
Published as a conference paper at ICLR 2024

CORN: CONTACT-BASED OBJECT REPRESENTATION
FOR NONPREHENSILE MANIPULATION OF GENERAL
UNSEEN OBJECTS

Yoonyoung Cho∗, Junhyek Han∗, Yoontae Cho, Beomjoon Kim
Korea Advanced Institute of Science and Technology
{yoonyoung.cho, junhyek.han, yoontae.cho, beomjoon.kim}@kaist.ac.kr

ABSTRACT

Nonprehensile manipulation is essential for manipulating objects that are too thin,
large, or otherwise ungraspable in the wild. To sidestep the difficulty of con-
tact modeling in conventional modeling-based approaches, reinforcement learn-
ing (RL) has recently emerged as a promising alternative. However, previous RL
approaches either lack the ability to generalize over diverse object shapes, or use
simple action primitives that limit the diversity of robot motions. Furthermore,
using RL over diverse object geometry is challenging due to the high cost of train-
ing a policy that takes in high-dimensional sensory inputs. We propose a novel
contact-based object representation and pretraining pipeline to tackle this. To
enable massively parallel training, we leverage a lightweight patch-based trans-
former architecture for our encoder that processes point clouds, thus scaling our
training across thousands of environments. Compared to learning from scratch, or
other shape representation baselines, our representation facilitates both time- and
data-efficient learning. We validate the efficacy of our overall system by zero-shot
transferring the trained policy to novel real-world objects. Code and videos are
available at https://sites.google.com/view/contact-non-prehensile.

1 INTRODUCTION

Robot manipulators can transform our day-to-day lives by alleviating humans from taxing physical
labor. Despite this potential, they have remained largely confined to picking and placing objects
in limited settings such as manufacturing or logistics facilities. One key reason for such confined
usage is their limited action repertoire: while prehensile manipulation has made great improve-
ments (Mahler et al., 2017; Wan et al., 2023), there are several situations in the wild where pick-
and-place is not an option. For instance, consider the scenarios in Figure 1, where the robot is tasked
to manipulate diverse household objects to a target pose. While the effective strategy differs for each
object, the predominant approach of grasping and placing objects is not viable. To manipulate such
objects in the wild, the robot must perform nonprehensile actions such as pushing, dragging, and
toppling by reasoning about the object geometry (Kao et al., 2016).

Traditionally, this problem has been tackled using planning algorithms that model the dynamics of
the system and compute motions using optimization (Posa et al., 2014) or tree search (Cheng et al.,
2022). However, this necessitates full system information about object geometry and inertial param-
eters, which are generally unavailable from sensory observations, especially for novel objects. Even
when such models are available, the complex search space renders planning algorithms impractically
slow. Recently, deep reinforcement learning (RL) has surfaced as a promising alternative, where a
nonprehensile policy is trained in a simulator (Kim et al., 2023; Zhou et al., 2023), then zero-shot
transferred to the real world. However, no algorithm offers the level of generality over object shapes
and diversity in motions necessary for our problem: they either generalize over objects but are con-
fined to rudimentary motions such as poking (Zhou et al., 2023) or affords rich motions but uses a
rudimentary object representation that precludes generalization over shapes (Kim et al., 2023).

∗equal contribution

1

https://sites.google.com/view/contact-non-prehensile

Published as a conference paper at ICLR 2024

Figure 1: Snapshot of our robot performing diverse real-world object manipulation tasks. The first
column shows the initial and goal object pose (transparent) of the task, and the green region marks
the robot’s workspace. Row 1: Raising a cup bottom-side up. The cup’s grasp and placement
poses are occluded by the collision with the table; since the cup is dynamically unstable, the robot
must also support the object to avoid toppling the object out of the workspace during manipulation.
Row 2: Flipping the wipe dispenser upside down, which is too wide to grasp. Since it may roll
erratically, frequent re-contacts and dense closed-loop motions are required to stabilize the object
during manipulation. Row 3: Moving a book that is too thin to be grasped; to drag the book, the
robot must finely adjust the pressure to allow for both reorientation and translation. Row 4: Flipping
a toy crab. Given its concave geometry, the robot must utilize the interior contacts to pivot the crab.

(a) Case where the robot tries to topple the cup. (b) Case where the robot tries to push the block.

Figure 2: Even among similar-looking states, the interaction outcome varies drastically depending
on the presence of contact. (a-left) the gripper passes near the cup, yet not quite in contact. As the
robot narrowly misses the object, the object remains still. (a-right) the gripper engages with the cup,
leading to a successful topple. (b-left) The robot relocates to the left of the block to push it to the
goal(dark). By avoiding unintended collision, it is well-positioned to push the object. (b-right) due
to spurious contact, the gripper accidentally topples the block, making the goal farther to reach.

We propose a novel object representation learning algorithm for nonprehensile manipulation that can
be jointly used with the action-space from Kim et al. (2023) to achieve both generality over shapes
and diversity in motions. The key challenge is defining the pretraining task. Given that our objec-
tive is to generalize across shapes, one naive approach is to employ self-supervised shape-learning,
where the geometric representation is trained on contrastive or shape-reconstruction objectives (Pang
et al., 2022; Yu et al., 2022; Xie et al., 2020; Zeid et al., 2023). However, reconstructing the full
shape representation is needlessly complex: the full shape includes many intricate features, such as
internal geometry, concavities, or surface details, which may not directly influence the performance
of the manipulation policy. Even for a complex object, only a subset of its surface interacts with
the gripper. Thus, while the contactable parts of an object must be represented at high fidelity, the
remainder can be omitted without influencing the performance of the downstream policy.

Our key insight is that recognizing the presence and location of contacts between the object and
the robot’s hand is crucial for nonprehensile manipulation. For RL, a good representation must
necessarily distinguish between states with high and low values, and in contact-rich manipulation,
this is primarily determined by what forces and torques can be applied to the object in the given state.

2

Published as a conference paper at ICLR 2024

This, in turn, depends on the presence and position of the contact between the object and the robot’s
hand. This intuition is demonstrated in Figure 2. Based on this insight, we propose a pretraining
task where the point cloud encoder is trained to predict what part of the object is in collision with
the robot’s end-effector .

