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Abstract

Function learning forms the foundation of numer-
ous scientific and engineering tasks. While mod-
ern machine learning (ML) methods model com-
plex functions effectively, their escalating com-
plexity and computational demands pose chal-
lenges to efficient deployment. In contrast, nat-
ural dynamical systems exhibit remarkable com-
putational efficiency in representing and solving
complex functions. However, existing dynami-
cal system approaches are limited by low expres-
sivity and inefficient training. To this end, we
propose EADS, an Expressive and self-Adaptive
Dynamical System capable of accurately learning
a wide spectrum of functions with extraordinary
efficiency. Specifically, (1) drawing inspiration
from biological dynamical systems, we integrate
hierarchical architectures and heterogeneous dy-
namics into EADS, significantly enhancing its
capacity to represent complex functions. (2) We
propose an on-device training method that lever-
ages intrinsic electrical signals to update param-
eters, making EADS self-adaptive with excep-
tional efficiency. Experimental results across di-
verse domains demonstrate that EADS achieves
higher accuracy than existing works, while offer-
ing orders-of-magnitude speedups over traditional
neural network solutions on GPUs for both infer-
ence and training, showcasing its broader impact
in overcoming computational bottlenecks across
various fields.
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1. Introduction

Function learning is essential for modeling, analysis, and
prediction across a wide range of scientific and engineering
tasks. Modern ML methods, particularly neural networks
(NNs), have demonstrated exceptional capability in approxi-
mating complex functions by learning from data. Despite
their remarkable achievements, the computational demands
of ML models have soared due to the escalating model com-
plexity. Even on the most powerful GPU, training these
models remains prohibitively expensive, and the waning of
Moore’s Law exacerbates this challenge. As a result, the
quest for alternative, efficient computational paradigms has
become increasingly urgent.

Nature offers an elegant remedy to the growing computa-
tional burden of modern ML methods. Natural dynamical
systems exemplify how complex functions can be efficiently
modeled and solved through their intrinsic processes. For
example, partial differential equations (PDEs) that govern
physical phenomena or chemical reactions are inherently
solved by the dynamical systems they describe. This natural
process can be interpreted as the system evolving over an
energy landscape, where lower energy states correspond
to higher statistical likelihood. Driven by thermodynamic
principles, such systems instinctively evolve toward the equi-
librium state, generating optimal solutions. This process,
which we refer to as natural annealing, exhibits excep-
tional efficiency. Motivated by this potential, this work
investigates whether dynamical systems can be leveraged to
develop a novel ML paradigm that effectively learns various
functions with significantly improved efficiency.

Although early theoretical work highlighted the promise of
dynamical systems for ML (Weinan, 2017; Li & Weinan,
2021; Weinan et al., 2022), practical progress has been hin-
dered by the lack of suitable hardware embodiments. For-
tunately, recent breakthroughs in programmable electronic
dynamical systems (Afoakwa et al., 2021; Béhm et al., 2022)
have marked a turning point. Leveraging these electronic
dynamical systems, previous studies have demonstrated that
the power of nature can be leveraged to tackle some simple
learning problems with remarkable efficiency (Wu et al.,
2024; Song et al., 2024b; Bohm et al., 2022). However, the
applicability and broader impact of electronic dynamical
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systems remain significantly limited due to two key chal-
lenges: 1. Low Expressivity: Existing dynamical systems
are governed by energy functions that entail simple inter-
actions among nodes, and hence limiting their capacity to
represent complex functions. 2. Inefficient Training: Ex-
isting approaches realize inference on dynamical systems
through on-device natural annealing; however, the training
process to construct the desired energy landscape is still per-
formed on digital processors, resulting in high training costs.
This decoupling of training and inference deviates from the
intelligence observed in natural systems, preventing this
emerging ML paradigm from addressing the most pressing
computational challenge in ML development: extremely
high training costs. Therefore, substantial advancements are
needed to fully realize the potential of dynamical systems.

Notably, numerous scientific studies (Wills et al., 2005; Fris-
ton, 2010; Inagaki et al., 2019) suggest that the brain also
functions as a dynamical system, performing inference and
training in a collocated manner. Inspired by the brain, a
highly efficient and powerful dynamical system, we propose
enhancing the electronic dynamical system in two ways:
(1) improving the system’s expressivity through hierarchi-
cal architectures and heterogeneous dynamics; (2) enabling
on-device training to fully leverage its extraordinary com-
putational power. Specifically, to enhance expressivity, we
improve the dynamical system with a hierarchical struc-
ture and heterogeneous dynamics, facilitating progressive
information refinement through distinct processing stages.
Furthermore, we propose a learning method that allows the
dynamical system to leverage its intrinsic electrical signals
to self-construct its energy landscape, align with target data
distributions, and achieve on-device training with excep-
tional efficiency.

