(s,a)” and 1(s) drive
exploration, though the precise mechanism for how they drive exploration remains unclear.

4 Conclusion

In this paper, we showed that skills and directed exploration emerges from a straightforward RL
algorithm: contrastive RL where every trajectory is collected by trying to reach a single fixed
goal. There remain two outstanding questions raised by our experiments. First, we lack a clear
understanding of why skills and directed exploration emerge. Our experiments provide some hints,
yet much theoretical work remains to be done to understand what is driving the exploration. Second,
how can we leverage the success of the proposed method to address exploration in other problem

3In this experiment only, we decreased the batch size from 256 to 32 for both methods, as otherwise we
encountered out-of-memory errors for the monolithic method.



settings (e.g., if a reward function were given or if not even a single fixed goal were available). In this
vein, we encourage future work to find ways of exploiting the emergent exploration properties that
we have observed in the single goal setting.

Limitations. The primary limitation of our work is a lack of theoretical analysis explaining why
skills and directed exploration emerge. Empirically, our experiments are focused primarily on
manipulation tasks; we encourage future work to study applications to other settings.
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A Related Work

Our work builds on a long line of prior work in exploration methods for reinforcement learning [2,
31413301411 164} 1681169, [71]], and will study this problem in the specific setting of goal-conditioned RL
(GCRL) [, 12,131 [16, 17, 24,132,136, 138, 1431 144, |57, 158, I58-60, 163, 166]. This section reviews three
types of strategies for exploration. Our proposed method aims to lift the limitations associated with
these prior methods.

Rewards and demonstrations. One of the key challenges with GCRL is the sparsity of the learning
problem, so many prior GCRL methods assume access to a dense, hand-crafted reward function [54,
59| or a distance metric [28} [70l [73} [75]. Other methods attempt to make GCRL more tractable
by using expert demonstrations [[12} [52] to guide learning and planning. Although well-designed
reward functions and expert demonstrations are useful for training, these components add complexity,
and collecting demonstrations can be challenging. Our method builds upon a growing collection of
GCRL algorithms that require neither a reward function nor demonstrations [16} |18} 24} 36, |66, I80] —
specifically, we consider a variant of GCRL where only a single goal is provided for training and
evaluation. As such, we could treat it as a single-task problem, but we find that treating it as a
multi-task problem is crucial to achieving good performance.

Exploration and subgoal sampling. Without a dense reward function or expert demonstrations,
the primary challenge of GCRL is effective exploration. One class of exploration strategies adds noise
to the actions [23] 126L 291 135]) or policies [22}55]. While these methods are simple to implement, they
typically fail to perform directed exploration [48]. A second class of methods formulate an intrinsic
exploration reward [4} 9, [14} 34,139, |51]], which the agent aims to optimize in addition to whatever
rewards (dense or sparse) that are provided by the environment. While these methods can work
effectively, they can be challenging to scale to high-dimensional and long-horizon tasks. A third class
of methods use probabilistic techniques, including ensembles [7} 18,148,153 [76], posterior sampling [[10,
19,147, 149]], and uncertainty propagation [50} [72] — these methods can excel at directed exploration,
though challenges include tuning the prior and dealing with large ensembles. A fourth class of
methods modifies the goals that are used in training. For example, some methods automatically
propose subgoals, breaking down a hard task into a sequence of easier tasks [6 158, (62 |78l [79]].
Other methods automatically adjust the goal distribution [20} 56} [74] or initial state distribution [21]],
so that the difficulty of learning increases throughout training. Despite excellent results in certain
settings, scaling these methods beyond 2D navigation remains challenging, and the algorithms remain
complex. We compare against one prototypical subgoal sampling method (RIS [6]).

Multi-task learning for single-task problems The last strategy for exploration is so ubiquitous it
is easy to forget: training on multiple related tasks, even when we only care about performance on a
single difficult task. For example, many prior GCRL methods command a range of goals during explo-
ration. Intuitively, the easy tasks can be learned with little exploration, and learning those tasks should
enable the agent to solve more challenging tasks (similar to curriculum learning [3} 5} 140]]). However,
actually constructing these multiple training tasks or goals requires additional human supervision:
the human often lays out a “trail of breadcrumbs”, and the agent learns how to navigate to each [18].
Our paper studies the setting where only a single goal is provided for training, yet our experiments
will compare against baselines that have access to training goals with a range of difficulties.