Our other contribution is the design of an efficient architecture that can process high-dimensional
point clouds, in a way that can scale to massively parallel GPU-backed simulations. Existing well-
known point-cloud processing architectures such as PointNet (Qi et al., 2016; 2017) inherently incur
substantial inference time and memory usage while processing individual points. Inspired by the re-
cent success of patch-based vision architectures (Dosovitskiy et al., 2020; Yu et al., 2022; Pang et al.,
2022; Zhang et al., 2022; Zeid et al., 2023), we leverage a patch-based transformer to efficiently en-
code the point cloud. Since a single point in a point cloud does not carry significant information,
grouping local points into a single unit(patch) (Yu et al., 2022) can effectively reduce the computa-
tional burden of launching thousands of point-wise operations as in PointNets (Qi et al., 2016) or
Point-based Transformers (Zhao et al., 2021), resulting in significant computational gains.

We call our framework Contact-based Object Representation for Nonprehensile manipulation
(CORN). We show that by leveraging CORN, we can efficiently train a nonprehensile manipula-
tion policy that can execute dexterous closed-loop joint-space maneuvers without being restricted to
predefined motion primitives. Further, by employing an efficient patch-based point-cloud processing
backbone, we can achieve highly time-efficient training by allowing the policy to scale to massively
parallel environments. By adopting our full system, we demonstrate state-of-the-art performance in
nonprehensile manipulation of general objects in simulated environments and zero-shot transfer to
unseen real-world objects.

2 RELATED WORK

Planning algorithms In planning-based approaches, a nonprehensile manipulation problem is often
tackled using gradient-based optimization or graph search. In optimization, the primary challenge
arises from optimizing the system of discontinuous dynamics, stemming from contact mode tran-
sitions. To combat this, prior works resort to softening contact mode decision variables (Mordatch
et al., 2012) or introducing complementarity constraints (Posa et al., 2014; Moura et al., 2022).
However, due to the imprecision from the smooth approximation of contact mode transitions, inex-
act contact dynamics models, and difficulty in precisely satisfying contact constraints, the resulting
motions are difficult to realize in the real world. On the other hand, graph-search approaches han-
dle discontinuous system dynamics by formulating the problem as a search over a graph on nodes
encoding states such as the robot’s configuration and the object’s contact mode, and the edges en-
coding transition feasibility and relative motion between the nodes (Maeda & Arai, 2005; Maeda
et al., 2001; Miyazawa et al., 2005). As a result of handling discrete dynamics transitions without
approximation, these methods can output more physically realistic motions that can be deployed in
the real world (Cheng et al., 2022; Liang et al., 2022). However, to make the search tractable, they
resort to strong simplifications such as quasi-static assumption on the space of motions (Cheng et al.,
2022; Hou & Mason, 2019), or restricting the edges to predefined primitives or contact modes (Zito
et al., 2012). As a result, these works have been limited to tasks that only require simple motions
and sparse contact-mode transitions.

Moreover, because both of these approaches must compute a plan in a large hybrid search space
with discontinuous dynamics, they are too slow to use in practice. Further, they also require the
physical parameters of objects, such as mass and friction coefficients, to be known a priori, which
undermines the practicality of these methods. Since the objects may vary significantly in the wild
(Figure 5), acquiring ground-truth geometric and physical attributes of target objects is intractable.

Reinforcement learning algorithms Recently, several works have proposed to leverage learning
to directly map sensory inputs to actions in nonprehensile manipulation tasks, circumventing the
computational cost of planning, inaccuracy of hybrid dynamics models, and difficulty in system
identification from high dimensional sensory inputs (Yuan et al., 2018; 2019; Lowrey et al., 2018;
Peng et al., 2018; Ferrandis et al., 2023; Kim et al., 2023; Zhou & Held, 2023; Zhou et al., 2023).
In Kim et al. (2023), they propose an approach that outputs diverse motions and effectively performs
time-varying hybrid force and position control (Bogdanovic et al., 2020), by using the end-effector
target pose and controller gains as action space. However, since they represent object geometry via

3

Published as a conference paper at ICLR 2024

its bounding box, their approach has a limited generalization capability across shapes. Similarly,
other approaches only handle simple shapes such as cuboids (Yuan et al., 2018; 2019; Ferrandis
et al., 2023; Zhou & Held, 2023), pucks (Peng et al., 2018), or cylinders (Lowrey et al., 2018).

In HACMan (Zhou et al., 2023), they propose an approach that generalizes to diverse object shapes
using end-to-end training. However, they are limited to 3D push primitives defined as fixed-direction
poking motions applied on a point on the point cloud. Due to this, they must retract the arm after
each execution to observe the next potential contact locations. Further, as end-to-end training with
point clouds requires a significant memory footprint, it is difficult to use with massively parallel
GPU-based simulations (Makoviychuk et al., 2021): the large resource consumption significantly
limits the number of environments that can be simulated in parallel, undermining the parallelism
and damaging the training time. Moreover, end-to-end RL on high-dimensional inputs is prone
to instability (Eysenbach et al., 2022) and sample-inefficiency: noisy gradients from RL serve as
poor training signals for the representation model (Banino et al., 2022), and distributional shift that
occurs whenever the encoder gets updated (Shah & Kumar, 2021) slows down policy training. We
believe for these reasons, they had to resort to simple primitives that make exploration easier. We
use pretraining and efficient architecture to get around these problems.

Along with HACMan, other methods use simple primitives (Yuan et al., 2019; Zhou et al., 2023).
But for problems we are contemplating, use of such open-loop primitives precludes dense feedback
motions. This is problematic for highly unstable (e.g. rolling or pivoting) objects that move errat-
ically, which require the robot to continuously adjust the contact. For instance, in Figure 1 (row 1,
column 3), the robot must adjust the contact to prevent spurious pivoting of the ceramic cup while
rolling the handle to the other side; in Figure 1 (row 2, column 6), the robot must align the contact
with the rotational axis while lifting the wipe dispenser to prevent accidentally toppling the dis-
penser to either side. In our work, we adopt a controller with end-effector subgoals with variable
gains (Bogdanovic et al., 2020; Kim et al., 2023) as our action space, which allows us to perform
dense, closed-loop control of the object.

Representation learning on point clouds Diverse pretraining tasks have been proposed for learn-
ing a representation for point cloud inputs, such as PointContrast (Xie et al., 2020), which uses
a contrastive loss on point correspondences, or OcCo (Wang et al., 2021), which reconstructs oc-
cluded points from partial views. More recently, inspired by advances from NLP (Devlin et al.,
2018) and 2D vision (He et al., 2022; Baevski et al., 2022), self-supervised representation learning
methods on masked transformers have gained attention (Yu et al., 2022; Zhang et al., 2022; Pang
et al., 2022; Zeid et al., 2023). While Point-BERT (Yu et al., 2022), PointM2AE (Zhang et al.,
2022) and PointMAE (Pang et al., 2022) reconstruct the masked points from the remaining points,
Point2Vec (Zeid et al., 2023) follows Data2Vec (Baevski et al., 2022) and instead estimate the latent
patch embeddings, outperforming above baselines in shape classification and segmentation.