To this end, this work introduces EADS, a nature-powered
ML paradigm that leverages the computational power of
dynamical systems for accurate and efficient function learn-
ing. By expanding the applicability of dynamical systems to
encompass functions from diverse domains, e.g. real-world
problems, PDEs in scientific computing, and ML kernels,
EADS holds the potential to overcome persistent computa-
tional bottlenecks and drive advancements across various
fields. The overview of EADS is shown in Figure 1, and the
contributions of this paper are summarized as:

* We propose EADS, an expressive and self-adaptive
dynamical system capable of accurately and efficiently
learning functions across diverse domains.

* We introduce hierarchical structures and heterogeneous
dynamics to enhance the dynamical system’s capacity
to represent complex functions.

* We propose an on-device training method that enables
the dynamical system to train its parameters using in-

108
o
]
a
0107 Y To
3 5 M 2E
Q =1 9 Eg
L oz M ¢%
E 10! Z% 5‘(% Enhanced expressivity §3.1
5 On-device training §3.2
P4
10°

OnGPU Previous Work@ This Work @

Figure 1. The overview of EADS.

ternal electrical signals with exceptional efficiency.

* Experimental results demonstrate that EADS accu-
rately learns various functions, achieving orders-of-
magnitude speedups (103 x) over baselines on GPUs.

2. Preliminaries and Related Work

This section provides preliminaries of ML through the lens
of dynamical systems, including both theoretical develop-
ments and recent advances with hardware embodiments.
Subsequently, we review related work that uses dynami-
cal systems to address various tasks, from combinatorial
optimization to advanced ML applications.

2.1. Preliminaries

ML via Dynamical Systems. The potential of dynami-
cal systems in ML was highlighted by (Weinan, 2017; Li &
Weinan, 2021; Weinan et al., 2022), demonstrating their abil-
ity to model complex, high-dimensional nonlinear functions
through continuous transformations. These works highlight
that deep NNs succeed by composing simple functions to
approximate complex ones, while dynamical systems ex-
tend this compositional approach to an infinitesimal limit.
Compared to deep NNs, dynamical systems offer several ad-
vantages: (1) greater flexibility in imposing constraints and
incorporating domain-specific structures, facilitating more
transparent theoretical analysis than purely discrete-layer
architectures; and (2) easier integration of ML techniques
with physical models, enabling seamless interaction with
real-world physical processes. Despite these promising
theoretical advancements, practical adoption of dynamical
systems in ML has been limited by the lack of suitable
hardware embodiments.

Fortunately, recent advancements in programmable elec-
tronic dynamical systems have revived interest in this field.
Originally conceived as physical embodiments of the binary
Ising model for solving binary combinatorial optimization
problems, these systems have since expanded to tackle bi-
nary learning tasks (Pan et al., 2023; Liu et al., 2023). (Wu
et al., 2024) later extended the binary Ising model to support
real-valued nodes, enabling real-valued graph learning tasks
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(Liu et al., 2025b). This extension results in the following
energy function (also referred to as Hamiltonian):

N N
Hypw = —ZJijxixj —|—th.’13§, Ti, Tj € R. (1)
i#j i=1
Here, J;; represents the interaction strength between nodes
x; and x;, while h; denotes the self-reaction strength of x;
to external influences. Assuming a Boltzmann distribution
pro = e~ PMre /7 where the partition function Z serves as
a normalization constant that ensures that the probabilities
sum up to one, the energy landscape is mapped to a probabil-
ity distribution, with the lowest energy state corresponding
to the highest probability state. The system’s dynamics are
designed as:

d.%'i 8Hrv al
¢ J#i

which guarantees the spontaneous energy decrease of the
system:

My _ XN: <6Hm dmi> _ —ZN: <6HM>2 0.
dt im1 8% dt im1 al’z
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When applied to graph learning tasks, a subset of nodes is
fixed to input values, while the remaining nodes, serving as
output nodes, are randomly initialized and evolve according
to the designed dynamics. Given a well-trained Hamiltonian
that accurately captures the correlation between inputs and
outputs, the spontaneous energy decrease makes the system
instantly anneal to desired solutions.