B Environment dynamics are visible in the norms of contrastive
representations

Approach. To further investigate our predictions about targeted exploration and robustness arising
from the building of rich representations early in training, we visualized the norms of the contrastive
goal encoder |[1)(s4)||3 at an early checkpoint, shown in Figure @ We target goal encoder norms
since we observe that mean goal encoder norms over the training distribution rollout positions closely
correlate with training loss, and hypothesize that these norms reflect environment-learning.

Specifically, we fix the end-effector distance to the target distance for gripping, uniformly randomly
sample many states x; corresponding to both the agent end-effector and object being at x;, and
plot the corresponding values ||/(z;)||3 from an early (pre-first-success) encoder checkpoint on the
sawyer bin task.
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Figure 6: Contrastive representations capture environment dynamics (impassable bin walls
and floor) in an interpretable way. We plot the log of the goal encoder norms, log(||v(s,)|3), for
various observations where the end effector and block are at the same location. We show a top-down
view at box-height (left) and side view (right). We find that the impassable bin wall is visible both
from the top view (thin strip of lighter blue) and side view (vertical spike of red), represented by
relatively higher norms. Example policy rollouts (colored lines) from checkpoints at the same stage
in training are overlaid for reference, with their starting positions marked as red diamonds and the
goal marked as a gold star.

Results.  As shown in Figure[6] we find interpretable patterns corresponding to a map of environment
dynamics, such as high goal encoder norms at the location of the impassable bin walls and bin bottom.
We hypothesize that these strongly-represented environment features contribute to the development
of higher-level skills and ultimately behaviors such as perturbation robustness.
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C Experimental Details

Table 1: Hyperparameters for our method and the baselines.

hyperparameter | value

Contrastive RL (CRL) [[18]]

batch size 256

learning rate 3e-4

discount 0.99

actor target entropy 0

hidden layers sizes (policy, critic, representations) (256, 256)

initial random data collection 10,000 transitions
replay buffer size le6

samples per insert! 256
representation dimension (dim(¢(s, a)), dim(x)(s4))) | 64

actor minimum std dev le-6

SAC [26]

batch size 256

learning rate 3e-4

discount 0.99

hidden layers sizes (policy, critic) (256, 256)

target EMA term Se-3

initial random data collection 10,000 transitions
replay buffer size le6

samples per insert! 256

actor minimum std dev le-6

RIS [6]

batch size 256

learning rate le-3 (critic), le-4 (policy)
high-level policy learning rate le-4

discount 0.99

hidden layers sizes (policy, high-level policy, critic) | (256, 256)

initial random data collection 10,000 transitions
replay buffer size 1e5

Polyak coefficient for target networks 5e-3

valid state KL constraint (¢) le-4

subgoal KL penalty (o) 0.1

high-level policy weight regularization () 0.1

1 How many times is each transition used for training before being discarded.

2 We collect N transitions, add them to the buffer, and then do N gradient steps using the experience sampled randomly from the buffer.

Table 2: Baselines: Assumptions for methods used in the experiments below.

Algorit]

hm Exploration

Requirements

Exploration Goals ‘ Dense Rewards ‘ Distance Threshold

Contrastive RL [[18]

SAC [26] (sparse rewards)
SAC [26] (dense rewards)
SAC [26] (sparse rewards) + HER [1]]

RIS [6]

single goal (ours)
multiple goals
single goal
single goal
single goal

single goal

% % % % N\ %
XX N% X %
CRRNNUX %

D Investigating Exploration in Single-Goal Contrastive RL

In this section we describe the stages of skill development exhibited by the Single-Goal Contrastive
RL agent.
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Figure 7: Skills and Directed Exploration for Putting a Lid on a Box: This manipulation task contains an
open box and a lid. The single fixed goal has the lid placed neatly on top of the center of the box. The images
above show skills acquired throughout the course of learning. Note that some skills unlock subsequent skills
(e.g., reaching is a prerequisite for picking, which is a prerequisite for placing) while others look like open-ended
“play” (flipping the lid over, pushing the lid away from the box).