As a result, these methods learn highly performant shape representations, demonstrating state-of-
the-art performance across tasks such as shape classification or segmentation (Zeid et al., 2023).
However, the same impressive performance is often inaccessible with smaller models (Fang et al.,
2021; Shi et al., 2022) due to the difficulty of the pretraining task (Fang et al., 2021) or model
collapse (Shi et al., 2022). While this necessitates large models, adopting a large encoder for policy
training in GPU-based simulators is undesirable, as it can dominate the compute-cost and memory
footprint during policy rollout, limiting the parallelism in massively-parallel RL setups.

In robotics, several alternative representation learning approaches have been proposed. Huang et al.
(2021) pretrains their point cloud encoder by predicting object class and relative offset from the
goal orientation. Similarly, Chen et al. (2022) pretrains a sparse 3D CNN on object class, relative
orientation from the goal, and the joint positions of the robot hand. While these methods have
been proven effective on in-hand re-orientation tasks for inferring the object’s pose from point cloud
observations, the benefits are smaller for nonprehensile manipulation tasks which are more sensitive
to the specific presence and location of contacts (see Figure 2)1. In comparison, we directly represent
an object with an embedding that is used to predict such information.

1While (Chen et al., 2022) demonstrated that in-hand reorientation task can be solved solely from pose-
based observations without observing the underlying object geometry, the same success cannot be achieved in
our domain (Figure 6)

4

Published as a conference paper at ICLR 2024

(a) Real-world setup. (b) Simulation setup.

Figure 3: Our real-world (left) and simulated (right) domains.

3 CONTACT-BASED OBJECT REPRESENTATION FOR NON-PREHENSILE
MANIPULATION

We tackle the problem of rearranging an object of arbitrary geometry on a tabletop to a specified
6D relative pose from the initial pose using nonprehensile manipulation, such as pushing, toppling,
and pivoting. Our setup includes a manipulator with a simple gripper, equipped with a propri-
oceptive sensor and table-mounted depth cameras. We assume that a rigid-body target object is
well-singulated on the table, and both the initial and goal poses are stable at rest. Figure 3 illustrates
our environment setup.

3.1 OVERVIEW

Our framework goes through three stages of training before being deployed in the real world: (1)
pretraining, (2) teacher policy training with privileged information, and (3) student policy training
with partial information only available in the real world. These three stages happen entirely in
simulation based on Isaac Gym (Makoviychuk et al., 2021). Our overall system is shown in Figure 4.

Patch
Trans

former

Hand State

Rel. Pose Goal

Joint State

Prev. Action

embed
1

embed
N

Cross
Attention

⨉Q

Phys. Params

Tokenize
(MLP)

Patchify

Encoder

Teacher Policy

Full Object Cloud

Contact
Header

Contact
Header

Contact
Label

Contact
Label

Decoder

Tokenize
Query
(MLP)

(Student)

Contact Network

Trained Modules
Pretrain:
Policy:
Distill:

Actor
(MLP)

Shared
MLP

Critic
(MLP)

Concat

Figure 4: Our system and model architecture. The contact network consists of a point cloud encoder
(red) and contact-prediction decoder (green), passing the point cloud embeddings to the teacher
policy module (blue). Student module (orange, omitted) is detailed in Section A.1.

In the pretraining phase, we train our encoder module (Figure 4, red), which takes in point-cloud
observations∈ R512×3 and the hand state∈ R9 (position and 6D orientation (Zhou et al., 2019)), and
outputs a patch-wise embedding of the object cloud. To train the network, we pass the embeddings
through a contact prediction header(Figure 4, green) that classifies whether each patch intersects
with the gripper. During this phase, the point-cloud encoder and collision decoder are trained jointly.

During policy training, we discard the collision decoder and freeze the encoder, so that only the
weights of the policy module are learned. The policy consumes the object point cloud embedding
from the encoder, and other task-relevant inputs comprising robot’s joint position and velocity, the

5

Published as a conference paper at ICLR 2024

previous action (end-effector subgoal and controller gains), the object’s pose relative to the goal,
and its physical properties (mass, friction, and restitution). These inputs are tokenized via an MLP
layer to produce query tokens for the cross-attention layer against the point cloud embeddings to
extract task-relevant features. These features are concatenated again with the task-relevant inputs
and processed by a shared MLP before being split into actor and critic networks. We train the policy
module via PPO (Schulman et al., 2017). Since full-cloud observations and physics parameters of
objects are not available in the real world, we distill the teacher policy into a student policy. We use
DAgger (Ross et al., 2011) to imitate the teacher’s actions solely based on information available in
the real world: the partial point cloud of the object, robot’s joint states, the previous action, and the
relative object pose from the goal. We utilize nvdiffrast (Laine et al., 2020) to efficiently render the
partial point cloud of the scene on the GPU during training.

3.2 LEARNING CORN

Algorithm 1 Dataset generation for CORN.

Require: object shape O, gripper shape G,
workspaceW , noise level σ

Ensure: gripper pose TG, object cloud X , con-
tact label L

1: TO, TG ← SamplePoses(W)
2: O′ ← TO · O; G′ ← TG · G
3: δ⃗ ← NearestDisplacement(O′,G′)
4: s ∼ N (1, σ/||δ⃗||)

5: Td ←
[
I3×3 −s · δ⃗
0 1

]
6: G′′ ← Td · G′
7: X ∼ SampleSurfacePoints(O′)
8: for xi ∈ X do
9: Li ← PointInMesh(xi,G′′)

10: end for

Algorithm 1 outlines the data generation proce-
dure for our network, inspired by (Son & Kim,
2023). We first sample the SE(3) transforms
within the workspace for the gripper and ob-
ject (L1-2). We then compute the nearest dis-
placement between the surface points of the ob-
ject and the gripper (L3) and move the gripper
in that direction plus a small Gaussian noise
(L4-6) to approach a configuration near or in
a collision. To compute the labels, we sam-
ple points from the object’s surface (L7), then
label each point according to whether they in-
tersect with the gripper (L8-10). This process
generates about half of the gripper poses in col-
lision with the object, and the other half in a
near-collision pose with the object. To disam-
biguate these cases, the model must precisely
reason about the object’s geometry.