Physical Embodiment of Dynamical Systems. This dy-
namical system is physically realized using programmable
electronic components, such as resistors and capacitors, as
illustrated in Figure 2. The key idea behind this embodiment
is to precisely and efficiently realize the node dynamics us-
ing electronic components. In this design, each node z; is
implemented as a nanoscale capacitor within a node unit
(V;), with its voltage representing the node value. Each ca-
pacitor is coupled with a resistor of resistance R; = 1/(2h;),
forming a resistive current within the node unit, realizing
the term 2h;x; in the node dynamics. Additionally, capaci-
tors from different node units (N; and NN;) are structurally
connected via a programmable resistor in the coupling unit
(CU;;), with resistance R;; = 1/J;;. This configuration
effectively incorporates the term Zj\;l (Jij + Jji) x;j inthe
node dynamics, implementing a resistively coupled capaci-
tor network.

Offline Training of Dynamical Systems. Training a dy-
namical system involves optimizing the parameters J and
h in the Hamiltonian H,., to construct an energy landscape
that reflects the target data distribution. Previous works have
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Figure 2. The backbone electronic dynamical system.

trained the model using computationally expensive statisti-
cal methods executed on digital processors, mainly GPUs.
Specifically, the training process begins by estimating the
node values using methods such as conditional likelihood
maximization (Wu et al., 2024). The discrepancies between
the estimations and the ground truths are evaluated using
metrics such as Mean Absolute Error (MAE). These met-
rics serve as loss functions to update the model parameters,
thereby reconstructing the energy landscape to align with
the data distribution. During inference, the well-trained pa-
rameters are mapped onto the circuit, then natural annealing
drives the system toward the lowest energy state, enabling
it to find the solution with the highest probability for the
target problem.

2.2. Related Work

Dynamical systems have gained significant attention as an
efficient computing paradigm, initially applied to optimiza-
tion problems (Sharma et al., 2023a; Sun et al., 2025) and
subsequently extended to machine learning tasks (Wu et al.,
2024; Liu et al., 2025a; Song et al., 2024a). The Ising ma-
chine, one of the earliest hardware implementations lever-
aging dynamical systems, embodies the Ising model orig-
inally developed for ferromagnetism in statistical physics.
Ising machines have demonstrated breakthrough efficiency
in solving numerous binary optimization problems (B6hm
et al., 2019; Mohseni et al., 2022; Lo et al., 2023). For
instance, researchers have employed Ising machines to ad-
dress satisfiability (SAT) problems (Sharma et al., 2023a;b;
Sun et al., 2025), as well as MAX-CUT and graph color-
ing problems (Wang & Roychowdhury, 2019; Bohm et al.,
2019; Liu et al., 2025¢).

Recognizing their potential, researchers have explored dy-
namical systems in ML applications such as unsupervised
NN training (Bohm et al., 2022), graph learning (Pan et al.,
2023), and collaborative filtering (Liu et al., 2023). While
these studies provide valuable insights into leveraging dy-
namical systems for ML tasks, their scope and applicability
are limited by the binary nodes of Ising machines, hindering
progress in more complex, real-valued scenarios. Recent
work (Wu et al., 2024; Wu et al.) introduced real-valued
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dynamical systems to accelerate inference in graph learning
problems; however, their contributions are constrained by
two key limitations. First, while the proposed Hamiltonian
supports real-valued nodes, it only accounts for simple inter-
actions, limiting its ability to capture the intricate patterns
present in many complex problems. Second, their approach
utilizes the power of dynamical systems exclusively during
the inference phase, leaving the computationally intensive
training process unaddressed. Although some simple on-
device training methods have been developed (Liu et al.,
2025a; Wu et al., 2025), they have only demonstrated ef-
fectiveness on simple models. These limitations, which
significantly constrain the broader impact of dynamical sys-
tems, will be addressed in this work.

3. Methodology

The pursuit of powerful and highly efficient computing sys-
tems has been profoundly influenced by the extraordinary
capabilities of biological systems, particularly the human
brain. By contrasting the brain’s remarkable capabilities
with existing physically embodied dynamical systems, two
fundamental limitations emerge: (1) insufficient expressivity
and (2) inefficient training. This section introduces solu-
tions to address these limitations. In particular, Section 3.1
introduces a hierarchical, heterogeneous dynamical system
to boost expressivity, and Section 3.2 presents an on-device
training method that makes the system self-adaptive with
exceptional efficiency.