&k &k &k 4k

reaching Grasp peg Knock peg against box Recover from mistakes
| | | |
— ° ° ° ° ° ° °
Training I I I
Push peg away. Slide peg to box Insert peg into hole

Figure 8: Skills and Directed Exploration for Peg Insertion: This manipulation task contains a peg and
box with a narrow hole; the single fixed goal is a state where the peg is inside the hole. The agent acquires a
sequence of increasingly complex skills throughout training, some of which are important for solving the task
(e.g., reaching, grasping) while others are more “playful” (e.g., knocking the peg against the box). The agent
also learns to recover from mistakes (see Fig. E)

Early training: agent develops an emergent curriculum of skills. Not only does single-goal
CRL consistently achieve high success rates on manipulation tasks, but it also demonstrates complex
and directed exploration techniques during early training. To observe the agent’s behavior throughout
training, we saved learning checkpoints at fixed intervals and visualized the agent’s behavior at each
checkpoint (see Figures [I] [7]and [8). We found that the agent learns simple skills before complex
ones. For example, in all three environments, the agent (/) first learns how to move its end-effector to
varying locations, (2) then learns how to nudge and slide the object, and (3) finally learns to pick up
and direct the object. We observe a wide array of exploratory behavior in early training that is not
directly connected to the goal: from punching the box lid to flip it over (Fig.[7) to pushing the block
far away in a random direction (Fig. [I)).

First successes: agent trades off exploration for exploitation. As the agent learns to reach
the goal more consistently, the agent’s behavior becomes less exploratory, qualitatively similar to
UCB exploration [10}[T9] 25 47, 49]]. To quantify exploration, we discretized the state space of the
robotic manipulation environments and recorded the cumulative number of unique positions visited
throughout training. Fig.[9]shows that the growth rate of this exploration metric decreases as the
success rate increases (compare with Fig. 2. For the sawyer box and sawyer peg environments,
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Figure 9: Quantifying Exploration. We analyze  (a) “Push and flick” (b) “gently pick”
“single hard goal” exploration by discretizing the (seed = 3) (seed = 4)

object’s XY position and counting the cumulative . . .
number of unique positions visited throughout Figure 10: Different random seeds learn different

training. Exploration starts to plateau after the agent ~ Strategies. Othgr 'sgeds legm a policy whose strategy
can successfully reach the goal (compare with Fig. [2). depends on the initial position of the block.

the agent achieves a high success rate earlier in training, which corresponds to the earlier plateau
of the unique grid cells curve. For the sawyer bin environment, the agent takes longer to reach
high success, and the exploration metric does not start leveling out until the end of training. This
trend highlights how single-goal CRL develops a self-directed exploration strategy that automatically
trades off between exploration and exploitation.

Consistent successes: agent finds diverse paths to the goal. Not only is the performance of
single-goal CRL reproducible (all random seeds solve the manipulation tasks), but policies trained
with different random seeds learn qualitatively different goal-reaching strategies. For example,
Fig.|10|shows the strategies learned by different random seeds on the sawyer bin task. One seed
consistently moves the block flush against the wall of the red bin and flicks it into the blue bin.
Another seed tends to grasp the block, lift it, and gently drop it in the blue bin. A third seed chooses
between these strategies depending on whether the block starts near the wall or away from the wall.
Without explicit human guidance in the form of rewards, demonstrations, or subgoals, we see multiple
creative and divergent strategies emerge for solving the same problem.

Further training: agent develops robustness and self-recovery. During later stages of training,
we observe that the agent demonstrates robustness and learns to recover from mistakes. For example,
in the sawyer peg environment, when the agent drops the peg, it is able to recover by bending down
and grasping the peg again. To quantify robustness, we ran perturbation experiments in the sawyer
peg and sawyer box environments, in which we randomly perturbed the target object’s location
between 0 and 0.05 meters along each of the three axes. We tested two settings: (/) perturbation
at the start of the episode (“‘static perturbations”) and (2) in the middle of an episode (“dynamic
perturbations”: ¢ = 20 for sawyer box and ¢t = 50 for sawyer peg). As shown in Fig.[IT] single
goal exploration is robust to static perturbations and somewhat robust to dynamic perturbations,
notably outperforming multi-goal CRL in three out of four scenarios. We hypothesize that this is
also the result of better exploration, which leads to learned representations that generalize better
across unusual or unseen states.
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Figure 11: Robustness to perturbations: Single (Hard) Goal exploration results in policies that are more
robust to environment perturbations, as compared to policies trained with goals ranging in difficulty. The success
rate remains high even when the object is perturbed at the start (“static”’) or in the middle (“dynamic”) of an
episode, likely because its effective exploration means that it has seen a wide range of states during training.
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