Afterward, the model is trained by classifying
whether each patch of the object intersects with the gripper at the given pose. A patch is labeled as
positive if any point within it intersects with the gripper. We use binary cross-entropy between the
patchwise decoder logits and the collision labels to train the model(Figure 4, green block)

3.3 PATCH-BASED ARCHITECTURE FOR CORN

To efficiently train a policy by simultaneously simulating thousands of environments using GPUs,
we leverage a patch-based transformer to encode the object point cloud shown in Figure 4 (red),
which pass the patch embeddings to the policy module (blue).

Patch Tokenization. In line with previous work (Pang et al., 2022), we divide the point cloud into
a set of patches (Figure 4, red block, top left). To define each patch, we identify N representative
points using farthest-point sampling (FPS). The k-nearest neighbor (kNN) points from these rep-
resentatives constitute a patch, which is normalized by subtracting its center from its constituent
points (Pang et al., 2022; Zeid et al., 2023; Yu et al., 2022) to embed the local shape. These patches
are then tokenized via a Multi-Layer Perceptron (MLP) as input tokens to a transformer.

Unlike past methods that use a small PointNet for tokenizing the patches (Pang et al., 2022; Zeid
et al., 2023), we tokenize the patches with a lightweight MLP. Using an MLP is sufficient since the
patch size is constant, fully determined by the size of k during kNN lookup. By sorting the points
within each patch by their distance from the patch center, we can ensure that points within a patch
always follow a consistent order. Thus, we can avoid using a costly permutation-invariant PointNet
tokenizer. After computing the local patch embeddings, we add learnable positional embeddings of
the patch centers to restore the global position information (Pang et al., 2022).

6

Published as a conference paper at ICLR 2024

Additional Encoder Inputs. By leveraging a transformer backbone, our architecture can easily mix
heterogeneous task-related inputs as extra tokens, such as hand state, together with raw point-cloud
observations as shown in Figure 4. Unlike PointNet-derived models that can only concatenate such
inputs after the point-processing layers, this has an advantage in that the network can pay attention
to parts of the point cloud in accordance with the hand state, such as the ones near the robot’s hand
that would interact with the gripper.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Figure 5: Set of 16 real-world objects that we test in the real world.

Training setup For each scene, we randomly draw an object from a subset of 323 geometrically
diverse objects from DexGraspNet dataset (Wang et al., 2023), detailed in Section A.6.2. For each
episode, we first place the object in a random stable pose on the table. Then, we reset the robot
arm at a joint configuration uniformly sampled within predefined joint bounds slightly above the
workspace. By doing so, we can avoid initializing the robot in spurious collision with the table or
the object. Afterward, we sample a 6D stable goal pose randomly on the table, spaced at least 0.1m
away from the initial pose to prevent immediately achieving success at initialization. To sample
valid initial and goal poses for each object, we pre-compute a set of stable poses for each object.
This procedure is elaborated in Section A.6.1.

Action, Rewards, and Success Criteria Following Kim et al. (2023), the action space of the robot
comprises the subgoal residual of the hand, and the joint-space gains of a variable impedance con-
troller (Details in Section A.2). We also follow the same curriculum learning scheme on the subgoal
residual from Kim et al. (2023) to facilitate transferring our policy to the real world. The reward in
our domain is defined as r = rsuc+ rreach+ rcontact− cenergy, comprising the task success reward
rsuc, goal-reaching reward rreach, contact-inducing reward rcontact, and energy penalty cenergy.
The task success reward rsuc = 1suc is given when the pose of the object is within 0.05m and 0.1
radians of the target pose. We add dense rewards rreach and rcontact to facilitate learning, based
on a potential function (Ng et al., 1999) and has the form r = γϕ(s′) − ϕ(s) where γ ∈ [0, 1)
is the discount factor. For rreach, we have ϕreach(s) = kgγ

kd·do,g(s) and for rcontact, we have
ϕcontact(s) = krγ

kd·dh,o(s) where kg, kd, kr ∈ R are scaling coefficients; do,g(s) is the distance
from the current object pose to the goal pose, measured using the bounding-box based distance
measure from Allshire et al. (2022); dh,o(s) is the hand-object distance between the object’s center
of mass and the tip of the gripper. Energy penalty term is defined as cenergy = ke ·

∑7
i=1 τi · q̇i,

where ke ∈ R is a scaling coefficient, τi and q̇i are joint torque and velocity of the ith joint. The
scaling coefficients for the rewards are included in Table A.1.

Domain Randomization. During training, we randomize the mass, scale of the object, and friction
and restitution of the object, table, and the robot gripper. We set the scale of the object by setting
the largest diameter of the object within a predefined range. To facilitate real-world transfer, we also
add a small noise to the torque command, object point cloud, and the goal pose when training the
student. Detailed parameters for domain randomization are described in Table A.4.

Real-World Setup. Our real-world setup is shown in Figure 3a. We use three RealSense D435
cameras to extract the point clouds, and use Iterative Closest Point (ICP) To estimate the error
between the object’s current and target poses. We further use April tags (Wang & Olson, 2016)
to track symmetric objects that cannot be readily tracked via ICP. We also wrap the gripper of the

7

Published as a conference paper at ICLR 2024

robot with a high-friction glove to match the simulation. We emphasize that all training is done in
simulation, and the policy is zero-shot transferred to the real world.

4.2 RESULTS

We’d like to evaluate the following claims: (1) Pretraining CORN enables training a nonprehensile
manipulation policy in a time- and data-efficient manner. (2) Patch-based transformer architecture
enables efficiently scaling to thousands of point-cloud based RL agents in parallel. (3) Our system
can generalize to domain shifts such as unseen objects in the real world. To support claims 1 and 2,
we compare our pretraining task and architecture (OURS) against the baseline encoders in Figure 6.

Compared to ours, P2V uses a pretrained Point2Vec (Zeid et al., 2023) encoder, using the author’s
weights; P2V-LITE is pretrained as in P2V, but uses the same architecture as OURS; ROT also shares
the architecture with OURS, but is pretrained with relative rotation estimation as in (Huang et al.,
2021; Chen et al., 2022); E2E also shares the architecture, but is trained in an end-to-end manner
without pretraining; PN uses a three-layer PointNet encoder, pretrained on point-wise collision pre-
diction, analogous to CORN; and STATE trains a geometry-unaware policy that only receives object
bounding box inputs as the object representation, rather than point clouds. Note that P2V, P2V-LITE,
ROT, E2E have the same downstream policy architectures as ours. For PN and STATE, they also have
the same policy architecture except that they do not use cross-attention.