3.1. Expressivity Enhancement

Existing dynamical systems with physical embodiments,
while promising, exhibit several limitations when compared
to the brain. (1) Flat Structure. Unlike the brain’s hierar-
chical organization, which processes information through
multiple layers of increasing abstraction, existing dynamical
systems maintain a flat structure. (2) Homogeneous Dynam-
ics. In contrast to the brain’s rich repertoire of nonlinear
processing mechanisms, where different regions exhibit di-
verse dynamics, current dynamical systems rely on uniform
dynamics, characterized by linear interactions among nodes.
These constraints limit their ability to model intricate, non-
linear functions.

Brain-Inspired Enhancements. To address these limita-
tions, we propose two key enhancements inspired by the
architecture and functionality of the brain: (1) a hierarchical
structure and (2) heterogeneous dynamics. Our enhanced
system implements a multi-stage processing pipeline in-
spired by the brain’s information processing mechanisms.

The enhanced system initiates with a projection that trans-
forms inputs into an abstract hidden space, modeled by the
following dynamics:

-
o = > Py = rihi, )
j=1

where z; € R(j = 1,2,..., N) denotes the j-th input node,
h; e R(t=1,2,..., H)denotes the i-th hidden node. The
projection weight P;; € R denotes the connection from
x; to h;, analogous to dendritic integration in biological
neurons. The term 7; denotes the self-reaction strength of
the hidden node h;.

Once the hidden nodes in Eq. 4 have stabilized, they further
evolve through internal coupling, reflecting the dense local
connectivity observed in cortical circuits:

dh; =l
o =0 (I; mm) , Q)

where J;, € R (4, k = 1,2,..., H) represents inter-node
interaction weights, and o is a hardware friendly nonlinear
function, such as ReLLU. This nonlinear function can be
efficiently implemented using diodes to regulate current
flow, thereby enabling nonlinear processing capabilities.

Finally, the processed hidden states are mapped to the output
space through:

dy ul
7? = ZQmihi — TmYm, (6)
i=1
where y,, € R(m =1,2,..., M) represents output nodes,

®mi € R is the output projection weight matrix, and r,,
denotes output self-reaction strength. This hierarchical
pipeline yields significantly enriched expressivity than tradi-
tional flat and homogeneous dynamical systems, as demon-
strated in Section 4.

Physical Embodiment of Enhanced Dynamical Systems.
The physical implementation of the enhanced dynamical sys-
tem builds upon the foundational design shown in Figure 2.
Following the same design strategy, node values are mapped
to capacitor voltages, enabling the natural realization of
continuous-time dynamics. Each capacitor is coupled with a
resistor of resistance r; or r,,, forming the resistive current
within the node unit. The parameters P, J, Q are config-
ured as conductances of programmable resistors, thereby
implementing the system dynamics as electrical currents.

Specifically, the terms Zjvzl Pz, o (Z,Ij# Jikhk) , and

Zil Qm:h; are mapped as the flow-in currents into the re-
spective node units. The terms r;h; and r,,,y,, are mapped
as internal currents within each node unit. The design of
input nodes z; and output nodes ¥,,, remains consistent with
the original architecture, while the hidden nodes h; have
been extended to incorporate the newly introduced dynam-
ics, as illustrated in the “Improved design of h;” section
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of Figure 3, where the added components are highlighted
in yellow. As shown, two switches control the dynamics
of each hidden node: when the black switch is closed, the
circuit realizes the input-to-hidden dynamics described by
Eq. 4; when the yellow switch is closed, it implements the
inter-hidden dynamics of Eq. 5. The nonlinear function is
implemented by using diodes to restrict the current, enabling
effective hardware implementation of the nonlinearity.

3.2. Instant On-Device Training

Despite these enhancements, the system’s advantages re-
main constrained without efficient training support, as train-
ing is the most computationally intensive process. Therefore,
to extend the extraordinary computational power of dynami-
cal systems to the training process, we propose an efficient
on-device training method, EC-Train. This novel approach
utilizes the intrinsic electrical signals of the dynamical sys-
tem as feedback for on-device parameter adjustment, en-
abling self-adaptation to the target data distribution. EC-
Train significantly reduces training costs, achieving orders-
of-magnitude improvements in efficiency over conventional
offline training on digital processors.

On-Device Instant Training Approach. According to
fundamental physical principles (Kirchhoff’s current law),
each output node y,,, stabilizes when its flow-in current
In = Zfil @Qmih; balances its internal resistor current
I f,;f = rmYm- When y,, is clamped to its ground truth value,
the difference between I:" and I* provides a direct measure
of error. Consequently, the on-device training process of EC-
Train aims to minimize the difference between I'" — I 2 for
all output nodes when their values (voltages) set to ground
truth values. In this way, the loss function of EC-Train can
be formulated as:

1 M
L=— I — 172, 7
M;(m ) @)

The error signal d,,, emerges intrinsically from the dynami-
cal system, serving as natural feedback signals for parameter
optimization:

®)

Specifically, the gradients with respect to @Q,,; are then

2
8 = — (11" — [R).
M( m m)

s L B i
T E C |R¢ R

Y Y 1A T

Trainable Jik i Trainable Qmi Feedback from ym

The key components of the enhanced dynamical system with on-device training support.

computed as: OL/0Q.m; = 0y, - hy. Since output nodes
Ym, are clamped to their ground truth values during training,
rm essentially acts as a scaling factor for the ground truth
signal. To achieve an efficient hardware implementation, we
make r,,, = 1, thereby streamlining both the training and
inference processes.

However, for the inter-hidden-node coupling weights J;x,
we face a unique challenge: unlike output nodes, we lack
ground truth values for hidden states ;. To address this, we
employ the Adjoint Sensitivity Method (Pontryagin, 2018),
a powerful technique from optimal control theory that en-
ables gradient computation through an auxiliary dynamical
system. This approach is particularly suitable as it: (1) elim-
inates the need for ground truth hidden states, (2) maintains
mathematical rigor while being hardware-realizable. For-
mally, we introduce an adjoint node a; = L /0h; for each
hidden node h;, with initial value being Zm Qmidm and
dynamics governed by:

dai

®

dt

H
> arid,.
=1

Here, I; is a boolean indicator defined as:

H H
I, =o' (Z Jishs > o) =1 (Z Jishs > 0) . (10)

s=1 s=1

The gradient with respect to coupling weights J;; is then
computed through a dynamical process:

0
— / a;l;hdt,
T

which involves the evolution of a;, and h; from 7" backward
to 0 to accumulate the updates.

oL
ik

(11)

For the parameters P;; and 7; involved in the input-to-
hidden projection stage, the stabilization of the hidden state
h; follows Kirchhoff’s current law. Specifically, h; reaches
a steady state when its incoming current /™ Zjvzl Pijx;
is balanced by the current through its internal resistor,
IE = r;h;. Given that each input z; is clamped to its
ground-truth value, the equilibrium condition implies a
stable hidden state value of h; = ZjV=1 Pjjx;, assuming
r; = 1 without loss of generality, as it functions as a scaling
factor. The error signal propagated from the inter-hidden
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stage is denoted as 0; = a;|;—o. Consequently, the gradient
with respect to the projection weight F;; is denoted as:

Detailed derivations are provided in the Appendix.

Physical Embodiment of EC-Train. The proposed training
approach introduces simple yet effective hardware modifi-
cations that enable self-training through electrical current
feedback. As shown in Figure 3 (highlighted in red), we in-
troduce additional feedback signal paths for each parameter.
These feedback paths allow the electronic dynamical system
to propagate signals to the coupling units, facilitating param-
eter adjustments through the rapid charging or discharging
of programmable resistors. Specifically, for parameters J;y,
access to their unmodified values is crucial for computing
the adjoint nodes. To achieve this, we incorporate addi-
tional capacitors (highlighted as red “="" in Figure 3): one
dedicated to receiving feedback signals for parameter up-
dates and another to preserve the original values required for
adjoint and hidden node calculations. This dual-capacitor
configuration ensures accurate gradient computation while
enabling efficient, high-speed on-device learning, reinforc-
ing the system’s capability for real-time adaptation. The
hardware implementation of the newly-introduced adjoint
nodes a; is encoded as a node unit, as depicted in the “a;”
section of Figure 3. With EC-Train, the system performs
continuous updates within each natural annealing cycle,
rapidly reshaping the energy landscape to achieve instant
training with exceptional efficiency compared to traditional
training on digital processors. The EC-Train training pro-
cess is detailed as follows:

1. Initialization: The capacitor voltages representing in-
puts and outputs are set to their ground truth values,
while the trainable parameters are randomly initialized.

2. Natural Annealing: The system undergoes a natural
annealing and generates the electrical current 12" — I %
which serves as the feedback signal to adjust the system

parameters.

3. Parameter Adjustment: The trainable parameters are
updated based on the feedback signal.

4. Iterative Training: The update of trainable parameters
results in a new electrical current Ii" to the node units
Ym, updating the feedback signal I" — IF, and in-
stantaneously initiating a new training iteration. This
iterative process continues across the training set until
convergence is reached.