0.0 0.5 1.0 1.5 2.0
Interactions 1e9

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

0 50 100 150 200
Time(hour)

OURS
P2V
PN
P2V-LITE
ROT
E2E
STATE

Baseline Architecture pretraining
OURS PT CORN
P2V PT(large) p2v
PN PointNet CORN-pt

P2V-LITE PT p2v
ROT PT rot
E2E PT ×

STATE × ×

Figure 6: Training progression and baselines. Plots show the mean (solid) and standard deviations
(transparent) for each baseline. (Left) Success rate vs. number of interaction steps. Interaction steps
are reported as the total number of steps aggregated across 4096 parallel environments. (Middle)
Success rate vs. number of hours. All baselines are allowed to interact at most 2e9 time steps.
(Right) Comparison of baselines. PT: Patch Transformer.

Figure 6 shows the progression of success rates across different baselines in simulation. To support
claim 1, we consider the performance of the policy after 2 billion interactions (in steps) and 24 hours
(in time), respectively. First, E2E takes significantly longer compared to OURS, in terms of both steps
and time: by pretraining CORN, OURS achieves 88.0% suc.rate (steps) and 88.5% (time), while E2E
only reaches 31.4% (in time) and 54.4% (in steps), respectively. This is due to the overhead of
jointly training the encoder and policy networks in E2E. Among pretrained representations, we
first compare with P2V. While P2V is similar to OURS in steps(85.6%), it is significantly slower in
time(3.55%), due to the inference overhead of the large representation model. To isolate the effect of
the pretraining task, we also compare with P2V-LITE: pretrained as in P2V, yet with same architec-
ture as OURS. While the resulting policy is reasonably time-efficient due to faster rollouts (73.4%,
in time), it is less data-efficient (68.8%, in steps) due to the reduced performance of the smaller
model (Shi et al., 2022; Fang et al., 2021). Another baseline, ROT from in-hand reorientation litera-
ture (Huang et al., 2021; Chen et al., 2022) performs slightly worse in both measures(64.2% (steps);
67.0% (time)): we believe this is due to the increased demand for the awareness of object geometry
in our task. To see this, we note that the pose-only policy(STATE), unaware of object geometry,
cannot learn at all in our domain, in contrast to the positive result from Chen et al. (2022). This
highlights the fact that our task requires greater awareness of the object’s geometric features: just
knowing the object’s pose is insufficient, and a deeper understanding of its geometry is necessary.

To see CORN learns a suitable representation for manipulation, we inspect the attention scores of the
policy amid different motions in Figure 7. For pushing and toppling motions (row 1,3), our policy
primarily attends to the current or future contact between the hand and the object, which is consistent

8

Published as a conference paper at ICLR 2024

Push

Roll

Topple

Pivot

0.0

1.0

0.5

0.75

0.25

Figure 7: Visualization of the scores from the cross-attention layers of the policy, summed over all
heads. We colorize the attention for each patch normalized to range (0, 1), then project the patch-
wise colors on the surface of the object for visualization with VIRIDIS colormap.

with the premise of our representation-learning scheme. While pivoting or rolling motions (row 2,4)
share the same trend, our policy also attends to the pivot points of the object against the table.

To support claim 2, we show that our patch-transformer architecture is more performant in both
compute- and memory-cost compared to PointNet (Qi et al., 2016). In particular, we evaluate PN,
where the primary difference is the use of PointNet in place of the patch transformer. While the
performance degradation from the architecture change is only modest in steps (88.3% v. 70.2%), the
large computational overhead of PointNet renders it slowest in time(0.223%) among all baselines.
To support claim 3, we evaluate our policy in the real-world setting as described in Section 4.1.
Figure 5 shows the objects that we evaluate in our real-world experiments, exhibiting wide diversity
in terms of shape, mass, and materials; Figure 1 shows four representative real-world episodes.

Table 1: Real world run results. All of the objects in the real-world setup are unseen except for
3D-printed objects marked with †.

Object name Success/Trial Object name Success/Trial Object name Success/Trial Object name Success/Trial
Red Card 4/5 Cube Block 4/5 Ceramic Cup 4/5 Red Dripper 3/5
Toy Puppy† 4/5 Iced Tea Box 3/5 Nutella Bottle 3/5 Coaster Holder 3/5
Toy Bulldozer 4/5 Wipe Dispenser 5/5 Coffee Jar 2/5 Thick Book 4/5
Blue Holder 5/5 Toy Table† 3/5 Lemona Box 3/5 Candy Box 3/5
Success rate 57/80 (71.3%)

The results from our policy execution in the real-world are organized in Table 1. Overall, our policy
demonstrates 71.3% success rate in the real world. These results indicate that, with distillation, our
system can zero-shot transfer to the real world despite only training in a simulation.

Limitations. We find that our policy struggles more with concave objects (coaster-holder, red drip-
per; 60%) or unstable objects (iced tea box, coffee jar, red dripper; 53%). Concave objects cause
perception challenge in the real world due to severe ambiguity when occluded by the robot, leading
to timeouts as the agent oscillates between actions or stops amid a maneuver. Unstable objects tend
to abruptly spin out of the workspace after minor collisions, and the dexterity of our robot platform
and speed of our real-world perception pipeline cannot catch up with such rapid motions.

5 CONCLUSION

In this work, we present a system for effectively training a non-prehensile object manipulation policy
that can generalize over diverse object shapes. We show that by pretraining a contact-informed
representation of the object, coupled with an efficient patch-based transformer architecture, we can
train the policy in a data- and time-efficient manner. With student-teacher distillation, we find that
our policy can zero-shot transfer to the real world, achieving success rates of 71.3% in the real world
across both seen and unseen objects despite only training in a simulation.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-00075, Artificial In-
telligence Graduate School Program(KAIST)), (No.2022-0-00311, Development of Goal-Oriented
Reinforcement Learning Techniques for Contact-Rich Robotic Manipulation of Everyday Objects),
(No. 2022-0-00612, Geometric and Physical Commonsense Reasoning based Behavior Intelligence
for Embodied AI).

REPRODUCIBILITY STATEMENT

We describe our real-world system and perception pipeline in detail in Section A.4. The procedure
for data generation and pretraining for our model and other baselines is detailed in Section 3.2 and
Section A.3, respectively. We include the set of 323 training objects from DexGraspNet (Wang
et al., 2023) that we used for policy training as supplementary materials. We include the student-
model architecture and distillation pipeline for real-world transfer in Section A.1. We describe
the simulation setup regarding data preprocessing(Section A.6), and describe the hyperparameters
associated with our network architecture(Table A.2), domain-randomization(Table A.4), and policy
training(Section A.3). We also release our code at https://github.com/contact-non-p
rehensile/corn.