4. Evaluation

As a pioneering effort demonstrating the significant potential
of physically embodied dynamical systems, we first evaluate

the performance of EADS in graph learning tasks that it is
originally designed for, showing the performance of EADS
in learning complex functions in real-word problems. Then,
we show its potential on other tasks, including PDE solving
in scientific computing and approximating important kernels
in Large Language Models (LLMs).

Experimental Platforms. We conduct our experiments us-
ing an NVIDIA A100 40GB SXM GPU for non-dynamical
system based baselines, measuring total training time, in-
ference latency per sample, and accuracy. For dynamical
system based approaches, we build upon the original hard-
ware embodiment BRIM (Afoakwa et al., 2021), using a
custom CUDA-accelerated Finite Element Analysis (FEA)
simulator to assess the training time, inference latency, and
accuracy. Since the dynamical system based baseline NP-
GL (Wu et al., 2024) only achieves inference on dynamical
systems, its training time is still measured on an A100 GPU
using its own offline training method.

4.1. Graph Learning

Datasets and Baselines. For complex function learning in
real-world problems, we evaluate the performance of EADS
in spatial-temporal prediction tasks including six real-world
datasets from four applications. (1) Traffic flow prediction
with two datasets PEMS04 and PEMOS (Chen et al., 2001).
(2) Air quality prediction including PM2.5 and PM10 (Kong
et al., 2021). (3) Taxi demand prediction (NYC Taxi): pre-
dicting the hourly number of taxi trips (New York City Taxi
and Limousine Commission, 2024). (4) Pandemic progres-
sion prediction (Texas COVID): predicting the daily number
of new cases (Centers for Disease Control and Prevention,
2024). We compare EADS with SOTA spatial-temporal
prediction baselines, including Graph WaveNet (Wu et al.,
2019), MTGNN (Wu et al., 2020), DDGCRN (Weng et al.,
2023), MegaCRN (Jiang et al., 2023), and the dynamical
system based method NP-GL (Wu et al., 2024). The number
of hidden nodes in EADS is set to 128, and baselines are
implemented following the experimental setups detailed in
their respective original papers.

Experimental Results. We report the test MAE of baselines
and EADS in Table 1, where lower values indicate better
performance. The results show that EADS outperforms all
baselines across all datasets, achieving an average MAE
reduction of 23.91%. Notably, EADS reduces MAE by up
to 16.29% compared to the best baseline on the Texas Covid
dataset. Furthermore, when compared to the dynamical
system based baseline NP-GL, EADS achieves an average
MAE reduction of 8.08% across all datasets, highlighting
the improved system expressivity.

Additionally, Figure 4 presents the training time and in-
ference latency of EADS compared to the baselines, where
EADS exhibits remarkable computational efficiency. Specif-
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Table 1. Spatial-temporal prediction performance in MAE. EADS consistently outperforms all baselines.

Dataset PEMS04 | PEMS08 | PM2.5 | PM10 | NYC Taxi | Texas Covid
Graph WaveNet 20.84 15.77 1.82 1.95 10.22 82.96
MTGNN 19.96 15.15 1.83 1.99 7.08 84.17
DDGCRN 18.97 14.64 1.71 1.88 3.06 23.94
MegaCRN 17.65 13.70 1.65 1.74 6.08 83.73
NP-GL 17.07 13.51 1.62 1.73 3.03 22.04
EADS 16.92 13.43 1.53 1.62 2.46 18.45
g 10t w101
e
© I _
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PEMS04 PEMS08 PM2.5 PM10 NYC Taxi Texas Covid PEMS04 PEMS08 PM2.5 PM10 NYC Taxi Texas Covid
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Figure 4. Training time and inference latency for spatial-temporal prediction. EADS shows higher efficiency than GPU-based baselines.

ically, EADS delivers an average training speedup of 356 x
compared to NP-GL. Across all baselines, EADS achieves
an average training speedup of approximately 300x. Fur-
thermore, in terms of inference latency, EADS delivers an
average speedup of around 1000x compared to the base-
lines executed on GPUs. These substantial improvements
in both training and inference efficiency highlight the signif-
icant potential of EADS for real-time applications.

4.2. PDE Solving

Datasets and Baselines. Following (Li et al., 2020a), we
evaluate our method on the Burgers’ equation and the Darcy
Flow equation. The datasets are generated following the
same procedure as in (Li et al., 2020a), ensuring consistency
in benchmarking. The data is collected on grids of varying
spatial resolutions: 16 x 16, 32 x 32, and 64 x 64. The model
is trained to learn the mapping from the initial condition (or
coefficient field) to the corresponding solution at a specific
time, under the same spatial resolution. We compare our
method against several established benchmarks, including:
NN (Li et al., 2020a), FCN (Zhu & Zabaras, 2018), GNO
(Li et al., 2020b), FNO (Li et al., 2020a), and the dynamical
system based method NP-GL (Wu et al., 2024). All base-
lines are implemented following the setups detailed in their
respective original papers.

Experimental Results. The performance of EADS and the
baseline methods on the selected PDEs is summarized in
Table 2. Across all evaluated resolutions and PDEs, EADS
consistently achieves a lower test MAE than NN, FCN,
GNO, and NP-GL. Notably, EADS also exhibits marginally

better accuracy than FNO, underscoring its effectiveness
even against advanced operator learning methods.

Beyond accuracy, we compare the training times and infer-
ence latencies of all models across the datasets, as illustrated
in Figure 5. EADS exhibits exceptional training and infer-
ence efficiency, substantially outperforming methods im-
plemented on GPUs. On average, EADS achieves training
and inference speedups of around 1000 x, highlighting its
extraordinary computational performance. The results un-
derscore the potential of EADS to accelerate simulations in
scientific computing and to support applications demanding

Table 2. Test MAE for PDE solving. EADS achieves superior
accuracy compared to baselines.

Methods Burgers
S1=256 S2=1024 $3=4096

NN 1.26 x 1073 1.32x 1072 1.69 x 1073
FCN 1.37x107% 1.35x107* 1.76 x 107*
GNO 6.95x 107° 6.97 x107° 7.42x107°
FNO 141 x107° 1.42x107° 1.53x 107°
NP-GL 159x10™* 157x10"% 1.83x107*
EADS 1.32x 1075 1.46 x 107° 1.51 x 1075
Methods Darcy Flow

S1=16x16 $2=32x32 S3=64x64
NN 8.48 x 107 8.30x107°% 3.86x107°
FCN 583 x107% 6.14x107% 3.77x107°
GNO 571 x 107% 562 x107¢ 1.26 x 1075
FNO 472 %107 336x107% 1.03x107°
NP-GL 651 x107% 6.72x107% 3.65x107°
EADS 431x107% 3.17x107% 1.12x107°
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Figure 5. Training time and inference latency for PDE solving. EADS is markedly more efficient than GPU-based baselines.

rapid PDE solving, such as interactive design optimization
and time-critical decision support systems.

4.3. LLMs

Experimental Setups. To evaluate the capability of EADS
in learning complex functions embedded within advanced
ML models, we conducted experiments in the context of
LLMs. Specifically, we adopt the GPT-2 small model (Wolf,
2019), which consists of 12 transformer decoders, each con-
taining a causal self-attention kernel. For each attention
kernel, we construct a training dataset by extracting input-
output pairs from GPT-2’s forward pass on the LAMBADA
dataset (Paperno et al., 2016), thereby capturing the transfor-
mation performed by that kernel. We then train a separate
EADS for each of the 12 attention kernels to assess EADS’s
ability to replicate the underlying complex transformations.
During evaluation, we replace one attention kernel in GPT-
2 with its corresponding trained EADS while keeping all
other GPT-2 components unchanged. The performance of
the modified GPT-2 is evaluated using test perplexity (PPL)
on the LAMBADA dataset, where lower values indicate bet-

Table 3. Test perplexity (PPL) on LAMBADA.

Kernels 1 2 3 4 5 6
GPT2 35.13 3513 3513 3513 3513 35.13
NP-GL 37.79 37.90 38.17 3833 3841 3848
EADS 36.67 36.77 36.86 36.83 3695 36.94
Kernels 7 8 9 10 11 12
GPT2 35.13 3513 35.13 3513 3513 35.13
NP-GL 3841 38.38 38.72 3831 3879 38.77
EADS 36.75 3693 3696 36.87 3694 37.08
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Figure 6. Training time and inference latency on LAMBADA.

ter performance. For comparison, we also evaluated NP-GL
(Wu et al., 2024), the dynamical system baseline, to provide
a reference benchmark.

Experimental Results. As shown in Table 3, EADS demon-
strates remarkable consistency and robustness across all
kernel positions, with only minimal performance degrada-
tion ranging from 1.54 to 1.95 PPL points compared to the
original GPT-2. This stability indicates that EADS success-
fully captures and reproduces the complex transformations
encoded within each kernel. Notably, EADS substantially
outperforms NP-GL across all kernel positions, achieving an
average perplexity reduction of approximately 1.49 points.
Furthermore, as illustrated in Figure 6, EADS achieves a
remarkable training speedup of roughly ~ 800x compared
to NP-GL on GPUs. For inference latency, EADS delivers a
speedup of approximately 10?x over the kernel running on
GPUs, underscoring its potential as a promising approach
to enhancing LLM efficiency.