REFERENCES

Arthur Allshire, Mayank MittaI, Varun Lodaya, Viktor Makoviychuk, Denys Makoviichuk, Felix
Widmaier, Manuel Wüthrich, Stefan Bauer, Ankur Handa, and Animesh Garg. Transferring dex-
terous manipulation from gpu simulation to a remote real-world trifinger. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 11802–11809. IEEE,
2022.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
A general framework for self-supervised learning in speech, vision and language. In International
Conference on Machine Learning, pp. 1298–1312. PMLR, 2022.

Andrea Banino, Adria Puigdomenech Badia, Jacob C Walker, Tim Scholtes, Jovana Mitrovic, and
Charles Blundell. Coberl: Contrastive bert for reinforcement learning. In International Confer-
ence on Learning Representations, 2022.

Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Learning variable impedance control
for contact sensitive tasks. IEEE Robotics and Automation Letters, 5(4):6129–6136, 2020.

Samuel R Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods. IEEE Journal of Robotics and Automation, 17(1-19):16, 2004.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and Pulkit Agrawal. Visual
dexterity: In-hand dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.

Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T Mason. Contact Mode Guided Motion Plan-
ning for Quasidynamic Dexterous Manipulation in 3D. In International Conference on Robotics
and Automation, 2022.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Conference on Empirical Methods in Natural Language
Processing, 2014.

10

https://github.com/contact-non-prehensile/corn
https://github.com/contact-non-prehensile/corn

Published as a conference paper at ICLR 2024

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang, Yezhou Yang, and Zicheng Liu. Seed:
Self-supervised distillation for visual representation. In ICLR, 2021.

Juan Del Aguila Ferrandis, João Moura, and Sethu Vijayakumar. Nonprehensile planar manipu-
lation through reinforcement learning with multimodal categorical exploration. arXiv preprint
arXiv:2308.02459, 2023.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Yifan Hou and Matthew T. Mason. Robust execution of contact-rich motion plans by hybrid force-
velocity control. In 2019 International Conference on Robotics and Automation (ICRA). IEEE,
may 2019. doi: 10.1109/icra.2019.8794366. URL https://doi.org/10.1109%2Ficra
.2019.8794366.

Jingwei Huang, Hao Su, and Leonidas Guibas. Robust watertight manifold surface generation
method for shapenet models. arXiv preprint arXiv:1802.01698, 2018.

Wenlong Huang, Igor Mordatch, Pieter Abbeel, and Deepak Pathak. Generalization in dexterous
manipulation via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

Imin Kao, Kevin M. Lynch, and Joel W. Burdick. Contact Modeling and Manipulation. In Springer
Handbook of Robotics, 2016.

Minchan Kim, Junhyek Han, Jaehyung Kim, and Beomjoon Kim. Pre-and post-contact policy de-
composition for non-prehensile manipulation with zero-shot sim-to-real transfer. arXiv preprint
arXiv:2309.02754, 2023.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG),
39(6):1–14, 2020.

Jacky Liang, Xianyi Cheng, and Oliver Kroemer. Learning Preconditions of Hybrid Force-Velocity
Controllers for Contact-Rich Manipulation. In Conference on Robot Learning, 2022.

Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and Emanuel Todorov. Rein-
forcement Learning for Non-Prehensile Manipulation: Transfer from Simulation to Physical Sys-
tem. In International Conference on Simulation, Modeling, and Programming for Autonomous
Robots, 2018.

Yusuke Maeda and Tamio Arai. Planning of graspless manipulation by a multifingered robot hand.
Advanced Robotics, 19(5):501–521, 2005.

Yusuke Maeda, Hirokazu Kijimoto, Yasumichi Aiyama, and Tamio Arai. Planning of graspless ma-
nipulation by multiple robot fingers. In Proceedings 2001 ICRA. IEEE International Conference
on Robotics and Automation (Cat. No. 01CH37164), volume 3, pp. 2474–2479. IEEE, 2001.

11

https://doi.org/10.1109%2Ficra.2019.8794366
https://doi.org/10.1109%2Ficra.2019.8794366

Published as a conference paper at ICLR 2024

Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Apari-
cio, and Ken Goldberg. Dex-net 2.0: Deep learning to plan robust grasps with synthetic point
clouds and analytic grasp metrics. In Proceedings of Robotics: Science and Systems, Cambridge,
Massachusetts, July 2017. doi: 10.15607/RSS.2017.XIII.058.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Kiyokazu Miyazawa, Yusuke Maeda, and Tamio Arai. Planning of graspless manipulation based
on rapidly-exploring random trees. In (ISATP 2005). The 6th IEEE International Symposium
on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005., pp.
7–12. IEEE, 2005.

Igor Mordatch, Zoran Popović, and Emanuel Todorov. Contact-Invariant Optimization for Hand
Manipulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2012.

João Moura, Theodoros Stouraitis, and Sethu Vijayakumar. Non-Prehensile Planar Manipulation
via Trajectory Optimization with Complementarity Constraints. In International Conference on
Robotics and Automation, 2022.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked au-
toencoders for point cloud self-supervised learning. In European conference on computer vision,
pp. 604–621. Springer, 2022.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real Transfer
of Robotic Control with Dynamics Randomization. In International Conference on Robotics and
Automation, 2018.

Michael Posa, Cecilia Cantu, and Russ Tedrake. A Direct Method for Trajectory Optimization of
Rigid Bodies Through Contact. The International Journal of Robotics Research, 2014.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In Inter-
national Conference on Machine Learning. PMLR, 2021.

Haizhou Shi, Youcai Zhang, Siliang Tang, Wenjie Zhu, Yaqian Li, Yandong Guo, and Yueting
Zhuang. On the efficacy of small self-supervised contrastive models without distillation signals.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Dongwon Son and Beomjoon Kim. Local object crop collision network for efficient simulation of
non-convex objects in GPU-based simulators. In Proceedings of Robotics: Science and Systems,
Daegu, Republic of Korea, July 2023. doi: 10.15607/RSS.2023.XIX.033.

Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan, Yaodong Yang, Li Yi, and He Wang. Unidex-
grasp++: Improving dexterous grasping policy learning via geometry-aware curriculum and iter-
ative generalist-specialist learning. arXiv preprint arXiv:2304.00464, 2023.