5. Conclusion

Modern ML methods have demonstrated exceptional capa-
bility in approximating various functions, yet their increas-
ing complexity and substantial computational costs pose
significant challenges to efficient development. In contrast,
nature effortlessly models complex functions through dy-
namical systems. Inspired by this, we introduce EADS, a
nature-inspired ML paradigm that leverages an expressive
and self-adaptive dynamical system to learn various func-
tions with unprecedented efficiency. The proposed EADS
incorporates hierarchical architectures and heterogeneous
dynamics to enhance the expressivity of existing dynamical
systems. In addition, we introduce an on-device training
method that enables the dynamical system to optimize its pa-
rameters using intrinsic electrical signals, thereby achieving
exceptional training efficiency. Experiments across func-
tions from diverse domains show that EADS achieves higher
accuracy than existing methods while delivering orders-of-
magnitude speedups over traditional GPU-based approaches
for both inference and training. These results underscore
the potential of EADS to overcome the computational bot-
tlenecks across various critical fields.
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A. Appendix

Below, we present the detailed mathematical derivations of the proposed EC-Train method. The proposed EC-Train approach
aims to minimize the difference between I — T2 after clamping the output nodes to their ground truth values. In this way,
the EC-Train loss function can be formulated as:

1 M
_ in R\2
L= M §(Im - Im) . (13)

The error signal d,,, emerges intrinsically from the dynamical system, serving as natural feedback signals for parameter
optimization:

_ 2 in _ TR

Specifically, the gradients with respect to (Q,,,; are then computed as:

oL
= 0m - hy. 15
80, ~ Om i 15)
Since output nodes y,, are clamped to their ground truth values during training, r,, essentially acts as a scaling factor for
the ground truth signal. To achieve an efficient hardware implementation, we make r,, = 1, thereby streamlining both the
training and inference processes.

For the inter-hidden-node coupling weight .J;; that encoded in the following dynamical process:

H
dh;
dt =0 (I; Jikhk> 5 (16)

where J;;, represents inter-node interaction weight and o () is a nonlinear function defined as:

z, >0
2= ’ 17
o(@) {O, z < 0. {17
Since their final states (h1(T), ha(T), ..., hg(T)) determines the output node values, we have:
oL
(D) Z Q (18)
To compute parameter gradients, following the adjoint sensitivity method, we introduce the adjoint node a;, satisfying:
H
da; ofi
- _ 19
= ; Qg (19)
where "
fi=o (Z Ju,hi> . (20)
i=1
By taking the partial derivative, we obtain:
H
afl /
= Juihi | Jui, 21
ah, ; 1 1 2D

where o/ (z) is the derivative of o(z), given by:

o(z) = {0 <. (22)
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Consequently, the adjoint node evolves as:

da; ul ul 2
dtz =— Zaza/ <Z Jlihi> Jiji=— ZalIlJli~ (23)
=1 i=1 =1

with the initial value: oL
(T) = = E O, 24
az( ) oh, (T) m sz(sm (24)

Here, I; is a boolean indicator defined as:

H H

I, =0 (Z Jishs > 0) =1 (Z Jishs > o) . (25)
s=1 s=1

Using the adjoint nodes, the gradient of L with respect to J;;, is computed as:

oL 0 o, /0 (& /0
= — a; = — a;0 Jz h hipdt = — ailih dt. 26
0Jix /T 0Jix T Z A T g (20)

k=1

For the input-to-hidden dynamical process:

N

dh;

dt = Zpijl‘j — rihi, (27)
j=1

where h; is the dynamical node, z; is the fixed input, F;; is the parameter. According to Kirchhoff’s current law, h; reaches a

steady state when its incoming current ;" = Z;V=1 P;jz; is balanced by the current through its internal resistor, [ R —=rh,.

Given that each input x; is clamped to its ground-truth value, the equilibrium condition implies a stable hidden state value of

N
hi =Y Pyjx;, (28)
j=1

assuming r; = 1 without loss of generality, as it functions as a scaling factor. These equilibrium states then serve as the
initial states for the inter-hidden dynamical process in Eq. 16, thus the error signal propagated back from the inter-hidden
stage to this input-to-hidden stage is 6; = a;|;—o. Consequently, the gradient with respect to the projection weight P;; is
given by:

oL

12