12

Published as a conference paper at ICLR 2024

Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matthew J. Kusner. Unsupervised point
cloud pre-training via occlusion completion. In International Conference on Computer Vision,
ICCV, 2021.

John Wang and Edwin Olson. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016.

Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu, Puhao Li, Tengyu Liu, and He Wang. Dex-
graspnet: A large-scale robotic dexterous grasp dataset for general objects based on simulation.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11359–11366.
IEEE, 2023.

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition for 3d
meshes with collision-aware concavity and tree search. ACM Transactions on Graphics (TOG),
41(4):1–18, 2022.

Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. Pointcontrast:
Unsupervised pre-training for 3d point cloud understanding. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp.
574–591. Springer, 2020.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Weihao Yuan, Johannes A Stork, Danica Kragic, Michael Y Wang, and Kaiyu Hang. Rearrange-
ment with Nonprehensile Manipulation Using Deep Reinforcement Learning. In International
Conference on Robotics and Automation, 2018.

Weihao Yuan, Kaiyu Hang, Danica Kragic, Michael Y Wang, and Johannes A Stork. End-to-
End Nonprehensile Rearrangement with Deep Reinforcement Learning and Simulation-to-Reality
Transfer. Robotics and Autonomous Systems, 2019.

Karim Abou Zeid, Jonas Schult, Alexander Hermans, and Bastian Leibe. Point2vec for self-
supervised representation learning on point clouds. arXiv preprint arXiv:2303.16570, 2023.

Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin Zhao, Dong Wang, Yu Qiao, and Hong-
sheng Li. Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training.
Advances in neural information processing systems, 35:27061–27074, 2022.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259–16268,
2021.

Wenxuan Zhou and David Held. Learning to grasp the ungraspable with emergent extrinsic dexterity.
In Conference on Robot Learning, pp. 150–160. PMLR, 2023.

Wenxuan Zhou, Bowen Jiang, Fan Yang, Chris Paxton, and David Held. Hacman: Learning hybrid
actor-critic maps for 6d non-prehensile manipulation. In Conference on Robot Learning. PMLR,
2023.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5745–5753, 2019.

Claudio Zito, Rustam Stolkin, Marek Kopicki, and Jeremy L Wyatt. Two-Level RRT Planning for
Robotic Push Manipulation. In International Conference on Intelligent Robots and Systems, 2012.

13

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 STUDENT MODEL

Patch
Trans

former

z
1

z
N

Policy
(GRU)

Concat actions

Tokenize
(MLP)

Patchify

Encoder

Student Policy

Tokenize
Context

(MLP)

Learned
Query
Token

DAgger

teacher
actions

Rel.Pose Goal

Partial Object Cloud

Cross
Attention

⨉Q

Hand State

Joint State

Prev Action

Figure A.1: Student Model Architecture in DAgger.

The student policy shares a similar architecture with the teacher policy, with two distinctions. Unlike
teacher policy, which employs joint state, previous action, and goal inputs for generating query
tokens for cross-attention, we incorporate these tokens into the input of the patch transformer within
the encoder to facilitate extracting task-relevant features from partial point clouds. Given that these
inputs are already incorporated in the input of the encoder, we use learned query tokens for cross-
attention.

Since the student policy can only perceive limited shape information of objects at any given moment
due to occlusion, we incorporate a two-layer Gated Recurrent Unit (GRU) (Cho et al., 2014) on top
of the student point cloud encoder. This enables the student model to aggregate partial observations
of object geometry based on historical observations.

We train the student with DAgger with truncated backpropagation through time (BPTT). In par-
ticular, we run the student for 8 time-steps and update its parameters to minimize KL-divergence
between the action distribution of the teacher policy and the student policy.

A.2 DETAILS ON POLICY ACTION SPACE

The action space of our policy consists of the subgoal residual of the end-effector ∆Tee and joint-
space gains. The subgoal residual is parameterized by the translational offset ∆t ∈ R3 and axis-
angle representation of the residual rotation in the world frame ∆r ∈ R3. The joint-space gains
are parameterized by proportional terms (kp ∈ R7) and damping factors (ρ ∈ R7) of a variable
impedance controller. Based on this, we compute the joint position target by solving inverse kine-
matics with damped least squares method (Buss, 2004) as qtarget = qt + IK(∆Tee). The torque
command for each joint is computed based on the joint position error and the predicted joint-space
gains and damping factors as τ = kp(qtarget − qt)− kdq̇t, kd = ρ ·

√
kp.

A.3 DATA GENERATION AND PRETRAINING PIPELINES

P2V-LITE. For pretraining P2V-LITE, we follow the same procedure as Zeid et al. (2023), except
we use the same architecture as OURS. Due to the use of a significantly lighter model, we apply
two modifications to the original training setup, as follows: first, since we only use a two-layer
transformer, instead of averaging over the last 6 layers of the teacher, we take the result after layer-
normalization of the final layer, which keeps the ratio consistent (50% of layers). Second, we replace
DropPath layers with dropout since the model is shallow. Otherwise, we follow the original hyper-

14

Published as a conference paper at ICLR 2024

parameters from the paper and the author’s code(https://github.com/kabouzeid/poi
nt2vec).

ROT. For pretraining ROT, we follow the procedure described in Chen et al. (2022). Since the
authors report that adding the classification objective does not influence the encoder quality, we
omit the classification terms. For the training data, we use ShapeNet Chang et al. (2015) dataset.
We apply two different SO(3) transformations to the same point cloud, and pass it through the
encoder to obtain the patchwise embeddings. We concatenate the patchwise embeddings from both
streams, then pass it through a 3-layer MLP (512, 64, 6). We train the encoder on the regression
task, where the task for the decoder is to regress the parameters for a 6D rotation Zhou et al. (2019)
as recommended from Chen et al. (2022).

OURS-PN. For pretraining PN, we use the same dataset from OURS. Since PointNet does not pro-
duce patchwise embeddings, we instead adopt a U-Net architecture based on PyG Fey & Lenssen
(2019). To inform the model about the end-effector, we concatenate the hand pose (position and
orientation Zhou et al. (2019)) to each point in the channel dimension.

A.4 REAL WORLD SYSTEM AND PERCEPTION PIPELINE

Point Cloud Segmentation. In the point cloud segmentation phase, we integrate three RealSense
D435 cameras. Points outside the predefined 3D bounding-box workspace above table are first re-
moved, and those within a distance less than the threshold ϵ = 1 cm from the table surface are
removed next. These parameters were determined empirically to handle outliers without removing
too much of the object. For thin objects such as cards, we alternatively employ color-based segmen-
tation to remove the table from the point cloud, avoiding the risk of inadvertently removing object
points.

After removing the table, only the object and the robot remains. To remove the robot, we compute
the transform of all robot links based on the robot kinematics, then query the points as to whether it
is contained within each link mesh. For efficiency, we first apply convex decomposition on the robot
geometry, and employ point-convex intersection to check whether the point belongs to the robot.
We initially tried using robot-points removal based on raycasting the point-to-robot mesh distances,
but we found it was much slower than the convex-hull based method.

To reduce noise in the point cloud, we employ a radius outlier removal logic with r = 2 cm and
nmin = 96 points, which is the minimum number of points that the inlier should contain within the
neighborhood. Finally, to identify the object point cluster, we used DBSCAN clustering algorithm.
Clusters were computed with ϵ=1cm and the number of neighbors as 4 to form the core-set.

To enhance processing speed, we optimized the entire segmentation pipeline to utilize tensor oper-
ations executed on the GPU. The output object point cloud of this segmentation process serves as
input for both our policy and object pose tracking pipeline.

Object Pose Tracking. To trade-off tracking speed and performance, we first subsample the object
point clouds randomly to ntrack = 2048 points. Empirically, we found that this avoids compromising
the quality of the ICP(Iterative Closest Point) algorithm, while remaining reasonably fast.

We employ ICP for tracking. Given the object point cloud Ct at current time step t, we conduct
point-to-plane ICP registrations with point cloud of previous timestep Ct−1, resulting in a transfor-
mation Pt,t−1 = ICP(Ct, Ct−1). The current object pose TOt is obtained by recursively applying
pairwise transformations: TOt = Pt,t−1 · TOt−1 . In the case that the transform drifts over time,
we also perform an additional ICP match with the initial object point cloud Pt,0 = ICP(Ct, C0) to
correct the error. If the fitness score Fitnesst,0 exceeds 60%, current object pose is calculated as
TOt

= Pt,0 · TO0
.

For thin objects, we utilize point-to-point ICP matching since their point cloud nearly forms a single
plane. While the ICP tracker performs well for large and non-symmetrical objects, it struggles with
highly symmetrical objects, or objects with point-matching ambiguity under occlusion (e.g. when
cup handles are occluded by the robot).

To address this challenge, we tried color-based ICP to resolve the ambiguity based on surface tex-
ture. However, we found that it did not improve tracking performance and, in some cases, even

15

https://github.com/kabouzeid/point2vec
https://github.com/kabouzeid/point2vec

Published as a conference paper at ICLR 2024

worsened it. As such, we used april-tag tracker to maintain object pose tracking accuracy for highly
symmetrical objects.

A.5 EXAMPLE TRAJECTORIES

Example trajectories can be observed from the video in the supplementary material, or from http
s://sites.google.com/view/contact-non-prehensile.

A.6 SIMULATION SETUP

A.6.1 STABLE POSES GENERATION

To sample stable poses for training, we drop the objects in a simulation and extract the poses after
stabilization. In 80% of the trials, we drop the object 0.2m above the table in a uniformly random
orientation. In the remaining 20%, we drop the objects from their canonical orientations, to increase
the chance of landing in standing poses, as they are less likely to occur naturally. If the object
remains stationary for 10 consecutive timesteps, and its center of mass projects within the support
polygon of the object, then we consider the pose to be stable. We repeat this process to collect at
least 128 initial candidates for each object, then keep the unique orientations by pruning equivalent
orientations that only differ by a planar rotation about the z-axis.

A.6.2 OBJECTS FOR TRAINING

We sample 323 objects from the DexGraspNet dataset (Wang et al., 2023), shown in Figure A.2.
To increase the simulation speed and stability, we apply convex decomposition on every mesh using
CoACD (Wei et al., 2022), after generating the watertight mesh with simplification using Mani-
fold (Huang et al., 2018).

Figure A.2: 323 object meshes that were used for training.

16

https://sites.google.com/view/contact-non-prehensile
https://sites.google.com/view/contact-non-prehensile

Published as a conference paper at ICLR 2024

A.7 HYPERPARAMETERS

Table A.1: Hyperparmeters for reward computation.

Parameter Value Description
kg 0.302 Goal-reaching reward coefficient
kr 0.0604 Hand-reaching reward coefficient
ke 0.0001 Energy penalty coefficient
kd 243.12 Decay factor for potential-based reward

Table A.2: Hyperparameters for Encoder and Policy.

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Num. points 512 Hidden dim. 128 Shared
MLP MLP (512, 256, 128)

Num. patches 16 Num. layer 2 Actor MLP (64, 1)

Patch size 32 Num. attention head
in self-attention 4 Critic MLP(64, 20)

Concatenate
context input True

Num. attention head
in cross-attention
(teacher/student)

16/4

Table A.3: Hyperparameters for PPO.

Hyperparameter Value Hyperparameter Value Hyperparameter Value Hyperparameter Value
Max Num. epoch 8 Base learning rate 0.0003 GAE parameter 0.95 Num. environment 4096

Early-stopping KL target 0.024 Adaptive-LR KL target 0.016 Discount factor 0.99 Episode length 300
Entropy regularization 0 Learning rate schedule adaptive PPO clip range 0.3 Update frequency 8

Policy loss coeff. 2 Value loss coeff. 0.5 Bound loss coeff. 0.02

Table A.4: Range for domain randomization. U [min,max] denotes uniform distribution, and
N [µ, σ] denotes Normal distribution. Point cloud noise and Goal pose noise are added to the nor-
malized input.

Parameter Range
Object mass (kg) U [0.1, 0.5]
Object scale (m) U [0.1, 0.3]
Object friction U [0.7, 1.0]
Table friction U [0.3, 0.8]

Gripper friction U [1.0, 1.5]
Torque noise N [0.0, 0.03]

Point cloud noise N [0.0, 0.005]
Goal pose noise N [0.0, 0.005]

17

	Introduction
	Related work
	Contact-based object representation for non-prehensile manipulation
	Overview
	Learning CORN
	Patch-based architecture for corn

	Experiments
	Experimental Setup
	Results

	Conclusion
	Appendix
	Student Model
	Details on Policy Action Space
	Data Generation And pretraining Pipelines
	Real World System And Perception Pipeline
	Example trajectories
	Simulation Setup
	Stable Poses Generation
	Objects for Training

	Hyperparameters

